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Abstract

D
espite tremendous advances in robotics, we are still amazed by the profi-

ciency with which humans perform movements. Even new waves of robotic

systems still rely heavily on hardcoded motions with a limited ability to react

autonomously and robustly to a dynamically changing environment. This thesis

focuses on providing possible mechanisms to push the level of adaptivity, reactiv-

ity, and robustness of robotic systems closer to human movements. Specifically,

it aims at developing these mechanisms for a subclass of robot motions called

“reaching movements”, i.e. movements in space stopping at a given target (also

referred to as episodic motions, discrete motions, or point-to-point motions).

These reaching movements can then be used as building blocks to form more

advanced robot tasks. To achieve a high level of proficiency as described above,

this thesis particularly seeks to derive control policies that: 1) resemble human

motions, 2) guarantee the accomplishment of the task (if the target is reachable),

and 3) can instantly adapt to changes in dynamic environments.

To avoid manually hardcoding robot motions, this thesis exploits the power

of machine learning techniques and takes an Imitation Learning (IL) approach

to build a generic model of robot movements from a few examples provided

by an expert. To achieve the required level of robustness and reactivity, the

perspective adopted in this thesis is that a reaching movement can be described

with a nonlinear Dynamical System (DS). When building an estimate of DS

from demonstrations, there are two key problems that need to be addressed: the

problem of generating motions that resemble at best the demonstrations (the

“how-to-imitate” problem), and most importantly, the problem of ensuring the

accomplishment of the task, i.e. reaching the target (the “stability” problem).

Although there are numerous well-established approaches in robotics that could

answer each of these problems separately, tackling both problems simultaneously

is challenging and has not been extensively studied yet.

This thesis first tackles the problem mentioned above by introducing an

iterative method to build an estimate of autonomous nonlinear DS that are for-

mulated as a mixture of Gaussian functions. This method minimizes the number

of Gaussian functions required for achieving both local asymptotic stability at

the target and accuracy in following demonstrations. We then extend this for-

mulation and provide sufficient conditions to ensure global asymptotic stability of
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autonomous DS at the target. In this approach, an estimation of the underlying

DS is built by solving a constraint optimization problem, where the metric of ac-

curacy and the stability conditions are formulated as the optimization objective

and constraints, respectively. In addition to ensuring convergence of all motions

to the target within the local or global stability regions, these approaches offer

an inherent adaptability and robustness to changes in dynamic environments.

This thesis further extends the previous approaches and ensures global asymp-

totic stability of DS-based motions at the target independently of the choice of

the regression technique. Therefore, it offers the possibility to choose the most

appropriate regression technique based on the requirements of the task at hand

without compromising DS stability. This approach also provides the possibility

of online learning and using a combination of two or more regression methods

to model more advanced robot tasks, and can be applied to estimate motions

that are represented with both autonomous and non-autonomous DS.

Additionally, this thesis suggests a reformulation to modeling robot motions

that allows encoding of a considerably wider set of tasks ranging from reaching

movements to agile robot movements that require hitting a given target with

a specific speed and direction. This approach is validated in the context of

playing the challenging task of minigolf. Finally, the last part of this thesis

proposes a DS-based approach to realtime obstacle avoidance. The presented

approach provides a modulation that instantly modifies the robot’s motion to

avoid collision with multiple static and moving convex obstacles. This approach

can be applied on all the techniques described above without affecting their

adaptability, swiftness, or robustness.

The techniques that are developed in this thesis have been validated in simu-

lation and on different robotic platforms including the humanoid robots HOAP-3

and iCub, and the robot arms KATANA, WAM, and LWR. Throughout this

thesis we show that the DS-based approach to modeling robot discrete move-

ments can offer a high level of adaptability, reactivity, and robustness almost

effortlessly when interacting with dynamic environments.

Keywords: Reaching Movements, Dynamical Systems, Imitation Learning,

Hitting Motions, Obstacle Avoidance, Stability, Adaptability, Robustness.
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Résumé

E
n dépit des avancées importantes dans le domaine de la robotique, nous

sommes toujours surpris de la mâıtrise avec laquelle les humains accom-

plissent leurs gestes. Aujourd’hui encore, les nouveaux systèmes robotiques sont

très dépendants de mouvements prédéterminés et leur capacité de réaction au-

tonome est limitée et peu robuste face à un environnement dynamique. Cette

thèse se penche sur les moyens de fournir des mécanismes pour augmenter le

niveau d’adaptabilité, de réaction et robustesse de systèmes robotiques pour par-

venir à se rapprocher des mouvements humains. Plus spécifiquement, elle vise

à développer des mécanismes pour une sous-classe de mouvements robotiques

appelée “mouvement d’atteinte”, par exemple des mouvements dans l’espace qui

s’arrêtent à un objectif (aussi référencés comme mouvements épisodiques, mou-

vements discrets, ou mouvements de point-à-point). Ces mouvements d’atteinte

peuvent ensuite être utilisés comme des composants pour construire des tâches

robotiques plus avancées. Pour atteindre le niveau de mâıtrise élevé décrit

précédemment, cette thèse cherche à dériver des régles de contrôle qui: 1)

ressemblent aux mouvements humains, 2) garantissent l’accomplissement de

l’objectif (si celui-ci est atteignable), et 3) peuvent instantanément s’adapter

à des environnements dynamiques.

Pour éviter de coder manuellement les mouvements du robot, cette thèse ex-

ploite la puissance des méthodes d’apprentissage et d’imitation pour construire

un modèle générique de mouvements robotiques via des exemples donnés par un

expert (humain). Pour garantir les niveaux voulus de robustesse et de réactivité,

la perspective adoptée dans cette thèse est d’écrire les mouvements de point-à-

point avec des systèmes dynamiques (SD) non-linéaires. Quand on construit une

estimation d’un SD à partir de démonstrations, nous faisons face à deux prob-

lèmes clés qui doivent être abordés: générer des mouvements qui ressemblent le

plus possible à ceux démontrés (le problème de “comment imiter”), et le plus

important, assurer que l’objectif a bel et bien été rempli, par exemple arriver

au but (le problème de “stabilité”). Bien qu’il y ait de nombreuses méthodes

établies en robotique qui ont une réponse pour chaque question posée séparé-

ment, il n’y a pas de réponse unifiant les deux problèmes et c’est un défi qui n’a

pas encore été étudié en détail.
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Cette thèse aborde premièrement le problème mentionné précédemment en

introduisant une méthode itérative pour construire une estimation d’un système

dynamique non-linéaire autonome qui est exprimé par un ensemble de fonctions

Gaussiennes. Cette méthode minimise le nombre de fonctions Gaussiennes req-

uises pour garantir à la fois une stabilité asymptotique locale à l’objectif et le suivi

des démonstrations fournies. Nous étendons ensuite ce formalisme et fournissons

suffisamment de conditions pour assurer une stabilité asymptotique globale du

SD autonome. Dans cette approche, une estimation du SD est construite via

un problème d’optimisation avec contraintes, où la précision et les conditions

de stabilité sont respectivement formulées comme l’objectif d’optimisation et

de contraintes. En plus de pouvoir assurer la convergence stable de toutes les

trajectoires qui mènent au but dans une région locale et globale, ces approches

offrent une adaptation inhérente et robuste au changement qui prend place dans

l’environnement.

Cette thèse présente une extension aux approches précédentes en assurant

une stabilité asymptotique globale des mouvements des SD indépendamment du

choix des méthodes de régression. Donc, il est aussi possible de choisir la méth-

ode de régression la plus appropriée basée sur les exigences de la tâche requise,

sans compromettre la stabilité du SD. En plus, cette approche permet un appren-

tissage en ligne, d’utiliser la combinaison de plusieurs méthodes de régression

pour modéliser les mouvements d’atteinte d’un robot, et d’être appliquée pour

estimer des mouvements représentés avec un SD autonome et non-autonome. De

plus, cette thèse suggère une reformulation de la modélisation des mouvements

robotiques qui permet d’encoder considérablement plus de comportements allant

de mouvements d’atteinte à des mouvements agiles comme ceux qui sont néces-

saires pour frapper un objet pour lui donner une vitesse et direction spécifiques.

Nous validons cette approche dans le contexte du jeu de minigolf. Finalement,

la dernière partie de cette thèse propose une méthode d’évitement d’obstacles

basée sur des SD. Cette approche fournit une modulation qui permet immédi-

atement de modifier le mouvement du robot pour éviter toute collision avec une

multitude d’objets statiques ou dynamiques (les objets dynamiques doivent être

convexes). Cette méthode peut être appliquée sur toutes les techniques décrites

précédemment sans avoir d’effet sur leurs adaptabilité, rapidité ou robustesse.

Les techniques qui sont développées dans cette thèse ont été validées en simula-

tion et sur différentes plateformes robotiques qui incluent les robots humanöıdes

HOAP-3 et iCub, les bras robotisés KATANA, WAM et LWR. À travers cette

thèse nous avons démontré que les méthodes basées sur les SD pour modéliser les

mouvements discrets peuvent offrir un haut niveau d’adaptabilité, de réaction

et de robustesse presque sans effort lors d’interactions avec un environnement

dynamique.

Mots Clé: Mouvements d’atteinte, Systèmes dynamiques, Apprentissage par

imitation, Évitement d’obstacles, Stabilité, Adaptabilité, Robustesse.
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Chapter 1

Introduction

An inconvenience is only an adventure wrongly considered;
an adventure is an inconvenience rightly considered.

Gilbert Keith Chesterton (1874-1936)

1.1 Motivations

F
rom the moment you turn off the alarm clock in the morning till you turn

it on again at night, you do numerous amounts of reaching movements

without even noticing. For instance, imagine you are in a meeting. You are

talking with your friend and at the same time reaching for an apple in the tray

next to you. Whilst deep in your discussion and trying to reason out your

argument, you start biting the apple. Your other friend — who is coincidentally

a roboticist — does not enjoy the conversation, and instead is staring at your

hand movement. She can clearly see that with every bite, your hand finds a

different way to your mouth, though you may not even think about it. Even

when the person next to you unintentionally bumps into your arm and you

turn your head to see who has hit you, your hand can instantly adapt to these

changes and reach your mouth effortlessly without pause.

Having robotic systems that exhibit the level of robustness and adaptability

described above is essential, particularly if we envision to bring robots into our

daily lives. Let us take another example. Imagine you are being served tea

by a robot. As the robot is about to pour the boiling liquid in the cup you

are holding, you sneeze. As a result of your sudden jolt, the cup is displaced

and your hand is now in the way of the robot in place of the cup. It would

be desirable that the robot to be able to react swiftly, and redirect its motion
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to the cup while avoiding your hand. This is one of the many examples that

emphasize the necessity for adaptive robotic systems that can react in the order

of a second. In addition to the need of having adaptive robotic systems, it would

be even more fascinating if we could achieve the described level of proficiency

in an easy and intuitive way. In such a way, as it happens, that anybody could

impart an instruction, education or command to a robot, even with no in-depth

knowledge of engineering, of the robotic platform, or of the task at hand.

Devising a framework that can fulfil the combination of the above two re-

quirements is nontrivial. For years classical control approaches have provided us

with the tools to perform high precision tasks with industrial robots. However,

these approaches rely heavily on hardcoded motions with a limited ability to

adapt autonomously to a dynamically changing environment. Besides, they re-

quire a large amount of engineering knowledge and experience to efficiently put

them to use. Other approaches, such as global path planning, are comparatively

easier to use and can generate feasible trajectories that can fulfil the constraints

of the task at hand (Diankov & Kuffner, 2007; Burns & Brock, 2005; Toussaint,

2009). Despite recent efforts at reducing the computational costs of such global

searches for a feasible path, however, these methods cannot offer the reactivity

sought to adapt to dynamic environments.

The main scope of this thesis is to devise a generic framework that fulfils the

two important requirements described above. This framework is particularly de-

veloped for a subclass of robot motions called “reaching movements”. Modeling

of reaching movements provides basic components, the so-called motion prim-

itives (Schaal, 1999), which can be seen as a basis from which more advanced

robot tasks can be formed1. To avoid manually hardcoding robot motions, this

thesis exploits the power of machine learning techniques and takes an Imitation

Learning (IL) approach to build a generic model of robot reaching movements

from a few examples provided by the expert. To achieve the required level of

robustness and reactivity, it formulates the encoding of reaching movements as

a control law that is driven from nonlinear dynamical systems.

When modeling robot motions with nonlinear Dynamical Systems (DS), en-

suring stability of the learned DS (from a set of demonstrations of the task)

is a key requirement to provide a useful control policy. Hence, the major part

of this thesis is concentrated on addressing the challenging problem of “how to

build a locally or globally stable estimate of nonlinear dynamical systems from a

set of user demonstrations?” The answer to this question is the core part of our

devised framework. The remaining part of this thesis then focuses on extending

the application area of this framework to modeling hitting movements and to

performing obstacle avoidance in a dynamically changing environment.

1As an example, consider the standard “pick-and-place” task, which can be decomposed as
follows: First reach to the item, then after grasping move to the target location, and finally
return home after release.
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1.2 Approach

As outlined in the previous section, this thesis aims at providing a generic frame-

work to generate with ease robot control policies that exhibit a high level of

proficiency and adaptivity. Specifically, our goal is to build an all-encompassing

model of robot reaching movements that fulfils the following desiderata: 1) It

should be estimated via imitation learning, 2) It should ensure accomplishment

of the task as long as the target is reachable, 3) It should be robust to pertur-

bations and adaptable to changes in a rather complex dynamic environments

with several static and moving obstacles, and 4) It should perform the adap-

tation on-the-fly without any need to re-plan. The first criterion is essential

as it provides an easy and intuitive means to program robots. Additionally, it

allows generating motions that mimic human motions (which are more natural

looking). The other three criteria are crucial since they increase the reliability

of the approach, and are essential particularly when we have robotic systems

that work in the close vicinity of humans. The approach devised in this thesis is

founded on two main pillars: Imitation Learning and Dynamical Systems. Next,

we describe how the field of robotics has evolved from the tedious hardcoding of

robot motions to the appearance of learning-based approaches. Then we intro-

duce imitation learning, a particular form of robot learning, and finally explain

the emergence of dynamical system approaches to modeling robot motions.

1.2.1 Robot Learning

As outlined before, classical approaches to robot control rely on following pre-

programmed motions with a limited level of adaptivity to changing environ-

ments. Manual programming of robot motions often requires a large amount of

engineering knowledge about both the task and the robot and, above that, it can

become particularly non-intuitive when dealing with high Degrees of Freedom

(DoF) robotic systems or fulfilling requirements of complex tasks. Emergence

of a new generation of robots that need to perform a wide variety of tasks in

human daily lives stresses further more the importance of seeking alternative

techniques as manual programming cannot be a reasonable option anymore. In

response to these concerns, learning-based approaches appear as a promising

route to automate the tedious manual programming phase by having a robot

actually learn how to perform a desired task.

To date, there are two best known learning techniques that are actively used

to generate robot movements, namely Reinforcement Learning (RL) (M. Waltz

& Fu, 1965; Mendel & McLaren, 1970; Sutton & Barto, 1998) and Imitation

Learning (IL) (Lozano-Perez, 1983; Segre & DeJong, 1985; Kuniyoshi et al.,

1989). RL mainly focuses on a goal-oriented learning from the interaction with

environments, whereas IL is mainly concerned with the ability to develop new

skills from observing them being performed by another agent. Both approaches

are founded on the learning mechanisms of biological systems. Throughout our
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lives, we learn countless things through trial-and-error (a well-known example of

RL) or by observing others’ behavior, which provides us with a major source of

knowledge about ourselves and our environment. The outcome of the learning

process in both approaches is a states-to-actions map, also called policy. This

policy can then be used by robots to interact with the world. RL builds such

a map through exploration so as to maximize a numerical reward. In contrast,

IL aims at deriving a policy that reproduces behaviors similar to those that are

demonstrated. We will next describe IL-based approaches as it is the direction

we take in this thesis.

1.2.2 Imitation Learning

Imitation Learning (also referred to programming by demonstrations, appren-

ticeship learning, or learning from demonstration) is one of the fundamental

learning mechanisms in humans daily lives. Day in day out, we use IL so fre-

quently that we seldom even notice. We employ IL for different purposes: from

understanding a common social behavior in a small group to learning complex

movements in sport games. In robotics, IL started attracting attention at the

beginning of the 1980s (Lozano-Perez, 1983). Through the years, IL has been

advocated as a powerful means to bootstrap robot learning (Kuniyoshi et al.,

1989; Münch et al., 1994; Schaal, 1999). IL provides an intuitive way to transmit

skills to robots without explicitly programming them. Moreover, it speeds up

robot learning by reducing the search space of solutions (Billard et al., 2008).

IL-based approaches have proved to be interesting alternative to classical con-

trol and planning methods in different applications such as locomotion (Ijspeert

et al., 2002b), control of acrobatic helicopters (Coates et al., 2008), reaching

movements (Calinon et al., 2007), etc. A more detailed overview of IL-based

approaches is provided in Section 3.3.

IL can be performed at the symbolic or trajectory level. The former cap-

tures a high-level representation of a skill by decomposing it into a sequence of

action-perception units. In contrast, the latter acts at a lower-level and encodes

a nonlinear mapping between sensory and motor information. In both cases, the

final goal is to perform a task as similar as possible to the examples provided

by the teacher (also called expert or demonstrator). The notion of similarity is

defined in terms of a metric of imitation performance. This metric provides a

means to quantitatively express the user’s intention during the demonstrations,

and constitutes all features that remain invariant across them (Calinon, 2009).

By using these features rather than only mimicking the teacher, IL-based ap-

proaches are able, to some extent, to generalize the task to unseen situations.

Note that recent work on IL also considers the possibility that demonstrations

are incorrect examples (Grollman & Billard, 2011). Thus, instead of maximiz-

ing the similarity of generated behaviors to demonstrations, they deliberately

avoid repeating the human’s mistakes.
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When modeling robot motions via IL, it should be noted that inferring solely

based on the user examples may not necessarily be sufficient to derive a useful

control policy. User demonstrations are usually noisy, and the estimated model

may not be accurate enough to satisfy a task’s hard constraints. In many situ-

ations specifying the minimum accuracy required to fulfil the task’s constraint

is non-trivial, and quite often satisfying that requirement is much harder (if

not impossible). Let us take the example of figure skating. In this sport, only

a few combinations of the whole body movements are acceptable and leads to

successful performance of intricate and challenging forms such as spins, jumps,

footwork, etc. Even the slimmest change in the angle between the skate’s blade

and the ice could affect the performer’s stability and cause her falling. For these

kinds of tasks, it might be much easier to impose a task’s hard constraints dur-

ing the learning process to control the range of possible values that the learning

parameters can take. Similarly, in the approach that is adopted in this thesis,

the estimation of nonlinear DS through the direct use of existing techniques is

not effective. These methods do not optimize under the constraint of making

the system stable at the attractor, and thus, they are not guaranteed to result

in motions that can reach the target. Hence this thesis develops an alternative

statistical-based technique to build an estimate of nonlinear DS under strict

stability conditions.

1.2.3 Dynamical Systems

Classical approaches to modeling robot motions rely on decomposing the task

execution into two separate processes: planning and execution (Brock & Khatib,

1999). The former is used as a means to generate a feasible path that can satisfy

the task’s requirements, and the latter is designed so that it follows the gener-

ated feasible path as closely as possible. Hence these approaches consider any

deviation from the desired path (due to perturbations or changes in environ-

ment) as the tracking error, and various control theories have been developed

to efficiently suppress this error in terms of some objective functions. Despite

the great success of these approaches in providing powerful robotic systems,

particularly in factories, they are ill-suited for robotic systems that are aimed

to work in the close vicinity of humans, and thus alternative techniques must

be sought.

In robotics, DS-based approaches to motion generation have been proven to

be interesting alternatives to classical methods as they offer a natural means

to integrate planning and execution into one single unit (Kelso, 1995; Schaal et

al., 2000; Billard & Hayes, 1999; Selverston, 1980). For instance when modeling

robot reaching motions with DS, all possible solutions to reach the target are

embedded into one single model. Such a model represents a global map which

specifies instantly the correct direction for reaching the target, considering the

current state of the robot, the target, and all the other objects in the robot’s
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working space. Clearly such models are more similar to human movements in

that they can effortlessly adapt its motion to change in environments rather than

stubbornly following the previous path. In other words, the main advantage of

using DS-based formulation can be summarized as: “Modeling movements with

DS allows having robotic systems that have inherent adaptivity to changes in

a dynamic environment, and that can swiftly adopt a new path to reach the

target”. This advantage is the direct outcome of having a unified planning and

execution unit.

Early approaches to DS-based motion generations include, for instance, Re-

current Neural Network (RNN) and its variants (B. A. Pearlmutter, 1995; Lin

et al., 1995; Sudareshan & Condarcure, 1998; B. Pearlmutter, 1989; Pineda,

1987), Central Pattern Generators (CPG) for locomotion (Grillner, 1975; Raib-

ert, 1986; Taga et al., 1991; Ijspeert et al., 1998), and Vector Integration To

Endpoint (VITE) model for reaching movements (Bullock & Grossberg, 1988a;

Gaudiano & Grossberg, 1992; Bullock et al., 1999). Schaal et al. (2000) were

among the first groups to suggest the idea of using a programmable DS for-

mulation that can be adjusted to different tasks. This idea was then further

extended by Ijspeert et al. (2001), where they propose a method to build an es-

timate of nonlinear DS via IL. During the last decade, the IL-based approach to

estimate DS model of robot motions has become increasingly popular as it offers

a mechanism to exploit the advantages of both robot learning and DS modeling

(Dixon & Khosla, 2004a; Kober, Mulling, et al., 2010; Ude et al., 2010; Hersch

et al., 2008; Kulic et al., 2008; Calinon, D’halluin, et al., 2010). We will provide

a more comprehensive review of these approaches in Section 3.3.2.

For the reasons outlined above, this thesis takes a DS approach and models

robot reaching movements with autonomous nonlinear multi-dimensional DS.

The choice of “autonomous” (also called time-invariant) DS is essential as it

allows instant adaptation to perturbations without any need to re-plan. En-

coding motions with multi-dimensional DS is also advantageous since it allows

capturing correlation across all dimensions, which may be crucial for accurate re-

production. As none of the existing statistical tools could build a stable estimate

of the above DS, this thesis presents three different statistical-based approaches

to build an estimate of the adopted DS formulation under strict (local or global)

stability constraint.

1.3 Contributions

The main contribution of this dissertation lies in providing a generic and uni-

fied framework capable of modeling various robot reaching movements, ranging

from simple pick and place motions to agile striking movements, with both au-

tonomous and non-autonomous nonlinear DS. The prominent features of this

framework is the ability to generate robot reaching movements that 1) can

be taught through a natural means that is accessible by naive users, 2) can
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guarantee convergence to the target, 3) are inherently robust to perturbations,

4) can instantly perform collision avoidance in the presence of multiple static

and moving obstacles, and 5) can adapt their motions on-the-fly to a dynami-

cally changing environment. The novelties of the proposed framework revolve

around the following four axes:

• Learning Algorithm

The learning algorithms presented in this thesis can build

an estimate of nonlinear multi-dimensional DS from a set of

examples while ensuring its global or local asymptotic sta-

bility at the target. To date, existing DS-based approaches

to encode robot motions rely either on some heuristics with

the aim to build a locally stable estimate of nonlinear DS

without any guarantee that such a model is feasible, or they

depend on a (time-dependent) switching mechanism to en-

sure stability by switching from an unstable nonlinear DS

to a stable linear DS. This is the first time that a statistical-

based learning algorithm is suggested which can actually en-

sure global stability of nonlinear time-independent DS dur-

ing the training phase.

• Robot Hitting Movements

This thesis provides a novel scheme to perform hitting move-

ments with a desired speed and direction at the target. The

proposed approach differs from existing ones in that it de-

composes learning of complex striking movements into two

separate subtasks: 1) Learning how to hit the target, and

2) Learning to predict the proper hitting parameters, i.e.

hitting angle and hitting speed. The basic hitting motion is

modeled with an autonomous DS, and is learned with the

algorithms described above. The hitting parameters are es-

timated based on a set of provided examples of good hitting

parameters. In addition to all the aforementioned features

due to DS modeling, the presented scheme offers two addi-

tional advantages: 1) It keeps the number of demonstrations

small which is essential for an IL-based approach, 2) Given

the appropriate adaptation, an acquired skill can be used to

carry out a more complex task than the teacher is capable

of demonstrating.

• Applicability to DS models that are formulated with

Different Regression techniques

There are numerous nonlinear regression techniques to esti-

mate nonlinear DS (please refer to Section 2.2 for a review).
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Each of these techniques has its own benefits and drawbacks

which make their use very task-dependent. However, as out-

lined before, none of these techniques can be directly used to

model DS-based robot motions because they do not ensure

stability. This thesis develops a method to ensure stability

of DS-based motions independently of the choice of the re-

gression technique. Therefore, it allows adopting the most

appropriate technique based on the requirements of the task

at hand without compromising DS stability. This approach

also provides the possibility of online learning and using

a combination of two or more regression methods, which

could be helpful to satisfy the requirements of more ad-

vanced robot tasks.

• Obstacle Avoidance

This thesis also devises a DS-based obstacle avoidance ap-

proach that can be integrated into all the techniques de-

scribed above. Hence it allows generating robot motions in

more realistic situations where several static and moving ob-

jects may appear in the robot working space. The proposed

approach has a level of reactivity similar to existing local ob-

stacle avoidance methods, while it ensures convergence to

the target proper to global obstacle avoidance techniques.

All the techniques presented in this thesis are validated through various

simulation and real-world robot experiments. Moreover, their applicability to

different robotic systems are verified on a number of robotic platforms with

varying degrees of freedom including: the 4-DoF right arm of the humanoid

robot HOAP-3, the 7-DoF right arm of the humanoid robot iCub, the 6-DoF

robot arm KATANA, the 7-DoF robot arm WAM, and the 7-DoF robot arm

LWR.

1.4 Thesis Outline

This thesis is composed of a number of chapters which are categorized ac-

cording to the major topics they address. A brief overview of each chapter as

well as their associated contributions are outlined below:

Chapter 2: Adopted Tools

This chapter provides a brief overview of the main tools that are

taken from different research domains and extensively used in

this thesis.
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Chapter 3: Background Research

This chapter reviews the state of the art on different strategies

that address the problem of motion generation for robot move-

ments, with an emphasis on works specifically devised to generate

discrete motions for manipulators.

Chapter 4: Learning Reaching Movements with DS

This chapter presents three methods to build a stable DS model

of robot reaching movements from a set of demonstrations. The

first method ensures local asymptotic stability of autonomous

nonlinear DS that are formulated as a mixture of Gaussian func-

tions. The second method precedes the previous one by ensuring

global asymptotic stability at the target. The third approach

provides a more generic framework by ensuring global asymp-

totic stability of both autonomous and non-autonomous DS that

are formulated with any smooth regression technique.

Chapter 5: Learning Hitting Movements with DS

This chapter provides a reformulation to the DS model presented

in Chapter 4, and substitutes the notion of (local or global) stabil-

ity with (local or global) convergence. This reformulation allows

encoding striking movements that require hitting the target at a

desired direction and speed. This chapter further showcases the

application of the presented approach in the context of playing

minigolf in various challenging fields.

Chapter 6: DS-based Obstacle Avoidance

This chapter presents a DS-based approach to real-time obstacle

avoidance. The presented method assumes the robot motion is

driven by a continuous and differentiable DS in the absence of

obstacle(s). Then it provides a modulation that instantly modi-

fies the DS robot’s motion to avoid collision with multiple static

and moving convex obstacles. The modulation does not compro-

mise the DS stability, and hence the convergence to the target is

ensured. The proposed method can be applied to perform obsta-

cle avoidance in Cartesian and joint spaces and is applicable to

all the techniques presented in Chapters 4 and 5.

Chapter 7: Conclusion

This chapter concludes this thesis by summarizing its technical

contributions, discussing its assumptions and limitations, and

providing possible research extensions.
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Appendices:

This thesis includes a number of appendices that provide sup-

plementary information such as proofs of theorems, analytical

derivations of some equations, further results and illustrations,

etc.

1.5 Publication Note

Most of the material presented in Chapters 4 to 6 have been published in peer-

reviewed conference proceedings and scientific journals. References to the re-

lated publications are provided at the beginning of each chapter. Furthermore,

the videos of the robot experiments that are reported in this thesis are available

online and can be downloaded from:

http://lasa.epfl.ch/
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Chapter 2

Adopted Tools

If you want to make an apple pie from scratch, you must first
create the universe.

Carl Sagan (1934-1996)

T
he techniques that are developed in this thesis are grounded on a number

of tools taken from different research domains such as control engineering,

machine learning, and mathematics. In this section we provide a brief overview

of these tools, which is essential for understanding the techniques presented in

this thesis.

As outlined before, throughout this thesis we take a dynamical system (DS)

perspective to model robot motions. Thus in Section 2.1, we first describe a

general description of DS and its main variants. Then we introduce a number

of methods that are developed for stability analysis of nonlinear DS. These

techniques provide a general guideline about how to verify stability of a given

DS. We will exploit these techniques to ensure stability of our DS-based control

policy in Chapters 4 to 6.

In addition to the DS representation, this thesis exploits the existing tools

in machine learning to encode DS model of robot motions from a set of user

demonstrations. A brief overview of these techniques is provided in Section 2.2.

We will use these methods in Chapters 4 and 5 as the basic structure to encode

robot motions.

The techniques that we present in this thesis deal in fact with a constrained

optimization problem: “How to build an estimate of a DS under its strict sta-

bility constraint?”. Thus, in Section 2.3, we provide an overview of standard

constrained optimization techniques. We directly use these methods in Chap-

ters 4 and 5 to find an optimal value of the DS model of robot motions under

their strict stability conditions.

Finally as we choose to model robot motions at the kinematic level (i.e.

the robot end-effector or joint angles), our approach relies on a low-level con-

troller that converts kinematic variables into motor commands (e.g. force or

torque). We delineate the control strategy that we adopt throughout this thesis

in Section 2.4.
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2.1 Dynamical Systems

Dynamical System (DS) is one of the fundamental tools that have been

used by engineers to model a variety of physical systems ranging from electrical

circuits to mechanical systems. DS provides an analytical description of the

evolution of a system along time. Hence it can be used to predict the behavior

of a system in the future, which is particularly important because it allows

correcting the system behavior before it fails.

A continuous nonlinear DS can usually be represented by a set of nonlinear

differential equations that are expressed in terms of time t ∈ R+, a d-dimensional

vector of state variables ξ ∈ Rd, and an m-dimensional vector of input (or

control) variables u ∈ Rm:

ξ̇ = f(t, ξ,u), f : R+ × Rd × Rm 7→ Rd (2.1)

As it appears from their names, state variables ξ are a set of variables that

entirely defines the state of a system, and input variables u are those that can

be used to modify the evolution of ξ. For example for a manipulator arm, it is

very common to define the state and control variables as the set of all robot joint

angles and motors, respectively. Eq. (2.1) is called the state equation. Without

the explicit presence of u, the state equation transforms into a so-called unforced

state equation:

ξ̇ = f(t, ξ), f : R+ × Rd 7→ Rd (2.2)

It should be noted that the absence of u in Eq. (2.2) does not necessary

mean that its value is zero. In fact, by defining u in terms of ξ and/or t, the

control variable u can be eliminated yielding to an unforced state equation (this

procedure, for example, is commonly performed when describing the closed-loop

dynamics of a feedback control system).

Due to the explicit dependency of Eq. (2.2) on time, it is also called non-

autonomous or time-variant. The state trajectory of a non-autonomous DS is

dependent of the initial time. If f does not explicitly depend on time, it is said

to be autonomous or time-invariant:

ξ̇ = f(ξ), f : Rd 7→ Rd (2.3)

In the major part of this thesis, we model robot motions with autonomous

DS because they grant an inherent robustness to temporal perturbations which

result from delays in execution of a task. Note that we distinguish between

spatial and temporal perturbations as these result in different distortion of the

estimated dynamics and hence require different means to tackle them. For

example in robotic tasks, spatial perturbations would result from an imprecise

localization of an object or from interacting with a dynamic environment where
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either object(s) or the robot’s arm may be moved by an external perturbation.

Temporal perturbations arise typically when the robot is stopped momentarily

due to the presence of an object, or due to safety issues (e.g. waiting till the

operator has cleared the workspace).

When dealing with DS, analyzing the behavior of the system is essential in

order to determine the limitation and strengths of the system. For a given DS,

the first and the most important question about its behavior is whether it is

stable. A stable DS benefits from some inherent features, which are crucial when

modeling movement primitives. This thesis tackles the problem of ensuring the

stability of a class of nonlinear DS and grounds this work on a number of well-

established results on the stability of such systems, which we summarize in the

next section for completeness of the report.

2.1.1 Stability Analysis of Dynamical Systems

Stability of DS is usually analyzed around some special points called equilibrium

points:1

Definition 2.1 A point ξ∗ is called an equilibrium point if a DS that is initial-

ized at ξ∗, will remain there for all future time.

Equilibrium points of an autonomous DS can be determined by computing

the real roots of Eq. (2.3). At a given equilibrium point ξ∗, the concept of

stability is defined as follows:

Definition 2.2 The equilibrium point ξ = ξ∗ of Eq. (2.3) is locally stable if for

each R > 0, there is r = r(R) > 0 such that if the initial state ∥ξ(0)− ξ∗∥ < r,

then the evolution of the system in time satisfies ∥ξ(t)− ξ∗∥ < R for all t ≥ 0.

Definition 2.3 The equilibrium point ξ = ξ∗ of Eq. (2.3) is locally asymptoti-

cally stable if it is stable and r can be chosen such that if ∥ξ(0)− ξ∗∥ < r, then

it implies lim
t→∞

ξ(t) = ξ∗.

Definition 2.4 The equilibrium point ξ = ξ∗ is said to be globally asymptoti-

cally stable if the asymptotic stability holds for any initial point, i.e. lim
t→∞

ξ(t) =

ξ∗, for all ξ(0) ∈ Rd .

Studying stability of DS is a broad subject in the field of dynamics and

control, which can generally be divided into linear and nonlinear systems. An

autonomous linear DS has the following general form:

ξ̇ = Aξ + b (2.4)

where A ∈ Rd×d and b ∈ Rd are a constant matrix and vector, respectively.

Stability of linear dynamics has been studied extensively. A linear DS defined

1The presented materials in this section are adapted from (Slotine & Li, 1991; Khalil,
1996).
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by Eq. (2.4) is globally asymptotically stable at its unique equilibrium point

ξ∗ = −A−1b if and only if the real part of all eigenvalues of the matrix A are

strictly negative.

In contrast to linear DS, stability analysis of nonlinear DS has been an active

research topic and theoretical solutions exist only for particular cases. Studies

over the past centuries have led to a number of tools, including Lyapunov meth-

ods (Salle & Lefschetz, 1961), contraction theories (Lohmiller & Slotine, 1998),

describing functions (J. Hsu & Meyer, 1968), the passivity approach (Khalil,

1996), etc. Among these techniques, Lyapunov methods are the most common

and general approaches for studying the stability of nonlinear DS (Slotine &

Li, 1991). This thesis also exploits the two most famous Lyapunov methods

for analyzing stability of nonlinear DS, namely Lyapunov indirect and direct

methods.

Lyapunov’s indirect method (also called Lyapunov’s linearization method)

provides a means to study the local stability of nonlinear DS in a small neigh-

borhood around the equilibrium point ξ∗ by approximating it with a linear DS.

A continuously differentiable DS defined by Eq. (2.3) can be linearized around

a point ξ∗ by computing its Jacobian matrix:

A =
∂f

∂ξ

∣∣∣∣
ξ=ξ∗

(2.5)

Theorem 2.1 An equilibrium point ξ∗ of a continuously differentiable DS given

by Eq. (2.3) is locally asymptotically stable if the real part of all eigenvalues of

the matrix A given by Eq. (2.5) are strictly negative. This theorem is known as

Lyapunov’s indirect theorem.

Although Lyapunov’s indirect theorem provides an easy and quick means of

verifying local stability of nonlinear DS, it could be quite limiting in that it does

not define the extent of stability (i.e. the linearization is a good approximation

of the nonlinear systems).

Lyapunov’s direct method relaxes this constraint, and provides a more generic

technique to analyze stability of nonlinear DS without any need to perform the

linearization procedure. The direct method is the mathematical extension of a

fundamental physical observation: “if the total energy of a mechanical system

is continuously dissipated, then the system, whether linear or nonlinear, must

eventually settled down to an equilibrium point”. Therefore, stability analysis

via using Lyapunov’s direct method requires 1) finding a non-negative energy

function V (ξ) ≥ 0 (also called Lyapunov function), and 2) verifying if it always

decrease in a neighborhood around the equilibrium point ξ∗. In other words:

Theorem 2.2 Let ξ∗ be an equilibrium point of the nonlinear DS given by

Eq. (2.3), and Ω ⊂ Rd be a domain containing ξ∗. Let V (ξ) : Ω → R be a

scalar function with continuous first partial derivatives such as:
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V (ξ∗) = 0 (2.6a)

V (ξ) > 0 ∀ξ ∈ Ω \ ξ∗ (2.6b)

V̇ (ξ∗) = 0 (2.6c)

V̇ (ξ) < 0 ∀ξ ∈ Ω \ ξ∗ (2.6d)

then, ξ∗ is locally asymptotically stable in Ω. In this case, the domain Ω is

called stability domain (also referred to region of attraction or invariant set),

and in fact should correspond to a level set of V (ξ). This theorem is known

as Lyapunov’s stability theorem. If Ω expands to the whole state-space (i.e.

Ω = Rd) and V (ξ) is radially unbounded (i.e. V (ξ) → ∞ as ∥ξ∥ → ∞), then

ξ∗ is globally asymptotically stable.

2.2 Nonlinear Regression Techniques

Nonlinear regression techniques deal with the problem of building a contin-

uous mapping function f : Rn 7→ Rm based on a set of T training data points

D : {ξiI , ξiO}Ti=1, where ξ
i
I ∈ Rn and ξiO ∈ Rm correspond to vectors of input and

output variables, respectively. The regression function f is usually described in

terms of a set of parameters θ, where an optimal value of θ can be determined

during the training. Once an estimate of f is obtained, then it can be used to

predict the value of ξO for a new input ξI :

ξ∗O = f(ξ∗I ;θ) (2.7)

There are numerous regression techniques to build an estimate of f , includ-

ing linear regression techniques (C. Bishop, 2006; Kutner et al., 2005), Gaussian

Mixture Regression (GMR) (McLachlan & Peel, 2000), Locally Weighted Pro-

jection Regression (LWPR) (Vijayakumar & Schaal, 2000; Schaal et al., 2002),

Gaussian Process Regression (GPR) (Rasmussen & Williams, 2006), Support

Vector Regression (SVR) (Smola & Schölkopf, 2004), various techniques based

on Artificial Neural Networks (ANN) (C. M. Bishop, 1995; Lee, 2004; Jordan

& Rumelhart, 1992), etc. Each of these techniques has its own pros and cons

which make their use very task-dependent.

The above approaches have been widely used in robotics for various appli-

cations such as encoding robot motions (Kulic et al., 2008; Muehlig et al., 2009;

Yamane et al., 2004; Ijspeert et al., 2002b; Calinon et al., 2007; Hersch et al.,

2008), learning robots model (Jordan & Rumelhart, 1992; Sigaud et al., 2011;

Peters & Schaal, 2008; Vijayakumar et al., 2005; Nguyen-Tuong et al., 2008;

Butz et al., 2007; Jaeger et al., 2007), recognition of gestures (Ardizzone et al.,

2000; Waldherr et al., 2000; Zollner et al., 2002), face detection (Osuna et al.,

1997; Li et al., 2000; Bartlett et al., 2003), etc.
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It should be noted that a large body of work in control engineering is also

devoted to the problem of modeling DS from experimental data (Gevers, 2006;

Zadeh, 1956; Aström & Bohlin, 1965; Ljung, 1999; Ho & Kalman, 1966; Söder-

ström & Stoica, 1989). This domain is usually referred to as system identifi-

cation, and in general terms, is composed of three steps: 1) Collecting a data

set through an identification experiment which consists of exciting the system

using some input signals (such as step, impulse, random, sinusoid, etc.), and

then observing (recording) the behavior of the system over a time interval, 2)

Determining an appropriate form of the model for the system at hand. In this

step, some insight from laws of physics is usually taken into account in order

to determine the structure of the model and its unknown parameters, and 3)

Using some statistical-based techniques to estimate the unknown parameters of

the model using the obtained data set in step one.

The above procedure is also known as parametric system identification since

the structure of the underlying system is known, and only a set of unknown

parameters need to be identified. Alternatively, one can take a nonparametric

system identification approach when there is no knowledge about the system’s

structure. Nonparametric approaches determines the output of the system at

a point ξ based on a weighted average of a neighborhood around that point

(Ljung, 2010). The problem that we consider in this thesis falls within the

scope of nonparametric system identification as we have no knowledge about

the structure of the DS that the observed data are generated from.

Aside from control engineering, the problem of building a mathematical

model of (dynamical) systems has been an active research topic in many other

scientific communities such as econometrics, statistics, and so on (which some

of them appear to be converging to each other). Reviewing all these works is

not possible in this thesis, and we refer interested readers to (Ljung, 2010; As-

tröm & Eykhoff, 1971). A nice history of the evolution of system identification

algorithms in different disciplines is also provided in (Gevers, 2006).

As outlined before, in this thesis we take a machine learning perspective

to model robot motions. Next, we give a brief overview of the four regression

techniques that are used in this thesis, namely GMR, GPR, SVR, and LWPR.

Note that in this section we only present the basic equations describing these

approaches. We will provide a more in-depth discussion and comparison between

them in Chapter 4.

2.2.1 Gaussian Mixture Regression (GMR)

Gaussian Mixture Regression (GMR) is a nonlinear regression technique that

works on the joint probability P([ξI ; ξO]) between input and output variables2.

The joint probability is formed by superposition of K linear Gaussian functions:

2Note that we use the expression [ξI ; ξO] to vertically concatenate the two column vectors
ξI and ξO. The resulting vector [ξI ; ξO] has the dimension n+m.
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P([ξI ; ξO]) =
K∑

k=1

πkN ([ξI ; ξO]|µk,Σk) (2.8)

where πk, µk and Σk respectively are the prior, mean and covariance matrix of

the k-th Gaussian function N ([ξI ; ξO]|µk,Σk) that is described by:

N ([ξI ; ξO];µ
k,Σk) =

1√
(2π)n+m|Σk|

e−
1
2 ([ξI ;ξO]−µk)T (Σk)−1([ξI ;ξO]−µk) (2.9)

where (.)T denotes the transpose. From different perspective, Eq. (2.8) can be

rendered as:

P([ξI ; ξO]) =
K∑

k=1

P(k)P([ξI ; ξO]|k) (2.10)

in which P(k) = πk is the probability of picking the k-th component and

P([ξI ; ξO]|k) stands for the probability the datapoint [ξI ; ξO] belongs to this

component. In mixture modeling, the unknown parameters of the joint dis-

tribution are the priors πk, the means µk and the covariance matrices Σk of

the k = 1..K Gaussian functions (i.e. θk = {πk,µk,Σk} and θ = {θ1..θK}),
which can be estimated by using an Expectation-Maximization (EM) algorithm

(Dempster & Rubin, 1977). EM proceeds by maximizing the likelihood that

the complete model represents the training data well. Given the joint distribu-

tion P([ξI ; ξO]) and a query point ξ∗I , the GMR process consists of taking the

posterior mean estimate of the conditional distribution:

ξ∗O = f(ξ∗I ;θ) = E[P(ξ∗O|ξ∗I ,θ)] (2.11)

By defining the components of the mean and the covariance matrix of a

Gaussian k as:

µk =

(
µk

I

µk
O

)
& Σk =

(
Σk

I Σk
IO

Σk
OI Σk

O

)
(2.12)

the expected distribution of ξ∗O can be estimated as:

ξ∗O =
K∑

k=1

h(ξ∗I ;θ
k)
(
Σk

OI(Σ
k
I)

−1(ξ∗I − µk
I) + µ

k
O
)

(2.13)

where

h(ξ∗I ;θ
k) =

P(k)P(ξ∗I |k)∑K
i=1 P(i)P(ξ∗I |i)

=
πkN (ξ∗I |µk

I ,Σ
k
I)∑K

i=1 π
iN (ξ∗I |µi

I ,Σ
i
I)

(2.14)

Fig. 2.1 illustrates an example of using GMR to build an estimate of f from

a set of noisy samples using 3 Gaussian functions. For illustrative purpose, a

uni-dimensional input and output variables are considered in this example.
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Figure 2.1: An examples of using GMR to regress a set of one-input one-output datapoints.
In this graph, the ellipses and crosses represents the 3−Σ and centers of the Gaussian functions.
The grey area represents the predictive confidence by one standard deviation.

2.2.2 Gaussian Process Regression (GPR)

Gaussian Process Regression (GPR) provides an estimate of the function f by

assuming it is a Gaussian process. This assumption implies any set of samples

from this function have a joint Gaussian distribution. Let us denote the set of

T training datapoints with their corresponding uni-dimensional function values

by ΞI = {ξiI}Ti=1 and ξO = {ξiO}Ti=1, respectively. Note that ΞI is an n × T
matrix whose i-th column corresponds to the i-th datapoint, and ξO is also a

row vector composed of T components. For any test point ξ∗I , by conditioning

the multivariate Gaussian distribution on the training data we obtain the GPR:

fj(ξ
∗
I)|ΞI , ξO ∼ N (µ(ξ∗I),Σ(ξ

∗
I)) ∀j ∈ 1..m

with the estimate µ(ξ∗I) and the predictive variance Σ(ξ∗I) are given by:

µ(ξ∗I) =K(ξ∗I ,ΞI)(K(ΞI ,ΞI) + σnI)
−1ξTO (2.15a)

Σ(ξ∗I) =K(ξ∗I , ξ
∗
I)−K(ξ∗I ,ΞI)(K(ΞI ,ΞI))

−1K(ΞI , ξ
∗
I) (2.15b)

The symmetric matricesK above represent the evaluation of the GP covari-

ance function across the specified variables. We use a squared exponential with

different length scales for the different dimensions in input space:

K(ξ∗I ,ΞI) =
[
k(ξ∗I , ξ

1
I) . . . k(ξ∗I , ξ

T
I )

]
(2.16a)

K(ΞI ,ΞI) =


k(ξ1I , ξ

1
I) . . . k(ξ1I , ξ

T
I )

...
. . .

...

k(ξTI , ξ
1
I) . . . k(ξTI , ξ

T
I )

 (2.16b)

and K(ΞI , ξ
∗
I) = K(ξ∗I ,ΞI)

T . The component k(ξ, ξ′) are usually computed

using a squared exponential function:

k(ξ, ξ′) = σe−(ξ−ξ′)TL(ξ−ξ′) (2.17)

where L is an n×n diagonal matrix of length scales, and σ is the signal variance.
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Figure 2.2: An examples of using GPR to regress a set of one-input one-output datapoints.
The grey area represents the predictive confidence by one standard deviation.

The matrix L together with σ are called hyper-parameters and are denoted with

θ. An optimal value of these parameters can be obtained by optimizing them for

the maximum likelihood of the training set by using, for instance, a conjugate-

gradient based search algorithm available in GPML3. Note that the general GPR

formulation is only applicable to Multi-Input Single-Output (MISO) datasets.

Thus, for data sets with multiple output, one needs to train a separate GPR

model for each output dimension:

ξ∗O = f(ξI ;θ,ΞI ,ΞO) =


µ1(ξ

∗
I ;θ1,ΞI ,Ξ1,O)

...

µm(ξ∗I ;θm,ΞI ,Ξm,O)

 (2.18)

where Ξi,O corresponds to the i-th row of the matrix of output values. Fig. 2.2

illustrates an example of using GPR to build an estimate of f using the same

data set as the one used for GMR.

2.2.3 Support Vector Regression (SVR)

Support Vector Regression (SVR) is an extension of Support Vector Machines

(SVM) to regression problems. It assumes the function f can be parameterized

as:

f(ξ∗I ;θ) = ϕ(ξ
∗
I)

Tθ (2.19)

where ϕ(ξ∗I) denotes a fixed feature-space transformation. The weighting vec-

tor θ is the model parameters that can be determined through a constrained

optimization problem on the training data set. The vector θ is sparse and its

non-zero elements corresponds to a fraction of training data that contribute to

predictions. These data points are called support vectors.

There are two most common formulations of SVR, namely ϵ-SVR and ν-SVR.

The former utilizes an ϵ-sensitive error function, and thus tolerates a maximum

estimation error of ϵ in the predictions. In this approach, the support vectors lie

3GPML is a Matlab toolbox for GPR, written by C.E. Rasmussen and H. Nickisch.
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on the boundary or outside of the ϵ-tube around the regression curve. Although

this approach does not directly allow to constraint the number of support vectors

nf , one could generally expect nf should decrease as ϵ increases. Contrary to

ϵ-SVR, the alternative formulation given by ν-SVR provides a more intuitive

way to set the number of support vectors. In this approach, the parameter ν

bounds the fraction of points lying outside the tube. For both formulations,

solving the optimization leads to:

θ =

nf∑
i=1

βiϕ(ξ
i) (2.20)

where β is a vector of coefficients that is determined from the optimization.

Substituting Eq. (2.20) into Eq. (2.19) yields:

ξ∗O = f(ξ∗I ;θ) =

nf∑
i=1

βi (ϕ(ξ
∗
I))

T
ϕ(ξiI)

=

nf∑
i=1

βik(ξ
∗
I , ξ

i
I) (2.21)

Similarly to GPR, SVR also expresses the predicted value in terms of a kernel

function k(ξ, ξ′). The squared exponential function given by Eq. (2.17) is also

commonly used in SVR, with the difference that the kernel width L should be

now preset by the user. Note that SVR is also a MISO regression technique.

Thus for multi-output datapoints, one should train a separate model for each

output dimension. Fig. 2.3 illustrates examples of using ϵ-SVR and ν-SVR to

build an estimate of f using the same data set as the one used for GMR.

2.2.4 Locally Weighted Projection Regression

(LWPR)

Locally Weighted Projection Regression (LWPR) is an incremental regression

technique that provides an estimate of f in terms of the output from a set of

local regions, called Receptive Fields (RF). LWPR defines each RF ω(ξ) with a

Gaussian function:

ω(ξ) = e−(ξ−µ)TW (ξ−µ) (2.22)

where µ is the center of RF, and W is a positive semi-definite distance metric

which determines the influence region of the RF. Prediction in LWPR starts by

evaluating the output of each RF, which is described by a linear function with

the parameters A and a:

r(ξ∗I) = Aξ
∗
I + a0 (2.23)

The final prediction is computed as a nonlinear weighted sum of the output

of all RFs:

ξ∗O = f(ξ∗I) =
1∑nr

i=1 ω
i(ξ∗I)

nr∑
k=1

ωk(ξ∗I)r
k(ξ∗I) (2.24)
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(a) ϵ-SVR
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(b) ν-SVR

Figure 2.3: Examples of using SVR to regress a set of one-input one-output datapoints
using (a): ϵ-SVR and (b): ν-SVR. In total 62 support vectors were obtained in ϵ-SVR,
corresponding to 25% of the total number of training datapoints. By setting ν = 0.1, the
number support vectors decreases, resulting in having a wider ϵ-tube.

LWPR automatically updates all the parameters of RFs except the centers

as a new training data arrives. It also controls the addition of new RFs or

removal of unnecessary RFs through a threshold parameter. Fig. 2.4 illustrates

an example of using LWPR to build an estimate of f using the same data set

as the one used for GMR.

2.3 Optimization

When describing robot motions with DS, as we will highlight later on in

Chapter 4, not only should the estimated DS be accurate, but it must also

be stable. However, none of the regression techniques that are described in

Section 2.2 considers the stability of DS during the estimation. Therefore, in

this thesis we use optimization as a means to build an estimate of the DS motion

under strict stability constraints.

The desire to optimize decisions arises naturally when there are several ways

of doing a task. Optimization algorithms provide us with some mathematical

tools to achieve this desired optimality whenever the task can be described

quantitatively. An optimization problem is usually described as a minimization
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Figure 2.4: An examples of using LWPR to regress a set of one-input one-output datapoints.
In this graph, the circles represents the RFs.

problem and has the general form:4

minimize J(θ)

subject to (2.25)

Li(θ) = 0 i = 1..nl

Cj(θ) ≤ 0 j = 1..nc

where θ is a p-dimensional vector of optimization variable (also called optimiza-

tion parameter), the function J(θ) is the objective function, and the functions Li

and Cj are the optimization equality and inequality constraints. The ideal goal

in minimization is to find an optimal value θ∗ such that J(θ∗) has the smallest

value in the feasible set (i.e. the set of points that satisfies the optimization

constraints).

Since the late 1940s, a large effort has gone into developing algorithms for

solving various classes of optimization problem. Generally, optimization prob-

lems can be split into two categories: convex and non-convex optimizations.

The former happens when both the objective and the constraints are convex

functions. In this case, if θ∗ exists, then it is the global optimum (Boyd &

Vandenberghe, 2004). An optimization problem is non-convex if it has at least

one non-convex element. Solving non-convex problems are significantly harder

than convex problems. This difficulty is mainly due to the possible existence of

several local minima. A point θ∗ is called local minimum if it only minimizes the

objective among feasible points near it, but it does not have the lowest objective

value amongst all feasible points.

An optimal value of a nonlinear non-convex problems can be obtained us-

ing a number of optimization algorithms. Local approaches such as active-set

strategies, sequential quadratic programming, interior-point methods aim at

finding a local minima (Bazaraa et al., 2006; Bonnans & Gilbert, 2006). These

approaches can be fast and can handle large scale problems, but they have one

main shortcoming: they rely on an initial guess for the optimization parameter.

4Note that any maximization problem can be formulated as a minimization problem by
multiplying its objective function with −1.
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The choice of initial guess is very critical as a bad initial point may lead to a

rather poor local minimum. In contrast to this concern, other approaches such

as genetic algorithms (Goldberg, 1989), particle swarm optimization (Eberhart

et al., 2001), and simulated annealing (Davis, 1987) were suggested in order to

find a comparatively better local minimum, ideally the global one. However,

the computational complexity of these approaches grows significantly with the

problem size, and thus their application is mostly limited to problems with a

small number of variables.

In the most part of this thesis, we take an optimization perspective to build

a (locally) optimal estimate of robot motions. We solely use one of the state-

of-the-art local optimization techniques, namely the interior-point method, to

find the optimal parameter. Here we give a brief overview of this method. More

detail information about these approaches can be found in (Bonnans & Gilbert,

2006).

2.3.1 Interior-Point Method

The main goal in the interior-point methods is to transform a rather difficult

problem into a sequence of simpler subproblems which converge to the solution

of the original problem either in a finite number of steps or in the limit. These

methods exploit the so-called barrier functions to approximate a constrained

optimization problem with an unconstrained problem. The latter is a much

simpler problem that can be more efficiently solved with Newton’s methods.

The logarithmic barrier is one of the most common barrier functions that is

used in interior-point methods, and it has the form:

ϕj(θ) = −κ log(−Cj(θ)) (2.26)

where κ is a parameter that tunes the approximation. The lower the κ, the

better the approximation. Obviously, Eq. (2.26) is only valid when Cj(θ) < 0.

Thus in order for this approach to work correctly, it requires the initial guess

to be a point inside the feasible set (this is why this approach is called interior-

point). Using the barrier functions, the optimization problems (2.25) can be

formulated as:

minimize J(θ) +

nc∑
j=1

ϕj(θ) (2.27)

subject to

Li(θ) = 0 i = 1..nl

In the optimization problem (2.27), the inequality constraints are implicitly

presented in the objective function. Note that the equality constraints cannot

be formulated with barrier functions. But this is not problematic since they can

efficiently be tackled through using lagrange multipliers.
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(a) Convergence to the global minimum
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(b) Convergence to a local minimum

Figure 2.5: An example of using an interior point algorithm to solve a non-convex optimiza-
tion problem. As it is expected, due to the non-convexity, different solutions are obtained by
starting the optimization from different initial points. In this graph, the optimization’s initial
and final points are illustrated with black diamond and star, respectively. The optimization’s
step is indicated by circle. The contour lines of the objective function are shown in orange.
The infeasible region (i.e. the region where the optimization’s constrain does not hold) is
shaded in blue. For more details, please refer to Section 2.3.

The optimization problem (2.27) is an approximation of (2.25). However,

this approximation gets more and more accurate as κ → 0. Irrespective of

the value of κ, the optimization constraints are always fulfilled because the

logarithmic barrier grows without bound as Cj(θ) → 0. Given an initial guess

inside the feasible set, and a large κ, a basic interior-point method is a two-step

procedure: 1) find an optimal of the problem (2.27) using a Newton method, 2)

if κ is less than a small threshold, stop the algorithm. Otherwise, reduce it and

go to step one. Recent interior-point methods combine the two steps into one

single step and decrease κ at each iteration of the Newton’s method (R. A. Waltz

et al., 2006). To improve the optimization performance, it is possible to use a

line search method to adaptively change the magnitude of movement along the

descend direction (Kelley, 1999).

Figure 2.5 shows an example of using a simple interior-point algorithm that

follows the above two-step procedure to solve the following problem:

minimize J(θ) = θT

[
1 0.8

0.8 2

]
θ

subject to

θT

[
−1 0

1 1

]
θ < 0

In the above problem, the optimization’s constraint is non-convex (this can

also be visually verified in Fig. 2.5). As described before, when solving a non-

convex problem, not only convergence to the global minimum cannot be ensured,

but also the optimization may converge to different local minima by starting

from different initial positions (see Fig. 2.5).
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2.4 Robot Motion Control

As outlined before, in this thesis we consider robot motions that are defined

at the kinematic level. Therefore, in order to be able to execute the desired

motion on a real robot, our approach relies on a low level tracking controller to

convert kinematic variables into motor commands. In this section, we explain

the approach that we take in this thesis to perform this procedure.

Robot control techniques deal with the question of how to generate a se-

quence of actuator commands (e.g. force or torque) so as to successfully execute

a commanded task. Generally for robotic systems, a task is defined in either

Joint (also called Configuration) or operational spaces. In case of the former,

the problem of robot control is reduced to designing a tracking controller that

allows following a path p(t) as close as possible to a reference trajectory pr(t).

When the task is defined in the operational space, there are two ways to

control the robot: 1) Using an inverse kinematics algorithm to transform op-

erational space references into joint space references, and then utilizing a joint

space controller to generate motor commands so as to follow the transformed

path, 2) Using an operational space controller to directly generate the required

motor commands from the operational space references.

The choice between these two types of controllers depend on both the plat-

form and the task at hand. Some platforms rely solely on their built-in con-

troller and only accept reference trajectories that are defined in joint space (the

so-called position-controlled robots). Hence, for these platforms, the joint space

controller is the sole available possibility. More advanced robots allow the user

to directly send control commands to the robot (the so-called torque-controlled

robots), and thus the user has the option to choose the most proper control

scheme based on the task at hand.

Regarding the task, the use of a joint space control scheme usually suffices

for motion control in the free space, whereas the choice of operational space

control is more pressing when we deal with the problem of controlling interaction

between the robot and the world (Siciliano et al., 2009). In this thesis we

take the former as the main focus of this thesis is on the problem of motion

generation in the free space (i.e. without any physical interaction with the

world). Furthermore, three out of the five robots that we use in this thesis are

only position-controlled (The Hoap-3, iCub, and Katana robots), and thus the

choice of joint space controller is inevitable. As the use of an operational space

controller is insignificant in our implementation and for consistency between our

platforms, we choose a joint space control scheme to control all the five robots

considered in this thesis.

Next, we review the pseudo-inverse kinematics algorithm that we use to

transform operational space references to joint space references. Then we de-

scribe the two control approaches that are adopted in this thesis, namely PID
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and inverse dynamics controls, to generate the required torque commands to

execute the desired motion (defined in joint space).

2.4.1 Inverse Kinematics

Consider a robotic arm with nq Degrees of Freedom (DoF) that is required

to follow a reference trajectory in a d-dimensional operational space. For any

robotic arm, the position and orientation of the end-effector p ∈ Rd can directly

be determined in terms the arm configuration q through the kinematic function

k:5

p = k(q) (2.28)

Inverse kinematics algorithms deal with the opposite problem, i.e. it consists

of determining a set of joint angles q that corresponds to a particular end-effector

position p. Contrary to Eq. (2.28) that can be computed in a unique manner,

the inverse kinematics problem is non-trivial generally due to the absence of a

closed form solutions. Furthermore, the existence of several or infinite solutions

in some situations makes the above problem even more difficult.

Differential kinematics is one possible way to solve the inverse kinematics

problem (Siciliano et al., 2009). This technique exploits the relationship between

joint velocities and the corresponding end-effector velocity to solve the above

problem. This relationship is conveyed through the Jacobian matrix J(q) which

can directly be derived by differentiating from Eq. (2.28):

∂

∂t

(
p = k(q)

)
⇒ ṗ =

∂k(q)

∂q
q̇

⇒ ṗ = J(q)q̇ (2.29)

where J(q) ∈ Rd×nq . For redundant manipulator (i.e. when d < nq), there

exists infinite solutions to Eq. (2.29). In this situation, often the problem is

formulated as a constrained linear optimization problem to determine an optimal

solution that requires the least movement in joint space:

minimize
1

2
q̇T q̇ (2.30)

subject to ṗ = J(q)q̇

The optimal solution to the above problem is given by:

q∗ = J†p (2.31)

5Note that depending on the task at hand, the vector p may contain both position and
orientation of the end-effector, or solely either of them. In this section, for simplicity, we
consider p only contains the positional information. However, all the following formulations
can be applied when it also has the orientational part.

26



where

J† = JT
(
JJT

)(−1)
(2.32)

is the right pseudo-inverse of J . Note that for the clarity of the formulations

we have removed the dependency on q in the above equations.

Given a reference trajectory pd(t) in operational space with pd(0) = k(q(0)),

Eq. (2.31) can iteratively be used to determine the proper sequences of robot

joint angles to execute the task. There are several extensions to Eq. (2.31) which

we briefly describe the two popular ones here. For more details please refer to

(Sciavicco & Siciliano, 2000).

2.4.1.1 Singularity Problem:

The singularity problem can be overcame by using the so-called damped least-

squares inverse:

J‡ = JT
(
JJT + λ2I

)(−1)
(2.33)

where I ∈ Rnq×nq is the identity matrix, and λ is a damping factor controlling

the upper-bound on velocity.

2.4.1.2 Satisfying Additional Constraints:

When working with redundant robots, it might also be possible to satisfy other

constraints in addition to Eq. (2.29). This can be obtained by projecting the

additional constraint(s) into the null space of J . Consider the vector q̇c corre-

sponding to an extra constraint (e.g. increasing the manipulability measure, the

distance from mechanical joint limits, or the distance from an obstacle), then

the inverse kinematics problem leads to the following solution:

q∗ = J†p+ (I − J†J)q̇c (2.34)

2.4.2 PID Control

There are several ways of building a tracking controller including different vari-

ants of Proportional-Integral-Derivative (PID) control (Ogata, 2001), inverse

dynamics control (Siciliano et al., 2009), adaptive and robust controls (Ioan-

nou & Sun, 1996), optimal control (Bryson & Ho, 1975), etc . Among these

methods, the PID controller is one of the most common control approaches that

generates a control command τ(t) based on the error between the reference and

actual trajectories, i.e. e(t) = pr(t) − p(t). A PID controller has the following

form:

τ(t) = Kpe(t) +Kd
d

dt
e(t) +Ki

∫ t

0

e(τ)dτ (2.35)
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where Kp, Ki, and Kd are positive gains to adjust the control behavior. The

three terms in Eq. (2.35) respectively compensate for the present, the accumu-

lated sum of the past, and the prediction of the future errors. PID controllers

can be used without knowledge of a robot’s dynamics. However in this case,

the controller may exhibit a poor tracking performance, and the the system’s

stability may no longer be ensured. In the iCub, Hoap 3, and Katana robots

that are used in this thesis, the motion control is purely based on a PID con-

troller (because low-level access to motor commands is not provided). For these

robots, the PID gains are tuned so as to allow executing a wide range of motions

provided the reference trajectory is smooth.

2.4.3 Inverse Dynamics Control

When the knowledge about the robot dynamics is available, one can use more

advanced control schemes to leverage the system’s performance by exploiting

this information. Inverse dynamics control is one of the nonlinear model-based

control techniques that can considerably improve the trajectory tracking perfor-

mance. This approach is founded on the idea of obtaining an exact linearization

of system dynamics by means of a nonlinear state feedback (Siciliano et al.,

2009). In the absence of external end-effector forces and the static friction, the

equations of motion of a manipulator can be described by:

M(q)q̈ +C(q, q̇)q̇ + Fvq̇ + g(q) = τ (2.36)

where q is the vector of robot’s joints angle, q̇ and q̈ correspond to its first and

second time derivatives, M(q) accounts for inertial terms, C(q, q̇) represents

centrifugal and Coriolis effects, Fv stands for viscous friction coefficients, g(q) is

the gravity compensation terms, and τ is the vector of robot’s torque commands.

Eq. (2.36) can be rewritten as:

M(q)q̈ + n(q, q̇) = τ (2.37)

where

n(q, q̇) = C(q, q̇)q̇ + Fvq̇ + g(q) (2.38)

Consider an auxiliary DS with a new input vector u as follows:

q̈ = u (2.39)

The system under Eq. (2.39) is both linear and decoupled with respect to the

new input u. This system is called stabilizing linear control, and as it appears

from its name, it stabilizes the overall system. Given position qr, velocity q̇r,

and acceleration q̈r of the reference trajectory, the input u is defined according

to:

u = q̈r +Kp(q
r − q) +Kd(q̇

r − q̇) (2.40)
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Figure 2.6: Block diagram of an inverse dynamics controller.

where Kp and Kd are positive definite matrices. Using Eqs. (2.37), (2.39)

and (2.40), the manipulator control τ can be then described in terms of manip-

ulator state, the tracking error, and the acceleration of the reference trajectory:

τ =M(q)u+ n(q, q̇) (2.41)

Eq. (2.41) corresponds to a nonlinear control law that is termed inverse

dynamics control. Fig. 2.6 shows the block diagram of this controller. As can

be observed, this controller encompasses two feedback loops: an inner loop that

provides a nonlinear feedback term based on the robot’s dynamics, and an outer

loop that operates on the tracking error.

In general, inverse dynamics control exhibits a better performance than a

pure PID controller, provided an accurate model of the robot is available. In

this thesis, the model of the two robot arms (i.e. the WAM and DLR arms)

that are controlled with inverse dynamics control is accurate enough to exe-

cute the considered tasks. Nevertheless, in case of imperfect modeling, one can

adopt more advanced control approaches such as robust or adaptive controls to

compensate for such inaccuracies (Siciliano et al., 2009).

Figure 2.7 shows an example of using an inverse dynamics controller on 7-

DoF Barrett WAM arm (see Fig. 2.7a). In this example, the robot should follow

a desired trajectory in the task space while preserving the end-effector’s orien-

tation throughout the motion. The joint angles are computed using the damped

least squares pseudo-inverse kinematics as described in Section 2.4.1. The joint

torques are determined using the presented inverse dynamics controller. As

can be seen in Fig. 2.7b, the controller shows a very good performance as the

difference between the reference and the robot trajectories is insignificant (the

maximum tracking error is 5.73× 10−4m).
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(a) The 7-DoF Barrett WAM arm
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(c) Joint angles
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Figure 2.7: An example illustrating the execution of a path p(t), that is defined in the
operational space, on the 7-DoF Barrett WAM arm. The joint angles and the torque com-
mands are computed using the damped least squares pseudo-inverse kinematics and an inverse
dynamics controller, respectively. The maximum tracking error is 5.73× 10−4m.
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Chapter 3

Background Research

In theory, there is no difference between theory and practice.
But in practice, there is.

Yogi Berra

T
he problem of motion generation for robot movement has been an active

research topic in robotics for years, and many techniques have been sug-

gested addressing different aspects of this problem. These approaches have been

a valuable source of inspiration for this thesis, and assessing their perspectives

in tackling the problem mentioned above and their pros and cons are helpful

to delineate the contribution of this work. This section is targeted at reviewing

these techniques with an emphasis on the work particularly devised to generate

discrete movements. This overview is not exhaustive and is not aimed to pro-

vide a complete account of what has been done within this domain. Instead, it

is intended to provide the reader with enough information to situate this work

among the relevant state of the art approaches. For interested readers, wherever

it is possible, references to more complete reviews are provided.

For clarity of this chapter, we focus our review in each section on techniques

that share some common ground. Nevertheless, due to multi-functionality of

some of these approaches, they are appeared in two or more sections. This

chapter unfolds as follows: In Section 3.1 we give a brief account of global plan-

ning approaches for motion generations. These approaches are well-known for

their ability to find a feasible path (if it exists) in static complex environments.

In Section 3.2, we describe the techniques that aim at unifying planning and

execution into a single strategy, which especially suit them for use in dynamic

environments. In Section 3.3, we present the methods for robot motion genera-

tions that are grounded on imitation learning. The works that are addressed in

this section are those that are closest to the framework we present in Chapters 4

and 5. Finally in Section 3.4, we review the techniques that can be used for

obstacle avoidance.
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3.1 Planning Approaches

Path planning approaches deal with the problem of finding a collision-free

path from an initial state ξ0 to a final state ξ∗ given a complete description

of a robot’s geometry and its environment. Basically, path planning is a pure

geometric problem that is solved in the robot Configuration-space (C-space).
C-space modeling is advantageous in that it offers an abstract way of solving

the planning problem by mapping a complex shape robot into a single point

(Udupa, 1977).

While solving a complete geometric-based planning problem is possible (e.g.

see (Lozano-Perez & Wesley, 1979; Schwartz & Sharir, 1983; Canny, 1988)),

they are computationally very expensive and thus unsuitable for practical ap-

plications. Quite often, determining an exact geometric modeling of the C-space
is non-trivial. The difficulty is mainly due to the high dimensionality of the C-
space and the absence of an easy and direct way to describe the robot workspace

in this space (Kavraki & LaValle, 2007). Sampling-based planning techniques

are suggested to partly overcome these difficulties and to make the computa-

tional complexities of finding a feasible path more tractable, but at the cost of

providing a lower level of completeness in the sense that they cannot detect if

no path can be found.

The Probabilistic Roadmap Method (PRM) (Kavraki et al., 1996; Boor et al.,

1999; Lien et al., 2003; S. LaValle et al., 2004; D. Hsu et al., 2006) and Rapidly

exploring Dense Trees (RDT) (Kuffner & LaValle, 2000; Strandbergtrees, 2004;

Yershova et al., 2005; Zucker et al., 2007) are the two best known examples of

sample-based planning methods. The former begins by constructing a roadmap

that describes the connectivity properties of the free region in C-space. After its

construction, it then uses the roadmap to answer multiple queries. In contrast,

RDT-based approaches attempt to incrementally build the tree data structure

online by exploring the part of the C-space that will lead to solving a single query

point as fast as possible. Both PRM and RRT are probabilistically complete in

the sense that the probability that the planner fails to return a solution, if one

exists, decays to zero as the number of samples approaches infinity (Karaman

& Frazzoli, 2011).

As outlined before, conventional planning approaches only solve a pure ge-

ometric path planning problem. However, there are other constraints such as

the velocity limit that the robot needs to conform to during the task execu-

tion. When a planning problem considers constraints on, at least, velocity and

acceleration, it is often referred to as kinodynamic planning (Donald et al.,

1993). Solving a kinodynamic problem is much harder than a pure geometric

problem since it often requires several discretizations (e.g. discretization of the

control input, the time interval, etc.) and usually acts in higher dimension.

Using sampling-based planners (D. Hsu et al., 2002), utilizing so-called motion
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primitives (Go et al., 2004), and decoupling the kinodynamic problem into a

set of subproblems (Ferbach, 1996) are some common attempts to reduce the

computational complexity of kinodynamic planners.

Despite the power of global path planning algorithms in ensuring to find

a valid solution (if it exists), they virtually operate in open-loop as they only

provide a pre-planned trajectory based on the current description of the envi-

ronment (S. M. LaValle, 2006). Thus, by using these techniques a task imple-

mentation is in fact split into two phases: the planning and the execution. If any

change happens in the environment during the second phase (e.g. the goal state

is changed, an obstacle appears, etc.), a re-planning step is thus required. Due

to the computational complexity of these approaches, the re-planning cannot

usually be performed in realtime and thus makes these approaches practically

unsuitable for implementation in dynamic environments.

3.2 Feedback Motion Planning Approaches

In many real world experiments it is crucial to have some form of feedback

in order to handle modeling errors as well as to adapt to unpredictable future

events during execution of a task. The successfulness of this idea has been

proven in control theory across numerous applications. Given this widespread

success, it seams valuable to utilize this control scheme in the context of motion

planning (S. M. LaValle, 2006).

Feedback motion planning approaches were suggested to unify planning and

execution into a single motion strategy. As a result, these approaches provide

the required reactivity to adapt to dynamic environments. Traditionally, there

are two main differences between feedback motion planning approaches and the

techniques developed in control theory: 1) Motion planning approaches do not

consider the dynamics of the robot during the planning, and 2) Control theory

is preliminary concerned with the problems such as stability, optimality of the

control command, giving less emphasis on issues such as obstacle avoidance1.

By ignoring the dynamics of the robot when generating kinematic references,

feedback motion planning approaches implicitly rely on the assumption that

the differential constraints can be appropriately handled through refinements

during the execution of the task2. This simplification allows focusing on the

planning problem which has yielded several rigorous techniques that can ensure

convergence to the target in cluttered environments.

1It should be noted both fields are expanding their scope, and thus the above differences
are fading away. See (S. M. LaValle, 2006) for more discussion on similarities and differences
between control and planning approaches.

2For example, consider the robot is at point ξA and is required to move at speed ξ̇A to
reach the point ξB . However, due to hardware limitations, the robot cannot move at the
commanded speed and thus ends up in a different position ξC . Thanks to the feedback term,
the planner adopt a new trajectory from this point and guides the robot to the goal point.
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The Potential field approach is one of the earliest works on feedback motion

planning (Khatib, 1986). In this approach, the robot is considered as a particle,

and its workspace is described by a global potential function whose gradient

leads the robot to the target point. More specifically, the global potential func-

tion is defined as a sum of an attractive potential function located at the target,

and a set of repulsive potential functions representing obstacles. The direction

of the movement (i.e. the gradient direction) is thus governed by the net force

induced due to the presence of all these fields. Potential functions are subject

to local minima, i.e. they cannot ensure the target is always reachable.

A potential function that is free from local minima is called navigation func-

tion (Rimon & Koditschek, 1992). For continuous problems, such as reaching

motions, it is often very difficult to find a single navigation function to describe

the task at hand, and the earliest approach were only applicable to simple en-

vironments (Koditschek, 1987; Rimon & Koditschek, 1992). One possible way

to overcome this difficulty is to transfer the continuous problem into its dis-

crete counterpart. This simplification allows to build an estimate of navigation

functions by performing a backward search from the goal point using differ-

ent discrete planning techniques such as Dijkstra’s algorithm (Dijkstra, 1959),

A-star (Hart et al., 1968), etc. The obtained navigation function is called an

approximate or a grid-based navigation function. Due to the computational

complexities, approximate navigation functions are often used in mobile robots,

which usually work on lower dimensions.

Instead of building an approximate navigation function, more recent ap-

proaches suggest using a piecewise-smooth navigation function that is defined

over a collection of simple-shaped cells (Conner et al., 2003; Lindemann &

LaValle, 2005), for instance see Fig. 3.1. These approaches, in essence, take a hi-

erarchical form by decomposing the problem into two subproblems: 1) Defining

a discrete planning problem over all the cells, which will be used to provide high-

level information on how to reach the final cell that contains the goal, and 2)

Considering a simple navigation function over each cell that derives all the mo-

tion within the cell to the next (neighbor) cell that is determined from the first

step. These approaches can also be viewed as hybrid systems since their com-

position requires planning to ensure global convergence, yet controlling within

each cell can be done simultaneously without any need to re-plan. An example

of such a navigation function is illustrated in Fig. 3.1. It should be noted that as

transitions over cells impose discontinuity, special consideration should be taken

to reduce its effect as much as possible (Lindemann & LaValle, 2005). Although

piecewise-smooth navigation functions provide us with an exact (as opposed

to approximate) solution, their application is still limited to lower dimensional

problems or to tasks that have some special structure (S. M. LaValle, 2006).

Furthermore, as each navigation function corresponds to a fixed situation, any

change in the environment (e.g. moving obstacles) requires regeneration of a

new navigation function.
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Figure 3.1: An example illustrating a piecewise-smooth navigation function that is defined
over a collection of simple-shaped cells. The dashed lines shows the border of each cell, and
the direction of motion within each cell is indicated by an arrow. The composition of cells
is performed by a discrete planner to ensure convergence of all trajectories to the target ξ∗.
Note that in this specific example, triangular shaped cells are chosen, but different shapes can
be taken depending on the task at hand.

The funnel-based approaches are other techniques that are suggested to con-

struct a continuous navigation function by decomposing it into a sequence of

overlapping funnels (Choi & Latombe, 1991; Conner et al., 2006; L. Yang &

LaValle, 2004). The motion in each funnel is derived by a potential function,

which is designed so as to ensure convergence to the next funnel. To quickly

determine the funnel that contains the current state ξ (which is essential during

the execution), simple shapes (e.g. a sphere in 3D case) are used to describe

the region of attraction of each funnel. Sampling techniques are often used to

generate funnels so that they cover the free space of the robot as much as possi-

ble. Similarly to the approaches described above, discrete planners can be used

to compose funnels so that each funnel guides the robot to the next one till the

robot reaches the target (see Fig. 3.2). In essence, the two approaches are very

similar. The only difference is that the former allows neighbor regions to overlap

as opposed to the latter that partitions the free space into distinct regions (that

only share a common border). The application of funnel-based techniques to

higher dimensions and dynamic environments is still a work under progress.

Harmonic Potential functions (Connolly et al., 1990; J.-O. Kim & Khosla,

1992; Feder & Slotine, 1997) are another family of navigation functions that

their formulation is inspired by the description of the dynamics of some phys-

ical processes such as heat transfer or fluid flow. Despite ensuring the global

convergence to the target, construction of an exact navigation function is limited

to simple environments with obstacles of specific shapes. Approximate methods

based on discretized space overcome this limitation but at the cost of being

computationally more expensive (Brock et al., 2007).

Movement primitive approaches are also another type of feedback planning

techniques that can be used to control robot motions in dynamic environments

(Ijspeert et al., 2002b; Dixon & Khosla, 2004b; Billard et al., 2008). Each move-

ment primitive codes a behavior (such as reaching for a cup, swinging a golf club,

etc.) with a set of autonomous or non-autonomous differential equations. These
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Figure 3.2: A navigation function that is defined as a composition of funnels. The small
circles indicate the exit end of the funnel. Starting from an initial point ξ0, the motion passes
from one funnel to the next one till the robot reaches the target ξ∗.

techniques are often referred to as Dynamical System-based approaches since

they directly define a robot motion with a differential equation (as opposed to

the potential field approaches that first define an energy function and then take

its gradient to generate the motion). We also use this terminology throughout

this thesis; however, it should be noted that all the techniques presented above

are in fact a DS approach.

As outlined in Section 2.1, when defining a motion with DS, ensuring its

global or local asymptotic stability at the target is crucial in order to provide a

useful control policy. One possible way to verify this is to find a Lyapunov energy

function for the DS at hand (see Theorem 2.2). A Lyapunov function, in essence,

is a navigation function in the absence of obstacles. Despite this similarity, in

contrast to the potential field methods, DS-based approaches offer a means to

generate customized motions (i.e. control the way trajectories approach the

target). Figure 3.3 highlights the difference between these approaches through

a simple reaching example in the absence of obstacles. Here, we consider a

quadratic Lyapunov (navigation) function that is defined by:

V (ξ) = (ξ − ξ∗)T
[

1 0

0 1

]
(ξ − ξ∗) (3.1)

where ξ∗ is the target point. By taking the gradient of V (ξ), the potential field

approach generates motions that move on a straight line towards the target (see

Fig. 3.3a). However, by taking a DS-based approach, there are infinite ways

to approach the target. For example, Figs. 3.3b to 3.3f illustrate five different

ways of customizing the motion to the target. Stability of all these motions can

be ensured using the Lyapunov function that is given by Eq. (3.1). Although

the solution from the potential field may seem adequate for mobile robots, it

is far too limiting to model human-like discrete robot motions. Since the main

focus of this thesis is to devise a DS-based framework for manipulators, we will

discuss the DS-based approaches in more detail later on in Section 3.3.2.
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Figure 3.3: Comparison between the potential field and DS approaches. In (a), we use the
potential function given by Eq. (3.1) to generate motions. This function is also used to ensure
stability of DS motions that are given in (b)-(f). In this example, the target point is shown
with a black star. As can be seen, while the potential field approach solely provides one way
to reach the target, the DS approach can be used to form the basin of attraction at the target.

3.3 Imitation Learning Approaches

In imitation learning, robots are taught to perform a task by observing a set

of demonstrations provided by a teacher (human or robot). Demonstrations to a

robot may be performed in different ways: back-driving the robot, teleoperating

it using motion sensors, or capturing a task via vision sensors. The learning pro-

cess consists of extracting the relevant information from the demonstrations and

encoding this information into a motion model that can be used to reproduce

the task. Imitation learning has been used for various applications including:

software development (Cypher, 1993; Lieberman, 2001; Mitchell et al., 1994),

symbolic learning and reasoning (Lozano-Perez, 1983; Hovland et al., 1996; Par-

dowitz et al., 2007), and motion modeling (Ude, 1993; Andersson, 1989; Calinon

et al., 2007; Kulic et al., 2008). As the main focus of this thesis is on the latter,

we will next review works along the topic of motion modeling. In our review,

we consider two general directions of work, namely time-indexed and DS-based

modelings. The former includes major body of work in imitation learning, while

the latter has been recently introduced to provide a robust means of encoding

robot motions.

3.3.1 Time-indexed Trajectory Modeling

Traditional means of encoding trajectories is based on spline decomposition after

averaging across training trajectories (Hwang et al., 2003; Andersson, 1989;
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Aleotti & Caselli, 2006; Ude, 1993). While this approach provides a useful

tool for quick and efficient decomposition and generalization over a given set of

trajectories, it is however heavily dependent on heuristics for segmenting and

aligning the trajectories and gives a poor estimate of nonlinear trajectories.

Some alternatives to spline-based techniques perform regression over a non-

linear estimate of the motion using different regression techniques (Delson &

West, 1996; Ogawara et al., 2003; Muehlig et al., 2009; Yamane et al., 2004;

Calinon et al., 2007; Schaal & Atkeson, 1994). A number of other approaches

are also founded on Hidden Markov Models (HMMs) to encode temporal and

spatial variations of robot motions (Tso & Liu, 1996; Inamura et al., 2002;

J. Yang et al., 1997; Kulic et al., 2008; Calinon & Billard, 2005). Further works

on trajectory modeling address the problem of extracting a task’s constraint

from multiple demonstrations (Calinon & Billard, 2007b,a), or to learn a lo-

cal model of the robot’s dynamics along with inferring the desired trajectory

(Coates et al., 2008).

Although the methods described above provide powerful means for encod-

ing multi-dimensional nonlinear trajectories, similar to spline-encoding, they

depend on explicit time-indexing and virtually operate in an “open-loop”. Time

dependency makes these techniques very sensitive to both temporal and spatial

perturbations. To compensate for this shortcoming3, one requires evaluating a

heuristic to re-index the new trajectory in time, while simultaneously optimiz-

ing a measure of how good the new trajectory follows the desired one. Finding

a good heuristic is highly task-dependent and a non trivial task, and becomes

particularly non intuitive in high-dimensional state spaces.

3.3.2 Dynamical System-based Modeling

An important concept in imitation learning is the ability to generalize the task

and to adapt it to a new situation. This concerns the problem of performing the

task under different circumstances than those present during demonstrations,

which is desirable mainly for two reasons: 1) The number of demonstrations can

be kept small, and 2) Given appropriate adaptation, an acquired skill can be used

to carry out a more complex task than the teacher is capable of demonstrating.

Dynamical system-based approaches to modeling robot motions have been

recently advocated as a powerful alternative to trajectory-based techniques as

they offer a powerful tool for robust control of robot motions from a small set of

demonstrations. They ensure high precision in reaching a desired target, yet can

be easily modulated to generate new motions in areas not seen before. Moreover,

they provide an inherent robustness to perturbations and instant adaptation to

changes in the environment (Billard et al., 2008).

As outlined before in Section 3.2, the DS approach to modeling robot mo-

tions is a type of feedback motion planning. Hence a controller driven by a DS is

3If one is to model only time-dependent motions – i.e. motions that ought to be performed
in a fixed amount of time – one may prefer using a time-dependent encoding.
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robust to perturbations because it embeds all possible solutions to reach a tar-

get into one single function. Such a function represents a global navigation map

which specifies on-the-fly the correct direction for reaching the target, consid-

ering the current position of the robot and the target. During the last decade,

DS has been used to model discrete motions (Ijspeert et al., 2002b; Calinon,

D’halluin, et al., 2010; Kulic et al., 2008; Schaal et al., 2004; Pastor et al., 2009;

Ude et al., 2010), rhythmic motions (Schaal et al., 2004; Ijspeert et al., 2002b;

Righetti et al., 2006; Rochat et al., 2011), hitting motions (Calinon, Sauser, et

al., 2010; Kober, Mulling, et al., 2010), etc.

In DS approaches, the control policy to drive a robotic platform is modeled

with a first or higher order DS. When controlled through a DS, a robot motion

unfolds in time with no need to re-plan. An estimate of the DS can be built

from a few demonstrations of the task at hand. The estimated DS captures the

invariant features in the user demonstrations, and can generate motions that

resemble the user demonstrations (Billard et al., 2008).

Each DS model codes a specific motion (behavior), and is called a movement

primitive (also known as motor primitive). They can be seen as a building block

that can be used to generate more complex or new motions through sequencing

or superimposition of the primitives. This modularity of DS-based movement

primitives is essential as it allows controlling a wide repertoire of movements

from a (small) set of basic motions (Schaal, Ijspeert, & Billard, 2003; Wolpert

& Kawato, 1998). Figure 3.4 shows two examples of exploiting this modularity

of movement primitives to generate new motions4.

The idea of using a programmable DS formulation to generate motions is

not new and has been an active topic for decades. The Vector Integration To

Endpoint (VITE) model is one of the early approaches that is suggested to

simulate arm reaching movements (Bullock & Grossberg, 1988b,a; Gaudiano &

Grossberg, 1992; Bullock et al., 1999). This model has a simple structure with

two control parameters: a ‘target length’ and a ‘go command’. The former

specifies the desired length of the muscle, while the latter controls the onset of

the motion and its speed profile. One of the features of the VITE model is that

irrespective of the target length, all muscles reach their respective desired length

at the same time, which is interesting for synchronized movements.

Central Pattern Generators (CPGs) are also another type of DS model that

are suggested to model rhythmic behaviors (Grillner, 1985; Raibert, 1986; Del-

comyn, 1980; Marder & Bucher, 2001; Ijspeert et al., 1998). Being inspired

from the neurobiology of invertebrate and vertebrate animals, CPGs are able to

generate basic rhythmic movements without any need to receive any rhythmic

input. They also accept higher-level stimuli which can be used to modify their

rhythmic behavior to adapt to different situations (e.g. to increase the speed

of movements or to generate different locomotion gates). Several CPG models

4Remark that nonlinear sum of two or more stable DS is not necessary stable, and especial
attention should be considered in this regard (see Section 4.2 for further discussion).
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(a) This graph shows an example of a tennis swing which is composed of a swing and a
resting phase. The motion in each phase is encoded as a basic movement primitive, and
the complete tennis swing motion is thus obtained by sequencing these two primitives. The
trajectories generated by the swing and resting models are shown in solid and dashed lines,
respectively. The direction of the motion is indicated by arrows. Only three examples of
generated trajectories are shown here (plotted as red, green, and blue lines).
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(b) In this example f1(ξ) and f2(ξ) are two basic movement primitives that represent an
angle and sine-shaped motion, respectively. The new movement primitive f3(ξ) that includes
a mixture of both behaviors is obtained through a linear superposition of f1(ξ) and f2(ξ).

Figure 3.4: Illustration of two examples exploiting modularity of DS models to generate
(a) a more complex motion and (b) a new movement primitive. In this figure, the black star
and circles indicate the target and initial points, respectively.

have been developed so far to model robots locomotion. Study of these models

is beyond the scope of this thesis, and we refer interested readers to (Ijspeert,

2008) for a survey on the CPG models.

Recurrent Neural Network (RNN) and its variants (Lukosevicius & Jaeger,

2009; Reinhart & Steil, 2011; Lin et al., 1995; Sudareshan & Condarcure, 1998;

B. Pearlmutter, 1989; Ito & Tani, 2004) are another fascinating DS-based tools

that have been used to model discrete and rhythmic motions (besides to its

application in other domains such as signal processing, vision systems, system

identification, etc.). In general terms, RNNs are computational models that are

composed of numerous interconnected neurons. As it appears from its name,

connection topology in RNN includes cycles which allows to render it to be

a DS. There are several known variants of RNN such as Hopfield networks

(Hopfield, 1982, 2007), Boltzmann machines (Hinton, 2007; Ackley et al., 1985),

Reservoir Computing (Lukosevicius & Jaeger, 2009; Maass et al., 2002), etc.

Consequently, different training algorithms have also suggested for RNNs. An

overview of different RNN structures and training algorithms are presented in

(B. A. Pearlmutter, 1995; Atiya et al., 2000; Medsker & Jain, 1999). Despite the

potential and capability of RNNs, there are a number of shortcomings associated
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to them such as long training times, difficulty in ensuring global asymptotic

stability at the target (e.g. in case of reaching motion), bifurcation during

learning, and complexities of existing advanced training algorithms (Hopfield,

2007; Atiya et al., 2000; Lukosevicius & Jaeger, 2009).

In the context of robot imitation learning, Schaal et al. (2000) were among

the first groups to suggest the idea of using a programmable DS formulation

that can be adjusted to different tasks. This idea was then further extended by

Ijspeert et al. (2001), where they propose a method, called Dynamic Movement

Primitives (DMP), to build an estimate of nonlinear DS via IL. DMP offers a

method by which a nonlinear DS can be estimated while ensuring global stability

at the attractor. The DS defined by DMP is composed of two main terms: a

nonlinear term to accurately encode a given demonstration, and a linear term

that acts as a PD controller. These two terms are coupled through a so-called

phase variable. Global stability is ensured through exploiting the linear term

that takes precedence over the nonlinear part to ensure stability at the end of

the motion. The switch from nonlinear to linear dynamics proceeds smoothly

according to a phase variable that acts as an implicit clock.

The nonlinear term in DMP is usually learned from a single demonstration

using Locally Weighted Regression (LWR) (Atkeson, 1990). DMP offers a ro-

bust and precise means of encoding complex dynamics. Its learning phase is

fast (a single-shot), and it provides generalization within the region close to the

demonstration. These interesting properties have made DMP a popular tech-

nique to encode robot motions. It has been originally used to model a forehand

swing in tennis (Ijspeert et al., 2002b). Later approaches highlight the use of

DMP for different robotics applications such as: walking (Nakanishi et al., 2004;

Schaal, Peters, et al., 2003), drumming (Ude et al., 2010; Schaal, 2003), pouring

(Pastor et al., 2009; Nemec et al., 2009), flight control (Perk & Slotine, 2006),

obstacle avoidance (Park et al., 2008; Hoffmann et al., 2009), lifting (Bitzer &

Vijayakumar, 2009), playing table-tennis (Kober, Mulling, et al., 2010), hand-

writing generation (Kulvicius et al., 2012), etc.

Despite improvements over the past years, the DMP formulation, however,

has three general drawbacks: (1) The coupling through phase variable makes the

system time dependent and hence sensitive to temporal perturbations. For ex-

ample, if a perturbation causes some delay in the execution time, this results in

having a considerable error in the estimation. These undesirable responses of the

system would be avoided if one is able to find a way to reset the phase variable.

It is however not easy to determine a robust heuristic for inferring the opti-

mal phase if the motion duration is unknown, e.g. after perturbations. More-

over, the use of heuristic may endanger the asymptotic stability of the system.

(2) DMP builds an estimate of DS from a single demonstration. Though this

property allows a fast learning algorithm, it can considerably limit the general-

ization ability of the system to a region close to the demonstration. Thus, when

initialized in a point far from the demonstration, or if sustaining large perturba-

41



tions, the system may no longer generate motions similar to the demonstration.

(3) Modeling multi-dimensional systems with DMP is done by learning one DS

for each dimension separately, hence neglecting the combined effect of all the

dimensions in the motion. As a result, a heuristic is required to synchronize the

DS controlling for each dimension, especially when one of the dimensions (e.g.

one joint) is perturbed but not the others.

In parallel to DMP, a number of other approaches have been suggested using

different types of DS formulations. For instance, Hersch et al. (2008) suggest

a hybrid controller composed of two DS working concurrently in end-effector

and joint angle spaces, resulting in a controller that has no singularities. While

this approach is able to adapt on-line to sudden displacements of the target or

unexpected movement of the arm during the motion, the model remains time

dependent because, similarly to DMP, it relies on a stable linear DS with a

fixed internal clock. An alternative DS approach based on Hidden Semi-Markov

Model (HSMM) and Gaussian Mixture Regression (GMR) is also suggested in

(Calinon, D’halluin, et al., 2010; Calinon et al., 2011). The method presented

there is less sensitive to temporal perturbation thanks to the GMR-HSMM for-

mulation. Asymptotic stability could however not be ensured. Only a brief

verification to avoid large instabilities was done by evaluating the eigenvalues

of each linear DS and ensuring they all have negative real parts. As stated in

(Calinon, D’halluin, et al., 2010) and as we will show in Chapter 4, asking that

all eigenvalues be negative is not a sufficient condition to ensure stability of the

complete system.

3.4 Obstacle Avoidance

So far we have described different approaches that tackle the problem of

modeling discrete movements with an emphasize on their ability to generate

trajectories in the absence of obstacles. However, many real world tasks require

robotic systems that should work in cluttered environments, where the robot

may face several objects during the task execution. Hence, it is crucial to have

systems with collision avoidance capability. In this section, we review the tech-

niques that are suggested for this purpose. Note that there is an overlap between

the materials presented in this section and Sections 3.1 and 3.2. However, we

decided to devote a separate section to obstacle avoidance as it is the research

question that we address in Chapter 6.

Obstacle avoidance is a classical problem in robotics and many approaches

have been proposed to solve it. One may distinguish between local and global

methods, depending on whether the obstacle influences the behavior either lo-

cally or everywhere. Local methods such as the Bug’s algorithm (Lumelsky &

Skewis, 1990), the Vector Field Histogram (Borenstein & Koren, 1991), and the

Curvature-Velocity method (Simmons, 1996) offer fast response in the face of
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perturbations. These are usually locally optimal and hence are not ensured to

always find a feasible path.

Global methods, such as those dealt with by path planning algorithms, en-

sure finding a valid solution, if it exists. However, as outlined in Section 3.1,

despite recent efforts at reducing the computational costs of such global searches

for a feasible path, these methods cannot offer the reactivity sought for swiftly

avoiding obstacles that appear suddenly. Approaches that embed the obstacle

in the control law are reviewed next.

The reshaping methods aim at realtime trajectory adaptation in dynamic en-

vironments. One such method is the Elastic Band approach (Quinlan & Khatib,

1993; Brock & Khatib, 2002) in which the initial shape of the elastic band is

a free path generated by a classical planner. In the presence of obstacles, this

band is deformed by applying repulsive forces. The work by (Fraichard et al.,

1991) also follows the same principle in which the original path is deformed

locally to reflect changes in the environment topology. In these methods if the

path being executed becomes infeasible due to obstacles coming into its way, the

reshaping algorithm cannot be applied any longer (Yoshida & Kanehiro, 2011).

Hybrid systems that switch between local and global methods offer an in-

teresting compromise. In (Barbehenn et al., 1994), a task is decomposed into

several segments that are amenable locally. If the local approach fails, the global

method is invoked. Yoshida & Kanehiro (2011) propose a reactive motion plan-

ning approach which considers both the possibility of re-planning and deforma-

tion of the path during the execution of a task. In this approach, the planner

first attempts to locally modify the trajectory in the presence of an obstacle.

In situations where deformation is no longer possible (i.e. the path becomes

infeasible), a new feasible trajectory is re-planned. The work by Vannoy & Xiao

(2008) proposes an adaptive motion planner that considers the simultaneous

path and trajectory planning of high-DoF robots. This method provides multi-

ple diverse trajectories at all times to allow instant adaptation of robot motion

to newly sensed changes in the environment. The elastic roadmap approach

(Y. Yang & Brock, 2007) is similar to the conventional roadmap algorithm with

the difference that it allows the modification of the vertices and edges during

the execution of the task, hence the roadmap always represents task-consistent

motions.

In Artificial Potential Fields (Khatib, 1986) each obstacle is modeled with

a repulsive force that prevents the robot from colliding with the obstacle. An

appropriate repulsion force should be computed so that it repels sufficiently the

trajectory away from the obstacle while avoiding to get stuck in local minima.

The Attractor Dynamics approach (Iossifidis & Schöner, 2006) is another variant

of the potential field method, which uses heading direction rather than the

cartesian position of the vehicle. The Dynamic Potential Field (Park et al.,

2008) extends the potential field principle by taking into account not just the

path but also the velocity along the path. Sprunk et al. (2011) propose a
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kinodynamic trajectory generation method, in which the dynamics of the robot

is considered during path generation. This method uses quintic Bezier splines

to specify position and orientation of the holonomic robot, and optimizes it

according to a user-defined cost function.

Hoffmann et al. (2009) proposes a dynamical based approach to obstacle

avoidance. This method, in essence, is very similar to the Attractor Dynamics

approach in that it changes the original dynamics of motion by introducing a

factor in the motion equation that stirs the motion away from the obstacle. This

method is implemented to avoid point-mass objects in two and three dimensional

spaces. For non-point objects, this approach requires determining a repulsion

parameter that deforms the trajectory enough not to hit the obstacle.

Harmonic Potential functions (J.-O. Kim & Khosla, 1992; Feder & Slotine,

1997) were first introduced to overcome the limitation of Potential Fields. This

approach takes inspiration in the description of the dynamics of (incompressible

and irrotational) fluids around impenetrable obstacles. In contrast to potential

field-based methods, harmonic potential-based methods are powerful in that

they do not have local minima. Harmonic potentials have been used for control

in numerous ways in the past few years. We mention here only the works that

are closest to our method.

J.-O. Kim & Khosla (1992) were among the first groups to use harmonic

potential functions to control mobile robots and in particular to control a 3-DoF

arm manipulator. Feder & Slotine (1997) extended J.-O. Kim & Khosla’s work

to moving obstacles with constant translational and/or rotational velocities. To

support multiple obstacles, they partitioned the space into regions affected by a

single obstacle at most. To avoid the problem of partitioning, Waydo & Murray

(2003) developed an alternative formulation using a continuous weighting factor.

Similarly to (Feder & Slotine, 1997), this work only considered moving obstacles

with constant velocity. A major advantage of harmonic potential functions over

other potential functions is that they ensure that the target is the only attractor

of the system. Unfortunately, in practice, requiring that the motions of both

the robot and the obstacle follow harmonic functions may be too limiting.

3.5 Discussion and Conclusion

In this chapter, we have reviewed prominent techniques in robotics that

address the problem of motion generations. Here, we aim at highlighting the

current challenges in addressing the research questions considered in this thesis,

and to elucidate the contribution of the present work in this regard.

We have provided an overview of planning approaches in Section 3.1. As out-

lined there, despite recent efforts at reducing the computational costs of such

global searches for a feasible path, these methods cannot offer the reactivity

sought to perform in dynamic environments. In contrast, the feedback motion
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planning approaches that are presented in Section 3.2 provide such reactivity;

however, these approaches are either prone to local minima, or their application

is limited to planar motions, which could be quite limiting. Hence in this the-

sis, we develop a DS-based feedback planning technique that 1) ensures global

convergence to the target (i.e. free from local minima), 2) is data-driven, and

thus can be easily estimated from a set of examples, 3) can be applied to high

dimensional spaces, and 4) can provide an instant adaptation to changes in

environment (similarly to all feedback planning techniques).

In Section 3.3, we have presented the techniques based on imitation learning

to generate robot discrete movements. We outlined that most of the trajectory-

based techniques use the notion of time-indexing to describe a robot trajec-

tory. Thus, these approaches often exhibit limited ability to generalize a task,

to adapt to changes in the environment, and are very sensitive to perturba-

tions. We then showed that DS-based modeling is an interesting alternative

to trajectory-based approaches as they offer an inherent robustness to pertur-

bations, and quite often provide a higher level of generalization ability than

those based on trajectory encoding. However, as we outlined there, existing

approaches either rely on some heuristics with the aim to build a locally stable

estimate of nonlinear DS without any guarantee that such a model is attainable,

or they depend on a (time-dependent) switching mechanism to ensure stability

by shifting from an unstable nonlinear DS to a stable linear DS. We discussed

that the time-dependency of such systems could yield undesired robot behav-

iors in the face of perturbations, and could limit their application to a small

region. In this thesis, we provide a unified statistical-based framework that

can 1) actually ensure both local and global stability of nonlinear DS during

the training phase, without relying on any external mechanism, 2) model robot

motions with autonomous nonlinear DS, hence exhibit an inherent robustness

and adaptability to changes in dynamic environments, 3) encode DS using a

wide variety of regression techniques, including but not limited to GMR, GPR,

SVR, and LWPR, 4) only provide a high level generalization, but also allow to

improve results through active learning, and 5) model time-dependent DS in

case if it is essential to keep the time variable to properly model a task.

In Section 3.4, we gave an overview of different reactive obstacle avoidance

approaches. Our contribution to obstacle avoidance is not intended to devise

a new concept that outperforms the existing approaches. Instead we aim at

providing a technique that can seamlessly integrate into the framework described

above, without compromising its features such as convergence to the target,

adaptability and robustness, reactivity, applicability to different models, etc.

The proposed obstacle avoidance approach is similar, in spirit, to the harmonic

potential functions. The main difference lies in that our approach does not

require the robot to follow harmonic functions, hence it can be applied to a

larger set of robot motions.
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Chapter 4

Learning Reaching
Movements with Dynamical

Systems

That is what learning is. You suddenly understand some-
thing you’ve understood all your life, but in a new way.

Doris Lessing

S
o far we have described the challenges and open questions revolving around

the modeling of robot reaching movements. We have presented the main

motivations behind using the DS paradigm to encode robot movements, and

highlighted that a planer driven by a DS enables a robot to adapt its trajectory

instantly in a dynamically changing environment, and is inherently robust to

perturbations. In this chapter we turn to the problem of how to build a stable

estimate of DS from a set of demonstrations of a task.

Throughout this section, we consider demonstrations of robot motions that

are performed by a human demonstrator. To avoid addressing the correspon-

dence problem (Dautenhahn & Nehaniv, 2002), we demonstrate motions from

the robot’s point of view, by passively guiding the robot’s arm through the task.

This is done either by back-driving the robot or by teleoperating it using motion

sensors (see Fig. 4.1). We hence focus on the “what to imitate” problem and

derive a means to extract the generic characteristics of the dynamics of the mo-

tion. As outlined in Section 1.2.2, we assume that the relevant features of the

movement, i.e. those to imitate, are the features that appear most frequently,

i.e. the invariants across the demonstration. As a result, demonstrations should

be such that they contain the main features of the desired task, while exploring

some of the variations allowed within a neighborhood around the space covered

by the demonstrations.

We begin this chapter by introducing our formalism in Section 4.1. There,

we also present a schematic of the control flow showing how we integrate a

DS planar into a robot’s built-in controller. Then, in Section 4.2, we delineate

through a number of examples the main challenges in learning a stable estimate

of nonlinear DS, and showcase why such learning is non-trivial even for sim-
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Figure 4.1: Demonstrating motions by teleoperating a robot using motion sensors (left) or
by back-driving it (right).

ple motions. In Section 4.3, we provide a more comprehensive description of

Gaussian mixture modeling as it is the main approach that we exploit to encode

robot motions.

In Section 4.4, we present our first attempt to build a stable model of au-

tonomous DS through an iterative approach called Binary Merging (BM). This

method formulates DS as a mixture of Gaussian functions, and proceeds by

minimizing the number of Gaussian functions required for achieving both local

asymptotic stability at the target and accuracy in estimating demonstrations.

This work was published in (Khansari-Zadeh & Billard, 2010a), and part of the

material from this publication is collected here.

In Section 4.5, we formulate the problem of building an estimate of au-

tonomous DS as a constrained optimization problem. We then propose a learn-

ing algorithm, called Stable Estimator of Dynamical Systems (SEDS), that max-

imizes the accuracy in estimation of the DS while ensuring its global asymptotic

stability at the target. This work was published in (Khansari-Zadeh & Billard,

2010b, 2011), and all the material from these publications is collected here.

We then further extend this approach in Section 4.6 and introduce SEDS-II,

which can be used to ensure global asymptotic stability of DS-based motions

independently of the choice of the regression technique. This approach can also

provide the possibility of online learning and can estimate motions that are

represented with both autonomous and non-autonomous DS.

In Section 4.7, we compare the performance of the above approaches against

each other, and four of the best performing regression methods to date namely

GPR, GMR, LWPR, and SVR. Through this comparison, we highlight the pros

and cons of each method, which could eventually help the reader to choose the

best approach depending on the task at hand. We summarize and conclude this

chapter in Section 4.8.

It should be noted that in (Gribovskaya et al., 2010), we proposed a nu-

merical approach to build iteratively a locally stable estimate of nonlinear DS.

This approach starts with a single Gaussian function that models a stable linear

48



DS. This initialization is a poor proxy of the demonstration trajectories. The

method then iteratively adds a new Gaussian function, re-train at each step the

complete mixture (except for the first Gaussian function) and test the stability

numerically, by creating a mesh of fixed volume around the demonstrated tra-

jectories. If all trajectories initiated on the points of the mesh converge to the

attractor, the system is said to be locally stable in the volume, which represents

the region of attraction.

While this approach worked well in practice, it suffered from three main

limitations. It did not ensure to find a good estimate of the true region of

attraction. The method is computationally intensive, growing exponentially

with the dimension of the system. Finally and most importantly, there is no

guarantee that the region of attraction is stable, as sole a finite set of points in

that region are tested.

In contrast, in the three approaches that are presented in this section, we de-

velop a formal analysis of stability and formulate explicit constraints on the pa-

rameters of the DS to ensure its asymptotic stability at the target. Furthermore

the two approaches, called SEDS and SEDS-II, can ensure global asymptotic

stability at a unique target point, hence providing a large domain of applica-

bility. Additionally, these approaches benefit from having a very fast training

algorithm without any need to perform computationally expensive numerical

analysis.

Related publications:

• S.M. Khansari Zadeh and A. Billard (2011), Learning Stable Non-Linear

Dynamical Systems with Gaussian Mixture Models, IEEE Transaction on

Robotics, 27(5), p. 943–957.

• S.M. Khansari Zadeh and A. Billard (2010a), BM: An Iterative Method

to Learn Stable Non-Linear Dynamical Systems with Gaussian Mixture

Models, In proceedings of the International Conference on Robotics and

Automation (ICRA), p. 2381–2388.

• S.M. Khansari Zadeh and A. Billard (2010b), Imitation learning of Globally

Stable Non-Linear Point-to-Point Robot Motions using Nonlinear Pro-

gramming, In proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), p. 2676–2683.
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4.1 Formalism

We formulate the encoding of point-to-point motions as a control law driven
by autonomous dynamical systems. Consider a state variable ξ ∈ Rd that can

be used to unambiguously define a discrete motion of a robotic system (e.g.

ξ could be a robot’s joint angles, the position of an arm’s end-effector in the

Cartesian space, etc). Let the set of N given demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1

be instances of a global motion model governed by a first order autonomous

Ordinary Differential Equation (ODE):

ξ̇ = f(ξ) + ϵ (4.1)

where f : Rd → Rd is a nonlinear continuous and continuously differentiable

function with a single equilibrium point ξ̇∗ = f(ξ∗) = 0 and ϵ represents a zero

mean additive Gaussian noise. The noise term ϵ encapsulates both inaccuracies

in sensor measurements and errors resulting from imperfect demonstrations.

Note that in our formalism, we assume that the demonstrations are consistent

according to Eq. (4.1), and hence that demonstrations passing through the same

point should do so with roughly the same speed profile.

The function f(ξ) can be described by a set of parameters θ, in which the

optimal values of θ can be obtained based on the set of demonstrations using

different statistical approaches (for instance see the methods described in Sec-

tion 2.2). We will further denote the obtained noise-free estimate of f from the

statistical modeling with f throughout this thesis. Our noise-free estimate will

thus be:

ξ̇ = f(ξ;θ) (4.2)

Given an initial point ξ0 ∈ Rd, the evolution of motion can be computed by

integrating Eq. (4.2) through time:

ξ(t) =

∫ t

0

f(ξ;θ)dt (4.3)

Analytical computation of the above integral is usually non-trivial, especially

for complex multi-dimensional DS. Alternatively, Eq. (4.3) can be estimated

numerically with:

ξt = ξt−1 + f(ξ;θ)δt (4.4)

where δt is the integration time step and t is a positive integer. The result of

Eq. (4.4) converges to Eq. (4.3) as δt→ 0.

Two observations follow from formalizing our problem using Eq. (4.2):

1) The control law given by Eq. (4.2) will generate trajectories that do not

intersect, even if the original demonstrations did intersect; 2) The motion of the

system is uniquely determined by its state ξ. The choice of state variable ξ is

hence crucial. For instance, if one wishes to represent trajectories that intersect

in the Cartesian space, one should encode both position and velocity in ξ, i.e.

ξ = [x; ẋ].
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Figure 4.2: A typical system’s architecture illustrating the control flow in a robotic system
as considered throughout this thesis. In this graph, q, τ , and ξ correspond to the robot’s
joint angles, joint torques, and the state variables describing the robot motion, respectively.
The system’s architecture is composed of two loops: the inner loop representing the robot’s
dynamics and a low level controller, and an outer loop defining the desired motion at each time
step. The learning block is used to infer the parameters of motion θ from demonstrations.

Throughout this thesis we choose to represent a motion in kinematic coor-

dinates system (i.e. the Cartesian or C-space), and assume that there exists

a low-level controller that converts kinematic variables into motor commands

(e.g. force or torque). Figure 4.2 shows a schematic of the control flow. The

whole system’s architecture can be decomposed into two loops. The inner loop

consists of a controller generating the required commands to follow the desired

motion and a system block to model the dynamics of the robot. Here q, q̇, and

q̈ are the robot’s joint angles and their first and second time derivatives. Motor

commands are denoted by τ . The outer loop specifies the next desired position

and velocity of the motion with respect to the current status of the robot. An

inverse kinematic block may also be considered in the outer loop to transfer the

desired trajectory from the Cartesian to the C-space (this block is not necessary

if the motion is already specified in the C-space).

In this control architecture, both the inner and outer loops should be stable.

The stability of the inner loop requires the system to be Input-to-State Stable

(ISS) (Sontag, 2008), i.e. the output of the inner loop should remain bounded

for a bounded input. The stability of the outer loop should be ensured when

learning the DS model of the motion. The learning block refers to the procedure

that determines a stable estimate of the DS to be used as the outer loop control.

Throughout this thesis, we choose the control approaches that were presented in

Section 2.4 to make the inner loop ISS. Hence we focus our efforts on designing

a learning block that ensures stability of the outer loop controller. Learning

is data-driven and uses a set of demonstrated trajectories to determine the

parameters θ of the DS given by Eq. (4.2).
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4.2 Challenges

In Section 2.2, we presented a number of techniques to build an estimate of

nonlinear DS from a set of demonstrations. As we have highlighted, because

all these methods do not optimize under the constraint of making the system

stable at the target, they are not guaranteed to result in a stable estimate of

the motion. In practice, they fail to ensure global stability and they also rarely

ensure local stability of f . Such estimates of the motion may hence converge to

spurious attractors or miss the target (diverging/unstable behavior) even when

estimating simple motions such as motions in the plane. This is due to the fact

that there is yet no generic theoretical solution to ensuring stability of arbitrary

nonlinear autonomous DS (Slotine & Li, 1991).

Figure 4.3 illustrates an example of unstable estimation of a 2D motion using

three different regression techniques. The input and output of the DS are the

Cartesian position and velocity of a virtual point robot on a horizontal plane,

respectively. The demonstrations are collected from pen input using a Tablet-

PC. Figure 4.3a represents the stability analysis of the DS when it is learned

with GMR. Here in the narrow regions around demonstrations, the trajectories

converge to a spurious attractor just next to the target. In other parts of the

space, they either converge to other spurious attractors far from the target or

completely diverge from it. Figure 4.3b shows the obtained results from LWPR.

All trajectories inside the black boundaries converge to a spurious attractor.

Outside of these boundaries, the velocity is always zero (a region of spurious

attractors) hence a motion stops once it reaches these boundaries or it does not

move when it initializes there. Regarding Fig. 4.3c, while for GPR trajectories

converge to the target in a narrow area close to the demonstrations, they are

attracted to spurious attractors outside that region.

In all these examples, regions of attractions are usually very close to demon-

strations and thus should be carefully avoided. However, the critical concern is

that there is not a generic theoretical solution to determine beforehand whether

a trajectory will lead to a spurious attractor, to infinity, or to the desired attrac-

tor. Thus, it is necessary to conduct numerical stability analysis to locate the

region of attraction of the desired target which may never exist, or be very nar-

row. Figures 4.3d to 4.3g show the obtained results using the methods that will

be presented in this chapter. As can be seen, trajectories generated from these

approaches can accurately follow the demonstrations, while their convergence

to the target is ensured.

4.3 Multivariate Regression through GMM

As outlined before, we use a probabilistic framework and model f via a finite

mixture of Gaussian functions. We have already provided a brief description of
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Figure 4.3: An example of two-dimensional dynamics learned from three demonstrations
using six different methods: GMR, LWPR, GPR, BM, SEDS, and SEDS-II with LWPR and
GPR formulations. All reproductions were generated in simulation. For further information
please refer to Section 4.2.
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GMM and GMR in Section 2.2.1. Here we explain this approach in more details

as it is the key regression technique that we adopt in this thesis.

Mixture modeling is a popular approach for density approximation (McLach-

lan & Peel, 2000), and it allows a user to define an appropriate model through

a tradeoff between model complexity and variations of the available training

data. Mixture modeling is a method, that builds a coarse representation of the

data density through a fixed number (usually lower than 10) of mixture compo-

nents. An optimal number of components can be found using various methods,

such as the Bayesian Information Criterion (BIC) (Schwarz, 1978), the Akaike

information criterion (AIC) (Akaike, 1974), the deviance information criterion

(DIC) (Spiegelhalter et al., 2002), that penalize large increase in the number of

parameters when it only offers a small gain in the likelihood of the model.

By estimating f via a finite mixture of Gaussian functions, the unknown pa-

rameters of f become the prior πk, the mean µk and the covariance matrices Σk

of the k = 1..K Gaussian functions (i.e. θk = {πk,µk,Σk} and θ = {θ1..θK}).
The mean and the covariance matrix of each Gaussian function are defined by:

µk =

(
µk

ξ

µk
ξ̇

)
& Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
∀k ∈ 1..K (4.5)

Given a set of N demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, each recorded point

in the trajectories [ξt,n; ξ̇t,n] is associated with a probability density function

P([ξt,n; ξ̇t,n]):

P([ξt,n; ξ̇t,n];θ) =

K∑
k=1

P(k)P([ξt,n; ξ̇t,n]|k)

∀n ∈ 1..N

t ∈ 0..Tn
(4.6)

where P(k) = πk is the prior and P([ξt,n; ξ̇t,n]|k) is the conditional probability

density function given by:

P([ξt,n; ξ̇t,n]|k) = N ([ξt,n; ξ̇t,n];µk,Σk) =
1√

(2π)2d|Σk|
e−

1
2 ([ξ

t,n;ξ̇t,n]−µk)T (Σk)−1([ξt,n;ξ̇t,n]−µk) (4.7)

Taking the posterior mean estimate of P(ξ̇|ξ) yields:

ξ̇ = f(ξ) =

K∑
k=1

P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(
Σk

ξ̇ξ
(Σk

ξ)
−1(ξ − µk

ξ) + µ
k
ξ̇

)
(4.8)

The notation of Eq. (4.8) can be simplified through a change of variable. Let

us define:
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Figure 4.4: Illustration of parameters defined in Eq. (4.9) and their effects on f(ξ) for a
1D model constructed with 3 Gaussians. Please refer to the text for further information.


Ak = Σk

ξ̇ξ
(Σk

ξ)
−1

bk = µk
ξ̇
−Akµk

ξ

hk(ξ) = P(k)P(ξ|k)∑K
i=1 P(i)P(ξ|i)

(4.9)

Substituting Eq. (4.9) into Eq. (4.8) yields:

ξ̇ = f(ξ) =
K∑

k=1

hk(ξ)(Akξ + bk) (4.10)

Note that f is now expressed as a nonlinear sum of linear dynamical systems.

Such a rewriting will prove useful to study the effect of each Gaussian in the final

reproduction. Figure 4.4 illustrates the parameters of Eq. (4.9) and their effects

on Eq. (4.10) for a one-dimensional (1D) model constructed with 3 Gaussian

functions. Here, each linear dynamicsAkξ+bk corresponds to a line that passes

through the centers µk with slope Ak. The nonlinear weighting terms hk(ξ) in

Eq. (4.10), where 0 < hk(ξ) ≤ 1, give a measure of the relative influence of each

Gaussian locally: the more variance (the less accurate the demonstrations), the

less influence.

Observe that due to the nonlinear weighting terms hk(ξ), the resulting func-

tion f(ξ) is nonlinear and is flexible enough to model a wide variety of motions.

If one estimates this mixture using classical methods such as EM, one cannot

guarantee that the system will be asymptotically stable. The resulting nonlinear

model f(ξ) usually contains several spurious attractors or limit cycles even for

a simple 2D model (see Fig. 4.3). Beware that the intuition that the nonlinear

function f(ξ) should be stable if all eigenvalues of matrices Ak, k = 1..K, have

strictly negative real parts is not true. Here is a simple example in 2D that il-

lustrates why this is not the case and also why estimating stability of nonlinear

DS even in 2D is non-trivial.
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ξ2 = ξ1 (drawn in black).

Example: Consider the parameters of a model with two Gaussian functions to

be: 

Σ1
ξ = Σ2

ξ =

 3 0

0 3



Σ1
ξ̇ξ

=

 −3 −30

3 −3

 , Σ2
ξ̇ξ

=

 −3 3

−30 −3


µ1

ξ = µ2
ξ = µ1

ξ̇
= µ2

ξ̇
= 0

(4.11)

Using Eq. (4.9) we have:
A1 =

 −1 −10

1 −1

 , A2 =

 −1 1

−10 −1


b1 = b2 = 0

(4.12)

The eigenvalues of the two matrices A1 and A2 are complex with values

−1 ± 3.16i. Hence, each matrix determines a stable system. However, the

nonlinear combination of the two matrices as per Eq. (4.10) is stable only when

ξ2 = ξ1, and is unstable in Rd \ {(ξ2, ξ1)|ξ2 = ξ1} (see Fig. 4.5).

4.4 Binary Merging

In this section, we provide a set of stability conditions that can be used to

ensure local asymptotic stability of f when it is formulated with a mixture of

Gaussian functions. We then propose a learning procedure, called Binary Merg-

ing (BM), that tackles the problem of estimating an unknown nonlinear DS from

a few demonstrations while ensuring its local stability at the target based on the

provided stability conditions. BM builds an estimate of f by minimizing the
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number of Gaussian functions required for achieving both asymptotic stability

at the target and high accuracy in estimating the dynamics of motion.

This section is structured as follows. In Section 4.4.1 we develop conditions

for ensuring local stability of f . In Section 4.4.2 we describe the BM learn-

ing algorithm. In Section 4.4.3, we present the experimental validation of the

method, and finally we devote Section 4.4.4 to discussion and conclusion.

4.4.1 Stability Analysis

Without loss of generality, assume that the target point ξ∗ is located at the

origin, i.e. f(ξ∗) = f(0) = 0. Let D ⊂ Rd be a region that covers entirely the

part of the state space spanned by the demonstrations and includes the origin:

Definition 4.1 Consider a scalar δ > 0:

δ = min(P(ξt,n)) ∀t = 0..Tn, n = 1..N (4.13)

where P(ξ) is the probability of ξ estimated from Eq. (4.6) and {ξt,n}T
n,N

t=0,n=1 are

demonstration trajectories. There exist a scalar 0 < α ≤ 1 such that the region

D = { ξ ∈ Rd : P(ξ) ≥ αδ} (4.14)

defines a connected partition1 of the state space that comprises all the training

datapoints, including the origin.

This definition of δ ensures that all training datapoints are included in D.

The scalar α is also required to obtain a connected region. To study the stability

of f , we partition D into K pairwise disjoint continuous subregions Ωk via

hyperplanes Φk, k = 1..K − 1.

Definition 4.2 Consider a finite set of k = 1..K Gaussian functions numbered

N 1 through NK . Let µk and Σk be, respectively, the mean and covariance

matrix of the Gaussian N k as given by Eq. (4.5). Let the vector υk be the

eigenvector of Σk
ξ forming the smallest angle with µk

ξ̇
(i.e. υk is the eigenvector

pointing towards the direction of motion). Then Φk is the hyperplane through

µk
ξ and normal to υk:

Φk : (ξ − µk
ξ)

T · υk = 0 ∀k ∈ 1..K − 1 (4.15)

Definition 4.3 The state-space domain D is partitioned into K pairwise dis-

joint continuous subregions Ωk,
K∪

k=1

Ωk = D, Ωk ∩ Ωj = ∅, ∀k, j ∈ 1..K and

j ̸= k. Each subregion Ωk is a part of D that is defined by:2

1A partition D is connected if any two points in D can be connected by a curve lying
completely within D.

2Here we assume that we obtain K pairwise disjoint partitions after applying Eq. (4.16).
This assumption is essential in order to ensure stability of the system for the method that is
presented in this section.
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Ωk = Ω̂k
∩
D ∀k ∈ 1..K (4.16)

where


Ω̂1 = { ξ ∈ D : (ξ − µ1

ξ)
T · υ1 ≤ 0}

Ω̂k = { ξ ∈ D : (ξ − µk−1
ξ )T · υk−1 > 0, (ξ − µk

ξ)
T · υk ≤ 0} ∀k ∈ 2..K − 1

Ω̂K = { ξ ∈ D : (ξ − µK−1
ξ )T · υK−1 > 0}

Figure 4.6 illustrates an example of using Definition 4.3 to parting D into

K = 7 pairwise disjoint continuous subregions. In each subdomain Ωk ⊂ D,

k = 2..K, we truncate the estimate given by Eq. (4.10) so that the dynam-

ics are driven solely by the two dominant Gaussian functions N k−1 and N k.

Because hk(ξ) decays asymptotically as one moves away from the center of the

associated Gaussian, the effect of truncating the influence of non-adjacent Gaus-

sian functions is in practice negligible3. Note that we only use N 1 to estimate

f for all points in Ω1 as by construction we set it to be the only dominant

Gaussian in this partition (see Definition 4.3 and Fig. 4.6). Thus we have:

ξ̇ = f(ξ) =


A1ξ + b1 ∀ξ ∈ Ω1

hk−1(ξ)(Ak−1ξ + bk−1) + hk(ξ)(Akξ + bk) ∀ξ ∈ Ωk, k ∈ 2..K

(4.17)

3This is especially true if the distance between the centers of the Gaussian functions is much
larger than the variance of each Gaussian. Note that this formulation makes ξ̇ discontinuous at
the boundaries between the subregions. This however does not affect the proof of Theorem 4.1,
since the stability conditions given by Eq. (4.18) do not require continuity at the boundaries
(Pettersson & Lennartson, 1997; Borne & Dieulot, 2005).
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Theorem 4.1 Assume that the state trajectory evolves according to Eq. (4.17).

Then the origin of Eq. (4.17) is asymptotically stable in D if the parameters of

f (i.e. µk and Σk, ∀k = 1..K, K > 1) are constructed such that:


µK

ξ = ξ∗ = 0

µK
ξ̇

= −P(0|K−1)
P(0|K)

(
µK−1

ξ̇
−ΣK−1

ξ̇ξ
(ΣK−1

ξ )−1µK−1
ξ

)
ΣK

ξ̇ξ
(ΣK

ξ )−1 + (ΣK
ξ )−1(ΣK

ξ̇ξ
)T ≺ 0

(4.18a)



(ξ − µ1
ξ)

T (Σ1
ξ)

−1ξ̇ < 0 ∀ξ ∈ Ω1

(ξ − µk−1
ξ )T (Σk−1

ξ )−1ξ̇ > (ξ − µk
ξ)

T (Σk
ξ)

−1ξ̇


∀ξ ∈ Ωk

∀ξ ̸= 0

k = 2..K

(4.18b)

(υk)T ξ̇ > 0 ∀ξ ∈ Φk, ∀k ∈ 1..K − 1 (4.18c)

D is an invariant set (4.18d)

where . ≺ 0 refers to the negative definiteness of a matrix4.

Proof: See Appendix A.1.

�

To elaborate more, condition (4.18a) puts a constraint on Eq. (4.17) to force

the origin to be an equilibrium point. Condition (4.18b) defines criteria to ensure

that starting from any point ξ ∈ D, the energy of the system (i.e. the Lyapunov

function) decreases as the motion evolves. Condition (4.18c) ensures the transi-

tion of the motion from one partition to another partition at the boundaries Φk.

Condition (4.18d) is necessary to verify that the generated trajectories from the

DS do not leave the stable region. Putting together conditions (4.18a)-(4.18d),

the system becomes locally asymptotically stable at the origin in the region

defined by D.

4.4.2 Learning Algorithm

Section 4.4.1 provided us with conditions whereby the estimate, produced ac-

cording to our state evolution paradigm given by Eq. (4.17), is asymptotically

stable at the origin in D. It remains now to determine a procedure by which we

can construct a mixture of Gaussian functions to satisfy the conditions given

by Eq. (4.18). Not only should the estimate be stable according to our ear-

lier definition, but it should also provide an accurate estimate of the overall

4A d × d real symmetric matrix A is positive definite if ξTAξ > 0 for all ξ ∈ Rd \ 0,
where ξT denotes the transpose of ξ. Conversely A is negative definite if ξTAξ < 0. For
a non-symmetric matrix, A is positive (negative) definite if and only if its symmetric part
Ã = (A+AT )/2 is positive (negative) definite.
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Algorithm 4.1 Binary Merging (BM)

Input: {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, r, q, and emax

Initialization:
1: Transfer ξ∗ to the origin
2: Apply sample alignment to get N demonstrations, all of length T
3: K ← T
4: Initialize a GMM θ = {θ1..θK} using Eq. (4.21)
Main Body:
5: while K > 1 and further merging is possible do
6: Backup the previous model θ̃ ← θ and dataset Ξ̃← Ξ
7: Randomly select an index k ∈ 1..K − 1
8: Replace θk ← {θk + θk+1} by merging θk and its adjacent θk+1

9: Update the dataset of the k-th Gaussian: Ξk ← [Ξk,Ξk+1]
10: Remove θk+1 and correct the numbering of Gaussians θi = θi+1 and the

datasets Ξi = Ξi+1, ∀i ∈ k + 1..K − 1
11: K ← K − 1
12: Check stability conditions using Algorithm 4.2
13: if conditions of Theorem 4.1 are violated or if Eq. (4.20) is no longer satisfied

then
14: Recover the previous model θ ← θ̃ and dataset Ξ← Ξ̃
15: Set K ← K + 1
16: end if
17: end while
Output: θ = {θ1..θK} and D

dynamics. We evaluate the latter through a measure of accuracy with which

f approximates the demonstrations. This can be quantified by measuring the

discrepancy between the direction and amplitude of the estimated and observed

velocity vectors for all the training points {ξt,n, ξ̇t,n}T
n,N

t=0,n=1:

ē =
1

N

N∑
n=1

(
1

Tn

Tn∑
t=0

r
(
1− (ξ̇t,n)Tf(ξt,n)

∥ξ̇t,n∥∥f(ξt,n)∥+ ϵ

)2
+ · · ·

q

(
ξ̇t,n − f(ξt,n)

)T (
ξ̇t,n − f(ξt,n)

)
∥ξ̇t,n∥∥ξ̇t,n∥+ ϵ

)0.5

(4.19)

where r and q are positive scalars that weight the relative influence of each

factor, and ϵ is a very small positive scalar. Given a maximal acceptable error

emax, estimates of the dynamics are accurate if

ē ≤ emax (4.20)

We now present our learning approach, called Binary Merging (BM), that

can build a stable estimate of f . BM proceeds in two steps. First it initializes

a model with the maximum possible number of Gaussian functions. Then it

incrementally reduces the number of Gaussian functions to a minimum number

(locally), which satisfies the stability criteria while keeping the error of the

estimates below a certain level. Algorithm 4.1 shows the pseudocode of the BM

procedure. Next, we briefly explain the main steps.
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Initialization: First, demonstration trajectories are aligned using a sample

alignment method (Myers & Rabiner, 1981). These trajectories usually differ

in length, as they may have been performed at different speeds. With sample

alignment, demonstrations are aligned such that data points with the same time

stamp have the most similarity based on a specified fitness function. The out-

put of sample alignment is N demonstrations all of length T . Sample alignment

differs from Dynamic Time Warping in that it does not distort the temporal

transitions between datapoints in a demonstration. Figures 4.7a and 4.7b illus-

trate the sample alignment procedure.

We use the time stamps that result from sample alignment to initialize the

Gaussian mixture5. Let {ξt,n, ξ̇t,n}T,N
t=0,n=1 consist of the realigned set of demon-

strated trajectories. We initialize GMM with K = T Gaussian functions. The

parameters θk (prior, mean, and covariance) of each Gaussian function are com-

puted according to:

θk =


πk = 1

K

µk = mean
(
Ξk
)

Σk = cov
(
Ξk
)
+ σ0I

∀k ∈ 1..K − 1 (4.21a)

θK =



πK = 1
K

µK is computed from Eq. (4.18a)

ΣK = σ0

 I −I

−I I

 (4.21b)

where Ξk denotes a subset of the demonstrations that belongs to the k-th Gaus-

sian function, σ0 is a small positive scalar to avoid numerical instability, and I is

an identity matrix of the proper size. At initialization, Ξk is defined according

to:

Ξk = {ξk,n, ξ̇k,n}Nn=1 (4.22)

We here assume that the obtained system after the initialization is stable.

Practically, this is usually true as at initialization K >> 1, which results in hav-

ing an accurate estimation of the motion in a region close to the demonstrations,

and thus generating motions that reach the target in that region. When this

is not true, one could resample the demonstration trajectories at a higher rate

(e.g. through interpolation), and then redo the initialization step. The higher

the sample rate, the more likely the system is stable after the initialization

(remark that a stable system can be eventually obtained at the limit).

5The distortions resulting from aligning the trajectories are negligible if the sampling gran-
ularity is large.
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Figure 4.7: The Binary Merging (BM) learning algorithm. (a) Data points from three
demonstrations. (b) Resultant trajectories after applying sample alignment. Points corre-
sponding to the same time index are connected by a line. (c) Initialization step. (d) The
GMM is updated by iteratively merging two pairs of adjacent Gaussians (2 with 3 and 5 with
6). (e) Because the new Gaussian resulting from the merging of 4 with 5 (shown in dark
color) violates the stability criteria Eq. (4.18), the model remains unchanged. (f) Final model
after termination.

Iteration: Iteration proceeds as follows. A pair {θk,θk+1} of adjacent Gaus-

sians is picked at random and merged into a new Gaussian function, by com-

puting the new means and covariances on the union of data points associated to

each of the two Gaussians. We will further denote the process of merging two

Gaussians θk and θk+1 with {θk +θk+1}. Then in the next step, both stability

and accuracy conditions that are respectively given by Eqs. (4.18) and (4.20)

are verified for the new model. If these conditions are satisfied, then the merged

Gaussian function replaces the two selected Gaussian functions. The new model

is now composed of K − 1 Gaussians (see Fig. 4.7).

There are two key factors that should be taken into account during each

iteration. Firstly, the stability condition given by Eq. (4.18a) directly imposes

some constraints on the value of the mean and covariance matrix of the last

Gaussian function. In fact, when theK−1 orK-th Gaussian function is selected,

we directly update the value of µK from Eq. (4.18a). As for the covariance

matrix ΣK , when it does not satisfy this stability condition, we replace it with

its closest covariance matrix that ensures Eq. (4.18a). Secondly, in contrast to

the accuracy condition that is only computed for the demonstration datapoints,

the stability conditions should be verified for all points inD. However in practice

due to nonlinearities of f , this can only be checked numerically on a mesh of

datapoints defined over D. The required granularity of the mesh depends on the

level of complexity of a motion. Using a low granular mesh for highly nonlinear
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Algorithm 4.2 Checking stability conditions and defining D

Input: {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, θ, and δκ
1: Compute δ = min(P(ξt,n))
2: Determine α and D0 = { ξ ∈ Rd : P(ξ) ≥ αδ}
3: Generate a uniform meshM over D0

4: if stability conditions of Theorem 4.1 onM are satisfied then

5: Compute ξ̄0 and
¯̇
ξ0

6: Construct a hyper-plane Φ containing ξ̄0 and with normal
¯̇
ξ0.

7: Compute the hyper-surface S from the intersection of D0 and Φ
8: Initialize the scale factor κ← 1
9: loop

10: Generate trajectories ∀ξ0 ∈ X on the perimeter of S
11: if all reproduced trajectories are inside D0 then
12: Break
13: else
14: Decrease the scale factor by δκ, i.e. κ← κ− δκ
15: Scale down S with the scale factor κ
16: end if
17: end loop
18: Define D to be a region confined by the reproduced trajectories.
19: return true & D
20: else
21: return false
22: end if

function may result in error in evaluating the stability of f . Thus it is necessary

to tune the granularity of a mesh such that it captures the nonlinearity of the

dynamics while keeping the computation time as small as possible.

Algorithm 4.2 illustrates with pseudocode how to verify the stability condi-

tions. The main inputs to the algorithm are the demonstrations and the model

parameters. At the first step, the algorithm computes the positive scalar δ

over the dataset. Then an initial rough estimation of the domain D0 is com-

puted based on the value of δ (see Fig. 4.8a). At this stage, the resulting

domain D0 is not necessarily stable. In the next step, the stability conditions

of Theorem 4.1 are verified over a mesh M on D0. If the system satisfies these

conditions, then the algorithm computes an invariant set D inside D0 as fol-

lows: First, it constructs a hyper-plane Φ with a point ξ̄0 = 1
N

∑N
n=1 ξ

0,n (the

mean of the position of all demonstrations at time t = 0) and the normal vector
¯̇
ξ0 = 1

N

∑N
n=1 ξ̇

0,n (the mean of the velocity of all demonstrations at t = 0). The

intersection of Φ and D0 forms a hyper-surface S (see Fig. 4.8b). The algorithm

then generates trajectories for all starting points ξ0 ∈ X on the perimeter of S
(see Fig. 4.8c). If all generated trajectories remain inside D0, then we consider

the resulting hyper-tube inclosed by trajectories as D (see Fig. 4.8d). Other-

wise, the hyper-surface S is scaled down slightly and the procedure repeated

again. Figs. 4.8e and 4.8f show a 3D illustration of the process.

The BM learning algorithm terminates when it is no longer possible to merge

any pair of Gaussian functions without violating the maximum accepted error

or becoming unstable. The model converges within a maximum T (T − 1)/2
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Figure 4.8: Finding the stability domainD. Starting from any point insideD, the trajectory
converges asymptotically to the target.
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iterations6. Such a learning procedure results in a higher number of Gaussian

functions along curvatures in the motion (e.g. observe that the straight parts in

Fig. 4.6 require fewer Gaussian functions than the highly curved parts). Note

that BM does not ensure that the globally minimal number of Gaussian functions

is obtained (the algorithm finds a local minimum), and several derivations of

the model may be done to discover via random sampling a better solution than

the initial one.

4.4.3 Experimental Results

The presented algorithm is validated to control the point-to-point motions of a

6-DoF Katana-T arm and the 4-DoF right arm of the humanoid robot Hoap-3.

Both robots are equipped with a built-in PID controller to follow a reference

motion. Training data was provided by a human expert 3 to 5 times for each

example by back-driving the robot. The first task, represented in Fig. 4.9,

consists of having the Hoap-3 robot draw lines in a constrained 2D area. The

second task requires the Katana-T arm to put an object into a container while

avoiding an obstacle (see Fig. 4.10). The position of the container and the

obstacle are detected from an external stereo-vision system.

We use Cartesian coordinates system to represent the motion (the axes ξ1,

ξ2, and ξ3 correspond respectively to x, y, and z in the Cartesian coordinates

system). These tasks illustrate well the importance of having a locally stable

controller that closely follows the learned dynamics. Observe that BM implicitly

infers the constraints of the motion from demonstrations by accurately follow-

ing demonstrations in the stability domain D. In both experiments, the task

is shown to the robot three times. BM learning procedure results in locally

asymptotically stable models with K = 9 and K = 6 for the first and the sec-

ond experiments, respectively. The learned model are then used to generate

motions within the stability domain. As can be seen in Figs. 4.9 and 4.10, the

robot is able to successfully reproduce similar motions to demonstrations within

the stability region drawn in green.

One of the main advantages of DS is its instant adaptation to external per-

turbations. Figure 4.11 clearly illustrates such a result for the two mentioned

experiments, where the robots’ end-effector are displaced twice during the tasks

execution. Right after applying perturbations, our model is able to recompute

a new trajectory based on the current position of the robot’s end-effector. Note

that since the models constructed by BM are only locally asymptotically sta-

ble, the robustness of the model is only ensured if perturbations do not send

trajectories (i.e. robot’s end-effector) outside D.

6At each iteration, there are K − 1 possible combinations of adjacent Gaussian func-
tions. The maximum number of iterations happens in the most unlucky case where from
the initialization to the last iteration, only the model from the merging of the last pos-
sible pair of Gaussian functions satisfies the stability and accuracy criteria. Thus, at
each iteration, the algorithm tries all K − 1 combinations, which yields the upper bound
imax =

∑T
k=2(k − 1) = T (T − 1)/2 for the maximum number of iterations.
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Figure 4.9: The Hoap-3 robot performing the experiment of drawing lines in a constrained
2D area.
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Figure 4.10: The Katana-T arm performing the experiment of moving an object while
avoiding an obstacle.
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Figure 4.11: On-line adaptation of motion to abrupt spatial perturbations.
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4.4.4 Discussion and Conclusion

In this section, we presented the Binary Merging (BM) learning method for

encoding point-to-point motions with first order autonomous nonlinear ODE.

BM offers a framework to build a locally stable estimate of nonlinear DS from a

set of demonstrations. The estimated DS generates trajectories that accurately

follow the motion dynamics based on the metric of accuracy defined by the

user. More importantly, the DS model of the motion is inherently robust to

perturbations within the stability domain D, which removes the need for a

heuristic to regenerate a new trajectory in the face of perturbations.

There are, however, a number of shortcomings when using BM, which can

be sorted in the order of their importance as follows:

1. As it can be seen in Figs. 4.9 and 4.10, the stability domain D usually

corresponds to a narrow region around the demonstrations, which could

be quite limiting for tasks that require a large domain of applicability.

2. At initialization, BM uses sample alignment which is very sensitive to

demonstrations, and by construction is only effective when demonstrations

are very similar (in terms of the temporal order, position, and velocity).

This is more limiting than our original assumption on the consistency of

demonstrations (see Section 4.1). For example, consider using BM to learn

a 2D motion based on two demonstration trajectories, that start from two

different initial points placed on the positive and negative directions of

the x-axis. Although these two demonstrations do not contradict each

other, the sample alignment algorithm would fail as there is no similarity

between their speed profile.

3. BM relies on determining numerically the stability region. Its computa-

tional cost grows exponentially with d, polynomially with the granularity

of the mesh, and quadratically with T (the number of Gaussian functions

at initialization). Hence, it could already become prohibitive in 3D and

intractable in higher dimensions.

4. As the stability conditions are only verified on a mesh over the region D,

the validity of the result strongly depends on the quality of the meshing.

The finer the granularity of the mesh, the more likely the stability is

guaranteed in D. However, as outlined before, increasing the granularity

of the mesh is costly and a tradeoff must hence be found between increasing

likelihood of a good coverage and limiting computational costs.

These drawbacks may be very limiting for many robot experiments. In the

next section we present an alternative learning algorithm that can overcome the

above shortcomings.
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4.5 Stable Estimator of Dynamical Systems

In this section we define sufficient conditions to ensure global asymptotic sta-

bility of our estimate of a nonlinear autonomous DS at the target. We then pro-

pose a learning method, called Stable Estimator of Dynamical Systems (SEDS),

to learn the parameters of the DS so as to ensure all motions follow closely

the demonstrations while ultimately reaching and stopping at the target. Being

time-invariant and globally asymptotically stable at the target, a DS that is

estimated with SEDS can respond immediately and appropriately to perturba-

tions encountered during the motion. We evaluate this method through a set of

robot experiments and on a library of human handwriting motions.

This section is structured as follows. In Section 4.5.1 we first develop condi-

tions for ensuring global asymptotic stability of nonlinear DS. Then, we propose

a learning method to build an estimate of nonlinear DS subject to these condi-

tions. In Section 4.5.2, we quantify the performance of the proposed method in

simulation and robot experiments. We devote Section 4.5.3 to discussion and

conclusion.

4.5.1 Learning Globally Stable Models

In this section we provide a set of stability conditions to ensure global asymptotic

stability of f at the target. Similarly to our previous approach, we use GMM to

encode the dynamics of the motions. However, as opposed to BM, here we take

into account the effect of all Gaussian functions without any need to truncate

the estimate to solely using the adjacent Gaussian functions.

Our approach is based on the following fundamental physical observation:

“if the total energy of a mechanical system is continuously dissipated, then

the system, whether linear or nonlinear, must eventually settle down to an

equilibrium point” (Slotine & Li, 1991). Thus in order to reach our goal in

building a globally asymptotically stable DS, we need to set the parameters of

GMR so that by starting the motion from any point in the state space, the

energy of the system decreases as the motion evolves until it reaches the target,

where it becomes zero. The latter can be achieved by ensuring the following

stability conditions.

�

Theorem 4.2 Assume that the state trajectory evolves according to Eq. (4.8).

Then the function described by Eq. (4.8) is globally asymptotically stable at its

unique equilibrium point ξ∗ in Rd if:

µk
ξ̇
= Σk

ξ̇ξ
(Σk

ξ)
−1(µk

ξ − ξ∗) ∀k = 1..K (4.23a)

Σk
ξ̇ξ
(Σk

ξ)
−1 + (Σk

ξ)
−1(Σk

ξ̇ξ
)T ≺ 0 ∀k = 1..K (4.23b)

where . ≺ 0 refers to the negative definiteness of a matrix.
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Proof: See Appendix A.2.

�

The conditions given by Eq. (4.23) impose constraints on each Gaussian

function so that the energy dissipation due the presence of that Gaussian be-

comes negative everywhere except at the target, where it becomes zero. As

the final estimate from GMR is determined by summing (with a set of positive

nonlinear weights) the local estimates from Gaussian functions, the total energy

dissipation of the system is thus by construction negative everywhere except at

the target, where it becomes zero.

Theorem 4.2 provides us with sufficient conditions whereby the estimate f(ξ)

is globally asymptotically stable at the target. It remains now to determine

a procedure for computing the unknown parameters of Eq. (4.8), i.e. θ =

{π1..πK ;µ1..µK ;Σ1..ΣK} while satisfying these stability conditions. In this

section we propose a learning algorithm, called Stable Estimator of Dynamical

Systems (SEDS), that computes optimal values of θ by solving an optimization

problem under the constraint of ensuring the model’s global asymptotic sta-

bility at the target. We consider two different candidates for the optimization

objective function: 1) log-likelihood, and 2) Mean Square Error (MSE). We will

evaluate and compare the results from both approaches in Section 4.5.2.1.

SEDS-Likelihood: Using log-likelihood as a means to quantify the accuracy of

estimations based on demonstrations.

min
θ
J(θ) = − 1

T

N∑
n=1

Tn∑
t=0

logP([ξt,n; ξ̇t,n]|θ) (4.24)

subject to

µk
ξ̇
= Σk

ξ̇ξ
(Σk

ξ)
−1(µk

ξ − ξ∗) ∀k ∈ 1..K (4.25a)

Σk
ξ̇ξ
(Σk

ξ)
−1 + (Σk

ξ)
−1(Σk

ξ̇ξ
)T ≺ 0 ∀k ∈ 1..K (4.25b)

Σk ≻ 0 ∀k ∈ 1..K (4.25c)

0 < πk ≤ 1 ∀k ∈ 1..K (4.25d)

K∑
k=1

πk = 1 (4.25e)

where P([ξt,n; ξ̇t,n]|θ) is given by Eq. (4.6), and T =
∑N

n=1 T
n is the total

number of training data points.

The first two constraints in Eq. (4.25) are stability conditions from Theo-

rem 4.2. The last three constraints are imposed by the nature of the Gaussian

Mixture Model to ensure that Σk are positive definite matrices, priors πk are

positive scalars smaller than or equal to one, and the sum of all priors is equal

to one (because the probability value of Eq. (4.6) should not exceed one).
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SEDS-MSE: Using Mean Square Error as a means to quantify the accuracy of

estimations based on demonstrations.

min
θ
J(θ) =

1

2T

N∑
n=1

Tn∑
t=0

(
f(ξt,n)− ξ̇t,n

)T (
f(ξt,n)− ξ̇t,n

)
(4.26)

subject to the same constrains as given by Eq. (4.25). In Eq. (4.26), f(ξt,n) are

computed directly from Eq. (4.8).

Both SEDS-Likelihood and SEDS-MSE corresponds to a constrained opti-

mization problem that can be solved using the techniques presented in Sec-

tion 2.3. In order to improve the optimization performance, we use an analytic

expression of the required optimization derivatives. Furthermore, we suggest a

reformulation to the above optimization problems that guarantees the optimiza-

tion constraints given by Eqs. (4.25c) to (4.25e) are satisfied. The analytical

formulation of derivatives and the mathematical reformulation to satisfy the

optimization constraints are explained in details in Appendix C.

Note that for both of the above optimization problems, a feasible solution

always exists. Algorithm 4.3 provides a simple and efficient way to compute a

feasible initial guess for the optimization parameters. Starting from an initial

value, the solver tries to optimize the value of θ such that the cost function J is

minimized. However since the proposed optimization problems are non-convex,

one cannot ensure to find the globally optimal solution. Solvers are usually

very sensitive to initialization of the parameters and will often converge to some

local minima of the objective function. Based on our experiments, running the

optimization with the initial guess obtained from Algorithm 4.3 usually results

in a good local minimum. In all experiments reported in Section 4.5.2, we ran

the initialization three to four times, and use the result from the best run for

the performance analysis.

For the SEDS-Likelihood approach, we use the Bayesian Information Crite-

rion (BIC) to choose the optimal number of Gaussian functions K. BIC deter-

mines a tradeoff between optimizing the model’s likelihood and the number of

parameters needed to encode the data:

BIC = T J(θ) + np
2

log(T ) (4.27)

where J(θ) is the normalized log-likelihood of the model given by Eq. (4.24),

and np is the total number of free parameters.

For the SEDS-MSE approach, however, it is not possible to use the BIC

as this approach does not optimize for maximizing the likelihood. To obtain

an accurate model without overfitting the demonstrations, one can split the

demonstrations into training and test datasets. The optimal number of Gaussian

functions corresponds to the minimum value of K that provides an accurate

estimate on both datasets.
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Algorithm 4.3 Procedure to determine an initial guess for the optimization param-
eters

Input: {ξt,n, ξ̇t,n}T
n,N

t=0,n=1 and K

1: Run EM over demonstrations to find an estimate of πk, µk, and Σk, k ∈ 1..K.
2: Define π̃k = πk and µ̃k

ξ = µk
ξ

3: Transform covariance matrices such that they satisfy the optimization constraints
given by Eqs. (4.25b) and (4.25c):

Σ̃k
ξ = I ◦ abs(Σk

ξ)

Σ̃k
ξ̇ξ

= −I ◦ abs(Σk
ξ̇ξ
)

Σ̃k
ξ̇
= I ◦ abs(Σk

ξ̇
)

Σ̃k
ξξ̇

= −I ◦ abs(Σk
ξξ̇
)

∀k ∈ 1..K

where ◦ and abs(.) corresponds to entrywise product and absolute value function,
and I is a d× d identity matrix.

4: Compute µ̃k
ξ̇
by solving the optimization constraint given by Eq. (4.25a):

µ̃k
ξ̇ = Σ̃k

ξ̇ξ(Σ̃
k
ξ)

−1(µ̃k
ξ − ξ∗)

Output: θ0 = {π̃1..π̃K ; µ̃1..µ̃K ; Σ̃1..Σ̃K}

The SEDS-Likelihood approach requires the estimation of K(1 + 3d + 2d2)

parameters (the priors πk, the means µk, and the covariance matrices Σk are

of size 1, 2d and d(2d + 1) respectively). However, the number of parameters

can be reduced since the constraints given by Eq. (4.25a) provide an explicit

formulation to compute µk
ξ̇
from other parameters (i.e. µk

ξ, Σ
k
ξ, and Σk

ξ̇ξ
). Thus

the total number of parameters to construct a GMM with K Gaussian functions

is K(1+ 2d(d+1)). As for SEDS-MSE, the number of parameters is even more

reduced since when constructing f , the term Σk
ξ̇
is not used and thus can be

omitted during the optimization. Taking this into account, the total number of

learning parameters for the SEDS-MSE reduces to K(1 + 3
2d(d+ 1)).

For both approaches, learning grows linearly with the number of Gaussian

functions and quadratically with the dimension. In comparison, the number of

parameters in the proposed method is smaller than those needed for GMM7.

The retrieval time of both approaches is short and in the same order of GMR.

4.5.2 Experimental Evaluations

In this section we evaluate the performance of SEDS in a series of simulation and

robot experiments. Precisely, in Section 4.5.2.1 we compare the performance of

the SEDS method against a library of 20 human handwriting motions when using

either the likelihood or MSE. In Section 4.5.2.2, we validate SEDS to estimate

the DS motion of two robots (a) the 7-DoF right arm of the humanoid robot

iCub, and (b) the 6-DoF industrial robot Katana-T arm. In Section 4.5.2.3,

we show how SEDS can be used to learn second or higher order dynamics, and

finally in Section 4.5.2.4 we demonstrate through an example the possibility to

embed different local behaviors in a single DS.

7The number of learning parameter in GMR is K(1 + 3d+ 2d2).
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4.5.2.1 SEDS training: Likelihood vs. MSE

In Section 4.5.1 we proposed two objective functions: likelihood and MSE for

training DS models. We compare the results obtained with each method for

modeling 20 handwriting motions. The demonstrations are collected from pen

input using a Tablet-PC. Figure 4.12 shows a qualitative comparison of the

estimate of handwriting motions. All reproductions were generated in simulation

to exclude the error due to the robot controller from the modeling error. The

accuracy of the estimate is measured by computing the so-called “swept error

area”:

E =
1

N

N∑
n=1

Tn∑
t=0

A(ξn(t), ξn(t+ 1), ξt,n, ξt+1,n) (4.28)

where A(p1,p2,p3,p4) corresponds to the area of the tetragon generated by

the four points p1 to p4, ξn(t) =
∑t

i=0 ξ̇
n(i)dt generate an estimate of the

corresponding demonstrated trajectory ξn by starting from the same initial

points as those demonstrated, i.e. ξn(0) = ξ0,n, ∀n ∈ 1..N . Figure 4.13 shows

an example of the swept error area between the reference and the generated

trajectory for a 2D motion.

The quantitative comparison between the two methods is represented in

Fig. 4.14. SEDS-Likelihood slightly outperforms SEDS-MSE in accuracy of the

estimate. This could be due to the fact that Eq. (4.26) only considers the

norm of ξ̇ during the optimization, while in computing the swept error area the

direction of ξ̇ is also important (see Eq. (4.28)). Though one could improve

the performance of SEDS-MSE by considering the direction of ξ̇ in Eq. (4.26),

this would make the optimization problem more difficult to solve by changing a

convex objective function into a non-convex one8.

SEDS-MSE is advantageous over SEDS-Likelihood in that it requires fewer

parameters (this number is reduced by a factor of 1
2Kd(d + 1)). Furthermore,

SEDS-MSE training is lower than SEDS-Likelihood as it deals with a simpler

optimization problem. Following the above observations, we could clearly see

that the difference between the two approaches are very small. For brevity, we

will choose SEDS-Likelihood in the rest of experiments as it results to a slightly

more accurate model9.

8 Alternatively, one can use a different cost function that propagates the effect of the
estimation error at each time step along the generated trajectory (as opposed to the MSE
cost function given by Eq. (4.26) that assumes independency across datapoints):

min
θ

J(θ) =
1

N

N∑
n=1

Tn∑
t=0

(
ωξ∥ξn(t)− ξt,n∥2 + ωξ̇∥ξ̇

n(t)− ξ̇t,n∥2
)

ξ̇n(t) = f(ξn(t)) are computed directly from Eq. (4.8), and ωξ and ωξ̇ are positive scalars

weighing the influence of the position and velocity terms in the cost function. The above
MSE cost function could result in a more accurate estimation of f as it has a better metric
of evaluation. However, it does that at the cost of solving a much more complex optimization
problem.

9Note that in our experiments the differences between the two algorithms in terms of the
number of parameters and the training time are small. As the training is done offline, they
are not decisive factors.
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Figure 4.12: Performance comparison of SEDS-Likelihood and SEDS-MSE against a library
of 20 human handwriting motions.
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Figure 4.13: Illustration of the swept error area between the reference and the generated
trajectories.
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Figure 4.14: Performance comparison of SEDS-Likelihood and SEDS-MSE through a li-
brary of 20 human handwriting motions.

4.5.2.2 Learning Discrete Motions in the Operational Space

We report on five robot experiments to teach the Katana-T and the iCub robot

to perform nonlinear point-to-point motions. Both robots are kinematically

driven and have a built-in PID controller. In all our experiments the origin

of the reference coordinates system is attached to the target. The motion is

hence controlled with respect to this frame of reference. Such representation

makes the parameters of a DS invariant to changes in the target position. The

target position is detected at the rate of 50 fps using two high-speed Mikrotron

MK-1311 cameras.

In the first experiment, we teach the 6-DoF industrial Katana-T arm how to

put small blocks into a container10 (see Fig. 4.15). We use the Cartesian coordi-

nates system to represent the motions. In order to have human-like motions, the

learned model should be able to generate trajectories with both similar position

and velocity profiles to the demonstrations. In this experiment, the task was

shown to the robot six times, and was learned using K = 6 Gaussian functions.

10The robot is only taught how to move blocks. The problem of grasping the blocks is out
of the scope of this thesis. Throughout the experiments, we pose the blocks such that they
can be easily grasped by the robot.

75



Figure 4.15a illustrates the obtained results for generated trajectories starting

from different points in the task space. The direction of motion is indicated by

arrows. All reproduced trajectories are able to follow the same dynamics (i.e.

having similar position and velocity profile) as the demonstrations.

Immediate Adaptation: Fig. 4.15b shows the robustness of the model to

the change in the environment. In this graph, the original trajectory is plotted

in thin blue line. The thick black line represents the generated trajectory for

the case where the target is displaced at t = 1.5 second. Having defined the

motion as an autonomous DS, the adaptation to the new target’s position can

be done instantly.

Increasing Accuracy of Generalization: While convergence to the tar-

get is always ensured from conditions given by Eq. (4.23), due to the lack of

information for points far from demonstrations, the model may reproduce some

trajectories that are not consistent with the usual way of doing the task. For

example, consider Fig. 4.16a, i.e. when the robot starts the motion from the

left-side of the target, it first turns around the container and then approaches

the target from its right-side. This behavior may not be optimal as one ex-

pects the robot to follow the shortest path to the target and to reach it from

the same side as the one it started from. However, such a result is inevitable

since the information given by the teacher is incomplete, and thus the infer-

ence for points far from the demonstrations is not reliable. In order to improve

the task execution, it is necessary to provide the robot with more demonstra-

tions (information) over regions not covered before. By showing the robot more

demonstrations and re-training the model with the new data, the robot is able

to successfully accomplish the task (see Fig. 4.16b).

The second and third experiments consisted of having the Katana-T robot

place a saucer at the center of the tray and putting a cup on the top of the saucer.

Both tasks were shown 4 times and were learned using K = 4 Gaussians. The

experiments and the generalization of the tasks starting from different points

in the space are shown in Figs. 4.17 and 4.18. The adaptation of both models

in the face of perturbations are also illustrated in Fig. 4.19. Note that in this

experiment the cup task is executed after finishing the saucer task; however, for

convenience we superimpose both tasks in the same graph. In both tasks the

target (the saucer for the cup task and the tray for the saucer task) is displaced

during the execution of the task at t = 2 seconds. In both experiments, the

adaptation to the perturbation is handled successfully.

The forth and fifth experiments consisted of having the 7-DoF right arm of

the humanoid robot iCub perform complex motions, containing several nonlin-

earities (i.e. successive curvatures) in both position and velocity profiles. Similar

to above, we use the Cartesian coordinates system to represent these motions.

The tasks are shown to the robot by teleoperating it using motion sensors (see
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Figure 4.15: The Katana-T arm performing the experiment of putting small blocks into a
container. Please see the text for further information.
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Figure 4.16: Improving the task execution by adding more data for regions far from the
demonstrations.
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Figure 4.17: The Katana-T arm performing the experiment of putting a saucer on a tray.
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Figure 4.18: The Katana-T arm performing the experiment of putting a cup on a saucer.
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Figure 4.19: The ability of the model to instantly adapt its trajectory to a change in the
target’s position.
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Figure 4.20: The first experiment with the iCub. The robot does a semi-spiral motion
toward its right-side, and at the bottom of the spiral, it stretches forward its hand completely.

Fig. 4.1). Figure 4.20 illustrates the result for the first task where the iCub

starts the motion in front of its face. Then it does a semi-spiral motion toward

its right-side, and finally at the bottom of the spiral, it stretches forward its

hand completely. In the second task, the iCub starts the motion close to its

left fore-hand. Then it does a semi-circle motion upward and finally brings its

arm completely down (see Fig. 4.21). The two experiments were learned using 5

and 4 Gaussian functions, respectively. In both experiments the robot is able to

successfully follow the demonstrations and to generalize the motion for several

trajectories with different starting points. Similarly to what was observed in the

three experiments with the Katana-T robot, the models obtained for the iCub’s

experiments are robust to perturbations.

4.5.2.3 Learning Second Order Dynamics

So far we have shown how DS can be used to model/learn a demonstrated

motion when modeled as a first order time-invariant ODE. Though this class of

ODE functions are generic enough to represent a wide variety of robot motions,

they fail to accurately define motions that rely on second order dynamics such as

a self-intersecting trajectory or motions for which the starting and final points

coincide with each other (e.g. a triangular motion). Critical to such kinds of

motions is the ambiguity in the correct direction of velocity at the intersection

point if the model’s variable ξ considered to be only the cartesian position (i.e.

ξ = x ⇒ ξ̇ = ẋ). This ambiguity usually results in skipping the loop part of
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Figure 4.21: The second experiment with the iCub. The robot does a semi-circle motion
upward and then brings its arm completely down.

the motion. However, in this example, this problem can be solved if one defines

the motion in terms of position, velocity, and acceleration, i.e. a second order

dynamics:

ẍ = g(x, ẋ) (4.29)

where g is an arbitrary function. Observe that any second order dynamics in

the form of Eq. (4.29) can be easily transformed into a first-order ODE through

a change of variable, i.e.:ẋ = v

v̇ = g(x,v)
⇒ [ẋ; v̇] = f(x,v) (4.30)

Having defined ξ = [x;v] and thus ξ̇ = [ẋ; v̇], Eq. (4.30) reduces to ξ̇ = f(ξ),

and therefore can be learned with the methods presented in this section. We

verify the performance of both methods in learning a second order motion via

a robot task. In this experiment, the iCub performs a loop motion with its

right hand, where the motion lies in a vertical plane and thus contains a self

intersection point (see Fig. 4.22). Here the task is shown to the robot five times.

The motion is learned with seven Gaussian functions with SEDS-Likelihood.

The results demonstrate the ability of SEDS to learn second order dynamics.

By extension, since any n-th order autonomous ODE can be transformed into

a first-order autonomous ODE, the proposed methods can also be used to learn

higher order dynamics; however, at the cost of increasing the dimensionality of
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ξ3 = ẋ1(m/s)

ξ
4
=

ẋ
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Figure 4.22: Learning a self intersecting motion with a second order dynamics.

the system. If the dimensionality of an n-th order DS is d, the dimensionality of

the transformed dynamics into a first order DS is n× d. Hence, increasing the

order of the DS is equivalent to increasing the dimensionality of the data. As

the dimension increases, the number of optimization parameters also increases.

If one optimizes the value of these parameters based on using a quasi-Newton

method, the learning problem indeed becomes intractable as the number of

dimensions increases. As an alternative solution, one can define the loop motion

in terms of both the Cartesian position x and a phase variable. The phase

dependent DS has lower dimension (i.e. dimensionality of d+1) compared to the

second order DS, and is more tractable to learn (we will show an example of such

approach in Section 4.6.5). However, as it is already discussed in Section 3.3.2,

use of the phase variable makes the system time-dependent. Depending on the

application, one may prefer to choose the system of Eq. (4.30) and learn a more

complex DS, or to use its phase variable form which is time-dependent, but

easier to learn.
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Figure 4.23: Embedding different ways of performing a task in one single model. The robot
follow an arc, a sine, or a straight line starting from different points in the workspace. All
reproductions were generated in simulation.

4.5.2.4 Encoding Several Motions into one Single Model

We have so far assumed that a single dynamical system drives a motion; how-

ever, sometimes it may be necessary to execute a single task in different manners

starting from different areas in the space, mainly to avoid joint limits, task con-

straints, etc. We have shown an example of such an application in an experiment

with the Katana-T robot (see Fig. 4.16). Now we show a more complex example

and use SEDS to integrate different motions into one single model (see Fig. 4.23).

In this experiment, the task is learned using K = 7 Gaussian functions, and

the 2D demonstrations are collected from pen input using a Tablet-PC. The

model is learned using SEDS-Likelihood and is provided with all demonstration

data-points at the same time without specifying the dynamics they belong to.

Looking at Fig. 4.23 we see that all the three dynamics are learned successfully

with a single model and the trajectories are able to approach the target follow-

ing an arc, a sine function, or a straight line path, starting from the left, right,

or top-side of the task space, respectively. While reproductions follow locally

the desired motion around each set of demonstrations, they could switch from

one motion to another in areas between demonstrations.

4.5.3 Discussion and Conclusion

In this section we presented a method for learning arbitrary discrete motions

by modeling them as nonlinear autonomous DS. We proposed a method called

SEDS to learn the parameters of a GMM by solving an optimization problem

under strict stability constraint. We proposed two objective functions SEDS-

MSE and SEDS-Likelihood for this optimization problem. The models result

from optimizing both objective functions benefit from the inherent character-

istics of autonomous DS, i.e. online adaptation to both temporal and spatial

perturbations. However, each objective function has its own advantages and

disadvantages. Using log-likelihood is advantageous in that it is slightly more

accurate and smoother than MSE. In contrast, the MSE objective function re-

quires fewer parameters than the likelihood one, which may make the algorithm

faster in higher dimensions or when a higher number of components is used.
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None of the two methods are globally optimal as they deal with a non-

convex optimization problem. However, in practice, in the experiments that

were reported here, we found that SEDS approximation was quite accurate.

The stability conditions at the basis of SEDS are sufficient conditions to ensure

global asymptotic stability of nonlinear motions when modeled with a mixture

of Gaussian functions. Although our experiments showed that a large library

of robot motions can be modeled while satisfying these conditions, these global

stability conditions might be too stringent to accurately model some complex

motions (we will elaborate more on this limitation of SEDS in Section 4.7).

While in Section 4.5.2.3 we showed how higher order dynamics can be used to

model more complicated movements, determining the model order is definitely

not a trivial task. It relies on having a good idea of what matters for the

task at hand. For instance, higher order derivatives are useful to control for

smoothness, jerkiness, energy consumption and hence may be used if the task

requires optimizing for such criteria.

Online learning is often crucial to allow the user to refine the model in an

interactive manner. At this point in time, the SEDS training algorithm does not

allow for online retraining of the model. If one was to add new demonstrations

after training the model, one would have to either retrain entirely the model

based on the combined set of old and new demonstrations or build a new model

from the new demonstrations and merge it with the previous model11. For a

fixed number of Gaussian functions, the former usually results in having a more

accurate model, while the latter is faster to train.

4.6 Stable Estimator of Dynamical Systems-II

In previous sections, we presented two techniques that can be used to en-

sure local and global stability of autonomous nonlinear DS at the target. These

methods use GMR formulation to encode the DS model of the task. However, as

outlined in Section 2.2, there exist numerous regression techniques for estimat-

ing nonlinear DS, each of which has it own pros and cons. For instance, GPR

is a very accurate method but is computationally expensive. GMR is computa-

tionally fast and relatively good at extrapolation, but it is not good for online

learning. LWPR is a powerful tool for incremental/online learning and computa-

tionally fast but it is sensitive to initial parameters and on average requires more

parameters than, for example, GMR. When modeling robot motions with DS,

it would be advantageous if one could choose the most appropriate regression

technique based on the requirements of the task at hand.

11Two GMM with K1 and K2 number of Gaussian functions can be merged into a single
model with K = K1 + K2 Gaussian functions by concatenating their parameters, i.e.: θ =

{θ1..θK1
..θK}, where θk = {πk,µk,Σk}. The resulting model is no longer (locally) optimal;

however, it could be an accurate estimation of both models, especially when there is no or
slight overlapping between the two models.
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The two techniques that we have presented so far are constrained by the

choice of nonlinear modeling as their stability conditions are expressed in terms

of the means and covariances of the mixture model. In this section we extend

our previous approach and present a new method, called SEDS-II, that can

ensure stability of nonlinear DS independently from the choice of the regres-

sion model. SEDS-II can also guarantee the stability of a combination of two

or more regression techniques, which could allow combining the advantages of

different techniques to satisfy requirements of complex tasks. Furthermore, be-

ing able to ensure the stability of both autonomous and non-autonomous DS,

SEDS-II allows choosing the most appropriate DS formulation for a given task.

In addition to the above features, SEDS-II is grounded on less conservative sta-

bility conditions compared to SEDS, and thus is able to encode more complex

robot motions (we will provide an in-depth comparison between BM, SEDS, and

SEDS-II in Section 4.7).

The rest of this section is structured as follows: Section 4.6.1 describes the

SEDS-II formulation to generate robot motions. Section 4.6.2 formalizes a con-

strained optimization problem to estimate a metric of stability. Section 4.6.3

explains an approach to parameterize the metric of stability. Section 4.6.4 pro-

vides a formulation to ensure stability of DS-based discrete robot motions. Sec-

tion 4.6.5 presents experimental results, and Section 4.6.6 concludes the section.

4.6.1 Revisiting DS-Based Formulation

So far, we have only considered a category of DS that is formulated based on

GMR according to Eq. (4.8). However, as outlined in Section 2.1, DS-based ap-

proaches to generate robot motions can be generally divided into two categories:

autonomous and non-autonomous dynamical systems. As we have already ob-

served in previous sections, in autonomous DS the evolution of the state variable

ξ only depends on its current value. In contrast in non-autonomous DS, both the

current time and the current value of ξ can affect the evolution of the motion,

i.e.:

ξ̇ = f(t, ξ), f : R+ × Rd 7→ Rd Non-Autonomous DS (4.31a)

ξ̇ = f(ξ), f : Rd 7→ Rd Autonomous DS (4.31b)

where f(.) is a continuous function. We will henceforth use the notation f(.)

to refer to both autonomous and non-autonomous DS.

The method that we present in this section is inspired from the following

observation: “In a region close to demonstrations, the estimates from f(.) mostly

exhibit a converging behavior to the target.” For instance, Fig. 4.24a shows an

example of unstable estimates of a motion that are learned from four of the best

to date regression techniques. One can clearly see that the generated trajectories

closely follow the demonstrations, and then suddenly diverge from the target.
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(a) As can be seen in this example, generated trajectories closely follow the demonstrations in
the largest part of the motion, and diverge from the target only in some areas.
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ξ
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Converging trajectories
Diverging trajectories
Regions requiring stabilization
Spurious attractors

Onsets of divergence

(b) Illustration of divergence regions when using GMR to generate a trajectory from the de-
picted initial point. The motion only requires stabilization in a small region that is highlighted
in green.

Figure 4.24: Illustration of convergence and divergence behaviors of a two-dimensional
dynamics estimated on the basis of three training examples using GMR, LWPR, GPR, and
SVR. Please refer to Section 4.6.1 for further information.
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In contrast to our previous approaches that explicitly put constraints on

f(ξ) to make it asymptotically stable at the target, here we seek an alternative

approach: We use the estimated DS from a regression technique to derive the

motion as long as it shows converging behavior. Only in the case of divergence,

the estimations from the regression are corrected so that the convergence be-

havior is retained throughout the state space. In other words, we are interested

in determining a stabilizing command u(ξ,f(.)) ∈ Rd such that the resulting

DS:

ξ̇ = f̃(.) = f(.) + u(ξ,f(.)) (4.32)

is 1) globally asymptotically stable at the target ξ∗ to ensure the convergence of

all trajectories to the target, and 2) an accurate estimation of the user demon-

strations to satisfy the task requirements. Both of the above requirements are

essential for f̃(.) to provide a useful control policy. Note that in the above for-

mulation, u is zero when f(.) is converging, and it only becomes nonzero once

f(.) diverges. One should be careful when generating u to avoid discontinuities

in the output of the system when f(.) switches from converging to diverging

behavior and vice versa.

Fig. 4.24b illustrate through an example our desired control policy that is

just described above. In this example, the DS f(.) is estimated with GMR.

Starting from the depicted initial point, the DS initially exhibits converging

behavior. However, after some iterations it diverges from the target (i.e. exhibits

divergence behavior) and approaches a spurious attractor. By identifying the

regions where f(.) shows divergence behaviors, we could correct the motion

by applying the stabilizing command. After a few iterations, the divergence

behavior vanishes, and the motion can solely be derived from f(.) without any

need to apply the stabilizing command until it reaches a region close to the

target, where it diverges for the second time. Using the stabilizing command,

the motion can successfully reach the target.

The described strategy requires a so-called metric of stability to detect when

f(.) is exhibiting diverging behaviors from the target. Finding this metric is non-

trivial as it could differ from one example to another. However, we could exploit

the demonstrations of the task to build an estimate of the metric of stability

suited for the task at hand. We then exploit this metric to identify the unstable

regions, and to devise a control strategy to generate the stabilizing command u

so as to ensure global asymptotic stability of f̃(.) at the target.

Fig. 4.25 shows the schematic of the control flow for the new system. First,

note the difference between the stabilizing command u(ξ,f(.)) and the robot

control command τ . The former is a virtual signal that is generated at the

kinematic level to make the DS planer stable, while the latter is the actual

torque or force that is applied to the robot to follow the desired motion. In

this control architecture, the stability of the system is ensured while executing

the task, as opposed to BM and SEDS that ensure stability during training.
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Figure 4.25: The system’s architecture illustrating the control flow when using SEDS-II
formulation to derive the stable control policy. In this graph, q, τ , and ξ correspond to
the robot’s joint angles, joint torques, and the state variables describing the robot motion,
respectively. Note that here we assume f is an autonomous system. For non-autonomous
systems, one should also add the time variable as an input to the DS block.

In the motion encoding block, an estimate of DS model is constructed based

on demonstrations using any smooth regression model such as GMR, GPR,

LWPR, etc. Depending on the regression method, the motion encoding step

may be done offline or online. In the present approach, estimation of the metric

of stability can solely be done offline.

The presented approach is in spirit identical to the Control Lyapunov Func-

tion (CLF)-based control scheme in control engineering (Artstein, 1983; Primbs

et al., 1999; Jiang et al., 2009; Sontag, 1998). The construction of a CLF is

nontrivial, and has only been solved for special classes of DS (Kokotovic & Ar-

cak, 2001). In contrast, in our approach we build an estimate of the metric

of stability (the equivalence of CLF) from demonstrations. Furthermore, as

our approach is solely applied at the kinematic level, it is tailored to generate

stabilizing commands that modifies the unstable DS given by f(.) as least as

possible at each iteration. Hence, it tries to maximize the similarity between

the stabilized and the unstable DS which is crucial for our application.

Apart from the CLF approach, there are also a number of other nonlinear

control techniques that deal with the problem of generating the control com-

mand u so as to stabilize the nonlinear DS that is given by Eq. (4.32) at the

target. However, most of these approaches do not consider the requirement of
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“stabilizing f at the target, while generating motions that resemble the user

demonstrations” which is essential in our implementation. Nevertheless, the

Optimal Control technique (Bryson & Ho, 1975) and its sub-branches such as

the Model Predictive Control (Kulchenko & Todorov, 2011) can be formulated

so as to fulfill the above requirement. Despite the successful realtime implemen-

tation of these approaches for linear DS (Boyd & Vandenberghe, 2004), their

implementation for nonlinear DS is still an open question and realtime solutions

only exist for particular cases.

4.6.2 Learning Metric of Stability

As outlined in the previous section, in order to ensure global stability of f̃(.)

at the target ξ∗, we need to determine a metric of stability that can be used

as a gauge to detect divergence behaviors. The energy of the system can be

considered as a good candidate for this purpose. Let us retake the example

presented in Fig. 4.24b, and assume the energy of the system is defined by a

function V (ξ). Figure 4.26 illustrates the energy levels of V (ξ) (note that the

energy function is positive everywhere except at the target where it vanishes).

Following our example, at the initial point the system has the energy V (ξ0).

As the trajectory evolves, its energy continuously dissipates until it reaches the

first divergence point (indicated with a red triangle). At this point, the energy

of the system starts increasing which eventually yields convergence to a spurious

attractor. In order to avoid this behavior, the estimate from the GMR should

be corrected so that the energy of the motion keeps decreasing. The regions

that require such corrections are indicated by a green line in Fig. 4.26.

Two observations follow from the above example: 1) Divergence behavior

can be observed in regions Rd \ ξ∗ where the energy of the system no longer

decreases, 2) The correct determination of divergence points strongly depends

on the way the metric of stability (i.e. the energy function) is defined. The

latter is a crucial factor as an improper metric of stability could yield errors

in determining the divergence points, which subsequently leads to unnecessary

estimation errors in following the demonstrations12.

To avoid this issue, we take an imitation learning perspective and suggest a

procedure to build a valid estimate of the energy function from the demonstra-

tions. We call the function V (ξ) > 0 a valid energy function based on the user

demonstrations if as one moves along any of the demonstration trajectories its

energy decreases and finally extinguishes at ξ∗:

V (ξt,n) > V (ξt+1,n) ∀t ∈ 0..Tn − 1, n ∈ 1..N (4.33)

12As we show later on in Section 4.6.6, an improper metric of stability does not eliminate
the global asymptotic stability of f̃(.). However, it can reduce the accuracy in estimation of
the user demonstrations which is a crucial factor in our implementation.
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Figure 4.26: The system’s architecture illustrating the control flow when using SEDS-II
formulation to derive the stable control policy.

The above criterion is equivalent to request that the energy decreases over

time. This can be verified by computing the scalar product between the energy

gradient and the velocity at each training data point except at the target:

V̇ (ξt,n, ξ̇t,n) =
dV (ξt,n)

dt
=
(dV (ξt,n)

dξ

)T dξt,n
dt

=
(
∇ξV (ξt,n)

)T
ξ̇t,n < 0 (4.34)

where (.)T denotes the transpose.

In this section, we propose a constrained optimization problem that can

be used to obtain an estimate of the energy function from the user demon-

strations. To reach this goal, we first proceed by parameterizing the energy

function with a vector of parameters θ and denote it with V (ξ;θ). More in-

formation on parameterization of V will be discussed later on in Section 4.6.3.

Next, in order to ensure that the energy function has a single global minimum,

we request that: 1) V is positive ∀ξ ∈ Rd \ ξ∗, 2) It is zero at the target ξ∗, and

3) Its Hessian ∇ξξV (ξ;θ) is a positive definite matrix ∀ξ ∈ Rd.13 The above

three requirements naturally yield the vector of partial derivatives vanishes at

the target, i.e. ∇ξV (ξ∗;θ) = 0. We formulate these strict conditions as the

constraints of the optimization problem. Finally, we define the optimization

objective function so that it maximizes the number of training data points that

satisfy Eq. (4.34). The more the training data points that satisfy Eq. (4.34),

the better the estimated energy function represents the demonstrations.

It should be noted that the conditions given by Eq. (4.34) cannot be consid-

ered in the optimization constraints as it might not be possible to ensure them

13Note that the requirement on the positive definiteness of ∇ξξV (ξ;θ) is a conservative
condition. However, as we will show later in Section 4.6.3, using this condition is advantageous
in that it can be easily satisfied via choosing a proper energy parameterization, yielding to a
significantly faster training algorithm.
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for all the training data points. This is partially due to the fact that the demon-

strations are noisy observations of instances of the DS, and partially due to the

way in which the energy function is parameterized. The former is inevitable as

some of the datapoints may even contradict each other by having, for example,

different velocity profiles at the same point. The latter directly controls the

amount of nonlinearity that can be captured with V , and thus its effect can

be reduced or eliminated by choosing a more complex parameterization for the

energy function14. We will elaborate more about the parameterization of V in

Section 4.6.3.

Putting together all the points described above, a locally optimal solution

to θ and thus by construction the energy function can be found by solving the

following constrained optimization problem:

min
θ
J(θ) =

N∑
n=1

Tn∑
t=0

(1 + w̄)sign(ψt,n) + (1− w̄)

2
(ψt,n)2 (4.35)

subject to

V (ξ;θ) > 0 ∀ξ ∈ Rd \ ξ∗ (4.36a)

V (ξ∗;θ) = 0 (4.36b)

∇ξξV (ξ;θ) ≻ 0 ∀ξ ∈ Rd (4.36c)

where ≻ denotes the positive definiteness of a matrix, w̄ is a small positive scalar

(i.e. w̄ > 0 and w̄ ≪ 1), and and ψt,n is:

ψt,n = ψ(ξt,n, ξ̇t,n;θ) =
(∇ξV (ξt,n))

T
ξ̇t,n

∥∇ξV (ξt,n;θ)∥∥ξ̇t,n∥
(4.37)

Throughout this section we use the interior-point algorithm to solve this

optimization problem (see Section 2.3). Note that by defining the objective

function as described above, the optimization problem favors lowering the num-

ber of data points for which Eq. (4.34) does not hold, and as a second priority,

it tries to align the gradient of energy with the negative direction of movement.

By tuning the value of w̄, one can control the priority portion of these two objec-

tives. Furthermore, the normalization by the norm of the gradient and velocity

vectors in Eq. (4.37) is essential to give an equal importance to all training data

points during the optimization.

It now remains to find a proper parameterization of the energy function.

Note that, as we will show later on, the global asymptotic stability of f̃(.) can

be ensured irrespective of the number of data points for which Eq. (4.34) does

not hold. However, the lower the number of data points that violate Eq. (4.34),

the less error in determining divergence points of f(.).

14As for analogy, consider the example of fitting a polynomial on a set of datapoints that
are sampled from a nonlinear function. In this example, the choice of the order of polynomials
directly affect the accuracy with which the underlying function is estimated.
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4.6.3 Energy Function Parameterizations

One of the main constraints when estimating an energy function is the require-

ment of nonnegativity throughout the state space (see Eqs. (4.36a) and (4.36c)).

This verification is practically non-trivial (if not impossible) and requires a sig-

nificant amount of computational power. To illustrate this issue, let us consider

that the working space of a robot is meshed uniformly with m grids in each di-

mension which results in having md grids and by extension constraints to verify

Eq. (4.36a). The condition given by Eq. (4.36c) also yields d×md constraints15.

Thus in the optimization problem defined above, the number of constraints that

should be satisfied are (d+ 1)md + 1. Needless to say, even with a dense mesh,

it is still not possible to guarantee that the constraints on the energy function

are satisfied throughout the state space.

However, the problem of verification can be bypassed by considering some

special forms for the energy function. In this section we propose a new parame-

terization, called Weighted Sum of Asymmetric Quadratic Functions (WSAQF),

that could naturally bypass the verification problem. Note that the energy func-

tion parameterization is not limited to the above method, and one can opt for

other alternatives depending on the task at hand16.

As it appears from its name, the WSAQF parametrization models the energy

function as a weighted sum of asymmetric quadratic functions:

V (ξ;θ) = (ξ−ξ∗)TP 0(ξ−ξ∗)+
L∑
ℓ=1

βℓ(ξ;θ)
(
(ξ−ξ∗)TP ℓ(ξ−µℓ−ξ∗)

)2
(4.38)

where L is the number of asymmetric quadratic functions defined by the user,

µℓ ∈ Rd are vectors influencing the asymmetric shape of the energy function,

P ℓ ∈ Rd×d are positive definite matrices, and the coefficients βℓ(ξ;θ) are:

βℓ(ξ;θ) =

1 ∀ξ : (ξ − ξ∗)TP ℓ(ξ − µℓ − ξ∗) ≥ 0

0 ∀ξ : (ξ − ξ∗)TP ℓ(ξ − µℓ − ξ∗) < 0
∀ℓ ∈ 1..L (4.39)

The learning parameters of WSAQF are the components of the matrices

P ℓ and vectors µℓ, i.e. θ = {P 0, ...,PL ,µ1, ...,µL }. In this formulation, the

optimization constraints given by Eq. (4.36) are satisfied automatically by only

requiring P ℓ ≻ 0, ∀ℓ = 0..L .17

15The constraint on the positive definiteness of ∇ξξV (ξ; θ) needs to be transformed into
requiring its d eigenvalues to be positive. Thus, at each mesh point, d constraints should be
checked yielding d×md constraints

16For example, one can use the Sum of Squares (SOS) approach (Parrilo, 2000) to build an
estimate of V (ξ;θ). However, we do not consider this approach here as it is mainly devised
for the cases for which the DS f(.) is expressed as a polynomial so as to avoid numerical
verification of the optimization’s constraints over a mesh.

17 This can be verified as follows:
1. By substituting ξ = ξ∗ into Eq. (4.38), we obtain V (ξ∗;θ) = 0.

2. The positive definiteness of P 0 implies that the first term in Eq. (4.38) is positive
∀ξ ∈ Rd \ξ∗. Furthermore, the second term in Eq. (4.38) is always nonnegative. Hence
we have V (ξ; θ) > 0, ∀ξ ∈ Rd \ ξ∗.

3. The positive definiteness of all the matrices P ℓ yields a positive definite Hessian matrix
∇ξξV (ξ;θ) ≻ 0, ∀ξ ∈ Rd.
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Thus, the optimization problem given by (4.35) reduces to:

min
θ
J(θ) =

N∑
n=1

Tn∑
t=0

(1 + w̄)sign(ψt,n) + (1− w̄)

2
(ψt,n)2 (4.40)

subject to

P ℓ ≻ 0 ∀ℓ = 0..L (4.41)

The use of WSAQF parameterization significantly reduces the workload of

the optimization. In contrast to the original problem, verifying only the positive

definiteness of P ℓ in WSAQF parameterization requires (L + 1)d constraints.

One concern that is usually associated with solving the above optimization

problem is the ambiguity in defining V (ξ): “if V (ξ) is a Lyapunov function, its

arbitrary scalar multiplication cV (ξ), c > 0, is also a Lyapunov function”. How-

ever, in our implementation, this is not problematic as we solely work with the

normalized value of the gradient of the energy function both when estimating

the energy function (see Eq. (4.37)) and when generating the stabilizing com-

mand (see Section 4.6.4). Thus, the solution of the above optimization problem,

and in general the result from SEDS-II method is invariant to the value of c.

An especial case of the WSAQF parameterization happens when L = 0. In

this case, V corresponds to the well known Quadratic Energy Function (QEF).

Compared to the general case, QEF assumes the energy function is elliptic

around the origin. Figure 4.27 shows examples of energy functions that are

learned from a set of user demonstrations using the WSAQF and its especial

form the QEF parameterizations. Here we report on two 2D motions: The first

example is a single-curve 2D motion, and the second one is a multi-curve motion.

Figure 4.27a shows the obtained energy function for the special case of the

QEF parameterization. Figure 4.27b illustrates the results that are estimated

using the general WSAQF parameterization with L = 1 and L = 3 for the

single-curve and multi-curve motions, respectively. In this figure, the training

data points that do not satisfy Eq. (4.34) are marked with a cross. As can be

seen, all training data points of the single-curve motion satisfy Eq. (4.34) in

both approaches. For the multi-curve motion, there are some points that do

not satisfy this equation when using the QEF parameterization. However, the

general form of WSAQF is able to model more complex energy function so that

all the points satisfy Eq. (4.34).

The proper choice of the number of asymmetric functions is important. The

higher the L , the more complex energy function that can be modeled; however,

at the cost of having more optimization parameters. Thus, the complexity of

optimization increases by increasing L . Furthermore by using a large number

of asymmetric functions, one may overfit the nonlinearities due to the noise in

the demonstrations. Thus, there is a compromise inherent in setting the value

of L . In the experiments we present here, we proceed as follows: we start with

L = 0, i.e. the QEF parametrization, and incrementally increase L until it no
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(b) The WSAQF parameterization with L = 1 and L = 3 for the left and right motions,
respectively.

Figure 4.27: Two examples of estimating the energy function from a set of user demon-
strations. The contour curves of the energy functions are shown with black solid lines. For
clarity of the graph, we show the contours of log(V ). The background color also illustrates
the energy level. The lighter the color, the higher the energy. The black star indicates the
target point, training data points are shown with red dots, and those data points that do not
satisfy Eq. (4.34) are marked with a cross. Please refer to Section 4.6.3 for more details.

longer affects or marginally improves the accuracy in estimation of the training

data points.

Figure 4.28 shows such evaluation for the two motions presented in Fig. 4.27.

As we can see, for the single-curve motion, the increase in L does not affect

the estimation accuracy. Thus the QEF parameterization, i.e. L = 0 is the

proper energy model for this motion. For the multi-curve motions, the accuracy

in estimation improves by increasing L from 0 to 2. For L = 3, we could still

observe a slight improvement in the accuracy. However, as this improvement is

very negligible, one may prefer to opt for the energy model with L = 2.

4.6.4 Computation of Stabilizing Command

In Section 4.6.2 we proposed an optimization problem to compute a valid energy

function based on the user demonstrations. Aside from using the energy func-

tion to detect diverging behaviors, we could exploit it to derive the stabilizing

command u(ξ,f(.)) so as to ensure global asymptotic stability of f̃(.) at the

target ξ∗. To simplify the notation, we define:

ῡ(ξ;θ) =
∇ξV (ξ;θ)

∥∇ξV (ξ;θ)∥
∀ξ ∈ Rd\ξ∗ (4.42)

α(ξ,f(.);θ) = ῡ(ξ;θ)Tf(.) ∀ξ ∈ Rd\ξ∗ (4.43)
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Figure 4.28: The number of asymmetric quadratic functions can be selected as follows:
Start with L = 0, and incrementally increase L until it no longer affects or marginally
improves the accuracy in estimation of the training data points. Following this procedure, the
proper value of L for the single and multi-curve motions are 0 and 2.

where ῡ(ξ) is a unitary vector that is aligned with the gradient of the energy

function, and α is a measure of the misalignment between ῡ(ξ) and the estimated

function f(.). The DS f(.) is converging when the estimated flow of motion from

f(.) is aligned with the direction that decreases the energy potential. Let us

also define:

ρ(ξ,f(.);θ) = κξe
−σξ∥ξ∥ + κξ̇(1− e−σξ∥ξ∥)e−σξ̇∥f(.)∥ (4.44)

where the parameters κξ, κξ̇, σξ, σξ̇ are positive scalars.

�

Theorem 4.3 Consider a smooth activation function ϕ(α) ∈ R:

ϕ(α) =


1 0 < α

0.5 cos(τα) + 0.5 −π
τ ≤ α ≤ 0

0 α < −π
τ

(4.45)

where τ > 0 is a scalar to tune the slope of the activation function (see Fig. 4.29).

The DS defined by Eq. (4.32) is globally asymptotically stable at the target ξ∗ in

Rd if the stabilizing command u(ξ,f(.);θ) is determined according to:

u(ξ,f(.)) =

−ϕ
(
α(ξ,f(.))

)(
α(ξ,f(.)) + ρ(ξ,f(.))

)
ῡ(ξ) ∀ξ ∈ Rd\ξ∗

−f(.) if ξ = ξ∗

(4.46)

Proof: See Appendix A.3.

�

Note that for the clarity of Eqs. (4.45) and (4.46), we have denoted α(ξ,f(.);θ)

with α, and also dropped the dependence on the parameters θ.

The activation function given by Eq. (4.45) is used to trigger the stabiliz-

ing command when the system is at the edge of divergence. Recall that for

α(ξ,f(.);θ) > 0, the DS given by f(.) exhibits diverging behaviors (it increases
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Figure 4.29: Tuning the width of the stability margin with the parameter τ . The lower
the τ , the larger the width of the stability margin.

the energy of the system). In these situations ϕ(α) = 1, and the stabilizing com-

mand can be used to ensure the stability of the DS. For−π/τ ≤ α(ξ,f(.);θ) ≤ 0,

the activation function smoothly rises from 0 to 1. In this region, although f(.)

is converging, it is still slightly modified with the stabilizing command to ensure

the continuity of f̃(.). For α(ξ,f(.);θ) < π/τ , the system has a safe stability

margin18 (according to the user preference), hence no stabilizing command is

generated, i.e. u(ξ,f(.);θ) = 0.

Fig. 4.29 illustrates the effect of τ on the activation function. By decreasing

τ , the width of the activation region increases. There is a compromise inherent

in setting the value of τ . By lowering τ , we could avoid a sudden change in the

direction of motion. On the other hand, by setting a high τ , we could keep the

larger part of the stable region intact.

Fig. 4.30 illustrates through an example the effect of the first two terms in

Eq. (4.46), and the tuning parameters κξ and κξ̇ on the final stable DS f̃(.).

In this example, the original DS f(.) is locally stable in a unit circle around

the origin (see Fig. 4.30a). By only applying the first term in Eq. (4.46), the

diverging behavior outside the unit circle transforms into a neutral behavior (see

Fig. 4.30b). The converging behavior can be obtained by applying the second

term in Eq. (4.46), and subsequently the DS becomes globally asymptotically

stable at the target. The tuning parameters κξ and κξ̇ can be used to set the

rate of convergence in unstable regions (see Fig. 4.30c and Fig. 4.30d).

Two observations follow from Fig. 4.30: 1) As we expect, the original DS

is modified when it shows unstable behavior according to the estimated energy

function (i.e. the metric of stability), and 2) The parts of velocity in the original

DS that are not the source of instability are preserved after stabilization. This

includes the velocity components that are orthogonal to ∇ξV (ξ;θ). Note that

in this example we have manually defined the energy function for illustrative

purpose. As outlined before, in our experiments the energy function is estimated

from a set of training data points.

18The stability margin is defined by SM = −α(ξ,f(.);θ) and provides an indication about
how far the system is from becoming unstable. When SM = 0, the system is at the edge of
instability, and SM < 0 corresponds to an unstable system.
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Figure 4.30: An example illustrating the effect of the stabilizing command on a locally
stable DS. (a): The original DS is defined by ξ̇1 = ξ2 + ξ1(ξ21 + ξ22 − 1) and ξ̇2 = ξ1 +
ξ2(ξ21 + ξ22 − 1). The green and grey regions represents the stable and unstable regions. In
this example, we set τ = 20 and define V (ξ) = ξT ξ. (b): By applying the first term in
Eq. (4.46), the diverging behavior is replaced by a neutral behavior (the white region). (c)-
(d): By using both terms in Eq. (4.46), the neutral behavior changes to converging behavior,
and the DS becomes globally asymptotically stable at the target. By increasing κξ, the rate
of convergence in the previously unstable region increases.

4.6.5 Experiments

We evaluate the performance of the proposed approach in two ways: 1) On two

complex planar motions that are inferred from human demonstrations, and that

are described by autonomous and non-autonomous DS. With this experiment,

we illustrate one of the main properties of the proposed method that it can be

used to stabilize unstable DS that are modeled with different regression tech-

niques and with different types of DS, and 2) in a robot experiment performed

on the 7-DoF Barrett WAM arm. In this experiment, we demonstrate that

our approach allows combining two different regression techniques in order to

benefit from the advantages of both.
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The demonstrations of the two planar motions are collected at 50Hz from

pen input using a Tablet-PC. The first motion is complex in that it includes

two motions that overlap on the x − y plane (see Fig. 4.31a). The second

planar motion is composed of trajectories that begin by distancing themselves

from the target point, and then approach it (see Fig. 4.31c). For each of these

motions, we first start by building an estimate of the energy function from

the demonstrations. For the first and the second motions, we model the energy

function with the QEF and WSAQF parameterization with L = 3, respectively.

In order to successfully learn the first motion and to avoid ambiguity in

the overlapping region, we model it as a non-autonomous DS, i.e. ξ̇ = f(t, ξ).

The second motion is formulated with an autonomous DS. For both motions,

the unstable estimate of f(.) is learned with four different regression techniques

including ϵ-SVR, GMR, GPR, and LWPR. As the estimation of the energy

function is independent from the regression method, we use the same energy

function to generate the stabilizing command for all the four regression tech-

niques19. Furthermore, this feature also allows comparing these four techniques

and then choosing the one that fits the task best. In this section we evaluate

these approaches based on the stabilizing effort; however, one could also use

other criteria depending on the requirements of the task. The stabilizing ef-

fort can be measured through the integration of the stabilizing command along

trajectories. Given an initial point ξ0, we have:

U(ξ,f(.);θ) =
tf∑
t=0

∥u(ξt,f(.);θ)∥δt (4.47)

where the integration of ξt through time is computed according to Eq. (4.4).

The lower U(ξ,f(.)), the more stable behavior f(.) has along that trajectory,

and thus the less it is distorted. If U(ξ,f(.)) = 0, it means that f(.) is naturally

stable for the given initial point. A more intuitive measure of the stabilizing

effort can also be obtained by computing the fraction of the total traveled length

that these corrections amount to:

C.E. =

∑tf

t=0 ∥u(ξt,f(.);θ)∥δt∑tf

t=0 ∥ξ̇t∥δt
=

∑tf

t=0 ∥u(ξt,f(.);θ)∥∑tf

t=0 ∥ξ̇t∥
(4.48)

where C.E. stands for Correction Effort.

The quantitative comparison between these techniques for each motion is

summarized in Table 4.1. The results are computed on a set of four and two

test trajectories for the first and second motions, respectively. The test data

sets are indicated with black squares in Fig. 4.31. In the first motion, the best

result in terms of the average stabilizing command is obtained with ϵ-SVR.

LWPR also demonstrates a comparative performance to ϵ-SVR for this motion.

19The following values are used in this experiment: w̄ = 0.0001, κξ = 1, σξ = 0.001, κξ̇ = 1,

σξ̇ = 0.0001, τ = 20, and δt = 0.01 second.
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Table 4.1: Performance comparison between ϵ-SVR, GMR, GPR, and LWPR in learning
the two planar motions of Fig. 4.31. Obtained values are averaged across the demonstrations.

Motion Criterion ϵ-SVR GMR GPR LWPR

#1
U (m) 0.0063 0.0276 0.0368 0.0072

C.E. 1.87% 7.52% 10.84% 2.20%

#2
U (m) 0.0106 0.0048 0.010 0.0148

C.E. 2.10% 0.99% 1.96% 2.99%

Figure 4.31a shows the obtained trajectories using the ϵ-SVR model. For the

second motion, GMR performs much better than the other three methods in

terms of the average stabilizing command. The trajectories obtained using the

GMR model are shown in Fig. 4.31c.

The norm of stabilizing commands for both motions are shown in Figs. 4.31b

and 4.31d, respectively. As we can see, only in small parts of the trajectories, the

stabilizing command is active in order to ensure convergence to the target. The

small values of the correction effort in Table 4.1 also verifies this observation. For

the first and second motions, These values are 1.87% and 0.99%, respectively,

which supports our original motivation that the estimates from f(.) mostly

exhibit a converging behavior in a region close to demonstrations.

Furthermore, the activation of the stabilizing command on a small region

around the target verifies that f(.) is unstable in both motions, and without

using the presented approach, all trajectories would have missed the target.

Finally, one can observe that in both motions the generated trajectories resemble

the user demonstrations despite applying the stabilizing command. This is

mainly due to the fact that the stabilizing command is derived from an energy

function that is estimated based on the user demonstrations.

The robot experiment consisted of having the WAM arm place an orange on

a plate and into a bucket. First, the placing task on the plate is shown to the

robot seven times via kinesthetic teaching (see Fig. 4.32a). A DS estimate of

this motion is constructed using GMM with 7 Gaussian functions. The energy

function is also estimated based on the user demonstrations using the QEF

parameterization. Note that for the sake of clarity of Fig. 4.32, the energy

contour curves are not illustrated; however, one could imagine them as a set of

ellipsoid curves elongated along the x− y plane, and centered at the target.

The demonstrations and the reproductions of the task from the proposed

method are illustrated in Fig. 4.32b. As it is illustrated, the reproductions

closely follow the demonstrations, while their global stability is ensured. Al-

though this model can successfully generate motions to place the orange on the

plate, it cannot be used with the bucket (see the solid black lines in Fig. 4.33a).

In order to adapt the robot motions to this change without retraining the whole

model, we exploit the online learning power of LWPR to locally modify the DS

given by GMR:
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(a) The energy function of the first motion is formulated with the QEF parameter-
ization, and its DS model is estimated with ϵ-SVR.
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(b) Illustration of the norm of the stabilizing command for the first motion.
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(c) In the second motion, an unstable estimate of the motion is modeled as an
autonomous DS using GMR, and its energy function is estimated using the WSAQF
parameterization with L = 3.
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(d) Illustration of the norm of the stabilizing command for the second motion.

Figure 4.31: Performance evaluation of the proposed algorithm with two planar motions.
The background color illustrates the energy level. The lighter the color, the higher the energy.
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ξ̇ = f̃(ξ) = g(ξ) + l(ξ)︸ ︷︷ ︸
f(ξ)

+u(.) (4.49)

where g(ξ) and l(ξ) correspond to the DS that are modeled with GMR and

LWPR, respectively. Initially l(ξ) = 0, ∀ξ ∈ Rd. The LWPR model is trained

incrementally and online by interactively correcting the robot movement while

it approaches the bucket (see Fig. 4.33b). The blue hollow circles in Fig. 4.33a

shows the new training data points that were collected interactively as we have

explained. Figure 4.33c illustrates the reproductions from the combined DS

according to Eq. (4.49). The stabilizing command is generated using the same

energy function as before. With the new model, the robot can successfully adapt

its motion and place the orange into the bucket. Note that in this experiment,

the GMR model grants the base behavior for the placing task, and the LWPR

model provides the required adaptation to the environment. Anytime when it is

necessary, the base behavior can be retrieved by canceling out the LWPR term

in Eq. (4.49). By extension, one can also imagine having several LWPR models,

each of which provides the required adaptive behavior for different containers.

4.6.6 Discussion and Conclusion

In this section, we presented a new technique, called SEDS-II, to ensure the

global asymptotic stability of DS that are estimated from a set of demon-

strations. Compared to our previous two approaches for estimation of stable

DS, SEDS-II allows using a wide variety of regression techniques, and at the

same time it can ensure stability of both autonomous and non-autonomous DS.

Moreover, in the light of the proposed framework, it is also possible to merge

the advantages of different regression techniques in modeling robot motions,

while ensuring the global asymptotic stability of the integrated DS at the tar-

get. All these features enable users to choose the most appropriate regression

technique(s) for the task at hand, which could result in reaching a higher per-

formance when performing DS-based robot motions.

The presented approach proceeds in two steps: 1) Estimation of a valid en-

ergy function, i.e. the so-called metric of stability, from the demonstrations of

the task, and 2) Generation of a stabilizing command using the estimated en-

ergy function. The former can be estimated by solving a constrained optimiza-

tion problem, and is an offline procedure. The latter generates the stabilizing

command online to correct the motion when a diverging behavior is observed

(according to the estimated metric of stability).

To solve the optimization problem, the presented approach requires param-

eterization of the energy function. The choice of parameterization can influence

the accuracy of the final result, hence it should be chosen appropriately. The

WSAQF parameterization presented in this section allows to estimate the en-

ergy function of complex motions while benefiting from solving a less complex
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(a) The demonstration of the task through kinesthetic teaching (left), and its execution by
the robot (right).
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(b) Generation of trajectories from different initial points

Figure 4.32: The robot experiment of placing an orange on a plate. The placing motion is
modeled with GMR.

optimization problem by eliminating the need to mesh the state space to verify

the optimization constraints (see Section 4.6.2). Although this feature signifi-

cantly reduces the training time, it puts an upper bound on the range of energy

functions that can be accurately encoded with WSAQF. In fact the WSAQF

parameterization can only build an accurate model of the energy function from

demonstrations if the following condition holds: “For each demonstration tra-

jectory {ξt, ξ̇t}Tt=0, if there exit a scalar m > 1 and indices 0 ≤ i, j ≤ T , i ̸= j

such that ξti = mξtj , then ti < tj .” This condition is derived from the fact that

with the WSAQF parameterization, the energy of the system should increase

by radially moving away from the target.

The above criterion simply implies that the demonstrations should not con-

tain an unstable spiral-shape movement (e.g. consider a throwing movement

with energy pumping, which requires the amplitude of the swing to increase in

order to pump energy to the system). An example of such motions is illustrated

in Fig. 4.34. The part of the demonstrations that contains the unstable spi-

102



−0.2
0.1

−0.6−0.4−0.200.20.40.6

−0.1

0

0.1

0.2

x(m)
y(m)

z
(m

)

(a) By replacing the plate with a bucket, the previous model can no longer be used. To
adapt to the new situation, the user interactively modifies the robot trajectory as the robot
approaches the bucket. These data are used for online training of the LWPR model. The new
training data points for the LWPR model are shown with blue hollow circle. The solid black
lines represents trajectories generated with solely using the GMR model.

(1) (2)

(b) Training interactively the DS model in order to adapt to the new situation (left). The
execution of the reaching motion with the combined LWPR+GMR DS (Right).
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(c) Trajectories generated with the combined GMR+LWPR DS. The generated trajectories
can successfully place the orange into the bucket.

Figure 4.33: Adaptation of the DS for the case where the plate is replaced with the bucket.
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Figure 4.34: An example of a motion that cannot be accurately estimated with SEDS-II.
The arrows in the left figure indicates the evolution of the motion. Due to the unstable spiral
part of the movement (points inside the green area), the WSAQF parameterization cannot
accurately learn the energy function of the motion, and as a result, generated trajectories
partly follow the demonstrations.

ral movement is highlighted in green. As it is illustrated, the energy function

does not correctly describe the underlying motion, and subsequently the gen-

erated trajectories do not follow accurately the demonstrations (note that the

inaccurate estimation of the energy function does not compromise the global

asymptotic stability of the DS at the target). Remark that this motion cannot

be learned with SEDS either.

For such motions, one could decompose the motion into two or more segments

and then learn each segment separately. This solution is equivalent to the funnel-

based approaches as each funnel takes the motion from one part of the task space

and guides it to the basin of attraction of the next funnel until it reaches the

target.

4.7 Quantitative Comparison

In this chapter we have presented three methods to build a stable estimate

of DS from demonstrations. In this section we aim at providing a more clear

understanding of the advantages and limitations of each method, which could

eventually help the reader to choose the most suitable approach depending on

the task at hand. To reach this goal, we compare the performance of these ap-

proaches against each other, and four of the best performing regression methods

to date namely GPR, GMR, LWPR, and SVR. We consider two variant of SEDS,

i.e. SEDS-likelihood and SEDS-MSE, and we use SEDS-II in combination with

the unstable estimates from GPR, GMR, LWPR, and SVR.

The comparison is made on the same library of handwriting motions pre-

sented in Section 4.5.2.1, which is composed of 20 planar motions. For each
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Figure 4.35: Demonstrations of the training and test trajectories for the 20 nonlinear 2D
motions that are used for comparison across BM, SEDS, and SEDS-II.

motion, the evaluation is made on a set of six test trajectories that are spread in

between and outside the training trajectories (see Fig. 4.35). All reproductions

were generated in simulation to exclude the error due to the robot controller

from the modeling error. The QEF parametrization is also used to encode the

energy function of all the 20 motions in the library.

Quantitative performance comparisons in terms of the accuracy in estima-

tion, the number of required parameters, and the training time are summarized

in Fig. 4.36. The qualitative comparison of the estimate of the handwriting

motions are provided in Appendix B. We use the swept error area as a metric

to evaluate the estimation accuracy of each method (see Eq. (4.28)). The re-

sult on the estimation accuracy are shown in Fig. 4.36a. As we can see, all the

methods are capable of providing the same order of accuracy in estimations.

However, they significantly differ in the number of parameters that they use

to model the motions. In terms of the number of parameters, one can clearly

see that SEDS-MSE, SEDS-likelihood, and SEDS-II with GMR encoding have

significantly fewer number of parameters compared to the other remaining ap-

proaches20 (see Fig. 4.36b). Hence, these three methods are noteworthy in that

they provide the same level of accuracy as the other approaches while requir-

ing less parameters. The comparison result on the training time indicates that

20GPR’s learning parameter is of order of d(d + 1); however, it also requires keeping all
training datapoints to estimate the output ξ̇. Additionally, one needs to store the kernel
function K(Ξξ,Ξξ) and its inverse in order to improve the runtime performance of GPR.
Hence the total number of required parameters is d(d+ 1) + 2dn+ 2n2, where n is the total
number of datapoints. As for the BM, the number of parameters to model the invariant set
D is also included in the comparison.

105



SEDS-II with GMR and SVR formulations are the fastest methods that can

build a stable estimate of DS within a few seconds (see Fig. 4.36c). Note that

all the methods have a retrieval time of less than a millisecond.

The comparison between GMR, LWPR, GPR, and SVR and their stabilized

version through SEDS-II indicates that the addition of the stabilizing command

not only makes the system globally stable, but it does that by only requiring 4

additional parameters (which is almost negligible compared to the total number

of parameters used by the regression method). The training time to learn the

energy function is also small and is about a second.

As outlined before, the energy function of all the 20 handwriting motions

were encoded using the QEF parameterization. Now let us compare our three

approaches on a set of more advanced motions where the use of WSAQF parame-

terization becomes crucial in order to model the energy function more accurately.

We conduct this comparison between BM, SEDS-likelihood, and SEDS-II with

GMR encoding on a set of five motions (see Fig. 4.37). Note that for brevity

we omit the other possible approaches as the different variants of SEDS and

SEDS-II provide the same order of accuracy.

The comparison result is illustrated in Fig. 4.38. As we can see, while both

BM and SEDS-II perform equally well, the performance of SEDS is significantly

degraded. This is due to fact that the stability conditions in SEDS are derived

based on a quadratic energy function. Hence, SEDS cannot model accurately the

motions that requires more complex energy function. In other words, for these

motions, the stability conditions are more conservative. As it is illustrated in

Fig. 4.37, the trajectories generated from the SEDS model deviate from demon-

strations in order to respect the conditions derived from the quadratic energy

function. In contrast, the trajectories from SEDS-II can follow the demonstra-

tions as it allows using more complex energy functions.

Putting together the results from the above comparison, SEDS-II provides

the most flexible yet accurate means of building stable DS from demonstrations.

The accuracy of SEDS-II is comparable to BM, yet it ensures global asymptotic

stability of DS at the target. In contrast to the SEDS stability conditions,

SEDS-II benefits from having less conservative stability conditions which allows

learning a wider set of tasks. Moreover, SEDS-II allows using different regression

techniques to encode motions, which is advantageous especially when online

learning is required. The use of SEDS is preferable if 1) the energy of the

motion can be represented with the QEF parameterization, and 2) neither online

learning nor other regression techniques than GMR is required for the task. In

these cases, SEDS can (marginally) outperforms SEDS-II as it requires fewer

number of parameters while it provides the same order of accuracy as SEDS-II.

Despite the accuracy of BM, we no longer use this approach in the remaining

parts of this thesis as we are mainly interested in tasks that require a large

domain of applicability.
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Figure 4.36: Performance comparison between the presented approaches and the state of
the art regression techniques on a library consists of 20 human handwriting motions. The
colors yellow, green, and red respectively indicate whether an approach ensure local stability,
global stability, or do not consider stability. For further information and discussion please
refer to Section 4.7.
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(b) SEDS-Likelihood

  Target Demonstrations Reproductions Initial points

ξ1

ξ
2

ξ1

ξ
2

ξ1

ξ
2

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

ξ1

(c) SEDS-II with GMR encoding. From left to right, the WSAQF energy function is modeled
with L = 3, 1, 1, 2, and 1 asymmetric quadratic functions, respectively.

Figure 4.37: Qualitative comparison between BM, SEDS-likelihood, and SEDS-II with
GMR encoding on a set of five advanced motions.

0

5000

10000

15000

20000

S
w

e
p

t 
E

rr
o

r 
A

re
a

 (m
m

2
) 

0

50

100

150

200

250

300

350

400

450

N
u

m
b

e
r 

o
f 

P
a

ra
m

e
te

rs
 

0

10

20

30

40

50

60

70

T
ra

in
in

g
 T

im
e

 (
se

c)
 

Figure 4.38: Performance comparison between BM, SEDS-likelihood, and SEDS-II with
GMR encoding on a set of five advanced motions, where the use of WSAQF parameterization
becomes crucial in order to model the energy function more accurately.
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4.8 Summary and Conclusion

In this chapter, we presented a DS-based framework to generate robot reach-

ing motions. We addressed the stability problem of such systems, and formu-

lated sufficient conditions to ensure their local and global asymptotic stability

at the target. Then, we presented three techniques, namely BM, SEDS, and

SEDS-II, to statistically build an estimate of DS-based motions from a set of

demonstrations under the strict stability constraint.

We showed that there are two promising advantages inherent in modeling

robot motions with globally asymptotically stable DS. 1) Trajectories that are

generated from a stable DS are guaranteed to reach the target point (if it is

reachable) from any point in the state space, and 2) By modeling motions with

DS, one could benefit from an inherent robustness to perturbations and instant

adaptation to changes in a dynamic environment. By placing the origin of the

reference coordinates system at the target, our DS formulation is invariant with

respect to the target position. Furthermore, the learned movements with the

proposed approaches are scale invariant. Thus, the speed of movement can be

modulated with a positive factor κ > 0, i.e. ξ̇ = κf(ξ), without modifying the

generated trajectories21. This property is essential especially when it is desired

to control the timely execution of motions.

From the implementation perspective, as DS encodes an abstract represen-

tation of the motion (instead of storing the whole trajectories), it is computa-

tionally light and can be used in realtime. In addition to the above features,

our SEDS-II approach also supports online/active learning which allows user to

refine the model in an interactive manner.

There are a number of structural difference between the presented approaches,

which make their application particular to certain tasks. These difference are

summarized in Table 4.2. For a given task, one first needs to consider these

differences in order to choose the most appropriate approach. For example, if

the task is defined in 2D and is solely described in a local region, then BM is

the most appropriate method. The BM should be mainly applied to planar mo-

tions as it becomes computationally intractable in higher dimensions. If online

learning is required, one should go for the SEDS-II formulation, and so on.

In addition to the structural differences, we conducted a quantitative com-

parison between our presented approaches. The results indicate that for simple

movements (i.e. the ones that can be described with a quadratic energy func-

tion), BM and all variants of SEDS and SEDS-II provide the same order of

accuracy. Hence the choice of model depends mainly on the requirements of the

task (e.g. if online learning is required), preference of the user (e.g. familiarity

21Theoretically, trajectories generated from f(ξ) and κf(ξ) exactly coincide on each other,
and the only difference between the two systems is in the reaching time to the target. However,
in practice, some discrepancies between the two systems may be observed due to the numerical
integration error (see Eq. (4.4)).
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Table 4.2: Summary of the structural differences between BM, SEDS, and SEDS-II.

Method BM SEDS SEDS-II

Type of stability local global global
Supported DS autonomous autonomous auto./non-auto.

Regression model GMR GMR any

Learning mode offline offline offline/online†

Multiple motions encoding No Yes Yes
Computational complexity Heavy light light

† The online learning support depends on the type of regression that is selected.

with a particular approach), and also other criteria such as the training time

and the number of parameters. Note that as the training is usually done offline

and within a few seconds, the training time might not be considered as a deci-

sive factor. However, in terms of the number of parameters, GMR formulation

is advantageous as it requires considerably fewer number of parameters. For

complex motions, that cannot be described with a quadratic energy function,

BM and SEDS-II are superior to SEDS.

An assumption made throughout this chapter is that robot motions can be

modeled with a first order ODE. While this type of DS is generic enough to

model a wide variety of robot motions, one could expect some special cases

where it fails to encode motions properly. Most of the time, this limitation

can be tackled through a change of variable. For example a self-intersecting

trajectory or a motion for which the starting and final points coincide with

each other (e.g. a triangular motion) cannot be modeled through Eq. (4.2) if

ξ codes solely for the end-effector cartesian position (i.e. ξ = x ⇒ ξ̇ = ẋ).

But, if information about velocity is added (i.e. ξ = [x; ẋ] ⇒ ξ̇ = [ẋ; ẍ]), the

system can disambiguate the direction of motion at the intersection and hence

successfully encode the dynamics of motion.

The presented approaches control the robot trajectories at the kinematic

level. Thus, as outlined before, we assume there is a low level tracking con-

troller22 that converts kinematic variables into motor commands (see Fig. 4.2).

The above control scheme is often associated with one main concern: “the hard-

ware limitations of the robot, such as the torque limit, are not considered at the

level of trajectory generation”. However, contrary to the classical planer, this

concern is not very critical when using a DS-based model for trajectory gener-

ation. In fact, the DS model can compensate for deviations (due to hardware

limitations) from the desired trajectory, by instantly adapting a new trajectory

for the new position of the robot. In other words, it treats the robot’s hardware

limitations similarly to perturbations. It should be noted that an inevitable

outcome of such compensation is that the robot executes the motion at a slower

pace than what is expected.

22Depending on the platform, we used either a PID (for the Hoap-3, Katana, and iCub
robots) or an inverse dynamics controller (for the WAM and DLR arms) to generate motor
commands (for further information see Section 2.4).
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All theorems derived in this section are based on the continuous state space

assumption; however, in real experiments, robot motions are usually generated

with a finite number of points (discrete modeling). Thus the choice of integration

time step is important as a big integration time step could cause instability in

the system even though the continuous DS model is globally asymptotically

stable. However, this should not be such an issue as most of the robotic systems

usually operate in a sufficiently high frequency (e.g. the WAM arm operates at

500Hz).

As it was pointed out before, there is an upper bound on the range of motions

that can be accurately encoded with our presented approaches. BM is mainly

applicable to 2D motions. SEDS and SEDS-II can be used to model motions that

their energy function can be encoded with QEF and WSAQF parameterizations,

respectively. As a result, motions that contain unstable spiral movements are not

supported neither by SEDS nor by SEDS-II. For such motions, one could use a

funnel-based control technique, where the motion in each funnel can be modeled

by a SEDS or SEDS-II model. There are a number of special considerations

that should be taken into account when using a funnel-based approach. For

example, the funnels should be arranged so that the global asymptotic stability

of the system can be ensured (to avoid looping). Although it is an interesting

research topic, the generation of funnel-based motions is beyond the scope of

this thesis as the majority of the discrete motions we may face in our daily lives

can be encoded with the presented approaches.

In contrast to a single trajectory-based imitation learning approach with

DMP (see Section 3.3.2), here we take a state space approach to learn the

attractor landscape of the entire state space from demonstrated trajectories.

Some of the main advantages of our approach over DMP are that 1) it does

not need implicit time dependency to ensure stability and thus is more robust

to perturbations, 2) it provides a better generalization of the motion since it

can shape the target landscape based on several demonstrations, and 3) it is

multi-dimensional and thus can capture information about the correlation across

different axes (which is essential for accurate modeling of motions).

However, it should be noted that the training time in DMP is single-shot,

whereas our approach requires a fair amount of training time (e.g. about a

minute in our experiments) to build a stable estimate of DS. Furthermore,

although it is theoretically possible to model high-dimensional motions (i.e.

d >> 7) with our approach, in practice, it is non-trivial to provide sufficient

demonstrations to cover such a high-dimensional state space. In contrast, DMP

models multi-dimensional systems by learning a separate DS for each dimension

and thus does not suffer from the curse of dimensionality (at the cost of intro-

ducing inaccuracies in estimation). We will discuss later on in Section 7.2 how

our approach can be extended to higher dimensional motions (such as motions

on a high degrees of freedom humanoid robot) through introducing coupling

terms.
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In the next chapters, we will extend our DS-based formulation in two direc-

tions. First in the next chapter we suggest a reformulation that allows learning

striking movements that requires hitting the target (instead of reaching it) at a

specific speed and direction. Then in Chapter 6 we propose a DS-based obstacle

avoidance that can instantly modify the robot’s motion to avoid collision with

multiple static and moving convex obstacles.
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Chapter 5

Learning Hitting
Movements with Dynamical

Systems

There are two ways of constructing a software design; one
way is to make it so simple that there are obviously no de-
ficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is
far more difficult.

Charles Antony Richard Hoare

I
n the previous chapter we presented possible mechanisms to build a DS model

of reaching motions from a set of user demonstrations. We stressed the

importance of ensuring stability of DS in order to provide useful control policies,

i.e. generating trajectories that reach the target, and are inherently robust to

perturbations. However, there is a limitation inherent to stable DS: a robotic

system that is driven by a stable DS can only reach the target with zero-velocity.

Hence, it cannot be used to model striking movements that by definition require

hitting the target with a non-zero velocity.

In this chapter, we provide a reformulation to the DS model presented in

Chapter 4, and substitutes the notion of (local or global) stability with (local or

global) convergence. This reformulation allows encoding a considerably wider

set of tasks ranging from reaching movements to agile robot movements that

require hitting a given target with a specific speed and direction. We validate

our approach in the context of playing minigolf1 as a benchmark task.

The goal in minigolf is to sink2 the ball into a hole located on the field. This

task is challenging for humans as it requires precise control for several factors

such as orientation, position and speed at the target. There are often obstacles

and curved surfaces between the ball and the hole to make the task more complex

for the player. Satisfying all these requirements needs many practices.

Studies show that the human players in ball games such as minigolf usually

follow the same pattern of motion when approaching the ball, even if circum-

stances such as the ball position change (Ramanantsoa & Durey, 1994; Mülling

1Also commonly referred to as mini-golf, miniature golf, midget golf, and Putt-Putt.
2Sinking means hitting the ball such that it goes into the hole.
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et al., 2011). To play this game, a player needs first and foremost to learn how

to swing the golf club so as to hit the ball precisely. Additionally, depending

on the situation, the ball may have to be hit at a particular angle and speed.

Human players can achieve this by rotating their body prior to hitting the ball,

and adapting the hitting speed. In this work, we follow a similar two-steps

approach for teaching minigolf to a robot in which: 1) We first learn the basic

motion for hitting the ball, and 2) We provide a means to adapt the default

hitting motion to strike the ball at a desired speed and direction.

Note that throughout this chapter we assume that the desired hitting speed

and direction are known and given. An extension of this work to learn the hitting

parameters was conducted by Klas Kronander, during his master thesis under

my advice, and beginning of PhD thesis at LASA. This work was conducted in

close collaboration by the two of us and is hence reported in Appendix D to this

thesis.

The remainder of this chapter is structured as follows: Section 5.1 gives a

formal description of the focus of this chapter. Section 5.2 formalizes the hitting

motion, and presents a learning algorithm to estimate it from a set of demonstra-

tions. Section 5.3 provides the final workflow of the complete system, describing

both the learning and task execution procedures. Section 5.4 evaluates the per-

formance of the proposed method in robot experiments of playing minigolf on

the 6-DoF Katana-T arm, equipped with a golf club tool. Finally, Section 5.5 is

devoted to the conclusion. Unless otherwise specified, throughout this chapter

we represent motions in Cartesian coordinates system, i.e. ξ = x = [x y z]T .

Note that the work presented here are published as two joint papers with

Klas Kronander in (Khansari-Zadeh et al., 2012; Kronander et al., 2011). This

chapter reports solely on the parts that were developed by myself. The results

that were obtained collaboratively are provided in Appendix D.

Related publications:

• S.M. Khansari Zadeh, K. Kronander, and A. Billard (2012), Learning to Play

Minigolf: A Dynamical System-based Approach, Advanced Robotics, p. 1–

27.

• K. Kronander, S.M. Khansari Zadeh, and A. Billard (2011), Learning to

Control Planar Hitting Motions in a Minigolf-like Task, In proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), p. 710–717, Received the JTSC Novel Technology Paper Award.

• S.M. Khansari Zadeh and A. Billard (2011), Learning to Play Mini-Golf

from Human Demonstration using Autonomous Dynamical Systems, In

electronic proceedings of the Workshop on New Developments in Imitation

Learning, International Conference on Machine Learning (ICML).
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5.1 Problem Statement

In the minigolf task considered in this thesis, the player only gets one chance

to sink the ball. To achieve this, first of all, the player must know how to swing

the golf club to hit the ball. This requires having general knowledge about how

to hit the ball in various situations depending on the position of the player, the

ball, and the hole. For example consider Fig. 5.1a. In this example, there are

several initial positions where the robot is required to start a swing motion and

hit the ball along a desired direction. This is a non-trivial task, which cannot

be simply fulfilled by just playing recorded trajectories. Additionally, playing in

dynamic environments where the ball or the hole could be displaced during the

swing phase requires an online and smooth adaptation of the swing motion in

order to fulfill the task and to sink the ball. Similarly to Chapter 4, we consider

a DS approach to model the hitting motion. When encoding the hitting motion

with an autonomous DS, this problem reduces to estimating a smooth first order

differential equation fh(ξ):

ξ̇ = fh(ξ) fh : R3 7→ R3 (5.1)

The main challenge in estimating fh(ξ) is to ensure that starting from any

initial point ξ0 ∈ R3, the temporal evolution of the motion passes through the

target point (i.e. hits the ball) at a desired speed and direction, while retaining

the main features presented in demonstrations.

Now assume the player has learned a planar hitting motion and can hit the

ball in a direction specified by the unit vector ψ∗ ∈ R2 in the hitting plane

and with hitting speed v∗ ∈ R+. For each new situation, a hitting angle α

and a hitting speed gain κ must be chosen such that hitting with speed κv∗ in

direction ψ∗
α = Rαψ

∗ (where R denotes a counterclockwise rotation by α in

the hitting plane) leads to sinking the ball (see Fig. 5.1b). Provided that the

hitting angle and speed are known, it would be advantageous if the DS fh(ξ)

can be adapted so that it hits the ball with the desired hitting parameters. We

will address the problem of learning the hitting motions and its adaptation to

different situations in Section 5.2.

Aside from learning the hitting motions, estimating the hitting parameters is

also an interesting question and a potentially very hard task for advanced fields.

Consider the simplest possible minigolf field: a flat field without obstacles. Such

a field is depicted in Fig. 5.1b. In this case the choice of hitting angle is trivial

- the ball should simply be hit in a straight line towards the hole. The vector

s ∈ R2 denotes the relative position of the hole to the ball projected in the

hitting plane. This vector represents the situation that the player has to adapt

to when choosing the hitting parameters. As can be seen in Fig. 5.1b, to play

the flat field, the player simply has to align the hitting direction ψ∗
α with this

vector. With the correct hitting angle, the player can use a wide range of speeds

that result in sinking the ball.

115



−0.6
−0.4

−0.2
0

−0.3
−0.2

−0.1
0

0

0.1

0.2

0.3

x(m)y(m)

z
(m

)

 
 Ball Starting points Hitting Trajectories

(a)

0

0.1

0.2

−0.300.3

−1.2

−0.8

−0.4

0

0.4

A
A

s

(b)

A
A

s

0

0.1

0.2

−0.300.3

−1.2

−0.8

−0.4

0

0.4

(c)

Figure 5.1: Illustration of challenges in playing mini-golf. (a): For mastering in minigolf,
the player needs to know how to swing the golf club to hit the ball in various situations. (b)
& (c): Situation on a flat and an advanced fields. The ball trajectory of a successful attempt
is indicated by the red line. For the flat field, the hitting direction should be aligned with
the input vector s. For the advanced field, a larger hitting angle must be chosen so as to
compensate for the slope of the field.

Now consider the more advanced field such as the arctan field3 (see Fig. 5.1c).

The vector s, describing the situation, is identical in both figures. If the player

chooses to hit the ball along s as on the flat field, the ball will not be sunk.

To compensate for the slope, a hitting angle larger than the one used for the

flat field must be chosen, resulting in a curved trajectory of the ball. Changing

s means that a new angle and speed must be selected accordingly. Thus, the

player needs to be able to estimate the hitting angle α and hitting speed gain κ

given the situation on the field s.

g : s 7→ (α, κ) (5.2)

where g is a function providing the mapping between the hitting parameters

and the situation on the field. This problem is covered in Appendix D.

5.2 Hitting Motions

As outlined in the previous section, one of the requirements for the minigolf

task is a default hitting motion. The hitting motion must be flexible so that the

hitting direction and the hitting speed can be changed without relearning the

whole motion pattern. Learning a hitting motion is similar to point-to-point

3The shape is a scaled evaluation of the arctan function over a grid.
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Figure 5.2: The 7-DoF WAM arm at different stages of the hitting motion. (a) The robot is
in its rest position, awaiting to initialize the hitting motion. (b) The hitting motion has been
started and the robot accelerates the end-effector towards the ball. When the end-effector
reaches the hitting point in (c), the DS motion is switched to a braking mode. (d) and (e)
The robot is in the braking mode, gently lifting the golf club while smoothly decelerating the
joints. (f) The robot goes into idle mode when all the joints have stopped moving.

motions which was studied in the previous chapter, with the difference that

instead of ensuring global asymptotic stability of DS motion at the target, we

now need to guarantee the convergence of all trajectories to the target.

In this section we propose an extension to our DS formulation to support the

above change. The structure of our formulation is analogous to many physical

principles where the motion of a particle in space can be defined with the value

of a vector field (e.g. gravity, electrical field, etc.) times a scalar (e.g. mass,

electric charge, etc.). Using this analogy, we formalize robot motions with a

target field h(ξ) and a strength factor v(ξ):

ξ̇ = fh(ξ) = v(ξ)h(ξ) (5.3)

The target field defines for each point ξ in the taskspace a normalized vector

specifying the direction of motion, and the strength factor is a scalar indicating

the speed with which the robot should move along the specified direction.

Figure 5.2 illustrates an example of the minigolf hitting motion. Here, the

robot starts the motion from an initial point ξ0, and approaches the ball located

at position ξ∗, aligning with the hitting direction ψ∗ before hitting the ball. In

this example, the target field represents different techniques employed by the

player to hit the ball (e.g. flop and chip shots in golf or topspin and slice hits

in tennis), and the strength factor is a modulation factor to produce different

desired hitting speeds.
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Figure 5.3: Comparison of streamlines of a globally stable model f(ξ) with the target field
h(ξ). Though both functions have exactly the same streamlines, the value of h(ξ) does not
vanish while approaching the target.

5.2.1 Target Field

To achieve our goal of having a target field that produces trajectories that

always pass through the target point with a non-zero velocity, we reformulate

our DS modeling presented in Chapter 4. To combine the property of a stable

DS with the possibility to reach the target with a non-zero velocity, we define

the target field as a normalized flow of motion induced by a globally stable

dynamics f(ξ;θ):

h(ξ;θ) =
f(ξ;θ)

∥f(ξ;θ)∥
∀ξ ∈ R3\ξ∗ (5.4)

Equation (5.4) corresponds to a field with constant intensity (i.e. ∥h(ξ;θ)∥ =

1), and is defined anywhere except the target, where ∥f(ξ∗;θ)∥ = 0. To over-

come the singularity at the target point, in practice, we use the value of the

target field in the previous time step instead of evaluating h(ξ∗;θ). The flow

induced by h(ξ;θ) is of constant speed. In contrast, the flow generated from

f(ξ;θ) varies based on the current state of the motion defined by ξ. The vector

field h(ξ;θ) conserves the convergence properties at the attractor of f(ξ;θ) and

follows strictly the same streamlines (see Fig. 5.3).

Considering Eq. (5.4), the problem of estimating the target field h(ξ;θ)

reduces to finding a globally stable DS f(ξ;θ). All three methods presented in

Chapter 4 could in principle be used to build an estimate of the target field.

However, these methods are not ideally suited for this task since the estimate of

f(ξ;θ) tries to reproduce not just the direction but also the speed of movement.

As the amplitude of f(ξ;θ) does not affect the estimation of the target field

h(ξ;θ), the error in estimating ∥f(ξ;θ)∥ should not be penalized. Therefore, in

this section we suggest a slightly modified version of SEDS that solely penalizes

for the error in estimating the direction of the movement. This can be achieved

by using the inner product as a means to quantify the accuracy of estimations

based on the demonstrations4.

4The same type of modification can be applied to BM and SEDS-II models. For brevity,
we do not provide such modification here as all the experiments considered throughout this
chapter can be accurately modeled with the SEDS model.
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Optimization problem: Given a set of N demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1,

the optimal value of the unknown parameters θ = {π1..πK ;µ1..µK ;Σ1..ΣK} of

the function f(ξ;θ) are obtained by solving:

min
θ
J(θ) = −

N∑
n=1

Tn∑
t=0

ωt,n

(
ξ̇t,n

)T
f(ξt,n;θ)

∥ξ̇t,n∥∥f(ξt,n;θ)∥
(5.5)

subject to

µk
ξ̇
= Σk

ξ̇ξ
(Σk

ξ)
−1(µk

ξ − ξ∗) ∀k ∈ 1..K (5.6a)

Σk
ξ̇ξ
(Σk

ξ)
−1 + (Σk

ξ)
−1(Σk

ξ̇ξ
)T ≺ 0 ∀k ∈ 1..K (5.6b)

Σk ≻ 0 ∀k ∈ 1..K (5.6c)

0 < πk ≤ 1 ∀k ∈ 1..K (5.6d)

K∑
k=1

πk = 1 (5.6e)

where (.)T denotes the transpose, . ≺ 0 corresponds to the negative definiteness

of a matrix, and f(ξt,n;θ) are computed directly from Eq. (4.8). The opti-

mization constraints given by Eq. (5.6) ensure the global asymptotic stability

of f(ξ;θ), and by extension the global convergence of all trajectories driven by

h(ξ;θ) to the target (see Section 4.5.1). The positive weighting factors ωt,n

determine the relative importance of each point when computing the estimated

error. In this work, we give a lower weight ωl and an upper weight ωu to the

initial and final points of each demonstration, respectively. For intermediary

points, the weighting factors are computed by linearly interpolating between

these two values:

ωt,n =
t

Tn
(ωu − ωl) + ωl (5.7)

Thus the optimization tries to fit the last parts of the movement better,

when the effect of deviation from a desired trajectory becomes more impor-

tant. Throughout this chapter we use an interior-point algorithm to solve this

optimization problem (for further information about this algorithm refer to Sec-

tion 2.3).

5.2.2 Strength Factor

In order to be able to generate robot motions with similar velocity profiles as

the demonstrations, we use the strength factor to modulate the target field

according to Eq. (5.3). The strength factor v is a positive scalar, and defines

the intensity of the motion that the robot should follow. Note that the global

convergence at the hitting point is guaranteed by the target field alone. This

offers flexibility as the speed profile can be changed independently of the target

field. To capture nonlinearities in the velocity profile, we consider a varying

strength factor that depends on the state variable, i.e. v(ξ) : Rd → R+.
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An estimate of the strength factor v(ξ) can be learned from the same demon-

strations as those for the target field using various existing regression techniques.

In this work, we use GMR; however, one can expect similar results using other

techniques5. As outlined in Section 2.2.1, the parameters of the Gaussian Mix-

ture Model are optimized through Expectation Maximization (EM) (Dempster

& Rubin, 1977). EM finds an optimal model of v(ξ) by maximizing the like-

lihood that the complete model represents the data well. Using GMR, the

strength factor is thus given by:

v(ξ) =

KSF∑
k=1

hkSF (ξ)
(
Σk

SF,vξ(Σ
k
SF,ξ)

−1(ξ − µk
SF,ξ) + µ

k
SF,v

)
(5.8)

where πk
SF , µ

k
SF , and Σk

SF are priors, means and covariance matrices of com-

ponent k in the GMM model of the strength factor. The nonlinear weighting

hkSF (ξ) is computed in the same way as described by Eq. (4.9). The subscript

SF for Strength Factor is used above to clarify that two different GMMs are

involved in the reproduction of the hitting motion.

5.2.3 Control of Hitting Direction

Equation (5.3) provides the trajectory dynamics of the end-effector with the

hitting speed v∗ ∈ R+ given by the strength factor and the hitting direction

ψ∗ ∈ R3 defined by the target field at the hitting point.

Thus, the default hitting speed and direction are given during the demon-

strations. To adapt these parameters to new situations on the field, we proceed

as follows:

1. Hitting in a different direction can be seen as a rotation of the coordinate

frame in which the default DS is defined. If α is the angle between the

desired and the default hitting directions in the plane of the golf field, the

first step is to transform the input to the desired reference frame via the

rotation matrix RT
α .

2. The output of the DS needs to be transformed back to our desired hitting

direction. Therefore, we rotate back through Rα.

3. Finally, the hitting speed can be changed by modulating the DS by some

positive gain κ > 0.

In brief, the following DS models a hitting motion in direction ψ∗
α and with

speed κv∗:

ξ̇ = κRα fh(R
T
αξ;θ) = κRα v(R

T
αξ) h(R

T
αξ;θ) (5.9)

Figure 5.4 shows an example of using the rotation matrix to control the hit-

ting direction at the target. In this illustration, the default hitting direction ψ∗

5Note that irrespective of which method is used, the strength factor should not affect the
direction of the motion. To ensure this, the constraint v(x) > 0 should be taken into account
either during learning or regression (e.g. by setting v(x) = ∥v(x)∥+ ϵ)
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Figure 5.4: Control of hitting direction by using the rotation scheme. The default hitting
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and ψ∗
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, respectively.

The effect of the impact between the golf club and the ball depends on two

things: the Cartesian trajectory of the golf club before hitting the ball (the

direction of approach) and the orientation of the golf club at the hitting point.

Human players normally align the direction of hitting with the direction of

approach by keeping the golf club perpendicular to the direction of approach.

In this work, we take the same approach and control the end-effector orientation

so as to keep the golf club perpendicularly aligned to the direction of motion

when hitting.

Note that for the continuous version of DS, as presented in Eq. (5.3), we can

safely go ahead and multiply the whole strength factor with a constant κ without

adventuring stability or altering the trajectory. However, when we move to the

time discrete domain, altering the speed in this way will change the trajectory

depending on the sampling time. In the experiments we present in this chapter,

we work with a sufficiently high frequency to allow modulation with a constant

speed gain without any noticeable deviation from the trajectory.

5.3 Minigolf Workflow

A conceptual workflow describing the learning and playing of minigolf is

given in Fig. 5.5. The left side of this workflow explains the training parts.

Three nonlinear models are learned based on two sets of user demonstrations.

This procedure is performed offline. The demonstrations of the hitting motions

are collected through kinesthetic teaching. With these trajectories, models of the

target field and the strength factor are built. These models are used to generate

the hitting motion. Training data set of the hitting parameters are then collected
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Figure 5.5: A conceptual workflow describing how to play minigolf. For further information
please refer to Section 5.3.

by using the hitting motion model, with hitting parameters specified by the

teacher. The teacher thus finds some examples of good hitting parameters for

some situations, and adds those to the hitting parameters adaptation data set.

This data set is then used to estimate a mapping from the situation to the hitting

parameters (please refer to Appendix D for further information about how this

mapping can be obtained). Only once this hitting parameters adaptation model

has been learned, the robot can play minigolf autonomously.

The right side of Fig. 5.5 describes the execution procedure. At each iter-

ation, the current position of the ball, the hole, and the robot’s end-effector is

updated from the sensors. The correct hitting parameters are then computed

using the relative position of the ball to the hole (for further information on

the prediction of the hitting parameters, please refer to Appendix D). Based

on the value of the hitting angle, the rotation matrix is determined. The tar-

get field and the strength factor are then computed using the current position

of the robot’s end-effector and the rotation matrix. Putting together all these

values, the commanded velocity to the robot is calculated using Eq. (5.9). This

velocity is then commanded to the robot. The algorithm iterates through the

steps above until it hits the ball. When the ball is hit, the motion dynamics are

switched to a resting mode to smoothly stop the robot.
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5.4 Experimental Results

We evaluated the performance of the presented method in playing minigolf

on a flat field using the 6-DoF Katana-T arm. When playing on a smooth flat

field, learning the hitting parameters is unnecessary since the hitting direction

is aligned with the vector connecting the centers of the ball and the hole (see

Fig. 5.1b). The hitting speed can also be preset to a fixed value6. The experi-

ments on playing minigolf on challenging fields are reported in Appendix D.

For this experiment, we collected a set of demonstrations by passively moving

the robot arm to strike the ball (see Fig. 5.6a). For all demonstrations, the

relative position of the ball and the hole was fixed, and the user only showed the

robot different ways of hitting the ball starting from different initial positions. In

total, seven successful demonstrations were collected and used to learn the task

(see Fig. 5.6b). In each demonstration, we recorded the robot’s joints angles at

20Hz by directly reading them from each joint’s encoder. Forward kinematics

was used to compute the Cartesian position and velocity of the end-effector.

This data was then used to model the task (i.e. ξ = [x y z]T and ξ̇ = [ẋ ẏ ż]T ).

The location of the ball was detected at the rate of 80 fps using two high-speed

Mikrotron MK-1311 cameras.

We solved the optimization problem presented in Section 5.2.1 to learn the

target field of the hitting motion using K = 3 Gaussian functions. This number

was selected manually based on a tradeoff between the model’s accuracy and the

number of parameters needed to encode the motion using the method described

in Section 4.5.1. Figure 5.6c illustrates the reproductions of the motion using the

final optimized model we obtained from the proposed extended version of SEDS.

The strength factor was learned using EM algorithm with 2 Gaussian functions.

Figures 5.6d to 5.6f represents the velocity profile of the reproductions versus

demonstrations along the axes x, y, and z respectively.

Figure 5.6g shows the sequence of the motion for one of the reproductions.

As described in Section 5.2.3, the end-effector orientation was controlled to

keep the golf club perpendicular to the direction of approach. At each point,

the robot’s joint angles were computed by solving the damped least squares

pseudo-inverse kinematics with five constraints (3 and 2 constraints for the end-

effector’s position and orientation, respectively). For each reproduction, after

hitting the ball, the dynamics were switched to a stable dynamics guiding the

arm into a resting position. For this experiment, we considered a simple resting

motion where the velocity of the arm’s end-effector gradually decreases along

the direction of the motion until it stops.

6Recall that a wide range of hitting speeds can be used to sink the ball in the flat field. In
this paper, we set a hitting speed of 1 m/s for the experiments on the flat field.
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Figure 5.6: (a) Kinesthetic demonstration of the putting motion to the 6-DoF Katana-T
robot. (b) Illustration of the collected successful demonstrations. (c) Reproductions of the
motion from the model learned with the extended version of SEDS. (d)-(f) Evaluation of the
model’s accuracy in estimating the desired velocity profile. The thick dashed lines locate the
position of the ball. (g) Illustration of one of the generated motions sequences.

Generalization Ability: Figure 5.7 illustrates the generalization ability

of the model to different positions of the golf ball and the hole. In Fig. 5.7a,

we changed the position of the ball along the y-axis from 0 to −0.18 m. We

also changed the position of the hole so that the vector connecting the center

of the ball and the hole always remained along the x-axis. In all cases, the

robot successfully hit the ball with the correct speed at the target. Figure 5.7b

demonstrates the adaptation of the robot motion to three different positions

of the hole. Though the initial configuration of the robot’s arm and the ball

positions were fixed, the robot took three different paths to hit the ball in the

correct direction.

Adaptation to Changes in Dynamic Environments: Similar to all au-

tonomous DS, the proposed model is inherently robust to external perturbations

and can provide instant adaptation to changes in the environment. Figures 5.8a

and 5.8b illustrate the model’s behavior in a dynamic environment. In these
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Figure 5.7: Evaluation of the model’s performance in generalization.

experiments, during the robot’s arm movement, the ball (Fig. 5.8a) and the

hole (Fig. 5.8b) were displaced along the negative direction of the y-axis. At

each time step, the robot successfully adapted its trajectory to the new position

of the ball/hole until it hit the ball. In both examples, the robot successfully

managed to hit the ball in the correct direction as the adaptation to the per-

turbation was done on-the-fly, i.e. without any re-planning. Note that despite

the inherent robustness of stable autonomous DS to perturbations, there is an

upper bound for the maximum value of perturbations that can be handled. This

upper bound is due to the robot’s hardware limitations, which affect the max-

imum acceleration and velocity that the robot can achieve. Thus, if the robot

faces a large perturbation when it is close to the ball, it might not be able to

react swiftly and hit the ball with the correct hitting direction and speed.
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ẋ
(m

 /
s
)

−0.4 −0.2 0

−0.05

0

0.05

0.1

0.15

y(m)

ẏ
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Figure 5.8: Performance evaluation of the model in a dynamic environment. In this example
the ball (a) and the hole (b) are pushed along the negative direction of the y-axis, as the
robot approaches.

5.5 Summary and Conclusion

In this chapter, we extended our previous formulation of DS to generating

robot motions with a desired velocity at the target. The new formulation has a

similar structure to many physical principles, in that it computes the output of

a nonlinear time-independent DS by multiplying the target field with a strength

factor. For each point in space the target field indicates the correct direction of

the motion, while the strength factor defines the speed of the movement in that

direction. Hence it enables a robot to perform motions with similar forms but

with different speeds at the target.

Similarly to a globally asymptotically stable DS, the proposed formulation

is able to adapt on-the-fly a new trajectory in the face of perturbations without
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any need to re-index, re-scale, or re-plan. This is a critical property especially for

performing agile motions. For example, in tennis, at the beginning of the motion

the estimation of the ball’s position is not accurate, but as the ball approaches

the robot, this estimation becomes more and more accurate and thus the robot

should be able to continuously adapt its motion to the new position of the

ball. Note that despite the inherent robustness of stable autonomous DS to

perturbations, there is an upper bound for the maximum value of perturbations

that can be handled. If, for instance, the robot faces a large perturbation when

it is close to the ball, due to the robot’s hardware limitations the robot might

not be able to react swiftly and hit the ball with the correct hitting direction

and speed.

Note that the presented approach is not restricted to playing minigolf, and

can be used to generate hitting motions in other tasks such as playing billiard,

bowling, etc. These games may require additional hitting parameters such as

spin and/or the height of release of the ball to be learned. It should be noted that

our approach does not explicitly consider timely execution of the movement as

it encodes hitting motions with an autonomous DS. Thus, in tasks where timing

becomes crucial (for example in tennis), it relies on an external mechanisms to

control the whole motion duration by actively modulating the strength factor,

see e.g. the method developed in (S. Kim et al., 2010).

Finally the proposed formulation can be used to define hitting motions in

both Cartesian and joint spaces. In this work we have only used the former since

it was easier to work with in the context of playing minigolf. However, depending

on the task at hand one can choose either of these coordinates systems.
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Chapter 6

Dynamical System-based
Obstacle Avoidance

Obstacles are those frightful things you see when you take
your eyes off your goal.

Henry Ford (1863-1947)

T
he previous chapters have been devoted to obtain a generic framework

that leverages on the notion of DS to generate robot motions that are

inherently robust to perturbations and can instantly adapt to changes in the

target’s position. Despite these features, our framework still relies on a simplistic

assumption that presumes there is no object in the robot working space. Such

assumption could be very limiting, especially if we envision to bring robots in

our daily lives. Many real world tasks require robotic systems that should work

in cluttered environments where the robot may face several objects during the

task execution. In such environments, it is very likely that the robot may collide

with some of these objects and the task would fail. Hence, it is crucial to endow

our DS control policy with the collision avoidance capability.

In this chapter, we propose an obstacle avoidance algorithm that can be

integrated into our existing DS-based control law, while retaining the swiftness

and robustness provided by these approaches. In the presented method, we

assume that the robot motion is driven by a continuous and differentiable DS in

the absence of obstacle(s). This DS is provided by the user, and henceforth we

will call it the original DS. Given the original DS and an analytical formulation

describing the surface of obstacles, we present an algorithm that can instantly

modify the robot’s trajectory to avoid collisions with obstacles. This presented

work was published in (Khansari-Zadeh & Billard, 2012), and all the material

from this publications is collected here.

The rest of this chapter is structured as follows: Section 6.1 formalizes our

obstacle avoidance algorithm for robot motions in the presence of a convex

obstacle. Section 6.2 discusses the stability of the control law after applying

the proposed obstacle avoidance algorithm. Sections 6.3 to 6.5 provide a set of

extensions to endow our approach with extra features such as customizing avoid-

ance trajectories, obstacle avoidance in the presence of multiple static/moving

obstacles, etc. Section 6.6 gives a conceptual sketch on how to use the proposed

algorithm in robot experiments. Section 6.7 presents the experimental results,

and Section 6.8 concludes the chapter.
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Related publication:

• S.M. Khansari Zadeh and A. Billard (2012), A Dynamical System Approach

to Realtime Obstacle Avoidance, Autonomous Robots, 32(4), p. 433–454.

• S.M. Khansari Zadeh and A. Billard (2012), Realtime Avoidance of Fast

Moving Objects: A Dynamical System-based Approach, In electronic pro-

ceedings of the Workshop on Robot Motion Planning: Online, Reactive,

and in Realtime, The IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS).

6.1 Obstacle Avoidance Formulation

Following our general formulation given by Eq. (4.31), we consider robot

motions that are defined by an autonomous or non-autonomous DS in the ab-

sence of obstacle(s). In this section we show how we can induce a modulation

on our generic motion due to the presence of an obstacle. We first consider a

hyper-sphere obstacle. We then extend this model to convex objects.

6.1.1 Hyper-Sphere Obstacles

Consider a d-dimensional hyper-sphere object with radius ro centered at ξo.

The object creates a modulation throughout the robot’s state space, which is

conveyed through the nonlinear function ϕs(ξ; ξo, ro) : Rd 7→ Rd as follows1:

ϕs(ξ; ξo, ro) = (1 +
(ro)2

(ξ − ξo)T (ξ − ξo)
)(ξ − ξo) (6.1)

where (.)T denotes the transpose. To determine how ϕ modulates the velocity

of the robot, we compute the Jacobian which yields:

M s(ξ; ξo, ro) = ∇ϕs(ξ; ξo, ro) (6.2)

To simplify the notation, we express the modulation in a frame of reference

centered on the object and define ξ̃ = ξ − ξo:

M s(ξ̃; ro) = I + (
ro

ξ̃T ξ̃
)2(ξ̃T ξ̃I − 2ξ̃ξ̃T ) (6.3)

where I is the identity matrix. We call M s the dynamic modulation matrix.

The final model for real-time avoidance of spherical obstacles can be obtained by

applying the dynamic modulation matrix to the original DS given by Eq. (4.31):

1The development of Eq. (6.1) was partly inspired by the complex potential function that
models the uniform flow around a circular cylinder (Milne-Thomson, 1960). In both formu-
lations the modulation of the flow due to the object’s presence decreases quadratically with
the distance to the center of the object (see the second term in Eq. (6.1)). The main differ-
ence between the two approaches lies in their functionality. Equation (6.1) is a d-dimensional
vector and its Jacobian is a d× d matrix which can be used to modulate the original flow. In
contrast, the complex potential function is a scalar value, and its derivative directly gives the
modified flow in the presence of the obstacle.
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(b) Three dimensional flow generated by ξ̇1 = 1.0, ξ̇2 = − sin(ξ2/4) sin ξ1, and ξ̇3 = sin ξ1.

Figure 6.1: Effect of the modulation induced by a spherical obstacle (located at the origin
and with radius ro = 2) on a two and three dimensional flows.

ξ̇ =M s(ξ̃; ro)f(.) (6.4)

M s(ξ̃; ro) in Eq. (6.4) is a modulation factor that locally deforms the original

dynamics f(.) such that the robot does not hit the obstacle (recall that we use

the notation f(.) to refer to both autonomous and non-autonomous DS).

�

Theorem 6.1 Consider a d-dimensional static hyper-sphere obstacle in Rd with

center ξo and radius ro. The obstacle boundary consists of the hyper-surface

X b ⊂ Rd = {ξ ∈ Rd : ∥ξ − ξo∥ = ro}. Any motion ξ(t), t ≥ 0 that starts

outside the obstacle, i.e. ∥ξ(0) − ξo∥ ≥ ro, and evolves according to Eq. (6.4)

will never penetrate into the obstacle, i.e. ∥ξ(t)− ξo∥ ≥ ro, ∀t > 0.

Proof: See Appendix A.4.

�

Figure 6.1 illustrates the effect of the modulation induced by such a spherical

object on two and three-dimensional flows. As it is illustrated, in both cases the

flow is deflected properly and it passes the obstacle.
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6.1.2 Convex Obstacles

Suppose a continuous function Γ(ξ̃) that projects Rd into R. The function Γ(ξ̃)

has continuous first order partial derivatives (i.e. C1 smoothness) and increases

monotonically with ∥ξ̃∥. The level curves of Γ (i.e. Γ(ξ̃) = c, ∀c ∈ R+) enclose

a convex region. By construction, the level curve at the surface of the obstacle

has value 1:

Γ(ξ̃) = 1 (6.5)

For example Γ(ξ̃) :
∑d

i=1(ξ̃i/ai)
2 = 1 corresponds to a d-dimensional el-

lipsoid with axis lengths ai. Recall that we use the notation ξ̃ to refer to the

coordinates of a point ξ in the frame of reference of the obstacle:

ξ̃ = RT (ξ − ξo) (6.6)

where R is a rotation matrix transforming the obstacle coordinates system to

the world coordinates system. We can divide the space spanned by Γ into three

regions X o, X b, and X f to distinguish between points inside the obstacle, at

its boundary, and outside the obstacle respectively:

Interior points : X o = {ξ ∈ Rd : Γ(ξ̃) < 1} (6.7)

Boundary points : X b = {ξ ∈ Rd : Γ(ξ̃) = 1} (6.8)

Free region : X f = {ξ ∈ Rd : Γ(ξ̃) > 1} (6.9)

At each point ξb ∈ X b on the outer surface of the obstacle, we can compute

a tangential hyper-plane defined by its normal vector n(ξ̃b):

n(ξ̃b) =
[

∂Γ(ξ̃b)

∂ξb
1

· · · ∂Γ(ξ̃b)

∂ξb
d

]T
(6.10)

By extension, we can compute a deflection hyperplane at each point ξ ∈ X f

outside the obstacle with normal:

n(ξ̃) =
[

∂Γ(ξ̃)
∂ξ1

· · · ∂Γ(ξ̃)
∂ξd

]T
(6.11)

Each point on the deflection hyper-plane can be expressed as a linear combi-

nation of a set of (d−1) linearly independent vectors. These vectors form a basis

of the deflection hyper-plane. One particular set of such vectors e1, ..., ed−1 is2:

eij(ξ̃) =


−∂Γ(ξ̃)

∂ξi
j = 1

∂Γ(ξ̃)
∂ξ1

j = i ̸= 1

0 j ̸= 1, j ̸= i

i ∈ 1..d− 1 , j ∈ 1..d (6.12)

where eij corresponds to the j-th component of the i-th basis vector. Figure 6.2

2In case ∂Γ(ξ̃)/∂ξ1 vanishes, the vectors are no longer linearly independent and one should
choose another index for the derivative which is non-zero.
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Figure 6.2: Illustration of the tangential hyper-plane and its basis (left), and the deflection
hyper-plane (right) for a 3-dimensional object.

illustrates the tangential and the deflection hyper-planes for a three-dimensional

object. We can determine a modulation matrix M(ξ̃) given by3:

M(ξ̃) = RE(ξ̃)D(ξ̃)E(ξ̃)(−1)RT (6.13)

with the matrices of basis vectors E(ξ̃) and associated eigenvalues D(ξ̃):

E(ξ̃) =
[
n(ξ̃) e1(ξ̃) · · · ed−1(ξ̃)

]
(6.14)

D(ξ̃) =


λ1(ξ̃) 0

. . .

0 λd(ξ̃)

 (6.15)

where λ
1(ξ̃) = 1− 1

|Γ(ξ̃)|

λi(ξ̃) = 1 + 1
|Γ(ξ̃)| 2 ≤ i ≤ d

(6.16)

The dynamic modulation matrix M(ξ̃) propagates the influence of the ob-

stacle on the motion flow. The result of Eq. (6.13) is invariant to the choice

of the basis e1..ed−1. Furthermore, the matrix of basis vector is invertible in

Rd \ ξo. At the obstacle reference point ξo, the deflection hyper-plane is unde-

fined; however, this does not cause any problem since ξo is a point inside the

obstacle (recall Γ(0) < 1). Moreover, since Γ(ξ̃) monotonically increases with

∥ξ̃∥, the matrix of eigenvalues and by extension the dynamic modulation matrix

converge to the identity matrix as the distance to the obstacle increases. Hence,

the effect of the dynamic modulation matrix is maximum at the boundaries of

the obstacle, and vanishes for points far from it.

Similarly to the hyper-sphere obstacle avoidance given by Eq. (6.4), we can

apply the modulation given by Eq. (6.13) on our original motion flow f(.) which

yields:

ξ̇ =M(ξ̃)f(.) (6.17)

3The derivation of Eq. (6.13) is inspired from the proof of Theorem 6.1. For a spherical
obstacle, these equations yield to the same result given by Eq. (6.3).
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�

Theorem 6.2 Consider a convex manifold Γ(ξ̃) = 1 that encloses a static d-

dimensional obstacle with respect to a reference point ξo inside the obstacle.

A motion ξ(t), that starts outside the obstacle, i.e. Γ
(
ξ̃(0)

)
≥ 1, and evolves

according to Eq. (6.17) does not penetrate the obstacle, i.e. Γ
(
ξ̃(t)

)
≥ 1, ∀t > 0.

Proof: See Appendix A.5.

�
Fig. 6.3 illustrates with four examples the effect of the modulation induced

on the field of motion in the presence of different obstacles.

6.2 Robot Discrete Movements

So far we have shown how the dynamic modulation matrix M(ξ̃) can be

used to deform a robot motion such that it does not collide with an obstacle.

However in many robot experiments, e.g. reaching a target, not only should

the robot avoid the obstacle, but it should also reach a target. In other words,

we would like the modified motion to preserve the convergence property of the

original dynamics while still ensuring that the motion does not penetrate the

object. In this section we discuss the stability of DS when they are modulated

with the proposed obstacle avoidance method. Throughout this section, we will

assume that the target point ξ∗ is outside the obstacle boundary, i.e. ξ∗ ∈ X f .

Suppose a d-dimensional globally asymptotically stable autonomous or non-

autonomous DS defined by Eq. (4.31). The global stability of f requires that the

velocity vanishes solely at the target point ξ∗, i.e. f(ξ∗) = 0 for autonomous DS

and lim
t→∞

f(t, ξ∗) = 0 for non-autonomous DS. When f(.) is modulated with the

dynamic modulation matrixM(ξ̃), ξ∗ remains an equilibrium point because the

velocity still vanishes at the target, i.e. M(ξ̃∗)f(ξ∗) = 0 for autonomous DS,

and lim
t→∞

M(ξ̃∗)f(t, ξ∗) =M(ξ̃∗) lim
t→∞

f(t, ξ∗) = 0 for non-autonomous DS.

However, in the presence of an obstacle, the target may not remain the

unique equilibrium point of the system. Other possible equilibrium points may

be created due to the modulation termM(ξ̃). These points can be computed by

looking at the null space ofM(ξ̃). For all ξ ∈ X f , the matrixM(ξ̃) is full rank

and hence ξ∗ will be the only equilibrium point in X f . Only on the boundaries

of the obstacle, i.e. ξb ∈ X b, M(ξ̃b) loses one rank yielding a number of

spurious equilibrium points. In fact, these spurious equilibrium points ξs ∈ X b

are generated when there is collinearity between the velocity and the normal

vector at the boundary points4:

4From Theorem 6.2 we know that the normal velocity at the boundary points vanishes.
Hence, if f(ξ) is aligned with the normal vector of the tangential hyperplane at a boundary
point, we have M(ξ̃)f(ξ) = 0.
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(a) A 2D autonomous flow defined by ξ̇1 = log((ξ1 + 3)2 + 2) and ξ̇2 =
sin(ξ1).
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(b) A 3D autonomous flow defined by ξ̇1 = log((ξ1 + 3)2 + 2), ξ̇2 = 0, and
ξ̇3 = sin(ξ1).
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(c) A 2D stable limit-cycle defined by ξ̇1 = ξ2 − ξ1(ξ21 + ξ22 − 1) and

ξ̇2 = −ξ1 − ξ2(ξ21 + ξ22 − 1). The thick black line represents the stable limit
cycle.
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(d) A 3D non-autonomous flow defined by ξ̇1 = log((ξ1 + 3)2/(t+ 1) + 2),
ξ̇2 = sin(5t)− 0.1, and ξ̇3 = 0.05t cos(ξ2).

Figure 6.3: Modifying the original motion of a flow with a modulation matrix. In all four
cases the obstacle is centered at ξo = 0.
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Algorithm 6.1 Procedure to handle equilibrium points at the obstacle boundary

Input: ξt, ξ̇t, and the integration time step δt
1: if Γ(ξ̃t) = 1 and ξ̇t = 0 then
2: Choose one of the basis vectors ei of the tangential hyper-plane.
3: Define a small positive scalar α > 0
4: while true do
5: ξt+1 ← ξt + αReiδt
6: Compute ξ̇t+1 from Eq. (6.17)
7: if (ei)TRT ξ̇t+1 > 0 or n(ξ̃)TRT ξ̇t+1 > 0 then
8: exit
9: end if

10: t← t+ 1
11: end while
12: end if

n(ξ̃s)T
RTf(.)

∥f(.)∥
= ±1 and Γ(ξ̃s) = 1 (6.18)

where n(ξ̃s) is the unit normal vector of the tangential hyperplane at ξ̃s. The

set X s includes all solutions to Eq. (6.18). Depending on the function f(.),

these equilibrium points could be either saddle points and/or local minima.

Computing this set of equilibrium points may not always be feasible. We can

however simplify our task by considering that: “As all the equilibrium points

appear solely on the obstacle boundary, one may avoid remaining stuck by using

some external mechanisms”. Algorithm 6.1 describes such a mechanism: when

one detects that the motion has stopped at the outer surface (boundary) of an

obstacle (i.e. at an equilibrium point), she applies a small perturbation along

any of the basis vectors e1..ed−1. All of these vectors determine directions that

ensure that the flow will move away from the obstacle. If the equilibrium point is

a saddle point, the algorithm exits in one iteration. But if it is a local minimum,

the obstacle is contoured along the direction of the basis vector ei until it leaves

the basin of attraction of the local minimum.

A positive scalar α can be used to control the amplitude of the movement

along the basis vector ei. The value of α should be chosen by compromising

between the accuracy, safety, and speed of the movement. For a large integra-

tion time step δt, one should use a small α to decrease the drifting error (due

to integration) from the desired trajectory when contouring the obstacle. Fur-

thermore, since contouring takes place at the outer surface of the obstacle, for

safety reasons one should generally avoid selecting a high value for α. A very

small value for α is also not recommended since it significantly slows down the

contouring speed. Figure 6.4 illustrates two examples where Algorithm 6.1 is

used to handle a saddle point and a local minimum.
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(a) When the DS is defined by ξ̇1 = −ξ1 +3 and ξ̇2 = −ξ2, the modulated dynamics has two
saddle points at (−3, 0) and (0, 1). Without using Algorithm 6.1, the motion stops at (−3, 0)
(left graph). However, by using Algorithm 6.1 for one iteration, the motion continues until it
reaches the target (right graph).

−6 −4 −2 0 2 4

−2

0

2

ξ1(m)

ξ
2
(m

)

−6 −4 −2 0 2 4

−2

0

2

ξ1(m)

ξ
2
(m

)

−6 −4 −2 0 2 4

−2

0

2

ξ1(m)

ξ
2
(m

)

−6 −4 −2 0 2 4

−2

0

2

ξ1(m)

ξ
2
(m

)

Contouring

(b) By modifying the DS along its second dimension to ξ̇2 = −3ξ2, the modulated dynamics
will have one local minimum at (−3, 0) and three saddle point at (0, 1), (−2.6757, 1.2120), and
(−2.6757,−1.2120). Without using Algorithm 6.1, the motion stops at the local minimum
(−3, 0) (left graph). In this situation, Algorithm 6.1 is used iteratively until the trajectory
leaves the basin of attraction of the local minimum (i.e. the range between the local minimum
and the saddle point). Then, the motion continues its way to the target (right graph). The
part of trajectory that generated by Algorithm 6.1 is plotted with a thick red line.

Figure 6.4: Illustration of using Algorithm 6.1 to avoid possible equilibrium point(s) on
the obstacle boundary. The target point is shown with a black star. The saddle point(s) and
local minimum are represented with hollow circle and diamond, respectively. The obstacle
boundary is modeled with (ξ̃1/1)2 + (ξ̃2/2)2 = 1 when ξ̃1 > 0 and (ξ̃1/3)4 + (ξ̃2/2)2 = 1
elsewhere.

137



ξ1

ξ
2

η1 = η2 = 1.0

ξ1

ξ
2

η1 = η2 = 1.3

ξ1

ξ
2

η1 = 1.3, η2 = 2.0

Figure 6.5: Controlling the safety margin around the obstacle via the safety factor. The
obstacle is inflated in the direction ξ1 and ξ2 with the value η1 and η2, respectively. The
area between the dashed line and the obstacle boundary is the safety margin. The direction
of the motion is from left to right.

6.3 Characterizing the Path during Obstacle

Avoidance

When doing obstacle avoidance, sometimes it is more practical to customize

the path to avoid an obstacle based on the object’s property. For example, fragile

or sharp objects may require a large safety margin while soft and round object

may not. Furthermore, it is essential to react and deflect the robot trajectory

earlier when it goes toward a fire flame than when it is just heading towards a

soft pillow. In this section, we extend the proposed obstacle avoidance approach

to incorporate user defined preferences during obstacle avoidance.

6.3.1 Safety Margin

The desired safety margin around an object can be obtained by scaling the state

variable (in the obstacle frame of reference) in the dynamic modulation matrix

M(ξ̃) as follows:

M(ξ̃η) = RE(ξ̃η)D(ξ̃η)E(ξ̃η)
(−1)RT (6.19)

where ξ̃η = ξ̃./η corresponds to the element-wise division of ξ̃ by η ∈ Rd, and

ηi ≥ 1, ∀i ∈ 1..d is the desired safety factor, which inflates the object along

each direction ξ̃i with the magnitude ηi (in the obstacle frame of reference). By

choosing different value for each ηi, one can control the required safety margin

along the corresponding direction of the object. Figure 6.5 illustrates the effect

of different safety margins for a 2D object in a uniform flow5.

5One can also define different safety factors along the positive and negative directions of
each object’s axis by considering an if -else condition on the sign of each ξ̃i.
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Figure 6.6: Controlling the reactivity of the motion to the presence of the obstacle (for
η1 = η2 = 1.2). By increasing ρ, the reactivity increases, hence the flow deflects earlier in
time and with a higher magnitude. Note that on the right graph, the white gap between the
dashed line and the trajectories is part of the free region.

6.3.2 Reactivity

The magnitude of the modulation created by the obstacle can be tuned by

modifying the eigenvalues of the dynamic modulation matrix as follows:
λ1(ξ̃) = 1− 1

|Γ(ξ̃)|
1
ρ

λi(ξ̃) = 1 + 1

|Γ(ξ̃)|
1
ρ

2 ≤ i ≤ d
(6.20)

where ρ > 0 is the reactivity parameter. The larger the reactivity, the larger

the amplitude of the deflection, and consequently the earlier the robot responds

to the presence of an obstacle. A large ρ also extends the deflection farther out.

Figure 6.6 illustrates the effect of using different reactivity parameters for a 2D

object in a uniform flow.

6.3.3 Tail-Effect

In the proposed obstacle avoidance formulation, the modulation due to the

obstacle continues affecting the motion even when the robot is moving away from

the obstacle (see Fig. 6.7a). We call this effect of the obstacle on trajectories

tail-effect. In some cases such a behavior may be beneficial as it approximately

brings back the robot to the path it follows before facing the obstacle. When it

is not desirable, one can remedy the tail-effect by defining the first eigenvalue

of the dynamic modulation matrix as follows:

λ1(ξ̃) =


1− 1

|Γ(ξ̃)|
1
ρ

n(ξ̃)T ξ̇ < 0

1 n(ξ̃)T ξ̇ ≥ 0
(6.21)

In the above equation, we use the sign of n(ξ̃)T ξ̇ to check whether a trajec-

tory is going towards (negative sign) or away (positive sign) from the obstacle.

Figure 6.7b illustrates the result after using Eq. (6.21). In this figure one can

see that the tail-effect is significantly reduced. However, the slight modulation

of the trajectories after passing the obstacle is still required in order to ensure

the continuity in the velocity.
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Figure 6.7: Controlling the tail-effect after passing the obstacle. (a) The tendency of the
trajectories to follow the obstacle shape after passing it. (b) Remedying the tail-effect by
defining the first eigenvalue according to Eq. (6.21).

6.4 Extension to Multiple Obstacles

So far we have shown how the dynamic modulation matrix can be used to avoid

a single obstacle. However, in the presence of multiple obstacles, the current

dynamic modulation matrix is ineffective and should be modified to include the

effect of all the obstacles. Beware that this extension cannot be simply obtained

by multiplying together the dynamic modulation matrix of all the obstacles.

In this case, the impenetrability condition is only guaranteed for one of the

obstacles. Note that for the sake of clarity of equations, in this section we did

not consider the extensions that we have provided in Section 6.3 on the safety

margin, reactivity, and tail-effect (here we use the default value η = ρ = 1, and

do not remedy the tail-effect). In Section 6.6, we unify all these extensions into

a single final model (see Table 6.1).

Let us consider K obstacles with associated reference points ξo,k and bound-

ary functions Γk(ξ; ξo,k), k = 1..K (the parameters of the k-th obstacle is de-

noted by (.)k). We modify Eq. (6.16), and compute the eigenvalues of the k-th

obstacle based on both its current state, and the state of other obstacles as

follows: λ
k
1(ξ̃

k) = 1− ωk(ξ̃k)

|Γ(ξ̃k)|

λki (ξ̃
k) = 1 + ωk(ξ̃k)

|Γ(ξ̃k)| 2 ≤ i ≤ d
(6.22)

where ξ̃k = (Rk)T (ξ−ξo,k), Γk(ξk) is the simplified notation of Γk(ξ; ξo,k), and

ωk(ξ̃k) are weighting coefficients that are computed according to:6

ωk(ξ̃k) =

K∏
i=1,i̸=k

(Γi(ξ̃i)− 1)

(Γk(ξ̃k)− 1) + (Γi(ξ̃i)− 1)
(6.23)

First observe that ωk(ξ̃k) are continuous positive scalars between zero and

one, i.e. 0 ≤ ωk(ξ̃k) ≤ 1. Second, at the boundary of the k-th obstacle (i.e.

Γk(ξ̃k) = 1), we have ωk(ξ̃k) = 1 and ωi(ξ̃i) = 0, ∀i ∈ 1..K and i ̸= k. As we

6Eq. (6.23) is in spirit very similar to the weighting coefficients proposed in (Waydo &
Murray, 2003) with the difference that we use Γk(ξ) to compute weights (rather than the
distance between the obstacles).
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will discuss later on, these two properties are crucial to ensure impenetrability

of all the obstacles. Note that, when only one obstacle exists (K = 1), we simply

set ω1(ξ̃1) = 1 and Eq. (6.22) simplified into Eq. (6.16).

By substituting Eq. (6.23) into the matrix of eigenvalues given by Eq. (6.15),

the dynamic modulation matrix for each obstacle becomes:

Mk(ξ̃k) = RkEk(ξ̃k)Dk(ξ̃k)
(
Ek(ξ̃k)

)−1(
Rk
)T

(6.24)

The combined modulation matrix that considers the net effect of all the

obstacles is then given by:

M̄(ξ) =
K∏

k=1

Mk(ξ̃k) (6.25)

Eq. (6.25) ensures the impenetrability of all the K obstacles. To verify this,

suppose a point ξb on the boundary of the k-th obstacle. At this point, following

the properties of ω mentioned above and considering Eqs. (6.15), (6.22), (6.24)

and (6.25), we have:

ωi(ξ̃b,i) = 0 ⇒ λij(ξ̃
b,i) = 1 ∀j ∈ 1..d,∀i ∈ 1..K, i ̸= k

⇒ Di(ξ̃b,i) = I

⇒ M i(ξ̃b,i) = RiEi(ξ̃b,i) I
(
Ei(ξ̃b,i)

)−1(
Ri
)T

⇒ M i(ξ̃b,i) = Ri I
(
Ri
)T

= I

=⇒ M̄(ξb) =Mk(ξ̃b,k)

Furthermore, because ωk(ξ̃b,k) = 1, Mk(ξ̃b,k) and by extension M̄(ξb) is

exactly similar to Eq. (6.13). Hence following Theorem 6.2, the obstacle is im-

penetrable. By moving from one obstacle to another, the weighting coefficients

smoothly changes between zero and one, and by this, the impenetrability is

always ensured for all the obstacles.

Following the discussion given in Section 6.2, the target point ξ∗ is the only

equilibrium point in the free region because each of the modulation matrixMk

has full rank. However, as discussed before, on the boundaries of each obstacle

a set of saddle points or local minima may be generated. Provided the obstacles

are not connected, i.e. they do not have a contact point, these equilibrium

points can be handled by following Algorithm 6.1.

Fig. 6.8 illustrates the implementation of Eq. (6.25) in the presence of five

obstacles positioned in different ways. To simplify the reference to these objects,

they are numbered from one to five. In this figure, the thick black line is

the streamline that starts on the symmetric line of the obstacles arrangement.

As can be seen, the combined modulation matrix is able to prevent hitting

the obstacles even if there is a narrow passage between them (see for example

Figs. 6.8a to 6.8c).
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Figure 6.8: Extension of the proposed approach to multiple obstacles. The combined
dynamic modulation matrix ensures the impenetrability of all obstacle even if they are very
close or connected to each other. However, for the case where the objects are connected (see
(d)), some local minima may appear that cannot be avoided with Algorithm 6.1. Trajectories
that stop at the local minima are plotted with dashed lines. A trivial solution to handle this
problem is to model all the connected obstacles as a single convex obstacle.

Fig. 6.8d shows the result for the case where all obstacles are connected. First

observe that the resulting shape is no longer convex, but the impenetrability

of the obstacles is still preserved. However in the presence of the resulting

concave shape, Algorithm 6.1 cannot be used to avoid local minima. A trivial

solution to handle this problem is to model all the connected obstacles as a

single convex obstacle. Note that at the boundaries’ intersection points, the

weighting coefficients ωk are undefined (because the distance to more than one

obstacle is zero, and thus a division by zero occurs). At these points, we have

simply stopped the simulation.

6.5 Extension to Moving Obstacles

So far we have considered situations where obstacles are static. In this section we

extend our formulation to perform obstacle avoidance in the presence of multiple

moving obstacles with linear and/or rotational velocities. In the presence of

a single obstacle, this extension is straight forward and can be achieved by

computing the modulation in the obstacle’s frame of reference. Suppose an

obstacle Γ(ξ̃) that is moving with linear and rotational velocities ξ̇oL and ξ̇oR,

respectively. The modulated dynamics for obstacle avoidance becomes:
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ξ̇ =M(ξ̃)
(
f(.)− ξ̇oL − ξ̇oR × ξ̃

)
+ ξ̇oL + ξ̇oR × ξ̃ (6.26)

where (.)× (.) denotes the cross product and M(ξ̃) is the modulation given by

Eq. (6.13). In this equation, the term f(.)− ξ̇oL− ξ̇oR× ξ̃ transforms the velocity

of the robot to the obstacle’s coordinates system. Then, the modulation is

performed in this coordinates system where the object is static, yet the robot

is moving with a different speed. After applying the modulation, the result is

transformed back to the world’s frame of reference through the last term.

Equation (6.26) ensures impenetrability of a single moving obstacle. To

verify this, suppose a point ξb on the boundary of the moving obstacle at time

t. As outlined before, the modulation cancels the radial velocity of the robot at

the boundary (hence the robot can only move along the tangential hyperplane).

But this is not enough as the robot may hit the obstacle in the next moment t+

since the obstacle is moving. However, this can be avoided by adding the instant

velocity of the point ξb due to obstacle motion, which is given by ξ̇oL + ξ̇oR × ξ̃b,
to the modulated velocity.

As a side effect, Eq. (6.26) could induce some unnecessary movements to the

robot even when the robot is far from the obstacle (note that the angular velocity

grows proportionally with ∥ξ̃∥). This can be tackled by adding an exponential

term that diminishes the induced velocity due to the obstacle’s movement as

∥ξ̃∥ increases:

ξ̇ =M(ξ̃)
(
f(.)−e− 1

σo (Γ(ξ̃)−1)
(
ξ̇oL+ξ̇

o
R×ξ̃

))
+e−

1
σo (Γ(ξ̃)−1)

(
ξ̇oL+ξ̇

o
R×ξ̃

)
(6.27)

where σo is a positive scalar controlling the rate of decay of the exponential

term. The higher the σo, the earlier the robot responds to the obstacle motion.

The above change does not compromise impenetrability of the obstacle as on

the boundary of the obstacle we have e−
1
σo (Γ(ξ̃)−1) = 1.

In the presence of multiple moving obstacles, further considerations should

be taken so that the above transformation smoothly shift from one obstacle to

another based on the current position of the robot. To achieve this goal, we

follow the same principle as the one described in Section 6.4 by using some

weighting coefficients to control the priorities of obstacles.

Let us consider K disconnected obstacles that are described by Γk(ξ̃k), k ∈
1..K, with the associated translational and rotational velocities ξ̇o,kL and ξ̇o,kR ,

respectively. We define the net shift in velocity
¯̇
ξo due to the presence of these

obstacles with:

¯̇
ξo =

K∑
k=1

ξ̇o,k =
K∑

k=1

e−
1

σo,k (Γk(ξ̃k)−1)ωk(ξ̃k)
(
ξ̇o,kL + ξ̇o,kR × ξ̃k

)
(6.28)

where ωk(ξ̃k) are computed according to Eq. (6.23). In case the tail effect is not

desired (i.e. κ = 0), one could remove the modulation effect by setting ξ̇o,k = 0

for each obstacle that is moving away from the robot (i.e. when
(
ξ̇o,k

)T
ξ̃o,k < 0).
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(a) Without considering the obstacles’ motion (the quasi-static case). The dashed black lines
show the failure cases where the robot actually collides with the obstacles.
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(b) With considering the obstacles’ motion. In this case, collision avoidance for all trajectories
is ensured.

Figure 6.9: Illustration of the obstacle avoidance in the presence of two moving obstacles.
As we can see, solely in the dynamic case, where the obstacles’ motion is considered, the
trajectories can safely pass the obstacles. In this example, the trajectories move from left to
right with ξ̇ = [2; 0] m/s. The oval-shaped object has the linear velocity ξ̇o,1L = [−0.4;−0.2]

m/s and the rotational velocity ξ̇o,1R = −2 rad/s. These values for the square-shaped obstacle
are [−0.4;−0.2] m/s and 1 rad/sec. Both objects have the safety factor of η = 1.2. The
variance σo is set to 2 and 10 for the oval and square-shaped obstacles, respectively.

The combined modulation that considers the net effect of all moving/static

obstacles is then given by:

ξ̇ = M̄(ξ)
(
f(.)− ¯̇

ξo
)
+

¯̇
ξo (6.29)

where M̄(ξ) is given by Eq. (6.25). Equation (6.29) ensures the impenetrability

of all the K obstacles. For a point ξb on the boundary of the k-th obstacle, only

ωk = 1 and all the other weighting coefficients are zero. Hence M̄(ξb) =Mk(ξb)

and
¯̇
ξo = ξ̇o,kL +ξ̇o,kR ×ξ̃b,k, and thus the obstacle is impenetrable. Similarly to the

static case, by moving from one obstacle to another, the weighting coefficients

smoothly change between zero and one, and by this, impenetrability is always

ensured for all the obstacles.

Figure 6.9 shows an example of obstacle avoidance in the presence of two

moving obstacles. It compares two situations: 1) The quasi-static case where

the obstacles’ motion are neglected, and the modulation is computed at each

time based on the instantaneous position and orientation of the obstacles (see

Fig. 6.9a), and 2) The dynamic case where the obstacles’ motion are taken into

account (see Fig. 6.9b). As we can see, in the quasi-static case the impenetra-

bility of the obstacles are no longer ensured, whereas in the dynamic case all

the trajectories can safely pass the obstacles.

144



Figure 6.10: Illustration of two complex objects that are modeled with two smooth hyper-
surfaces. The analytical model for the drawer is Γ(ξ̃): (ξ̃1/0.4)4 + (ξ̃2/0.4)8 + (ξ̃3/0.6)4 = 1,
and the mug is modeled with (ξ̃1/0.05)4 + (ξ̃2/0.05)8 + (ξ̃3/0.05)4 = 1 when ξ̃2 > 0 and
(ξ̃1/0.05)4 + (ξ̃2/0.08)2 + (ξ̃3/0.05)4 = 1 elsewhere.

(a) (c)(b)(a) (a) (c)(b)(b)(a) (c)(b) (c)

Figure 6.11: Illustration of generating a BV from the point cloud of a toy car. (a) The 3D
model of the car. (b) The point cloud of the car taken from the Princeton Shape Benchmark
(Shilane et al., 2004). (c) The C1 smoothness BV generated using the method described by
(Benallegue et al., 2009).

6.6 Obstacle Avoidance Module

The proposed obstacle avoidance algorithm requires a user to provide an

analytical formulation of the outer surface of the obstacle. When provided with

the 3D model of the object, one may compute a smooth convex envelope (also

known as convex bounding volume) that fits tightly around the object. This

Bounding Volume (BV) can be used (instead of the object’s shape) to perform

obstacle avoidance. Figure 6.10 illustrates such 3D convex envelopes generated

from the 3D models of a mug and a drawer.

When solely the point cloud description of the object is available, one may

use one of the estimation techniques to approximate the BV. For example, in

(Benallegue et al., 2009), the BV is approximated using a set of spheres and tori.

To use this method, one first needs to find the relevant patch (either sphere or

torus) of the BV that corresponds to the current position of the robot. Then,

based on the analytical formulation of that patch, one can compute the dynamic

modulation matrix as described before. Recall that our obstacle avoidance mod-

ule only requires the convexity and C1 smoothness of the BV, which are fulfilled

in this work. Figure 6.11 shows an example of the convex BV generated from

the point cloud of a toy car using the method above7.

7The author would like to thank M. Benallegue and A. Kheddar for providing the source
code of the STP-BV method to generate the BV from the point cloud of the object.
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Table 6.1: Nomenclature of the presented DS-based obstacle avoidance method

Symbol Description

d Dimension of the state variable

K Number of obstacles

ξ ∈ Rd Current robot position

ξ̇ ∈ Rd Current robot velocity

ξo,k ∈ Rd Center of the k-th obstacle

ξ̃k ∈ Rd Relative position to the k-th obstacle

ξ̃kη ∈ Rd Scaled relative position to the k-th obstacle

ξ̇o,kL ∈ Rd Linear velocity of the k-th obstacle

ξ̇o,kR ∈ Rd Angular velocity of the k-th obstacle

Γk : Rd 7→ R Analytical description of the k-th obstacle

Ek ∈ Rd×d Matrix of Basis vectors of the k-th obstacle

Dk ∈ Rd×d Matrix of eigenvalues of the k-th obstacle

Mk ∈ Rd×d Dynamic Modulation matrix of the k-th obstacle

Rk ∈ Rd×d Rotation matrix of the k-th obstacle

nk ∈ Rd Normal vector of the deflection hyperplane for the k-th obstacle

ei,k ∈ Rd The i-th basis vector of the k-th obstacle

λk
i ∈ [0 2] The i-th eigenvalue of the k-th obstacle

ωk ∈ [0 1] Weighting coefficient of the k-th obstacle

η ∈ Rd,ηi ≥ 1 Safety factor

ρ ∈ R+ Reactivity

σo,k ∈ R+ Controlling responsiveness to the k-th obstacle movement

M̄(ξ) ∈ Rd×d Combined dynamic modulation matrix
¯̇
ξo ∈ Rd Net shift in velocity due to presence of moving obstacles

When doing obstacle avoidance in a dynamic environment, it is hardly possi-

ble to generate the BVs from the output of the vision system in realtime. Thus,

it is necessary to generate a library that stores the analytical formulations of

different objects. In our implementation, we rely on a library of objects with

known analytical convex envelopes. We use this analytical descriptor of the

envelop both to detect the object and for our obstacle avoidance module.

A summary of the presented obstacle avoidance method is provided in Al-

gorithm 6.2. For clarity of the method, a complete list of the required variables

and their description is summarized in Table 6.1. A conceptual sketch describing

how the presented method can be used in robot experiments is also illustrated

in Fig. 6.12. In this approach, first the raw output of the vision system is sent

to an object recognition module to identify the object(s). When the objects are

recognized, their corresponding properties such as the analytical formulation of

the boundary, safety factor, etc. are sent to the obstacle avoidance module. The

obstacle avoidance module modifies the original dynamics of the motion based

on the combined dynamic modulation matrix M̄(ξ) and the net shift in velocity
¯̇
ξo so as to avoid the obstacle safely.

In the presence of fast unknown moving obstacles, the object recognition

phase may not provide the agility required to avoid the obstacle (especially

when there is a large library of the objects). In these situations, it might be

more adequate to replace the object recognition phase with an automatic BV
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Algorithm 6.2 DS-Based Obstacle Avoidance. See Table 6.1 for the description of
symbols.

Input: ξ, f(.), and {Rk,ηk, ρk, κk, σo,k, ξ̇o,k
L , ξ̇o,k

R }
K
k=1

1: for each obstacle k, k ∈ 1..K do

2: ξ̃k
η =

(
(Rk)T (ξ − ξo,k)

)
./ηk

3: Ek(ξ̃k
η) =

[
nk(ξ̃k

η) e1,k(ξ̃k
η) · · · ed−1,k(ξ̃k

η)
]

4: ωk(ξ̃k
η) =


1 if K = 1∏K

i=1,i ̸=k

(Γi(ξ̃k
η)−1)

(Γk(ξ̃k
η)−1)+(Γi(ξ̃k

η)−1)
otherwise

5:


λk
1(ξ̃

k
η) =


1− ωk(ξ̃k

η)

|Γ(ξ̃k
η)|

1
ρ

n(ξ̃)T ξ̇ < 0 or κ = 1

1 n(ξ̃)T ξ̇ ≥ 0 and κ = 0

λk
i (ξ̃

k
η) = 1 +

ωk(ξ̃k
η)

|Γ(ξ̃k
η)|

1
ρ

2 ≤ i ≤ d

6: D(ξ̃k
η) =


λk
1(ξ̃

k
η) 0

. . .

0 λk
d(ξ̃

k
η)


7: Mk(ξ̃k

η) = RkEk(ξ̃k
η)D

k(ξ̃k
η)

(
Ek(ξ̃k

η)
)−1(

Rk
)T

8: end for

9: M̄(ξ) =
∏K

k=1 M
k(ξ̃k

η)

10:
¯̇
ξo =

∑K
k=1 e

− 1

σo,k (Γk(ξ̃k)−1)
ωk(ξ̃k)

(
ξ̇o,k
L + ξ̇o,k

R × ξ̃k
)

Output: ξ̇ = M̄(ξ)
(
f(.)− ¯̇

ξo
)
+

¯̇
ξo
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Figure 6.12: A conceptual sketch describing the implementation of the obstacle avoid-

ance module for robot motions. The set Υk = {Rk,ηk, ρk, κk, σo,k, ξ̇o,kL , ξ̇o,kR } contains the
corresponding properties of the k-th obstacle.
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generator algorithm (see Fig. 6.12). Generating a simple BV (e.g. an ellipsoid)

around the point cloud of an obstacle can be done quite quickly. If the object

moves very rapidly, it is recommended to set a large value for the safety margin

η and for the reactivity parameter ρ (see Section 6.3) to increase the robustness

to uncertainties.

Furthermore, when there are many obstacles in the working space of the

robot, it may not be necessary (and also computationally feasible) to track all

the obstacles all the time. Since the modulation decreases as the distance to

the obstacle increases, one could ignore all obstacles for which the associated

modulation matrices are close to identity8 (since we have lim
ξ̃k→∞

Mk(ξ̃k) = I).

By taking into account the obstacles that are locally relevant, the processing

time for the vision systems could decrease significantly. However, this will be

at the cost of imposing a small discontinuity in the robot velocity when an

obstacle is added or removed from the set of relevant obstacles. By setting a

small threshold, this discontinuity practically becomes very negligible.

6.7 Experiments

We evaluate the performance of the proposed approach in three ways:

1) On a set of theoretical autonomous and non-autonomous DS, 2) On a set of 2D

motions described by dynamical systems that are inferred from human demon-

strations, using two different learning approaches: SEDS and DMP (Ijspeert et

al., 2002a), and 3) In robot experiments performed on the 7-DoF Barrett WAM

and KUKA DLR arms. Unless otherwise specified, throughout this section we

consider ρ = κ = 1, and the state of the system is defined as either planar or

3D motions, i.e. ξ = [x y]T or ξ = [x y z]T respectively.

6.7.1 Simulation Experiments on Theoretical DS

We first evaluate our method in simulation using the motion flow f(.) that is

described by five different theoretical dynamical systems. These DS are defined

in Table 6.2 and their phase plots are illustrated in Fig. 6.13.

The first DS is globally asymptotically stable at the origin. Due to the cosine

term, this DS displays a high nonlinear behavior. The second DS is interesting

in that it has infinite number of attractors, saddle points, and unstable points.

The third DS has a stable limit cycle that includes an unstable point located at

the origin. The forth DS is globally unstable and has a unique unstable point

at the origin. Due to the sine terms, this DS also displays a high nonlinear

behavior. The fifth DS is globally unstable without any equilibrium point.

8For example, we consider the k-th obstacle is locally relevant in the current position of
the robot if: |λk

i (ξ̃
k)− 1| > ς, ∀i = 1..d, where ς is a small positive threshold.
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Table 6.2: The theoretical DS used for the Simulation Experiments

(a)

{
ẋ = −x
ẏ = −x cosx− y

(d)

{
ẋ = y − x(x2 + y sinx− 1)

ẏ = −x− y(x2 + y sinx− 1)

(b)

{
ẋ = cosx

ẏ = sin y
(e)


ẋ = |x|/2 + 1

ẏ = 0

ż = |y| cos t

(c)

{
ẋ = y

ẏ = −x+ 0.9y(1− x2)

All these DS are evaluated in the presence of multiple obstacles. For sim-

plicity, we consider two types of the 2D obstacles and one 3D obstacle, but we

use them in different scales, orientations, and reference points. These obstacles

are formulated as follows:

Obstacle #1 : Γ(ξ̃) = (x̃/0.75)4 + (ỹ/1)2 = 1

Obstacle #2 : Γ(ξ̃) =

(x̃/1.2)4 + (ỹ/0.4)2 = 1 y ≤ yo

(x̃/1.2)2 + (ỹ/1)2 = 1 y > yo

Obstacle #3 : Γ(ξ̃) =

x̃2 + (ỹ/1.4)2 + (2z̃)2 = 1 y ≤ yo

x̃2 + ỹ4 + (2z̃)2 = 1 y > yo

Considering Fig. 6.13, all obstacles can be successfully avoided in all types

of DS even in the presence of high nonlinearities and/or having several equi-

librium points. As it is expected, the multiplication of the combined dynamic

modulation matrix does not modify the original equilibrium points of the sys-

tem, and does not add any extra equilibrium point in the free space X̄ f
. The

potential spurious equilibrium points on the boundaries of obstacles are also

handled using Algorithm 6.1.

6.7.2 Simulation Experiments on SEDS and DMP

In this section we evaluate the performance of the proposed approach to generate

handwritten trajectories forming the alphabet letters ‘N’, ‘G’ and ‘J’. Each

motion was demonstrated three times. They were collected at 50Hz from pen

input using a Tablet-PC. The motions are learned using SEDS and DMP. As

outlined before, SEDS builds an estimate of the motion through an autonomous

DS ξ̇ = f(ξ), and thus in the presence of obstacle(s) it can be modulated by

following Eq. (6.25), whereas DMP models a motion as a second order DS that

takes the form of ξ̈ = g(t, ξ, ξ̇). This function can be transformed into a first

order DS via: ξ̇ = ζ

ζ̇ = g(t, ξ, ζ)
(6.30)
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Figure 6.13: Performance evaluation of the proposed obstacle avoidance module in the
presence of five complex DS. The left column shows the original DS, and the right column
illustrates the modulated DS in the presence of multiple obstacles. In this figure, stable,
unstable, and saddle points are shown in star, solid circle and hollow circle, respectively.
Obstacles are colored in green and the black dashed lines illustrate their safety margin (η = 1.2
is considered for all the obstacles). For formulation of the DS and the obstacles please refer
to the text in Section 6.7.1.
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and the modulation due to the presence of obstacle(s) can be obtained as fol-

lows9: ξ̇ = M̄(ξ̃)ζ

ζ̇ = g(t, ξ,M̄(ξ̃)ζ)
(6.31)

Fig. 6.14 illustrates the results for these motions in the presence of four dif-

ferent obstacles. In this experiment the obstacles are modeled with the following

formulations:

Case 1: Γ(ξ̃) =

(x̃/20)2 + (ỹ/10)2 = 1 x ≤ xo

(x̃/20)6 + (ỹ/10)2 = 1 x > xo

Case 2: Γ(ξ̃) =



(x̃/12)2 + (ỹ/1.6)2 = 1 x ≤ xo, y ≤ yo

(x̃/32)2 + (ỹ/1.6)2 = 1 x > xo, y ≤ yo

(x̃/32)2 + (ỹ/5.6)2 = 1 x > xo, y > yo

(x̃/12)2 + (ỹ/5.6)2 = 1 x ≤ xo, y > yo

Case 3: Γ(ξ̃) =

(x̃/12)4 + (ỹ/4)2 = 1 y ≤ yo

(x̃/12)2 + (ỹ/10)2 = 1 y > yo

Case 4: Superposition of cases 1, 2, and 3

The obstacles in cases 1 and 2 are rotated by 110 and 10 degrees, respec-

tively. We used the safety factor η = 1.3 for all the obstacle models. For both

autonomous and non-autonomous DS, the modified dynamics of the motions

successfully reach the target without hitting the obstacles. Case 4 in Fig. 6.14

shows the result for the situation where multiple objects exist in the experiment.

6.7.3 Robot Experiments

In this section we evaluate our obstacle avoidance method in six robot experi-

ments (four in the Cartesian space and two in the robot joint space) performed

on WAM and DLR arms. Depending on the experiment, the robot is kinemati-

cally controlled in either Cartesian or joint space. The controller command for

the WAM and DLR arms are sent at 500 and 1000Hz, respectively. For the

experiments in the Cartesian space, we use the damped least square pseudo-

inverse kinematics to compute the robot’s joint angles. The torque command to

the robot is computed based on the desired kinematic command using an inverse

dynamics controller. All the results illustrated in this section were recorded from

the robot.

9The same principle can be used if the SEDS motions are modeled with a second or higher
order DS.
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Figure 6.14: Performance evaluation of the proposed approach on following three patterns
in the presence of different obstacles. The motion patterns are modeled with two different
approaches: SEDS and DMP. The initial and final points of the trajectories are indicated by
solid circle and star, respectively. Please refer to the text for further information.
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6.7.3.1 Experiments in the Cartesian Space on the WAM arm

The first experiment consisted of having the robot reach for an object while avoid

hitting a table and a box. The height, length, and width of the table are 0.02,

3 and 3m respectively, and for the box these values are 0.24, 0.36, and 0.12m.

Note that we consider an extremely large value for the length and width of the

table to limit all trajectories to the region above the table. The orientation and

the position of the box are computed by detecting the four markers’ location

(blobs) placed on the box at the rate of 100 fps using two high-speed Mikrotron

MK-1311 cameras. The position and orientation of the table are fixed and are

given to the system.

In this experiment, we define the motion in the Cartesian coordinates system.

The original robot motion is learned using SEDS based on a set of demonstra-

tions (in the absence of obstacles) provided by the user. Figure 6.15 represents

the experiment set-up and the trajectories generated from the original and the

modulated dynamics of the motion. As it is expected, all reproductions from the

modified dynamics successfully avoid the box and reach the target. In this exper-

iment, the box center is initially placed at xc,B = 0.0, yc,B = −0.65, and zc,B =

0.135m with respect to the robot frame of reference. We define the box reference

point to be at xo,B = xc,B , yo,B = yc,B , and zo,B = 0, and use the analytical for-

mulation Γ(ξ̃)B : ((x−xo,B)/0.092)4+((y−yo,B)/0.23)4+((z−zo,B)/0.27)4 = 1

to model the box. The table is also modeled with xo,T = yo,T = 0, zo,T =

−0.01cm and Γ(ξ̃)T : ((x− xo,T )/3)6 + ((y− yo,T )/3)6 + ((z− zo,T )/0.01)4 = 1.

We set the safety factor of the table and the box to η = 1.3. For the box, we

consider η = [2.5 1.5 1.2]T to account for the large differences between the box

height, length, and width.

Note that, though the box and the table are connected, we can avoid the

problem highlighted in Fig. 6.8d by defining zo,B = 0. In this way, the dynamic

modulation matrix of the box always deforms trajectories towards its upper

part. Thus no local minimum can be generated at the contact edges of the box

and the table.

Adaptation to changes in the target position: To verify the adapt-

ability of the system in a dynamic environment, we perform an experiment in

which we continuously displace the target while the robot approaches it (see

Fig. 6.16). During the reproduction, the position of the target is updated based

on the output of the stereo vision system. Since the modulated dynamics pre-

serves the asymptotic stability of the model, the system can adapt its motion

on-the-fly to the change in the target position. Note that the instant adaptation

to the target position is an inherent property of the SEDS modeling. In this

experiment we are demonstrating the fact that our approach preserves all the

properties of the SEDS model, while enabling it to perform obstacle avoidance.
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(a) The experiment set-up. The upper surface of the green block corresponds to the
target point.
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Figure 6.15: Evaluation of our method in a static environment, where the WAM robot
should reach for an object while avoid hitting the table and the box. Red dashed lines and
solid blue lines correspond to the trajectories from the original and the modified dynamics,
respectively. The black area represents the box outer surface, and the green area is its esti-
mated analytical model. The light blue rectangle shows the upper surface of the table. The
initial and final points of each trajectory are indicated by a solid circle and star, respectively.
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Figure 6.16: Adaptation of the model to the changes in the target position.
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Adaptation to changes in both the target and obstacle positions: To

evaluate the performance of the system in the presence of a moving obstacle, we

extend the previous example to a case where both the target and the obstacle

positions are changed as the robot approaches the target. Please note that for

illustrative purpose, in this experiment we assume that the obstacle movement is

“quasi-static”. We will show later on in Section 6.7.3.2 an experiment where the

obstacle’s linear and angular velocity are taken into account during the collision

avoidance.

Figure 6.17 demonstrates the obtained results. In this experiment, at the

time between t = 0 and t = 6 seconds, the target is moved from its original

position first in the opposite and then along the direction of the y-axis. The

box also starts moving in the period between t = 0 and t = 2 seconds. During

the reproduction, the target position and the box center and orientation are

continuously updated based on the output of the stereo vision system. Similarly

to the previous example, the system remains robust to these changes in the

environment and successfully reaches the target.

Evaluation in a more dynamic environment: We further evaluate our

approach in a more dynamic environment where both the target and the obstacle

are quickly displaced as the robot moves toward the target. Both positions of

the target and the obstacle are detected at 100Hz. The obstacle is a ball with

radius of 5cm. We set its safety factor to η = 1.5. Note that the safety factor

of 1.5 results in a 2.5cm safety margin around the ball which is necessary to

compensate for the size of the haptic ball attached to the robot’s end-effector.

Figure 6.18 shows the experiment set-up and the obtained results. The robot

adapts on-the-fly its motion to both the obstacle and the target movement.

Evaluation in a complex environment: In this experiment we evaluate

our method in the presence of several obstacles including a desk lamp, a pile of

books, a Wall-E toy, a pencil sharpener, a book, a (red) glass, and a desk. The

task consists of having the robot place a (transparent) glass on the desk, and in

front of the person (see Fig. 6.19). The position and orientation of all the objects

except the glass are pre-set. In order to have a more realistic experiment, at

each trial we add a error vector ϵ to the predefined position of each obstacle ξo,k

to account for uncertainty in the environment, i.e. ξ̂o,k = ξo,k + ϵk. The value

of each component of the error vector ϵk is drawn from a Gaussian distribution

with N (0, 0025). The position of the glass is actively tracked through the stereo

camera described above. The maximum tracking error in sensing the glass

position is ±0.05m. The orientation of the glass is not measured, though it may

change during each trial. We approximate all the obstacles with an ellipsoid

envelope of the form
∑3

i=1(ξ̃i/ai)
2pi = 1, where ai > 0 and pi > 0 are real and

integer values, respectively. To compensate for the uncertainties, we consider a

safety factor of η = 1.5 for all the obstacles. The tail-effect of all the obstacles is

removed (i.e. κ = 0), and the reactivity to the presence of the glass is increased

by setting ρ = 2 (the default value of ρ = 1 is considered for other objects).
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Figure 6.17: Robustness of the model to the changes in the target and obstacle positions.
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(d) Illustration of the evolution of the motion along time.

Figure 6.18: Validation of the proposed method in a dynamic environment, where both
the target and the obstacle are displaced continuously. The obstacle is a ball with the radius
of 5cm. Please refer to the text for the further information.
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In this section, we report on two trials of this experiment, but we have also

included two additional trials in the accompanying video. We use the same DS

function that was described in the previous robot experiments to control the

robot motions. In the first trial, the person moves the red glass from his right

to his left hand side (i.e. along the negative direction of the y-axis) while the

robot is approaching the target point. The person intentionally moves the glass

in a way that crosses the robot trajectory to the target point (see Fig. 6.19a).

In order to avoid hitting the red glass, the robot deflects its trajectory towards

the negative direction of y-axis, and then approaches the target from its left side

(in Fig. 6.19c, see the robot trajectory along y-axis in the time period t = [3 4]

seconds).

In the second trial, the person takes the glass from its right hand side and

moves it to the target position while the robot is approaching (see Fig. 6.19b).

In this situation, the robot stops near the red glass (and the target) since it

cannot get any closer to the target (in Fig. 6.19d, see the time evolution of the

robot trajectory in the time period t = [4 6] seconds). The robot waits at this

position until the person clears the areas. When the red glass is lifted, the robot

moves towards the target point.

6.7.3.2 Experiments in the Cartesian Space on the DLR arm

In this section we evaluate our approach in the presence of a fast moving ob-

stacle, where the quasi static-assumption is no longer valid. The experiment

consisted of having the 7-DoF KUKA DLR arm stay in a default target posi-

tion while a box is slid towards the robot at high speed. Thus the robot should

react quickly and change its position so that the box passes without any collision

(see Fig. 6.20).

The KUKA robot is controlled in the Cartesian coordinate system, and the

control commands are sent at 1000Hz. A SEDS model is used to control the

robot motion by generating velocity commands to keep the robot’s end-effector

close or, when it is feasible, at the target point. We define the box reference point

at xo,B = xc,B , yo,B = yc,B , and zo,B = 0, and model it with the analytical for-

mulation Γ(ξ̃)B : ((x−xo,B)/0.055)2+((y−yo,B)/0.165)2+((z−zo,B)/0.23)4 = 1.

Other parameters are set as follows: η = [3.5 2.0 1.5]T , ρ = 2, σ = 30, and κ = 0.

The box’s position and orientation are tracked at 240Hz using an OptiTrack vi-

sion system. We use a Kalman filter to reduce the noise effect on estimations.

The working table is defined similarly to Section 6.7.3.1, and its position is set

fixed in the whole experiment.

In total we ran 20 trials, lasting between 0.8 to 1.3 seconds, in which the

box was slid from different initial configurations with various linear and angular

velocities. In each trial, the box was set to an initial distance of about 0.5

meter away from the robot and was thrusted so as to reach a maximum linear

velocity of 0.6 ∼ 1.5 m/s and/or a maximum angular velocity of 40 ∼ 120
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deg/s. In 16 out of the 20 trials, the robot successfully managed to dodge the

box. Figure 6.20 shows sequences of the motion for four of the trials. The

trajectories of the robot’s end-effector and the box, and the magnitude of the

box’s linear and angular velocities are also illustrated in Fig. 6.21.

The four failure cases could possibly be due to two factors that are not cur-

rently considered in our implementation: 1) The filtering of the object’s position

and orientation introduces a lag in determining the current linear and angular

velocities of the box. In situations where the box is moving and rotating fast

at a very close distance to the robot, the presence of this lag could yield colli-

sion with the obstacle. 2) The robot’s joints cannot move faster than a certain

value due to the hardware limitation, and hence collision with the obstacle is

inevitable. Figure 6.22 shows the sequences of the motion for one of the failure

cases. In this trial, though the avoidance seems successful at the initial stage

of the motion, the box hit the end-effector from the backside due to the wrong

estimation of the object’s angular velocity.

The first factor can be alleviated by using a more advanced filter or by in-

creasing the safety factor. However, the second case cannot be easily tackled.

Some improvements might be achieved by using a planner technique that could

take into account such hardware limitations during the path generation. How-

ever, as in the above failure situations the obstacle is moving fast at a very close

distance to the robot, this planner should be extremely fast to provide a valid

solution within an order of millisecond (recall the robot is controlled at 1000Hz).

6.7.3.3 Experiments in the Joint Space on the WAM arm

In this section, we validate our approach in d = 7 dimensions, by control-

ling this time the WAM arm’s 7 joints, i.e. ξ = [θi], i = 1..d. In the first

experiment, we use our obstacle avoidance approach to limit the movement

range in the second joint of the robot to values below −65 degrees. To reach

this goal, we define a 7-dimensional obstacle Γ(θ) =
∑7

i=1((θi − θoi )/ai)
4 with

a = [500; 2; 500; 500; 500; 500; 500], θo = [0;−63; 0; 0; 0; 0; 0], the safety factor

η = 1.2, and the reactivity ρ = 5. The original DS is defined in the joint space

and is learned based on a set of demonstrations in the robot joint space using

the SEDS learning algorithm. Figure 6.23 illustrates the generated trajectories

from the original and the modified dynamics. As it is expected, in the modified

dynamics, the robot successfully reaches the target while the value of the second

joint remains below the desired value.

In the second experiment, we use our approach to avoid two 7D spherical

obstacles defined in the robot joint space. The original robot motion is a cyclic

movement in θ1-θ2 plane with θ̇1 = θ2 and θ̇2 = −θ1+θ2(1−(θ1/5)
2) and θ̇i =

0, ∀i ∈ 3..7. The obstacles have radius of ro,1 = ro,2 = 5 degrees and are placed

in θo,1 = [−100; 45; 1; 61; 1;−29; 1] and θo,2 = [−80; 45;−1; 59;−1;−31;−1],

respectively. The safety factor of η = 1.2 is used in this experiment.
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(1) t = 0 s (2) t = 0.23 s (3) t = 0.46 s

(4) t = 0.69 s (2) t = 0.92 s (3) t = 1.15 s

(a) First trial.

(1) t = 0 s (2) t = 0.23 s (3) t = 0.46 s

(4) t = 0.69 s (2) t = 1.09 s (3) t = 1.2 s

(b) Second trial.

(1) t = 0 s (2) t = 0.2 s (3) t = 0.46 s

(4) t = 0.8 s (2) t = 1.06 ms (3) t = 1.3 s

(c) Third trial.

(1) t = 0 s (2) t = 0.2 s (3) t = 0.36 s

(4) t = 0.53 s (2) t = 0.63 ms (3) t = 0.91 s

(d) Forth trial.

Figure 6.20: Illustration of sequences of motion for 4 out of the 20 executed trials. In
this experiment the robot was required to dodge a sliding box that was launched 20 times
from different initial configurations with various linear and angular velocities. For further
information please refer to Section 6.7.3.2.
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  Initial point KUKA end−effector Trajectory Box Trajectory
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(d) Forth trial.

Figure 6.21: Illustration of trajectories of the robot’s end-effector and the box, and the
magnitude of the box’s linear and angular velocities for the four trials shown in Fig. 6.20. In
these graphs, the x, y, and z axes of the box’s frame of reference are shown with red, green,
and blue vectors, respectively. For further information please refer to Section 6.7.3.2.
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(1) t = 0 s (2) t = 0.2 s (3) t = 0.33 s

(4) t = 0.51 s (2) t = 0.82 s (3) t = 1.04 s

Collision

Figure 6.22: Illustration of sequences of motion for one of the four cases in which the robot
failed to successfully dodge the box.
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(a) Robot trajectories in the joint space.
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(b) Illustration of the robot movement in the robot task space.

Figure 6.23: Using the proposed obstacle avoidance module to limit the movement range
in the second joint of the robot to values below −65 deg. The red dashed line and the blue
solid line corresponds to the trajectories generated by the original and the modified dynamics,
respectively. The obstacle is shown in green. The initial and final points of the motion are
indicated by a solid circle and star, respectively.
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Fig. 6.24a illustrates the evolution of the motion in the absence and presence

of the obstacles. One can observe that the modulated dynamics deviates in the

presence of obstacles, and due to the induced coupling via the dynamic modula-

tion matrix10, the robot also starts showing cyclic behavior in previously static

joints, i.e. θi, i = 3..7. Figure 6.24b shows the distance to the closest obstacle

along the time. Here, one can observe that while the original motion penetrates

into the obstacle, the modulated dynamics can smoothly avoid the obstacles.

The corresponding robot motion in the task space is shown in Fig. 6.24c. Note

that this work does not claim that the cyclic behavior is always preserved in the

presence of the obstacles.

6.8 Summary and Conclusion

In this chapter, we proposed a DS-based approach to realtime obstacle

avoidance for a case where robot motions are given by autonomous or non-

autonomous DS, and the obstacle(s) are convex. The method is derived for a

d-dimensional DS, hence can be used in both the Cartesian and configuration

spaces. The proposed method can handle multiple obstacles, and do not modify

the equilibrium points of the original dynamics. However, in the presence of

obstacle(s) the method may lead to the appearance of saddle points and local

minima along the obstacles’ boundaries. These points can be tackled through

Algorithm 6.1.

The presented approach requires a global model of the environment and an

analytical modeling of the obstacles boundary. When the analytical description

of the obstacle is available, our method guarantees that all obstacles will be

avoided safely. However, the analytical equation of the obstacle or its accurate

status (i.e. position and orientation) may not be available all the time. To

generate the analytical equation, it is possible to use one of the state-of-the-

art bounding-volume algorithms (e.g. Benallegue et al. (2009); Lahanas et al.

(2000); Welzl (1991)) to approximate a convex BV on the output of the vision

system. In the worst case when there is little time to generate the bounding

volume, one could quickly fit the point cloud with an ellipsoid.

The presented algorithm is able to cope with uncertainty in the obstacle’s

position by allowing certain safety margins around the obstacle. The larger

the safety margin, the more robust the system is to uncertainty in the obstacle

position. Note that in the presence of an unforeseen object, uncertainty in the

obstacle’s position, or hardware limitations, our algorithm no longer guarantees

the safe avoidance of the obstacle, and can only strive for the best performance.

All theorems derived in this work are based on the continuous state space

assumption; however, in real experiments, robot motions are usually generated

10Note that the motions across θi, i = 3..7 would become uncoupled if the obstacles were
placed at θo,1 = [−100; 45; 0; 60; 0;−30; 0] and θo,2 = [−80; 45; 0; 60; 0;−30; 0].
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(a) Robot trajectories in the joint space. The solid black circle indicates the starting point of
the motion.
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(c) The corresponding robot motion in the task space.

Figure 6.24: Illustration of applying the obstacle avoidance module in the robot joint
space. In this figure, the red dashed line shows the original cyclic motion and the solid line
demonstrates the modulated motion in the presence of two 7D spherical obstacles with the
radius of 5 degrees. The robot motion is defined in the joint space and its evolution is shown
in (a). Please refer to the text for the further information.
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with a finite number of points (discrete modeling). Thus the choice of integration

time step is important specially in the close vicinity of the object. In fact, when

a big integration time step is used, for trajectories that are very close to an

obstacle, it is very likely that the subsequent point falls inside the obstacle due

to the integration error. In this situation, trajectories tend to remain inside

the obstacle (because the boundaries are impenetrable, no trajectory can enter

or leave the obstacle). In our experiments, we did not face such an issue by

considering the integration time steps of 0.01 and 0.002 sec in all simulations

and robot experiments, respectively.

The presented work is limited in that it can only be applied to convex shaped

obstacles. While Theorem 6.2 still holds for concave shape, the simple Algo-

rithm 6.1 to overcome local minima on the boundary can no longer apply and

an alternative solution must be sought.

The presented work considers obstacle avoidance for a point robot. However,

it is also possible to integrate other algorithms to perform collision avoidance

for the whole robot. For example, while the end-effector follows the commanded

velocity from the proposed approach, one can use the kinematics null-space to

avoid link collision (Maciejewski & Klein, 1985). An example of such an ex-

tension was implemented by Burak Zeydan as a part of his semester project

conducted under my supervision at LASA (see Appendix F for the project def-

inition). This work uses the proposed obstacle avoidance approach to guide

the robot’s end-effector, and simultaneously determines the closest point on the

robot to the obstacle(s). This point is then driven away using the remaining

degrees of freedom. Figure 6.25 shows an example of using the above procedure

to perform the whole body collision avoidance on the simulator of the Barrett

WAM arm. The simulated environment is provided by RobotToolKit11. It

should be noted that this approach is, however, subject to local minima and

convergence to the target may no longer be ensured.

11RobotToolKit is an open-source software for simulation and real time control of robotic
systems. This software was developed by Eric Sauser at LASA, EPFL
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Target

Collision with

the obstacle

(1) (2)

Obstacle

(a) In this example, even though the end-effector can successfully avoid hitting the obstacle,
it is not enough to safely avoid the collision of the whole arm with the obstacle.

Target

Closest point

to the obstacle

(1) (2) (3)

(4) (5) (6)

Obstacle

Closest point

to the obstacle

(b) In this example, the robot’s end-effector follows the proposed obstacle avoidance scheme,
and at each iteration the closest point on the robot to the obstacle (marked with the green
sphere) is computed and driven away thanks to the redundant degrees of freedom. As the
robot moves, the closest point to the obstacle may slide on the same limb or jump to another
limb.

Figure 6.25: An example illustrating the whole body collision avoidance that uses the
presented obstacle avoidance scheme to control the end-effector’s motion, and the method
described in (Maciejewski & Klein, 1985) to extend it to the whole body collision avoidance.
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Chapter 7

Conclusion

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

Alan Turing (1912-1954)

T
he work we have presented in this thesis opens new interesting doors in the

fields of machine learning and robotics. In this chapter, we provide a brief

summary of the major contributions of this work, and bring to light its main

limitations along with possible directions of improvement.

7.1 Main Contributions

The main contribution of this dissertation lies in providing a generic and

unified framework based on DS, capable of generating various robot discrete

movements ranging from simple pick and place motions to agile striking move-

ments. The learning algorithms presented in this thesis can build an estimate

of nonlinear multi-dimensional DS from a set of examples while ensuring its

global or local asymptotic stability at the target. As outlined in Chapter 3,

to date, existing DS-based approaches to encode robot motions rely either on

some heuristics with the aim to build a locally stable estimate of nonlinear

DS without any guarantee that such a model is feasible, or they depend on

a (time-dependent) switching mechanism to ensure stability by switching from

an unstable nonlinear DS to a stable linear DS. This was the first time that

a statistical-based learning algorithm was suggested which can actually ensure

global stability of nonlinear DS during the training phase.

In this thesis, we have also introduced a DS-based obstacle avoidance ap-

proach that can be integrated into the above framework in order to provide

a useful control policies when multiple static and moving objects exist in the

robot’s workspace. The proposed approach has a level of reactivity similar

to existing local obstacle avoidance methods, while it ensures convergence to
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the target proper to global obstacle avoidance techniques. As outlined before,

our contribution to obstacle avoidance is not intended to devise a new concept

that outperforms the existing approaches. Instead we aimed at providing a tech-

nique that can seamlessly integrate into the framework described above, without

compromising its features such as convergence to the target, adaptability and

robustness, reactivity, applicability to different models, etc.

The prominent features of the presented DS-based framework can be summa-

rized as follows: 1) it allows a naive user to program robots to perform discrete

movements using a natural means of demonstration, namely kinesthetic teach-

ing, 2) it generates robot motions that are inherently robust to perturbations,

and can instantly adapt to new situations in a dynamically changing environ-

ment, 3) it provides a means to perform collision avoidance in the presence of

multiple static and moving obstacles, and most importantly at the kinematic

level 4) it guarantees convergence of all trajectories to the target.

7.2 Limitations and Future Work

The limitations and drawbacks of the presented framework have already been

discussed in their corresponding chapters. In this section, we elaborate more on

some of the important limitations and provide some possible research directions

that can stem from the work conducted in this thesis.

Choice of Kinematic Representation

Throughout this thesis, we have defined robot motions at the kinematic level,

and have assumed that there is a low level tracking controller that converts

kinematic variables into motor commands. There is a limitation inherent to

this assumption: the dynamics of the robot as well as its hardware limitations

are not explicitly taken into account during motion generations with our ap-

proach. Despite the facts that 1) the robot’s hardware limitations are implicitly

considered through learning from demonstrations, and 2) the DS model can

partly compensate for deviations from the desired trajectory due to hardware

limitations by instantly adapting a new trajectory, there is yet no theoretical

proof that the whole system is capable of performing all the motions that are

generated from the learned DS.

The above concern is less problematic in fully actuated robotic systems as

compensation by DS is most of the time enough to tackle hardware limitations

(at the cost of executing the motion at a slower pace). However, this issue is

more critical when working with under-actuated robots as it may not be feasible

to control these robots in some parts of the state space. Hence, more in-depth

analysis and evaluations should be performed on this issue.

For fully actuated robots, one possible way to tackle the hardware limitations

such as velocity limits is to explicitly consider them as constraints of the learning
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techniques. Joints limits can also be formulated as the optimization’s constraints

if the task is defined in the C-space. Considering joint limits as constraints for

the tasks that are defined in the operational space is non-trivial and require

further investigations.

Another possible way that could work for both under-actuated and fully ac-

tuated robotic systems is to leverage on the notion of funnels and define the

whole task as a chain of connected funnels. The motion in each funnel can be

modeled with a DS, which acts locally within its associated region. The advan-

tage of using such modeling is that it could simplify the problem by estimating

the nonlinear dynamics of the robot with a simpler model (e.g. a linearized

model). Hence, the verification of the hardware limitations could become more

tractable.

Necessity of Following Demonstrations

Throughout this thesis we have assumed that a task’s demonstrations are con-

sistent according to Eq. (4.1), and thus variations in the demonstrations (that

passes through the same point) are only due to the noise. Based on this as-

sumption, we have presented different learning algorithms to build a DS model

of the motion so as to follow the demonstrations as accurately as possible. De-

spite showing the validity of this assumption in many robot tasks, there could

be some scenarios where the variations in the demonstrations are not only due

to the noise but also to the task null space movements. For these scenarios,

a control policy that accurately follows the observed demonstrations could be

inappropriate. Thus, to obtain a useful control policy, one should extract the

null space component from the demonstrations prior to learning the DS model.

Null space movements could be due to different reasons such as the task’s

unknown constraints. Depending on the task complexity, null space component

extraction could be very difficult and may only be feasible in particular cases.

The work by Howard et al. (2009) shows some interesting results along this

direction in which unconstrained control policies can be learned from demon-

strations that are subject to a specific class of constraints.

Besides to the cases with task null space movements, there are also other

scenarios where it may not be desirable to accurately follow the user demonstra-

tions. This could be motivated by the fact that different dynamics may require

following different trajectories to achieve the same final result, the so-called cor-

respondence problem (Dautenhahn & Nehaniv, 2002). Throughout this thesis

we have avoided addressing the correspondence problem by demonstrating mo-

tions from the robot’s point of view, i.e. by passively guiding the robot’s arm

through the task. However, in case kinesthetic demonstrations are not possible

and thus demonstrations are collected from another agent with different dy-

namics, further investigations should be done in order to obtain an appropriate

mapping between the movements of the demonstrator and the apprentice.
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Timely execution of motions

In the framework presented in this thesis, the timely execution of motions is not

explicitly encoded in the DS. Thus, our approach at its present form cannot be

used in tasks such as playing tennis or catching a flying object where timing

becomes crucial (the robot should be at a certain location, at a certain moment).

A possible way to encode this feature into our framework is to multiply the

output of the DS by a modulation factor. This factor is similar to the strength

factor that is presented in Section 5.2 with the only difference that its value now

varies with time. In this formalism, the modulation factor should be actively

updated based on the expected and the estimated time-to-reach to the target

so that the robot reaches to the rendezvous point at the desired time. Such

extension is now an ongoing research of other PhD students at LASA, and

interesting results have been obtained for catching flying objects such as a half-

filled bottle of water (S. Kim et al., 2010; S. Kim & Billard, 2012).

Online Learning

As outlined before, online learning is often crucial to allow the user to refine

the model in an interactive manner. In Section 4.6, we have presented the

SEDS-II learning algorithm that allows online learning of DS models through

the use of LWPR (or other possible regression techniques that support online

learning). However, in our approach the online learning is only at the level of the

estimation of DS, and thus the new updates through online learning might be

ignored after applying the stabilizing command. In other words, the result from

online learning is only valid if it is in accordance with the estimated metric of

stability, which is currently learned offline. In most cases, the above limitation

is not critical as there are some flexibilities in SEDS-II, which allows the output

from the DS to form an angle between −π/2 to π/2 with the gradient of the

energy function. Thus, as long as the modifications through online learning do

not fundamentally change the global features of the motion, it is very likely that

the original energy function would not impose any limitation.

Nevertheless, in cases where the above assumption is not valid, a trivial

solution is to retrain the energy function with both the old and new datasets.

Although learning of the energy function is fast (in our experiment it was on

average within a few seconds), this solution is not very elegant as 1) it requires

keeping all the training data points which could yield to some data storage

problem, and more importantly, 2) it could impose some notable discontinuities

in the robot behavior right before and after the training. The latter is due to the

fact that in case of using the WSAQF parameterization, the optimization may

converge to different locally optimal solutions at each retraining. As a result,

in order to have a full online learning support, further investigations should be

conducted to allow continuous refinement of the energy function along with the

online modification of the original DS.
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The notion of Coupled DS

Throughout this thesis, we have shown examples of motions that were per-

formed on arm manipulators with at most 7 degrees of freedom. Now assume

a more complex robotic system, for example a humanoid, with tens of degrees

of freedom. In such systems, although it is theoretically possible to model the

motions for all the degrees of freedom with a single DS, in practice, it is non-

trivial (if not impossible) to provide sufficient demonstrations to cover such a

high-dimensional state space. Apart from being practically difficult, such mod-

eling could be very inefficient as the task may not require considering correlation

across all axes in the state space.

An interesting extension to this work is to split the degrees of freedom of the

robot into a set of meaningful submanifolds (e.g. left arm, right arm, left fingers,

right fingers, and so on) and then learn the motion of each submanifold (e.g. each

limb) separately from their respective demonstrations. As successful execution

of a task may require proper coordination between all these submanifolds, a

set of coupling terms should be also considered to model spatial correlations

between these submanifolds without compromising the global stability of the

whole system.

The above extension is currently an ongoing research of other PhD students

at LASA, and preliminary results have been obtained for reach-to-grasp motions

(Shukla & Billard, 2012b). In this work, the hand and the fingers are driven

with two separate SEDS models. The introduction of the coupling term between

these two DS models allows the robot to seamlessly and rapidly adapt the finger

motion in coordination with the hand postures.

Multi-attractors DS

Another natural extension to the single attractor DS that is developed in this

thesis is to have different attractor topologies in the form of multiple-discrete

attractors and continuous attracting surfaces. Such extension have a direct

application in grasping complex objects where several grasping postures may

exist. Depending on the current state of the robot, one may prefer one of

these postures (attractors) to others. Modeling all these attractors in a single

DS is advantageous as it would enable realtime switching between attractors

in the case of perturbations. Current work by another PhD student at LASA

studies this approach using an augmented-SVM model to partition the region of

attraction of each target point. At each partition, a SEDS model is used to derive

the motions, and further constraints are derived to ensure that the generated

trajectories from SEDS models do not cross the boundaries and remains within

the partition of their corresponding attractors, see (Shukla & Billard, 2012a) for

further details.
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Whole body Obstacle avoidance

The presented work considers obstacle avoidance for a point robot. Though

a trivial solution for performing the whole body collision avoidance can be

achieved by exploiting the kinematic null-space in case of redundant manip-

ulators (see Appendix F for the project definition), global convergence to the

target can no longer be ensured. Although there are other techniques to avoid

link collision (e.g. the elastic band approach), to the best of our knowledge,

there is yet no DS-based obstacle avoidance technique with this feature. Due

to the promising properties of DS-based approaches, it would be an interesting

research direction to extend the presented approach for the whole body collision

avoidance while ensuring the global convergence to the target (if the target is

reachable).

Learning of Hitting parameters

In Chapter 5, we have extended our formulations to perform hitting motions.

We have evaluated this approach in the context of playing minigolf on a flat

field, and have provided a possible mechanism for its adaptation to hit the ball

at a desired speed and direction. As outlined in Section 5.1, performing hitting

motions in tasks such as minigolf requires two parts: 1) a basic hitting motion

model, 2) a set of valid hitting parameters. While learning of the former has

been covered in this thesis, further work should be done along the latter for

fulfilment of a task’s requirement (for example sinking the ball in minigolf).

A preliminary study of this question was conducted as a master thesis di-

rected under my supervision. In this study, we proposed and compared two sta-

tistical methods, GMR and GPR, to learn a model of hitting parameters from a

set of demonstrations. The training set was collected with the aid of a teacher

specifying good values for some different hitting locations. The learned models

then were used to infer hitting parameters for unseen hitting locations. We

validated the presented approach on the Barrett WAM arm in playing minigolf

on two advanced fields. A summary of this study is provided in Appendix D.

Another research attempt was also carried out in our laboratory as a student

semester project, conducted under my co-supervision, to play minigolf when

one or more obstacles were present on the field (see Appendix F for the project

definition). In this situations, the robot should be able to adopt different hitting

strategies based on the configuration of objects, the position of the hole and the

ball on the field.

7.3 Final Words

During the last four years, I have put a considerable amount of efforts into

endowing robots with an inkling of the coordination abilities that we humans

take for granted. I have found the DS approach an amazing way of modeling
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robot motion primitives due to the inherent robustness, reactivity, and adapt-

ability that it offers. However, there is a key missing feature in the current

implementation of DS-based approaches. I would call it “smartness” and define

it, with gross simplification, as the combination of the abilities to autonomously

1) generate a library of motion primitives, 2) combine and/or sequence motion

primitives to perform more complex tasks, and 3) switch between them in case

of perturbations.

Throughout this thesis we have assumed that all demonstrations are nicely

trimmed so that the first and last points in each demonstration correspond to

the onset and the end of the desired motion, respectively. But, in many real-

life situations, the robot may face demonstrations of a complex task that can

be decomposed into a sequence of basic motions. It would be advantageous if

the robot could autonomously segment these demonstrations into their basic

components and use these either to learn a new motion primitive or to adapt a

previously learned model.

Sequencing of motion primitives is also a key requirement in order to avoid

storing a large library of motion primitives, as well as to perform complex tasks

in a more efficient way. The ability to switch between motion primitives could

be essential in the case of perturbations. If the working environment of the

robot significantly changes during the execution of a task, it might be better to

choose an alternative motion primitive rather than insisting on executing the

current one.

Despite many works that have been done on segmenting and sequencing

motions, only a few DS-based approaches have been developed so far on these

topics, and with very limited capability. I believe further researches should

be envisaged along this direction in order to bring us closer to our vision of

having smart robotic systems with a high level of adaptability, reactivity, and

robustness.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 4.1

First, without loss of generality, we can assume that the target ξ∗ is located

at the origin. We start the proof by recalling the following from (Pettersson &

Lennartson, 1997; Borne & Dieulot, 2005). Suppose there exist a continuously

differentiable nonlinear system for which a piecewise Lyapunov function V k(ξ)

is defined for each subdomain Ωk, k = 1..K. If ∀ξ ∈ Ωk there exist positive

constants αk, βk, and s > 0 such that:

αk∥ξ∥s ≤ V k(ξ) ≤ βk∥ξ∥s ∀ξ ∈ Ωk, k = 1..K (A.1a)

V̇ k(ξ, ξ̇) < 0 ∀ξ ∈ Ωk \ 0, k = 1..K (A.1b)

V k(ξ) < V k−1(ξ) ∀ξ ∈ Φk, k = 2..K (A.1c)

V K(0) = 0 (A.1d)

V̇ K(0) = 0 (A.1e)

then the origin (ξ∗ = 0) is asymptotically stable in the sense of Lyapunov1.

Consequently, given a system described by Eq. (4.17), and a positive scalar bk,

for every subregion Ωk, we define a Lyapunov function V k(ξ) of the form:V 1(ξ) = 1
E1(ξ) + ρ1 ∀ξ ∈ Ω1

V k(ξ) = Ek−1(ξ)
Ek(ξ)

+ ρk ∀ξ ∈ Ωk, k ∈ 2..K
(A.2)

where Ek(ξ) = e−
1
2 (ξ−µk

ξ)
T (Σk

ξ)
−1(ξ−µk

ξ), ∀k ∈ 1..K. Note that by construction

V k(ξ) is positive, bounded, continuous and continuously differentiable in Ωk,

∀k = 1..K. It can be easily shown that there always exist positive scalar αk and

βk such that conditions Eq. (A.1a) is satisfied. Similarly, one can find a set of

positive scalar ρk to satisfy condition Eqs. (A.1c) and (A.1d).

In order to ensure Eq. (A.1b), we start by taking the derivative of V k: 2

V̇ k(ξ, ξ̇) =
Ėk−1(ξ, ξ̇)Ek(ξ)− Ek−1(ξ)Ėk(ξ, ξ̇)(

Ek(ξ)
)2 (A.3)

1Regarding the system described in Section 4.4.1, the only possible transitions are from
subregions Ωk to Ωk+1 via hyperplanes Φk (see Eq. (4.18c)), which results in having only one
transition through each Φk.

2Note that both V and E are a function of ξ while their derivatives are a function of both
ξ and ξ̇.
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V̇ k(ξ, ξ̇) is ensured to be negative definite in each subregion Ωk if:

V̇ k(ξ, ξ̇) < 0

⇔ Ėk−1(ξ, ξ̇)Ek(ξ)− Ek−1(ξ)Ėk(ξ, ξ̇) < 0

⇔ Ėk−1(ξ, ξ̇)

Ek−1(ξ)
<
Ėk(ξ, ξ̇)

Ek(ξ)

⇔
∂Ek−1(ξ)

∂ξ ξ̇

Ek−1(ξ)
<

∂Ek(ξ)
∂ξ ξ̇

Ek(ξ)

⇔
−(ξ − µk−1

ξ )T (Σk−1
ξ )−1Ek−1(ξ)ξ̇

Ek−1(ξ)
<

−(ξ − µk
ξ)

T (Σk
ξ)

−1Ek(ξ)ξ̇

Ek(ξ)

⇔ (ξ − µk−1
ξ )T (Σk−1

ξ )−1ξ̇ > (ξ − µk
ξ)

T (Σk
ξ)

−1ξ̇ (A.4)

Similarly, in Ω1 we have:

V̇ 1(ξ, ξ̇) < 0 ⇔ (ξ − µ1
ξ)

T (Σ1
ξ)

−1ξ̇ < 0 (A.5)

The conditions given by Eqs. (A.4) and (A.5) are satisfied as they are im-

posed as hard constraints when building an estimate of the DS (see Eq. (4.18b)).

Hence, the condition given by Eq. (A.1b) is satisfied over the region D.

Finally, following the derivation carried out above, the condition given by

Eq. (A.1e) holds if the velocity ξ̇ vanishes at the target ξ∗ = 0 ∈ ΩK . Solving

Eq. (4.17) for ξ̇ = f(0) = 0 yields:

hK−1(0)bK−1 + hK(0)bK = 0

Substituting bk with its equivalence from Eq. (4.9) and using the stability

condition given by Eq. (4.18a), we obtain f(0) = 0, and by extension V̇ K(0) =

0. Note that without having this condition, it is impossible to find appropriate

αk, βk, and s > 0 to bound the Lyapunov function around the origin.

Thus the conditions given by Eq. (A.1) are satisfied over the region D, and

thus the DS f(ξ) is locally asymptotically stable at the target ξ∗.

A.2 Proof of Theorem 4.2

We start the proof by recalling the Lyapunov conditions for asymptotic stability

of an arbitrary autonomous DS (Slotine & Li, 1991):

Lyapunov Stability Theorem: A dynamical system determined by the func-

tion ξ̇ = f(ξ) is globally asymptotically stable at the point ξ∗ if there exists a

continuous and continuously differentiable Lyapunov function V (ξ) : Rd → R
such that:

V (ξ) > 0 ∀ξ ∈ Rd \ ξ∗ (A.6a)

V̇ (ξ) < 0 ∀ξ ∈ Rd \ ξ∗ (A.6b)

V (ξ∗) = 0 (A.6c)

V̇ (ξ∗) = 0 (A.6d)
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Consider a Lyapunov function V (ξ) of the form:

V (ξ) =
1

2
(ξ − ξ∗)T (ξ − ξ∗) ∀ξ ∈ Rd (A.7)

First observe that V (ξ) is a quadratic function and hence satisfies the condi-

tion given by Eq. (A.6a). Considering Eqs. (4.9) and (4.23), the condition given

by Eq. (A.6b) follows from taking the first derivative of V (ξ) with respect to

time, we have:3

V̇ (ξ) =
dV

dt
=
dV

dξ

dξ

dt

=
1

2

d

dξ

(
(ξ − ξ∗)T (ξ − ξ∗)

)
ξ̇

= (ξ − ξ∗)T ξ̇ = (ξ − ξ∗)Tf(ξ)

= (ξ − ξ∗)T
K∑

k=1

hk(ξ)(Akξ + bk)︸ ︷︷ ︸
=ξ̇ (see Eq. (4.10))

= (ξ − ξ∗)T
K∑

k=1

hk(ξ)
(
Ak(ξ − ξ∗) + Akξ∗ + bk︸ ︷︷ ︸

=0 (see Eq. (4.23a))

)

= (ξ − ξ∗)T
K∑

k=1

hk(ξ)Ak(ξ − ξ∗)

=
K∑

k=1

hk(ξ)︸ ︷︷ ︸
hk>0

(ξ − ξ∗)TAk(ξ − ξ∗)︸ ︷︷ ︸
<0 (see Eq. (4.23b))

(A.8)

< 0 ∀ξ ∈ Rd \ ξ∗

Conditions given by Eqs. (A.6c) and (A.6d) is satisfied when substituting ξ = ξ∗

into Eqs. (A.7) and (A.8):

V (ξ∗) =
1

2
(ξ − ξ∗)T (ξ − ξ∗)

∣∣∣∣
ξ=ξ∗

= 0 (A.9)

V̇ (ξ∗) =

K∑
k=1

hk(ξ)(ξ − ξ∗)TAk(ξ − ξ∗)

∣∣∣∣∣
ξ=ξ∗

= 0 (A.10)

Therefore, an arbitrary ODE function ξ̇ = f(ξ) given by Eq. (4.10) is glob-

ally asymptotically stable if conditions of Eq. (4.23) are satisfied.

A.3 Proof of Theorem 4.3

Following the Lyapunov stability theorem introduced in Section 2.1, the DS ξ̇ =

f̃(.) that is given by Eq. (4.32) and its evolution in time is computed according

to Eq. (4.3) is globally asymptotically stable if we could verify V̇ (ξ;θ) < 0,

3Note that V̇ is a function of both ξ and ξ̇. However, since ξ̇ can be directly expressed in
terms of ξ using Eq. (4.10), one can finally infer that V̇ only depends on ξ.
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∀ξ ∈ Rd\ξ∗, and V̇ (ξ∗;θ) = 0. By applying the chain rule and using Eqs. (4.32),

(4.34) and (4.42) to (4.46) we have:

V̇ (.) = ∇ξV (.)T ξ̇ = ∇ξV (.)T f̃(.) = ∇ξV (.)T
(
f(.) + u(.)

)
= ∇ξV (.)Tf(.)− ϕ(.)

(
α(.) + ρ(.)

)
∇ξV (.)T ῡ(.)

= ∥∇ξV (.)∥∇ξV (.)Tf(.)

∥∇ξV (.)∥
− ϕ(.)

(
α(.) + ρ(.)

)∇ξV (.)T∇ξV (.)

∥∇ξV (.)∥

= α(.)∥∇ξV (.)∥ − ϕ(.)
(
α(.) + ρ(.)

)
∥∇ξV (.)∥

= α(.)
(
1− ϕ(.)

)
∥∇ξV (.)∥ − ϕ(.)ρ(.)∥∇ξV (.)∥

=
(
α(.)

(
1− ϕ(.)

)
− ϕ(.)ρ(.)

)
∥∇ξV (.)∥ (A.11)

To verify the negativity of V̇ (.) in Rd\ξ∗, we consider three cases based on

the value of α(.):

1. For α(.) < −π/τ : Considering Eq. (4.45), ϕ(.) = 0 and thus the first and

second terms are always negative and zero, respectively.

2. For −π/τ ≤ α(.) ≤ 0: First observe that ρ(.) > 0 and that 0 ≤ ϕ(.) ≤ 1.

In this case each term in Eq. (A.11) is less than or equal to zero, and the

net effect of both terms are always less than zero.

3. For α(.) > 0: For positive values of α we have ϕ(.) = 1. Therefore the first

term is always zero and the second term is less than zero which verifies

V̇ (.) < 0.

Thus the rate of change in energy function is always negative ∀ξ ∈ Rd\ξ∗.
At the target point, by construction we have ∇ξV (ξ∗;θ) = 0 which verifies

V̇ (ξ∗;θ) = 0 (see Eq. (4.38)).

Note that for non-autonomous DS, further evaluation should be done in

order to ensure global uniform asymptotic stability at ξ∗. First observe that

in our formulation both the energy function and the target point are time-

invariant, but the time derivative of the energy function is time-dependent since
d
dtV (ξ;θ) = ∇V (ξ;θ)T f̃(t, ξ) = V̇ (t, ξ;θ). Let us now consider an arbitrary

initial point ξ(0) with its associated energy function V (ξ(0);θ). If ξ(0) = ξ∗,

then ξ(t) = ξ∗ for all t because otherwise V (ξ;θ) would have to increase which

contradicts the previous proof. If ξ(0) ̸= ξ∗, then V (ξ(t);θ) decreases strictly,

hence the whole trajectory lies in the bounded level set defined by V (ξ;θ) =

V (ξ(0);θ). Now, let us define the subset of points Sε for some ε > 0 by:

Sε = {ξ ∈ Rd | ε ≤ V (ξ;θ) ≤ V (ξ(0);θ)} (A.12)

Sε is a bounded and closed set. Therefore any continuous function on Sε

takes its maximum within Sε. If we define:

mε = max
ξ∈Sε, t∈[0 ∞)

V̇ (t, ξ(t);θ) (A.13)
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then mε < 0 because ξ∗ /∈ Sε and V̇ (t, ξ(t);θ) < 0, ∀ξ ∈ Rd \ ξ∗. Thus, we

have:

V̇ (t, ξ(t);θ) ≤ mε < 0 ⇒ V (ξ(t);θ) ≤ V (ξ(0);θ) +mεt (A.14)

as long as ξ(t) ∈ Sε. However since V (ξ(t);θ) > 0, this can only be true

for a finite interval of time. Consequently, there is a time tε < ∞ such that

V (ξ(t);θ) < ε for some t > tε. Since this is true for any ε > 0, we have

lim
t→∞

V (ξ(t);θ) = 0, and thus by extension lim
t→∞

ξ(t) = ξ∗. Furthermore, as the

above conclusion is true ∀ξ(0) ∈ Rd, the system is globally uniformly asymp-

totically stable at the target.

A.4 Proof of Theorem 6.1

Consider a hyper-surface X b ⊂ Rd corresponding to boundary points of a hyper-

sphere obstacle in Rd with a center ξo and a radius ro. Impenetrability of

the obstacle’s boundaries is ensured if the normal velocity at boundary points

ξb ∈ X b vanishes:

n(ξb)T ξ̇b = 0 ∀ξb ∈ X b (A.15)

where n(ξb) is the unit normal vector at a boundary point ξb:

n(ξb) =
ξb − ξo

∥ξb − ξo∥
ξ̃b=ξb−ξo

−−−−−−→ n(ξb) =
ξ̃b

ro
∀ξb ∈ X b (A.16)

The eigenvalue decomposition of the square matrix M s(ξ̃, ro) is given by:

M s(ξ̃, ro) = V s(ξ̃, ro)Ds(ξ̃, ro) V s(ξ̃, ro)(−1) (A.17)

where Ds(ξ̃, ro) is a d× d diagonal matrix composed of the eigenvalues:λ1 = 1− (ro)2

ξ̃T ξ̃

λi = 1 + (ro)2

ξ̃T ξ̃
∀i ∈ 2..d

(A.18)

and V s(ξ̃, ro) = [υ1 · · · υd] is the matrix of eigenvectors with:

υ1 = ξ̃

υi
j =


−ξ̃i j = 1

ξ̃1 j = i

0 j ̸= 1, i

∀i ∈ 2..d, j ∈ 1..d
(A.19)

Substituting Eqs. (6.4), (A.16) and (A.17) into Eq. (A.15) yields:

n(ξb)T ξ̇b =
(ξ̃b)T

r
V s(ξ̃b, ro)Ds(ξ̃b, ro) V s(ξ̃b, ro)(−1)f(.) (A.20)
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Since ξb is equal to the first eigenvector of V s(ξ̃b, ro), Eq. (A.20) reduces to:

n(ξb)T ξ̇b =

[
ro

[0]d−1

]T
Ds(ξ̃b, ro) V s(ξ̃b, ro)(−1)f(.) (A.21)

where [0]d−1 is a zero column vector of dimension d − 1. For all points on the

obstacle boundary, the first eigenvalue is zero, i.e. λ1 = 0, ∀ξb ∈ X b. Thus, we

have:

n(ξb)T ξ̇b = [0]Td V
s(ξ̃b, ro)(−1)f(.) = 0 (A.22)

A.5 Proof of Theorem 6.2

The proof of Theorem 6.2 follows directly from that of Theorem 6.1:

n(ξb)TRT ξ̇b = n(ξb)T RTR︸ ︷︷ ︸
I

E(ξ̃b, ro)D(ξ̃b, ro)E(ξ̃b, ro)(−1)RTf(.) (A.23)

Considering the fact that n(ξb) is equal to the first eigenvector of E(ξ̃b, ro),

and the first eigenvalue is zero for all points on the obstacle boundary yields:

n(ξb)T ξ̇b =

[
1

[0]d−1

]T
D(ξ̃b, ro)E(ξ̃b, ro)(−1)f(.)RT

= [0]Td E(ξ̃b, ro)(−1)RTf(.) = 0 (A.24)
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Appendix B

Qualitative Comparison
across BM, SEDS, and

SEDS-II on the Library of
2D Handwriting Motions

T
his appendix provides supplementary results to Section 4.7 on the estimate

of 20 human handwriting motions. The comparison was made between

BM, two variants of SEDS, and four variants of SEDS-II. The demonstrations

are collected from pen input using a Tablet-PC. For each motion, the evalu-

ation is made on a set of six test trajectories that are spread in between and

outside the training trajectories. The training and test trajectories are shown

in Fig. 4.35. The qualitative comparison across these approaches are provided

in Figs. B.1 to B.7. For information about the quantitative comparison between

these methods, please refer to Section 4.7.

  Target Training Data Reproductions Initial points D

ξ
2

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.1: Qualitative performance evaluation of BM in learning 20 nonlinear 2D motions.
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ξ
2

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.2: Qualitative performance evaluation of SEDS-Likelihood in learning 20 nonlin-
ear 2D motions.

ξ
2

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.3: Qualitative performance evaluation of SEDS-MSE in learning 20 nonlinear 2D
motions.
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ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.4: Qualitative performance evaluation of SEDS-II with GMR encoding in learning
20 nonlinear 2D motions.
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ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.5: Qualitative performance evaluation of SEDS-II with LWPR encoding in learn-
ing 20 nonlinear 2D motions.
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ξ1 ξ1 ξ1 ξ1

Figure B.6: Qualitative performance evaluation of SEDS-II with GPR encoding in learning
20 nonlinear 2D motions.
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ξ1 ξ1 ξ1 ξ1

ξ1

ξ
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ξ1 ξ1 ξ1 ξ1

ξ1

ξ
2

ξ1 ξ1 ξ1 ξ1

Figure B.7: Qualitative performance evaluation of SEDS-II with SVR encoding in learning
20 nonlinear 2D motions.
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Appendix C

Analytical Computation of
Derivatives for SEDS

T
his technical report provides supplementary information for the SEDS opti-

mization problems defined in Section 4.5. Reading of this appendix is not

necessary for researchers who only want to use SEDS learning algorithm. This

appendix is aimed at helping those who want to develop SEDS, or to write their

own optimization program. All the formulations reported here are developed for

SEDS models; however, they can also be used for general GMM formulations.

In the case of the latter, they should be slightly modified to consider the general

form of GMM. Hopefully, this appendix would be clear enough to help readers

for doing that.

To facilitate reading of this section, a list of main variables and mathematical

notations is provided in Table C.1. Furthermore, to have a clean summary of

the final results, all the derivatives are summarized in Tables C.2 to C.6.

The remainder of this document is structured as follows. Appendices C.1

and C.3 provide analytical formulations to compute the derivatives of MSE and

Likelihood cost functions with respect to the optimization parameters, respec-

tively. In addition, Appendices C.2 and C.4 present two alternative optimization

problems that automatically satisfy 4 out of 5 constraints of the original opti-

mization problem through a change of variable. Finally, Appendix C.5 provides

the analytical derivatives of the optimization’s constraints with respect to the

optimization parameters.
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Table C.1: Nomenclature

Variable Type (size) Description

d Scalar Dimension of DS

ξ Vector (d) Input variable, e.g. position

ξ∗ Vector (d) Target point

ξ̇ Vector (d) Output variable, e.g. velocity

π Scalar Prior of the Gaussian function

µ Vector (2d) Center of the Gaussian function

Σ Matrix (2d× 2d) Covariance matrix of the Gaussian function

f Function (d 7→ d) Unknown original DS

J Scalar Optimization cost function

θ Structure Optimization parameters

L Matrix (2d× 2d) Lower triangle matrix

A Matrix (d× d) Matrix of the linear DS

b Vector (d) Intersection point of the linear DS

I Matrix Identity matrix

0 Vector Zero vector

K Scalar Number of Gaussian functions

N Scalar Number of demonstrations

T Scalar Total number of training data points

Notation Description

(.)k Of the k-th Gaussian function

(.)T Transpose of a Vector/matrix

(.)t,n The t-th datapoint of the n-th demonstration

(.)i The i-th component of a vector

(.)ij The (i, j)-th component of a matrix

(vec)ξ Sub-vector of vec with indices 1 :d

(vec)ξ̇ Sub-vector of vec with indices d+1:2d

(mat)ξ Sub-matrix of mat with indices (1 :d, 1:d)

(mat)ξ̇ξ Sub-matrix of mat with indices (d+1:2d, 1:d)

(.)1:c,1:c A slice of a matrix with indices (1 :c, 1:c)

0{i} A zero vector with the exception that its i-th component is 1

0{ij} A matrix of zeros with the exception that its (i, j)-th comp. is 1

0{ij} A matrix of zeros with the exception that its (i, j) and (j, i)-th
components are one.

adj(.) Adjugate of a matrix

tr(.) Trace of a matrix

ln(.) The natural logarithm

Chol(.) Cholesky decomposition of a matrix
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Table C.2: Derivatives of the MSE cost function (taken from Appendix C.1).

θ = {π1..πK ;µ1
ξ..µ

K
ξ ;Σ1

ξ..Σ
K
ξ ;Σ1

ξ̇ξ
..ΣK

ξ̇ξ
}

Cost function: minθ J(θ) = 1
2T
∑N

n=1

∑Tn

t=0(ξ̇
t,n − ξ̇t,n)T (ξ̇t,n − ξ̇t,n)

Indices range: k ∈ 1..K, i ∈ 1..d

∂J
∂πk = 1

πkT
∑N

n=1

∑Tn

t=0 h
k(ξt,n)(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n)

∂J
∂µk

ξ,i

= 1
T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−10{i}

)
(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n)

∂J
∂Σk

ξ,ij

= 1
2T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)(ξ̇t,n − ξ̇t,n)T

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−10{ij}(Σk

ξ)
−1(ξt,n −

µk
ξ)(A

kξt,n−ξ̇t,n)−tr
(
(Σk

ξ)
−10{ij})(Akξt,n−ξ̇t,n)−2Ak0{ij}(Σk

ξ)
−1ξt,n

)
j ∈ 1..i

∂J
∂Σk

ξ̇ξ,ij

= 1
T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)(ξt,n − µk

ξ)
T 0{ij}(Σk

ξ)
−1ξt,n j ∈ 1..d

C.1 Mean Square Error Optimization

Mean Square Error (MSE) is a means to quantify the accuracy of estimations

based on demonstrations, and it is defined as:

min
θ
J(θ) =

1

2T

N∑
n=1

Tn∑
t=0

(ξ̇t,n − ξ̇t,n)T (ξ̇t,n −−ξ̇t,n) (C.1)

subject to

bk = −Akξ∗ (C.2a)

Ak + (Ak)T ≺ 0 (C.2b)

Σk
ξ ≻ 0 (C.2c)

0 < πk ≤ 1 (C.2d)

K∑
k=1

πk = 1 (C.2e)

where ξ̇t,n = f(ξt,n) are computed from Eq. (4.10), and T =
∑N

n=1 T
n is

the total number of training data points. Note that Eq. (C.2) is obtained by

substituting Eq. (4.9) into Eq. (4.25). The optimization parameters for this

objective function are: θ = {π1..πK ;µ1
ξ..µ

K
ξ ;Σ1

ξ..Σ
K
ξ ;Σ1

ξ̇ξ
..ΣK

ξ̇ξ
}. Solving the

above optimization requires a user to provide the derivative of the cost function

w.r.t. the optimization parameters. These derivatives are provided next.
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Table C.3: Derivatives of the alternative MSE cost function (taken from Appendix C.2).

θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1

ξ..L
K
ξ ;A1..AK}

Cost function: minθ J(θ) = 1
2T
∑N

n=1

∑Tn

t=0(ξ̇
t,n − ξ̇t,n)T (ξ̇t,n − ξ̇t,n)

Indices range: k ∈ 1..K, i ∈ 1..d

Change of variables: π̃k = ln(πk), Lk
ξ = Chol(Σk

ξ)

∂J
∂π̃k = 1

T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n)

∂J
∂µk

ξ,i

= 1
T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−10{i}

)
(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n)

∂J
∂Lk

ξ,ij

= 1
2T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−1Φ(Σk

ξ)
−1(ξt,n − µk

ξ)− · · ·

tr
(
(Σk

ξ)
−1Φ

))
(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n)

where Φ = 0{ij}(Lk
ξ)

T +Lk
ξ(0

{ij})T j ∈ 1..i

∂J
∂Ak

ij

= 1
T
∑N

n=1

∑Tn

t=0 h
k(ξt,n)(ξt,n − µk

ξ)
T 0{ij}ξt,n j ∈ 1..d

Reconstruction of GMM from the optimization parameters:

πk = eπ̃
k
/(
∑K

i=1 e
π̃i

), Σk
ξ = Lk

ξ(L
k
ξ)

T , Σk
ξ̇ξ

= AkΣk
ξ

Table C.4: Derivatives of the Likelihood cost function taken from Appendix C.3.

θ = {π1..πK ;µ1
ξ..µ

K
ξ ;Σ1..ΣK}

Cost function: minθ J(θ) = − 1
T
∑N

n=1

∑Tn

t=0 logP([ξt,n; ξ̇t,n]|θ)

Indices range: k ∈ 1..K

∂J
∂πk = − 1

T
∑N

n=1

∑Tn

t=0

(P([ξt,n;ξ̇t,n]|k)
Pt,n − 1

)
∂J

∂µk
ξ,i

= − 1
T
∑N

n=1

∑Tn

t=0
P(k)P([ξt,n;ξ̇t,n]|k)

Pt,n (0{i})T
[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
∂J

∂Σk
ij

= − 1
2T
∑N

n=1

∑Tn

t=0
P(k)P([ξt,n;ξ̇t,n]|k)

Pt,n

(
(ξt,n−µk)T (Σk)−10{ij}(Σk)−1(ξt,n−µk)−

tr
(
(Σk)−10{ij})+ 2(ξt,n −µk)T (Σk)−1Sk

)
∀i ∈ 1..2d, j ∈ 1..i

where Sk =

[
0(

−Ak
[
0{ij}]

ξ
+
[
0{ij}]

ξ̇ξ

)
(Σk

ξ)
−1µk

ξ

]

192



Table C.5: Derivatives of the Likelihood cost function taken from Appendix C.4.

θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1..LK}

Cost function: minθ J(θ) = − 1
T
∑N

n=1

∑Tn

t=0 logP([ξt,n; ξ̇t,n]|θ)

Indices range: k ∈ 1..K

Change of variables: π̃k = ln(πk), Lk = Chol(Σk)

∂J
∂π̃k = − eπ̃

k

T
∑N

n=1

∑Tn

t=0

(P([ξt,n;ξ̇t,n]|k)
Pt,n − 1

)
∂J

∂µk
ξ,i

= − 1
T
∑N

n=1

∑Tn

t=0
P(k)P([ξt,n;ξ̇t,n]|k)

Pt,n (0{i})T
[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
∂J

∂Lk
ij

= − 1
2T
∑N

n=1

∑Tn

t=0
P(k)P([ξt,n;ξ̇t,n]|k)

Pt,n

(
(ξt,n − µk)T (Σk)−1Φ(Σk)−1(ξt,n − µk) · · ·

−tr
(
(Σk)−1Φ

)
+ 2(ξt,n − µk)T (Σk)−1S̃k

)
i ∈ 1..2d, j ∈ 1..i

where Φ = 0{ij}(Lk)T +Lk(0{ij})T , S̃k
=

[
0(

−AkΦξ +Φξ̇ξ

)
(Σk

ξ)
−1µk

ξ

]
Reconstruction of GMM from the optimization parameters:

πk = eπ̃
k
/(
∑K

i=1 e
π̃i

), Σk = Lk(Lk)T

Table C.6: Constraints formulation and their derivatives for the alternative Likelihood and
MSE cost functions taken from Appendix C.5.

Indices range: k ∈ 1..K, c ∈ 1..d

Constraint: Ak + (Ak)T ≺ 0

The equivalence of the constraint used in the code: C(k−1)d+c : (−1)c+1 |B1:c,1:c| < 0

∂C(k−1)d+c

∂π̃k = 0 (valid for both the MSE and Likelihood cost functions)

∂C(k−1)d+c

∂µk
i

= 0 i ∈ 1..d (valid for both the MSE and Likelihood cost functions)

The derivatives specific to the MSE cost function:

∂C(k−1)d+c

∂Lk
ij

= 0 i ∈ 1..d, j ∈ 1..d

∂C(k−1)d+c

∂Ak
ij

= (−1)c+1tr
(
adj

(
B1:c,1:c

)[
0{ij}]

1:c,1:c

)
i ∈ 1..d, j ∈ 1..d

The derivative specific to the Likelihood cost function:

∂C(k−1)d+c

∂Lk
ij

= (−1)c+1tr
(
adj

(
B1:c,1:c

)
X 1:c,1:c

)
i ∈ 1..2d, j ∈ 1..i

whereΦ = 0{ij}(Lk)T+Lk(0{ij})T , Ψ =
(
−AkΦξ+Φξ̇ξ

)
(Σξ)

−1, X = Ψ+(Ψ)T
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C.1.1 Derivatives w.r.t. πk

∂J

∂πk
=

1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂πk
∀k ∈ 1..K (C.3)

The partial derivatives ∂J
∂ξ̇t,n

and ∂ξ̇t,n

∂πk can be computed from Eqs. (C.4)

and (C.5), respectively:

∂J

∂ξ̇t,n
=

1

T
(ξ̇t,n − ξ̇t,n)T (C.4)

∂ξ̇t,n

∂πk
=
hk(ξt,n)

πk
(Akξt,n − ξ̇t,n) (C.5)

Substituting Eqs. (C.4) and (C.5) into Eq. (C.3) yields:

∂J

∂πk
=

1

πkT

N∑
n=1

Tn∑
t=0

hk(ξt,n)(ξ̇t,n − ξ̇t,n)T (Akξt,n − ξ̇t,n) (C.6)

C.1.2 Derivatives w.r.t. µk
ξ

Since µk
ξ is a d-dimensional vector, we need to compute the derivative w.r.t.

each component of µk
ξ separately:

∂J

∂µk
ξ,i

=
1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂µk
ξ,i

∀i ∈ 1..d, k = 1..K (C.7)

The partial derivative ∂J
∂ξ̇t,n

is given by Eq. (C.4), and ∂ξ̇t,n

∂µk
ξ,i

is:

∂ξ̇t,n

∂µk
ξ,i

= hk(ξt,n)
(
(ξt,n − µk

ξ)
T (Σk

ξ)
−10{i}

)
(Akξt,n − ξ̇t,n) (C.8)

where 0{i} has the dimension of d.

C.1.3 Derivatives w.r.t. µk
ξ̇

By substituting directly the constraint Eq. (C.2a) into Eq. (4.10), the partial

derivative ∂ξ̇t,n

∂µk
ξ̇,i

is always zero because f(ξ) no longer depends on µk
ξ̇
. Therefore,

µk
ξ̇,i

can be dropped from the list of the optimization parameters. In fact, at

each iteration µk
ξ̇
is exploited to satisfy this constraint, and its value can be

directly computed from Eq. (C.2a).

C.1.4 Derivatives w.r.t. Σk
ξ

Since Σk
ξ is a d× d matrix, we will compute the derivative w.r.t. its each com-

ponent separately. Since Σk
ξ is a symmetric matrix, we compute the derivatives

only for the components on the lower triangle matrix.
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∂J

∂Σk
ξ,ij

=
1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂Σk
ξ,ij


∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K

(C.9)

The partial derivative ∂ξ̇t,n/∂Σk
ξ,ij is:

∂ξ̇t,n

∂Σk
ξ,ij

= −hk(ξt,n)Ak0{ij}(Σk
ξ)

−1ξt,n + · · ·

hk(ξt,n)

2

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−10{ij}(Σk

ξ)
−1(ξt,n − µk

ξ) + · · ·

− tr
(
(Σk

ξ)
−10{ij}))(Akξt,n − ξ̇t,n) (C.10)

where 0{ij} has the dimension of d× d.

C.1.5 Derivatives w.r.t. Σk
ξ̇ξ

The partial derivatives of the cost function w.r.t. the components of Σk
ξ̇ξ

are

∂J

∂Σk
ξ̇ξ,ij

=
1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂Σk
ξ̇ξ,ij


∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K

(C.11)

The partial derivative ∂ξ̇t,n/∂Σk
ξ̇ξ,ij

is:

∂ξ̇t,n

∂Σk
ξ̇ξ,ij

= hk(ξt,n)0{ij}(Σk
ξ)

−1ξt,n (C.12)

where 0{ij} has the dimension of d× d.

C.2 Alternative MSE Optimization

Though the MSE optimization provided in Appendix C.1 is sufficient to

estimate a stable DS, its performance can be significantly increased through a

change of optimization parameters. Let us define:

π̃k = ln(πk)

Lk
ξ = Chol(Σk

ξ)
(C.13)

where Lk
ξ is a d×d lower triangle matrix. Since Σk

ξ are positive definite matrix,

their Cholesky decomposition Lk
ξ always exist. Furthermore, as it was pointed
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out before, by substituting Eq. (C.2a) into Eq. (4.10), we can define the evolution

of motion with:

ξ̇ = f(ξ) =

K∑
k=1

hk(ξ)Ak(ξ − ξ∗) (C.14)

Considering Appendix C.2 and Eq. (C.14) and defining the optimization

parameters to be θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1

ξ..L
K
ξ ;A1..AK}, the alternative MSE

optimization can be expressed as:

min
θ
J(θ) =

1

2T

N∑
n=1

Tn∑
t=0

(ξ̇t,n − ξ̇t,n)T (ξ̇t,n −−ξ̇t,n) (C.15)

subject to

Ak + (Ak)T ≺ 0 ∀k ∈ 1..K (C.16)

where ξ̇t,n = f(ξt,n) are computed from Eq. (C.14). Once the optimization

finished, the parameters of GMM can be reconstructed as follows:


πk = eπ̃

k

/(
∑K

i=1 e
π̃i

)

Σk
ξ = Lk

ξ(L
k
ξ)

T

Σk
ξ̇ξ

= AkΣk
ξ

(C.17)

In fact the proposed change of parameters allows us to automatically sat-

isfy the last three optimization constraints of Eq. (C.2). The first constraint

of Eq. (C.2) is also removed since it is directly considered in Eq. (C.14). The

derivatives of the new optimization problem are provided in the following sub-

sections.

C.2.1 Derivatives w.r.t. πk

∂J

∂π̃k
=

1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂πk

∂πk

∂π̃k
∀k ∈ 1..K (C.18)

The partial derivatives ∂J/∂ξ̇t,n and ∂ξ̇t,n/∂πk are given by Eqs. (C.4)

and (C.5), and the derivative ∂πk/∂π̃k is simply:

∂πk

∂π̃k
= eπ̃

k

(C.19)

C.2.2 Derivatives w.r.t. µk
ξ

These derivative can be similarly computed from Eq. (C.7).
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C.2.3 Derivatives w.r.t. Lk

Lk
ξ is a d× d lower triangle matrix. The partial derivatives of the cost function

w.r.t. its parameters are:

∂J

∂Lk
ξ,ij

=
1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂Lk
ξ,ij


∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K

(C.20)

The partial derivative ∂ξ̇t,n/∂Lk
ξ,ij is:

∂ξ̇t,n

∂Lk
ξ,ij

=
hk(ξt,n)

2

(
(ξt,n − µk

ξ)
T (Σk

ξ)
−1Φ(Σk

ξ)
−1(ξt,n − µk

ξ) · · ·

− tr
(
(Σk

ξ)
−1Φ

))
(Akξt,n − ξ̇t,n) (C.21)

where Φ = 0{ij}(Lk
ξ)

T +Lk
ξ(0

{ij})T , and has the dimension of d× d..

C.2.4 Derivatives w.r.t. Ak

The partial derivatives of the cost function w.r.t. the components of Ak are

∂J

∂Ak
ij

=
1

2T

N∑
n=1

Tn∑
t=0

∂J

∂ξ̇t,n
∂ξ̇t,n

∂Ak
ij


∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K

(C.22)

The partial derivative ∂ξ̇t,n/∂Ak
ij is:

∂ξ̇t,n

∂Ak
ij

= hk(ξt,n)0{ij}ξt,n (C.23)

where 0{ij} has the dimension of d× d.

C.3 Likelihood Optimization

The likelihood optimization is defined as:

min
θ
J(θ) = − 1

T

N∑
n=1

Tn∑
t=0

logP([ξt,n; ξ̇t,n]|θ) (C.24)

subject to the same constrains as given by Eq. (C.2). In the above equation,

P([ξt,n; ξ̇t,n]|θ) is given by Eq. (4.6). The optimization parameters for this

objective function are: θ = {π1..πK ;µ1
ξ..µ

K
ξ ;Σ1..ΣK}. Next we compute these

derivatives with respect to θ.
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C.3.1 Derivatives w.r.t. πk

∂J

∂πk
= − 1

T

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂πk
∀k ∈ 1..K (C.25)

where for simplicity we shorten the notation P([ξt,n; ξ̇t,n];θ) to Pt,n. The partial

derivatives ∂J
∂Pt,n and ∂Pt,n

∂πk can be computed from Eqs. (C.26) and (C.27),

respectively:

∂J

∂Pt,n
= − 1

T
1

Pt,n
(C.26)

∂Pt,n

∂πk
= P([ξt,n; ξ̇t,n]|k)−Pt,n (C.27)

Substituting Eqs. (C.26) and (C.27) into Eq. (C.25) yields:

∂J

∂πk
= − 1

T

N∑
n=1

Tn∑
t=0

(P([ξt,n; ξ̇t,n]|k)
Pt,n

− 1
)

(C.28)

C.3.2 Derivatives w.r.t. µk
ξ

Special attention should be considered in computing derivatives with respect to

µk
ξ. As it is already discussed in Appendix C.1, there is a direct relation between

µk
ξ and µk

ξ̇
through the constraint Eq. (C.2a). By substituting the corresponding

value of µk
ξ̇
into the cost function given by Eq. (C.24), the optimization no longer

depends on µk
ξ̇
. Hence, we can drop µk

ξ̇
from the optimization parameters and

the constraint Eq. (C.2a) is always satisfied. However, this substitution should

be considered when computing the derivatives with respect to µk
ξ:

∂J

∂µk
ξ,i

= − 1

T

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

(∂Pt,n

∂µk
ξ,i

+
d∑

j=1

∂Pt,n

∂µk
ξ̇,j

∂µk
ξ̇,j

∂µk
ξ,i

)
(C.29)

The partial derivative ∂J
∂Pt,n is given by Eq. (C.26), and ∂Pt,n/∂µk

ξ,i is:

∂Pt,n

∂µk
ξ,i

= (0{i})T (Σk)−1
(
[ξt,n; ξ̇t,n]− µk

)
P(k)P([ξt,n; ξ̇t,n]|k) ∀i ∈ 1..d

(C.30)

where 0{i} is a vector of dimension 2d.

The partial derivative ∂Pt,n/∂µk
ξ̇,j

can be computed similarly to Eq. (C.29);

however by replacing 0{i} with 0{i+d}.

The derivative
∂µk

ξ̇,j

∂µk
ξ,i

can be computed by differentiating Eq. (C.2a) with

respect to µk
ξ,i:

∂µk
ξ̇,j

∂µk
ξ,i

= Ak
ji ∀i ∈ 1..d, j ∈ 1..d (C.31)
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Thanks to matrix multiplication, we can significantly simplify the multipli-

cations by substituting Eqs. (C.26), (C.30) and (C.31) into Eq. (C.29), and

compute ∂J
∂µk

ξ

:

∂J

∂µk
ξ

= − 1

T

N∑
n=1

Tn∑
t=0

P(k)P([ξt,n; ξ̇t,n]|k)
Pt,n

[
I (Ak)T

]
(Σk)−1

(
[ξt,n; ξ̇t,n]− µk

)
∀i ∈ 1..d (C.32)

where I has the dimension of d×d. Note that ∂J
∂µk

ξ

is now a vector of dimension

d, and each ∂J
∂µk

ξ,i

is in fact one element of this vector.

C.3.3 Derivatives w.r.t. µk
ξ̇

By substituting directly the constraint Eq. (C.2a) into Eq. (4.10), the partial

derivative ∂Pt,n

∂µk
ξ̇,i

is always zero because f(ξ) no longer depends on µk
ξ̇
. Therefore,

µk
ξ̇
can be dropped from the list of the optimization parameters. For more

information see Appendix C.3.2.

C.3.4 Derivatives w.r.t. Σk

Similar to Appendix C.3.2, we need to consider the effect of substitution of µk
ξ̇

when computing the derivatives of Σk. All Σk are 2d× 2d symmetric matrices,

hence we compute the derivatives only for the components on the lower triangle

matrix.

∂J

∂Σk
ij

= − 1

T

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

(∂Pt,n

∂Σk
ij

+
∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk

ξ̇

)

∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K

(C.33)

where ∂Pt,n

∂Σk
ij

∣∣∣
µk

ξ̇

corresponds to the portion of derivatives due to the effect of µk
ξ̇
,

and can be computed from:

∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk

ξ̇

=
d∑

l=1

d∑
m=1

∂Pt,n

∂µk
ξ̇,l

∂µk
ξ̇,l

∂Ak
lm

∂Ak
lm

∂Σk
ij

(C.34)

The partial derivative ∂Pt,n/∂Σk
ij is:

∂Pt,n

∂Σk
ij

= 0.5
(
(ξt,n − µk)T (Σk)−10{ij}(Σk)−1(ξt,n − µk) · · ·

− tr
(
(Σk)−10{ij}))P(k)P([ξt,n; ξ̇t,n]|k) (C.35)

where 0{ij} has the dimension of 2d× 2d.
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The partial derivative ∂Pt,n

∂Σk
ij

∣∣∣
µk

ξ̇

could be significantly simplified if it is com-

puted in the matrix form (because we can drop the both summations on l and

m):

∂Pt,n

∂Σk
ij

∣∣∣∣∣
µk

ξ̇

= P(k)P([ξt,n; ξ̇t,n]|k)(ξt,n − µk)T (Σk)−1Sk (C.36)

where Sk is a vector of dimension 2d and is equal to:

Sk =

[
0(

−Ak
[
0{ij}]

ξ
+
[
0{ij}]

ξ̇ξ

)
(Σk

ξ)
−1µk

ξ

]
(C.37)

In Eq. (C.37), 0 is a zero column vector of dimension d, and 0
{ij}
ξ and 0

{ij}
ξ̇ξ

are partitions of 0{ij}. Finally, by substituting Eqs. (C.26), (C.35) and (C.36)

into Eq. (C.33) we have:

∂J

∂Σk
ij

= − 1

2T

N∑
n=1

Tn∑
t=0

P(k)P([ξt,n; ξ̇t,n]|k)
Pt,n

(
(ξt,n − µk)T (Σk)−10{ij}(Σk)−1(ξt,n − µk)

− tr
(
(Σk)−10{ij})+ 2(ξt,n − µk)T (Σk)−1Sk

)
(C.38)

C.4 Alternative Likelihood Optimization

Similarly to Appendix C.2, we can define an alternative likelihood optimiza-

tion so that 4 out of 5 optimization constraints can be automatically satisfied

through a change of variable:π̃k = ln(πk)

Lk = Chol(Σk)
(C.39)

where Lk are 2d × 2d lower triangle matrices. Since Σk are positive definite

matrices, their Cholesky decomposition always exist. The alternative likelihood

optimization can be expressed as:

min
θ
J(θ) = − 1

T

N∑
n=1

Tn∑
t=0

logP([ξt,n; ξ̇t,n]|θ) (C.40)

subject to

Ak + (Ak)T ≺ 0 ∀k ∈ 1..K (C.41)

where θ = {π̃1..π̃K ;µ1
ξ..µ

K
ξ ;L1..LK}. Once the optimization finished, the pa-
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rameters of GMM can be reconstructed as follows:πk = eπ̃
k

/(
∑K

i=1 e
π̃i

)

Σk = Lk(Lk)T
(C.42)

In fact the proposed change of parameters allows us to automatically sat-

isfy the last three optimization constraints of Eq. (C.2). The first constraint

of Eq. (C.2) is also removed since it is directly considered in Eq. (C.14). The

derivatives of the new optimization problem are provided in the following sub-

sections.

C.4.1 Derivatives w.r.t. πk

∂J

∂π̃k
= − 1

T

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂πk

∂πk

∂π̃k
∀k ∈ 1..K (C.43)

The partial derivatives ∂J/∂Pt,n, ∂Pt,n/∂πk and ∂πk/∂π̃k are given by

Eqs. (C.19), (C.26) and (C.27), respectively.

C.4.2 Derivatives w.r.t. µk
ξ

These derivative can be similarly computed from Eq. (C.29).

C.4.3 Derivatives w.r.t. Lk

Lk is a 2d×2d lower triangle matrix. The partial derivatives of the cost function

with respect to the optimization parameters are:

∂J

∂Lk
ij

= − 1

T

N∑
n=1

Tn∑
t=0

∂J

∂Pt,n

∂Pt,n

∂Lk
ij


∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K

(C.44)

The partial derivative ∂Pt,n/∂Lk
ij is:

∂J

∂Lk
ij

= − 1

2T

N∑
n=1

Tn∑
t=0

P(k)P([ξt,n; ξ̇t,n]|k)
Pt,n

(
(ξt,n − µk)T (Σk)−1Φ(Σk)−1(ξt,n − µk)

− tr
(
(Σk)−1Φ

)
+ 2(ξt,n − µk)T (Σk)−1S̃k

)
(C.45)

where Φ = 0{ij}(Lk)T +Lk(0{ij})T , and has the dimension of 2d× 2d. The 2d

dimension vector S̃k
is:

S̃k
=

[
0(

−AkΦξ +Φξ̇ξ

)
(Σk

ξ)
−1µk

ξ

]
(C.46)

where 0 is a zero column vector of dimension d.
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C.5 Optimization Constraints and Their

Derivatives

In this section we provide formulations for the optimization problems defined in

Appendices C.2 and C.4, where the only constraint is the negative definiteness

of matrices Ak. To ensure this constraint, we first need to define a method to

mathematically determine whether a matrix is negative definite. There are sev-

eral ways to ensure whether a symmetric matrix B is negative definite, among

which the two most famous ones are 1) verifying all eigenvalues of B are strictly

negative, 2) using Sylvester’s criterion. In our work, we use Sylvester’s criterion

because it provides us with an analytical formulation to verify negative definite-

ness (compared to computing eigenvalues which is an iterative procedure).

Sylvester’s criterion states that a Hermitian matrix B is negative-definite

if and only if the determinant of all i-th order leading principal minors1 are

negative if i is odd and positive if i is even (Gilbert, 1991). Each d×d symmetric

matrix has d principal minors. By defining Bk = Ak+(Ak)T , the optimization

constraint given by Eq. (C.41) is equal to:

C(k−1)d+c : (−1)c+1 |B1:c,1:c| < 0

∀c ∈ 1..d

∀k ∈ 1..K
(C.47)

where we use C(k−1)d+c to refer to the ((k − 1)d+ c)-th constraint. Thus for a

GMMmodel composed ofK Gaussian functions, there areK×d constraints that
should be satisfied during the optimization. The derivative of these constraints

with respect to πk and µk are always zero, irrespective of which cost function

is used:

∂C(k−1)d+c

∂π̃k
= 0

∀c ∈ 1..d

∀k ∈ 1..K
(C.48)

∂C(k−1)d+c

∂µk
i

= 0


∀c ∈ 1..d

∀i ∈ 1..2d

∀k ∈ 1..K

(C.49)

For the MSE optimization defined by Appendix C.2 we have:

∂C(k−1)d+c

∂Lk
ij

= 0



∀c ∈ 1..d

∀i ∈ 1..d

∀j ∈ 1..i

∀k ∈ 1..K

(C.50)

1The i-th principal minor of a d× d symmetric matrix B is a quadratic upper-left part of
B, which consists of matrix elements in rows and columns from 1 to d.
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∂C(k−1)d+c

∂Ak
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)[
0{ij}]

1:c,1:c

)


∀c ∈ 1..d

∀i ∈ 1..d

∀j ∈ 1..d

∀k ∈ 1..K

(C.51)

where 0{ij} has the dimension of d× d. For the likelihood optimization defined

by Appendix C.4 we have:

∂C(k−1)d+c

∂Lk
ij

= (−1)c+1tr
(
adj
(
B1:c,1:c

)
X 1:c,1:c

)


∀c ∈ 1..d

∀i ∈ 1..2d

∀j ∈ 1..i

∀k ∈ 1..K

(C.52)

where X is a d× d symmetric matrix defined by:

Φ = 0{ij}(Lk)T +Lk(0{ij})T (C.53)

Ψ =
(
−AkΦξ +Φξ̇ξ

)
(Σξ)

−1 (C.54)

X = Ψ+ (Ψ)T (C.55)

where Φ and 0{ij} are 2d× 2d matrices, and Ψ is a d× d matrix.
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Appendix D

Learning Hitting
Parameters in Minigolf

A
s outlined in Chapter 5, the minigolf task requires two skills: 1) A default

hitting motion fh(ξ) that can generate motions from different initial po-

sitions and that can be altered in terms of the hitting parameters, and 2) A

field-specific estimate of a mapping from input space to the hitting parame-

ters (α, κ) = g(s) that defines what hitting parameters should be used for each

situation.

The first part has already been covered in Chapter 5. This appendix re-

ports on the second problem, and discusses the problem of learning the hitting

parameters (angle and speed with which to hit the ball) from a training set col-

lected with the aid of a teacher specifying good values for some different hitting

locations. This method is evaluated on two challenging fields using the 7-DoF

Barrett WAM arm. The material presented in this appendix was done in close

collaboration with Klas Kronander, during his master thesis, under my advice,

and beginning of PhD thesis at LASA.

D.1 Hitting Parameters

After learning an adaptable hitting motion that can be used to hit with

different speed and direction, the robot needs to learn what speed and direction

should be used for each situation, i.e. which κ and α should be generated for each

input vector s. Furthermore there is generally more than one valid combination

of hitting parameters for each input point on advanced fields. In this section,

we refer to these different possibilities of choosing the hitting parameters as

strategies.

Fig. D.1 shows samples of two strategies for one ball location for an arctan-

shaped field. While learning all the strategies for a field certainly gives the player

more freedom to vary her game, mastering one strategy should be sufficient

for a successful game. By assuming that a strategy can be represented by a

continuous mapping from the relative position of the ball and the hole to the

hitting parameters, the problem is reduced to estimating this mapping:

g : s 7→ (α, κ) (D.1)

To learn g, we take a supervised learning approach and provide a training

set of good parameters for different inputs. Note that the training data is field-

specific, as each field requires different hitting parameters.
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Figure D.1: The figure illustrates a typical situation for advanced fields: for a given relative
position between the ball and the hole, there are several combinations of hitting speed and
hitting angle that will lead to sinking the ball. The two ball trajectories are represented by the
red lines. The starting point, trajectory and impact point of the end-effector are represented
by black circle, blue line and black star, respectively. Two different strategies are applied
in this figure, one with a high hitting speed and a less curved trajectory, and one where
compensating for the fields slope by launching the ball at a bigger angle yet lower hitting
speed.
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Figure D.2: (a) This graph shows the successful (green) or unsuccessful (red) result when
using the corresponding hitting parameters for a particular ball position on the arctan field.
Several strategies are clearly distinguishable. (b) This graph illustrates the problem of picking
training data from different strategies. The test point in the middle will average the two
encircled training points on the left and right ball positions, resulting in the dashed encircled
hitting parameters and thus failing to sink the ball.

D.1.1 Training Data

As outlined above, the problem of estimating the hitting parameters based on

the situation on the field is a redundant problem. There are several different

strategies a player can choose from when deciding how to hit the ball. Note that

within each strategy, there is a range of different angles and speeds that leads to

sinking the ball, due to the fact that the hole is larger than the ball. Strategies

are often represented by distinguishable separated sets of hitting parameters

combinations (see Fig. D.2a). Consequently, using training samples from differ-

ent strategies to infer hitting parameters for new inputs will generally fail. This

is illustrated in Fig. D.2b. The acceptable error margins within each strategy

vary in a nonlinear manner across the input space, and it is therefore not useful

to determine a bound for the acceptable predictive error, as such a bound would

have to be unnecessarily strict for most points to comply with the demands of

the points were the acceptable error margin is small.
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Consider a set of M observations of good examples1 {sm, αm, κm}Mm=1. Fol-

lowing the assumption that we are looking for a function (α, κ) = g(s), we

assume that the training set consists of noisy observations of this function2:

{sm, αm, κm}Mm=1 = {sm, gα(sm) + ϵα, gκ(s
m) + ϵκ}Mm=1 (D.2)

with noise ϵα and ϵκ corrupting the angle and speed part, respectively. For

clarity, we introduce the following notation used specifically for the training

data:

{S,α,κ} = {sm, gα(sm) + ϵα, gκ(s
m) + ϵκ}Mm=1 (D.3)

D.1.2 Hitting Parameters Prediction

In this work, we use two different statistical methods to infer the hitting param-

eters for new inputs using the training set specified above. We provide a recap

of these methods here. For more detail information, refer to Section 2.2.

Consider now the mapping in Eq. (5.2). We assume that this mapping is

drawn from a distribution over functions defined by a Gaussian Process (GP)

fully specified by its covariance function. This assumption implies any set of

samples from this function have a joint Gaussian distribution. For any test point

s∗, the GPR with estimate ĝα(s
∗) and the predictive variance Σ∗

α(s
∗) can be

obtained by conditioning the multivariate Gaussian distribution on the training

data:

ĝα(s
∗) = Kα(s

∗,S)(Kα(S,S) + σnI)
−1α (D.4a)

Σ∗
α(s

∗) = Kα(s
∗, s∗)−Kα(s

∗,S)(Kα(S,S))
−1Kα(S, s

∗) (D.4b)

The symmetric matrices K above represent the evaluation of the GP covari-

ance function across the specified variables. We use a squared exponential with

different length scales for the different dimensions in input space:

k(s, s′) = σe−(s−s′)TL(s−s′) with L =

(
l1 0

0 l2

)
The scalars l1 and l2 are the length scales of the covariance function. The

scalar σ is the signal variance. We use a conjugate-gradient based search algo-

rithm available in GPML3 for optimizing these hyper-parameters for maximum

likelihood of the training set. The above equations also apply to the hitting

speed gκ, with replacement of α and α with κ and κ, respectively4.

1Note that these examples are not the same as the demonstrations of the default hitting
motion.

2The noise on the observations represents the small redundancies caused by the hole being
larger than the ball.

3GPML is a Matlab toolbox for GPR, written by C.E. Rasmussen and H. Nickisch.
4The parameters of the covariance function are also different, since these are optimized for

each data set.
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Another way to infer the hitting parameters for new situations is to fit a

GMM to the training set. By conditioning the GMM on new query points, the

corresponding hitting parameters are inferred. Given the number of Gaussian

functions K, the parameters of GMM can be optimized to maximize the likeli-

hood of the training set. In this work, we first cluster the data using k-means

and then apply the EM algorithm to optimize the parameters. Then, GMR is

used to find hitting parameters for unseen inputs:

ĝ(s∗) =

KHP∑
k=1

hkHP (s)
(
Σk

HP,ακs(Σ
k
HP,s)

−1(s− µk
HP,s) + µ

k
HP,ακ

)
(D.5)

where the nonlinear weighting hkHP (s) is computed in the same way as described

by Eq. (4.9). The subscript HP for Hitting Parameters is used above to dis-

tinguish the above GMM from those that are used in the reproduction of the

hitting motion.

Note that here, we are predicting both the hitting speed and angle by using

a joint probability distribution over the input data and both hitting parameters.

Thus, in contrast to using GPR where each parameter is predicted independently

of the other, when using the GMM we take the dependency across the hitting

parameters into account. Similarly, separate GMM can be built encoding the

demonstrated {S,α} and {S,κ} to perform GMR where the hitting parameters

are predicted independently.

While GPR and GMR are both powerful methods widely used in robotics,

they have some important differences in characteristics that affect how well

they perform in the context of predicting hitting parameters. Consider first a

flat field, as in Fig. 5.1b. For this field, the mapping of hitting parameters has

low complexity, and a pattern observed from training data is likely valid outside

the training range. As GPR is based on correlation related to the distance

in input space, it outputs zero far from the training data. GMR on the other

hand, has better generalization ability in that the model extends further outside

the training range. Low complexity fields typically also are not very sensitive to

errors in hitting parameters, i.e the precision is less important than for advanced

fields. For more advanced fields such as the arctan field in Fig. 5.1c, higher

precision is required as well as greater flexibility to capture local patterns. GPR

has better local precision than GMR, which means that it should outperform

GMR for advanced fields where high precision is required when selecting the

hitting parameters.

D.2 Evaluation of Hitting Parameters

We evaluated the performance of our system to predict the different hitting

parameters on a 7-DoF Barrett arm manipulator. The experiments on the real

robot were performed on two fields: a rough flat field, and a field with two

hills. The latter will be referred to as the double hill field. Model of these fields
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Figure D.3: The double hill field in simulator (left) and with real robot (right).

were used for experiments in a simulated environment using RobotToolKit, see

Fig. D.3. In addition to these fields, the arctan field (see Fig. D.1) was used

in the simulator. Kinesthetic demonstrations from the real robot were used to

learn a hitting motion model which was then used both in the simulator and on

the real robot.

The minigolf playing robot uses Eq. (5.9) with κ and α specified either 1) By

the teacher during collection of training set for hitting parameters adaptation,

or 2) By the trained models presented in Appendix D.1 during autonomous

task reproduction. In our experiments, the hitting motion was executed by

first transferring the output from Eq. (5.9) and the end-effector orientation to

joint space using the damped least squares pseudo-inverse kinematics. Then

these values were converted into motor commands using an inverse dynamics

controller. Both steps were carried out in realtime at 500Hz.

D.2.1 Results from the Robot Simulation

In the first robot experiment, data sets consisting of 20 points were collected

along one dimension in input space of the flat and the double hill fields. In

practice, the input dimension was changed by moving the hole sideways along

the edge of the field (see Fig. D.3). The strategy was selected by fixing the

speed to a constant value for all the hitting attempts. A range of points around

the center of the input range, represented by black crosses in Fig. D.4, were

selected for training. The results confirm the hypothesis that GMR has a bet-

ter generalization performance outside the training set, as is clearly visible in

Fig. D.4.

Another experiment was centered on comparing the importance of structure

when selecting training data. This is an interesting point of comparison, as the

teacher might find it non-intuitive to provide training-data with some predefined

structures in input-space, e.g. evenly spaced points. The data sets from the

preceding experiments were used here as well. For the arctan field, a data

set consisting of 56 points was collected. To ensure that all data points were

sampled from the same strategy, we chose hitting parameters so as to minimize

the hitting speed. This strategy corresponds to the lower of the three green
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Figure D.4: Red and Black crosses represent a data set of successful hitting angles for the
double hill field. The points marked with black crosses were used for regression using GPR
(left) and GMR (right). The gray area represents the predictive confidence by two standard
deviations (∼ 95 %).

fields representing the main strategies in Fig. D.2. From the different data sets,

training points were selected according to Table D.1. The remainder of the data

sets were used for validation of the trained models, resulting in the Root Mean

Square Error (RMSE) in Table D.1. The rates of success were determined by

comparing random predictions for 30 datapoints selected randomly in the ranges

of input used. As there are random elements both in the learning phase and

more importantly in the training data selection phase, the training data selection

and training were carried out 100 times for each case. The values for RMSE

and rates of success are the averages of these rollouts.

The results in Table D.1 clearly reveal the difference in sensitivity to the

training data for the two methods. Overall GMR performs better than GPR

both in terms of precision and rate of success when the training data is selected

at random. However, for the evenly spaced training data, GPR clearly takes

the lead. This difference is most notable for the arctan field, where the highly

complex data set is handled much better by GPR. The advantage for GPR

would likely be even bigger for more advanced fields. The reason the algorithms

perform worse with randomly selected data is mainly because some regions in

input space are likely to be poorly represented in the selected data set. Thus,

there are simply no examples to learn from in these regions.

Furthermore, the results of this experiment indicate the higher performance

of the joint GMM model versus the separate GMMs. By training one model

for both hitting parameters, higher performance was achieved while using fewer

parameters. In contrast to the separate GMMs, the joint GMM models the cor-

relation between the hitting parameters. This additional information, available

when training the joint GMM but not when training the separate GMMs, could

possibly explain the increase in performance. The correlation is illustrated in

Fig. D.5. Even though we deal with very small data sets here, GMR has an

advantage compared to GPR in terms of the number of parameters for all cases

except when the smallest data sets are considered. Naturally, the difference in

the number of parameters grows with the size of the training set.
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Table D.1: Results summary for learning the hitting parameters on data from the robot
simulator.

Model
RMSE

Success rate
No. of

angle speed parameters

T
h
e
ro

u
g
h

fl
a
t
fi
e
ld 5 random training points

GPR 1.40 - 0.54 19
GMR 0.52 - 0.64 20

10 random training points

GPR 0.77 - 0.59 34
GMR 0.35 - 0.79 20

10 equally spaced training

GPR 0.15 - 0.96 34
GMR 0.23 - 0.94 20

T
h
e
D
o
u
b
le

h
il
l
fi
e
ld 5 random training points

GPR 1.60 - 0.36 19
GMR 0.80 - 0.43 20

10 random training points

GPR 1.41 - 0.42 34
GMR 0.35 - 0.52 20

10 equally spaced training

GPR 0.18 - 0.87 34
GMR 0.27 - 0.83 20

T
h
e
a
rc

ta
n

fi
e
ld

16 random training points

GPR 0.94 0.02 0.85 72
Separate GMR 1.01 0.02 0.86 60
GMR 1.01 0.02 0.87 45

28 equally spaced training

GPR 0.24 0.01 0.96 120
Separate GMR 0.52 0.02 0.88 60
GMR 0.95 0.02 0.93 45

D.2.2 Results from the Real Robot

The promising results from the robot simulator were confirmed on the real robot,

using the rough flat and the double hill fields. Similarly to the simulator data

sets, 20 points of successful input-parameter combinations were collected. The

speed was fixed. A higher complexity was expected from these data set com-

pared to their simulator counterparts, as a number of issues were not included

in the simulator models, e.g. the dimples on the golf ball and the structure of

the artificial grass covering the fields. Indeed, the data sets were more com-

plex, which is reflected in Table D.2, as the learning (with the same methods

and parameters) yielded models poorer than those that were learned from the

simulator data sets in almost all cases. When the models were trained, the

hole was moved to a random location along the slider on the edge of the field

(see Fig. D.6). The location of the hole was captured by a stereo vision system

operating at 80Hz, allowing the hitting parameters to continuously be updated

to the current position of the hole. Thirty points were tested to determine the

rate of success. Note that for the double hill we considered an upward circular

shaped resting motion to avoid hitting the field.
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Figure D.5: The figure shows the two output dimension of a GMM with 3 components fitted
to a data set from the arctan field. The input dimension s ∈ R2 has been marginalized out to
illustrate the correlation between the hitting speed and the hitting angle. It also illustrates
the absolute correlation matrices associated to each of the Gaussian functions. As can be seen,
there is very strong correlation between the hitting parameters in two of the components.

Table D.2: Results summary for learning the hitting parameters on data from the Barrett
WAM robotic arm.

Model
RMSE of Success No. of

angle rate param.

T
h
e
r
o
u
g
h

fl
a
t
fi
e
ld 5 random training points

GPR 1.20 0.57 19
GMR 0.68 0.63 20

10 random training points

GPR 0.78 0.77 34
GMR 0.55 0.77 20

10 equally spaced training
GPR 0.16 0.97 34
GMR 0.22 0.90 20

Model
RMSE of Success No. of

angle rate param.

T
h
e
D
o
u
b
le

h
il
l
fi
e
ld 5 random training points

GPR 1.88 0.30 19
GMR 0.72 0.37 20

10 random training points

GPR 1.72 0.30 34
GMR 0.42 0.40 20

10 equally spaced training
GPR 0.23 0.70 34
GMR 0.32 0.73 20

D.3 Conclusion and Discussion

In this appendix, we have presented a statistical approach to learn the pa-

rameters of the hitting motion for the minigolf. Here we assumed that despite

the many options one typically has for hitting the ball, learning one combina-

tion of hitting parameters for each input would be sufficient. In choosing this

approach, the goal was to build a high performance model using only a small set

of training data. These assumptions turned out reasonable, as very successful

models were built from small sets of training data collected in the simulator

as well as on the real robot. We showed how two different statistical methods

can be used to learn the hitting parameters selection, and compared them in

terms of performance to predict hitting parameters for the task at hand. It is

likely that simpler regression techniques (e.g. linear regression) could be used

to predict the parameters for simple fields such as the flat field. In using a

more flexible learning algorithm such as GPR or GMR, the system can handle
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Figure D.6: The hitting motion on the WAM. The ball and the hole are continuously
tracked by a stereovision system.

a wider range of fields without changing the learning algorithm. Also note that

by using a nonlinear regression technique, the learning of the hitting parameters

can automatically compensate for errors arising from the hitting motion and/or

the robot controller5.

The proposed learning approach for the hitting parameters is able to gener-

alize well from a small set of training data on the field for which the training

data was provided. Note that the system is based on demonstrated data only,

and does not use any physical model of the field. This has the advantage that

the learning problem becomes relatively simple, and the disadvantage that it is

not possible to generalize across different fields. A possible extension would be

to reuse a basic learned model (e.g. a GMM with one or two Gaussian functions)

on new fields. In such a system, the robot could exhibit very basic generalization

to new fields, and the teacher could use the output from that model as a first

guess when searching for successful hitting parameters.

Throughout this chapter, we have highlighted the importance of choosing

training data from the same strategy, as averaging samples taken from different

strategies will generally lead to the selection of inappropriate hitting parame-

ters. This high level selection of training data is intuitive to humans. Most

of the previous works that deals with situation based adaptation of motions

(Kober, Oztop, & Peters, 2010; Nemec et al., 2009) use reinforcement learning

for learning to adapt to new situations through trial and error. Applying such

an approach to hitting parameters selection in minigolf presents an interesting

challenge, since the cost-function must be designed to favor only one strategy.

As mentioned, a significant simplification of the problem was made in learn-

ing only one way to hit the ball for each situation. An interesting approach

would be to explore and store several successful parameters for each situation,

and to cluster them into different strategies. When trained with such a data

set, the robot could be programmed to use the strategy most likely to result in

a successful attempt at each hitting point.

5Provided that these errors are repeatable and present during the demonstration of hitting
parameters.
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Appendix E

Publications by the Author

T
his appendix lists the publications of the author during his doctoral studies.

The articles are listed according to the date of their publication.

Journal Papers

• S.M. Khansari Zadeh, K. Kronander, and A. Billard (2012), Learning to Play

Minigolf: A Dynamical System-based Approach, Advanced Robotics, p. 1–

27.

• S.M. Khansari Zadeh and A. Billard (2012), A Dynamical System Approach

to Realtime Obstacle Avoidance, Autonomous Robots, 32(4), p. 433–454.

• S.M. Khansari Zadeh and A. Billard (2011), Learning Stable Non-Linear

Dynamical Systems with Gaussian Mixture Models, IEEE Transaction on

Robotics, 27(5), p. 943–957.

• E. Gribovskaya, S.M. Khansari Zadeh, and A. Billard (2010), Learning Non-

linear Multivariate Dynamics of Motion in Robotic Manipulators, Inter-

national Journal of Robotics Research, 30(1), p. 80–117.

Peer-reviewed proceedings

• K. Kronander, S.M. Khansari Zadeh, and A. Billard (2011), Learning to

Control Planar Hitting Motions in a Minigolf-like Task, In proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), p. 710–717, Received the JTSC Novel Technology Paper Award.

• S.M. Khansari Zadeh and A. Billard (2010), Imitation learning of Globally

Stable Non-Linear Point-to-Point Robot Motions using Nonlinear Pro-

gramming, In proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), p. 2676–2683.

• S.M. Khansari Zadeh and A. Billard (2010), BM: An Iterative Method to

Learn Stable Non-Linear Dynamical Systems with Gaussian Mixture Mod-

els, In proceedings of the International Conference on Robotics and Au-

tomation (ICRA), p. 2381–2388.
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Conference Workshops

• S.M. Khansari Zadeh and A. Billard (2012), Realtime Avoidance of Fast

Moving Objects: A Dynamical System-based Approach, In electronic pro-

ceedings of the Workshop on Robot Motion Planning: Online, Reactive,

and in Real-Time, The IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS).

• S.M. Khansari Zadeh and A. Billard (2011), Learning to Play Mini-Golf

from Human Demonstration using Autonomous Dynamical Systems, In

electronic proceedings of the Workshop on New Developments in Imitation

Learning, International Conference on Machine Learning (ICML).

• S.M. Khansari Zadeh and A. Billard (2009), Learning and Control of UAV

maneuvers Based on Demonstrations, Presented in the Workshop on Au-

tonomous Flying vehicles: Fundamentals and Applications, Robotics: Sci-

ence and Systems.
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Appendix F

Student Projects
Supervised by the Author

T
his appendix lists the projects that were supervised by the author in the

scope of this thesis. While not all projects resulted in material that could

be directly put to use in this thesis, they nevertheless provided useful insights

and results. The projects are listed according to their date.

Semester project, Spring 2012

Student: Burak Zeydan

Title: Implementation of the whole body collision avoidance on the WAM arm

Many robot tasks require reaching or placing an object while avoiding
collision with other objects as well as the robot itself. The aim of this
project is to take the existing code for the obstacle avoidance, that is
only applicable to point-robots, and to extend it for the whole robot body
collision avoidance. To obtain this, the student needs to find the closest
point on the robot to the obstacle, and then drive it away (with the help
of kinematic null-space). In this project, the following steps should be
obtained: 1) To understand the existing C++ code and the approach,
2) to implement the closest point on the robot to the obstacle, and 3) To
drive the obtained point away from the obstacle.

Semester project1, Winter 2011

Student: Adrien Béraud

Title: Development of a Control Module for Learning Robot Minigolf Hitting

Motions on Advanced Fields

At LASA, a system for teaching a robotic arm how to play minigolf has
been developed. The minigolf skill requires two parts: 1) A basic hitting
motion model 2) A hitting motion adaptation model. The latter is used
to set the parameters of the former such that the robot hits the ball with
appropriate hitting angle and hitting speed given the position of the ball.
The use of a stereovision system to track the ball enables the robot to solve
all challenges involved in playing minigolf autonomously, i.e. tracking
the ball, choosing hitting angle and hitting speed, and hitting the ball.
This project aims at extending the range of playable fields by improving
various aspects of the system. The focus will be on implementing a self-
improvement mechanism (to allow the robot to learn from its experience)
and investigating alternative models of the hitting motion.

1This semester project was co-supervised by Klas Kronander.
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Master thesis, Winter 2010

Student: Klas Kronander

Title: Learning to Control Planar Hitting Motions of a Robotic Arm in a Mini-

Golf-like Task

This project will acquaint the student with the complexity of learning
a control law for a multi-degrees of freedom robot from human demon-
strations. We consider a task that mimics some of the difficulties one
encounters when playing mini-golf. In such a task, hitting the golf ball
with the right orientation and speed is crucial and requires years of train-
ing. In this project, the student will further improve and implement tools
developed in the laboratory for estimating such control laws. Control laws
are expressed as nonlinear autonomous dynamical systems. Estimation is
done through nonlinear optimization of Gaussian Mixture Models under
stability constraints. The learned model will be implemented both in a
dynamic simulator and on a seven degrees of freedom robot arm in a
realistic mock-up of a mini-golf terrain.

Semester project, Spring 2009

Student: Adrian Arfire

Title: Kinesthetic Teaching of an Acrobatic Maneuver to an Aerial Robot

Programming by Demonstration (PbD) investigates natural means to teach
skills to robots. In this method, the robot learns a given task from a set
of demonstrations shown by the user. In our lab, we have widely used
this method to teach different dynamical motions (e.g. writing alpha-
bets, putting an object into a container, wiping a tray, etc.) to humanoid
robots. In this project, it is desired to extend the applicability of the
current framework for aerial robots, and to evaluate its performance for
different aerial maneuvers including “loop”, “tight turn”, “eight maneu-
vers”, “stall”, etc. The airplane is a flying wing that is equipped with an
IMU-GPS sensor to grab data during the flight. The project divided as
follows: 1) investigating a set of parameters from the whole available data
from the sensors (e.g. position, velocity, acceleration, control efforts, etc)
that can describe well the dynamics of the motion for a specific aerial
maneuver, 2) Grabbing data by performing some aerial maneuvers (the
flight could be done by a pilot or by the student), 3) Applying the PbD
on the data to learn the dynamics, and 4) Improving the efficiency of the
controller in accordance to the mission criteria (i.e. the performed ma-
neuver should be as similar as possible to the demonstrations). Another
note is that the designed controller should be able to work in conjunction
with the aircraft main controller because it takes the control of the vehicle
only during the maneuver.
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