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Abstract
Three-dimensional (3-D) integration is a promising solution to further enhance the density

and performance of modern integrated circuits (ICs). In 3-D ICs, multiple dies (tiers or planes)

are vertically stacked. These dies can be designed and fabricated separately. In addition, these

dies can be fabricated in different technologies. The effect of different sources of variations

on 3-D circuits, consequently, differ from 2-D ICs. As technology scales, these variations

significantly affect the performance of circuits. Therefore, it is increasingly important to

accurately and efficiently model different sources of variations in 3-D ICs.

The process, voltage, and temperature variations in 3-D ICs are investigated in this dissertation.

Related modeling and design techniques are proposed to design a robust 3-D IC. Process

variations in 3-D ICs are first analyzed. The effect of process variations on synchronization and

3-D clock distribution networks, is carefully studied. A novel statistical model is proposed to

describe the timing variation in 3-D clock distribution networks caused by process variations.

Based on this model, different topologies of 3-D clock distribution networks are compared

in terms of skew variation. A set of guidelines is proposed to design 3-D clock distribution

networks with low clock uncertainty.

Voltage variations are described by power supply noise. Power supply noise in 3-D ICs is

investigated considering different characteristics of potential 3-D power grids in this thesis. A

new algorithm is developed to fast analyze the steady-state IR-drop in 3-D power grids. The

first droop of power supply noise, also called resonant supply noise, is usually the deepest

voltage drop in power distribution networks. The effect of resonant supply noise on 3-D clock

distribution networks is investigated. The combined effect of process variations and power

supply noise is modeled by skitter consisting of both skew and jitter. A novel statistical model

of skitter is proposed. Based on this proposed model and simulation results, a set of guidelines

has been proposed to mitigate the negative effect of process and voltage variations on 3-D

clock distribution networks.

Thermal issues in 3-D ICs are considered by carefully modeling thermal through silicon vias

(TTSVs) in this dissertation. TTSVs are vertical vias which do not carry signals, dedicated to

facilitate the propagation of heat to reduce the temperature of 3-D ICs. Two analytic models

are proposed to describe the heat transfer in 3-D circuits related to TTSVs herein, providing

proper closed-form expressions for the thermal resistance of the TTSVs. The effect of different

physical and geometric parameters of TTSVs on the temperature of 3-D ICs is analyzed. The

proposed models can be used to fast and accurately estimate the temperature to avoid the

overuse of TTSVs occupying a large portion of area.

vii



Abstract

A set of models and design techniques is proposed in this dissertation to describe and mitigate

the deleterious effects of process, voltage, and temperature variations in 3-D ICs. Due to the

continuous shrink in the feature size of transistors, the large number of devices within one

circuit, and the high operating frequency, the effect of these variations on the performance of

3-D ICs becomes increasingly significant. Accurately and efficiently estimating and controlling

these variations are, consequently, critical tasks for the design of 3-D ICs.

Keywords: 3-D ICs, process variations, power supply noise, temperature variation, clock

distribution networks, power distribution networks, clock skew, clock jitter, thermal model
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Résumé
L’intégration dans la Troisième-Dimension (3-D) est une solution prometteuse pour continuer

d’accroitre la densité et la performance des Circuits Intégrés (Integrated Circuits - ICs) mo-

dernes. Dans les circuits 3-D, de multiples puces sont empilées verticalement. Chacune de ces

puces peut être conçue et fabriquée séparément. De plus, ces puces peuvent être fabriquées

dans des technologies variées. Les effets des différentes sources de variations sur les circuits

3-D, diffèrent ainsi des circuits 2-D. A mesure que les technologies évoluent, les variations

affectent significativement les performances des circuits. Ainsi, il est d’une important capitale

de modéliser de façon précise et efficace les différentes sources de variations des circuits 3-D.

Les variations dues aux procédés de fabrication, aux alimentations et là température sont

étudiées dans ce manuscrit. La modélisation associée, ainsi que des techniques de conception

adaptées sont proposées afin de concevoir des circuits 3-D robustes.

Les variations dues aux procédés de fabrication des circuits 3-D sont dans un premier temps

analysées. Les effets des procédés de fabrication sur la synchronisation et la distribution de

l’horloge sont étudiés minutieusement. Un nouveau modèle statistique est alors proposé pour

décrire les variations de timing dans les réseaux 3-D de distribution d’horloge, sous l’influence

des variations dans les procédés de fabrication. S’appuyant sur ce modèle, différentes topo-

logies de réseaux d’horloge 3-D sont comparées en termes de skew. Une méthodologie de

conception est alors proposée pour des distributions d’horloge 3-D avec une faible incertitude

sur l’horloge.

Les variations de la tension sont décrites au moyen de bruit sur l’alimentation. Le bruit sur

l’alimentation dans les circuits 3-D est étudié en considérant différents maillages pour la

distribution d’alimentation. Un nouvel algorithme est alors développé pour permettre une

analyse rapide de la chute statique du produit courant-résistance dans les mailles d’alimenta-

tion des circuits 3-D. Le premier pic sur le bruit d’alimentation, aussi appelé bruit résonnant

d’alimentation, correspond habituellement l̀a plus importanter chute de tension du réseau.

L’effet de la résonnance d’alimentation sur le réseau de distribution d’horloge est étudié.

L’effet combiné de la variation des procédés de fabrication et du bruit sur l’alimentation est

modélisé par du skew et du jitter. Un nouveau modèle statistique de skitter est alors proposé.

Basé sur le modèle proposé et sur des résultats de simulation, un jeu de règles a été décrit afin

de réduire l’effet négatif des variations sur le réseau de distribution d’horloge 3-D.

Les contraintes thermiques dans les circuits 3-D sont considérées par une modélisation

soignée des contacts thermiques 3-D (Thermal Through Silicon Vias - TTSVs). Les TTSVs

sont des interconnexions verticales ne transmettant pas de signaux mais dédiées f̀aciliter
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Résumé

l’évacuation de chaleur et donc de réduire la température des circuits 3-D. Deux modèles

analytiques sont proposés pour décrire les transferts thermiques dans les circuits 3-D en

présence de TTSVs, en proposant une forme close pour la résistance thermique des TTSVs.

L’effet sur la température de différentes géométries et dimensions de TTSVs a été analysé. Les

modèles proposés sont utilisables pour une estimation rapide et précise de la température

afin d’éviter une utilisation abusive de TTSVs, qui occupent une large surface.

Dans cette thèse, un jeu de modèles et de techniques de conception est proposé afin de décrire

et de réduire les effets nuisibles de la variation des procédés de fabrication, de l’alimentation

et de la température dans les circuits 3-D. En raison de la réduction des dimensions des

transistors, du grand nombre de composants au sein d’un même circuit et de l’importante

fréquence de fonctionnement, les effets de ces variations sur les performances des circuits

3-D deviennent de plus en plus importants. L’estimation fine et efficace, ainsi que le contrôle

de ces variations sont ainsi une tâche critique dans la conception de circuits 3-D.

Mots-clés : Circuits 3-D, variations de procédés, buit d’alimentation, variation de température,

réseau de distribution d’horloge, réseau de distribution d’alimentation, skew, jitter, modèles

thermiques
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1 Introduction

Three-dimensional (3-D) integration emerges as a promising system integration approach to

increase the density of devices, to shorten the interconnects of circuits, and, thus, to enhance

the performance of circuits. Since multiple circuits are vertically stacked to form a 3-D system,

the combined variations of these circuits significantly differ from traditional 2-D circuits. In

addition, synchronizing devices across tiers becomes challenging. The modeling methods for

different sources of variations and the design techniques to increase robustness in 3-D ICs, in

particular 3-D clock distribution networks, are the focus of this dissertation.

The fundamentals of 3-D IC design and fabrication are introduced in the following section.

The classification and manufacturing technologies of 3-D ICs are introduced in Sections 1.2

and 1.3, respectively. Clock distribution topologies for 3-D circuits are introduced in Section

1.4, where the synchronization approaches of digital circuits are discussed. The contributions

of this dissertation are presented in Section 1.5. The assumptions and limitations of this work

are summarized in Section 1.6. The organization of this thesis is listed in the last section.

1.1 Background of 3-D ICs

During the last decades, integrated circuits have experienced a tremendous increase in den-

sity, functionality, and speed. One of the most important driving forces for this continuous

growth is the persistent downscaling of the size of transistors. The rapid development of

electronic devices originated from 1947, where the first transistor was fabricated by J. Bardeen,

W. Brattain, and W. Shockley [42]. After this first transistor with a size of over 10 cm, the size of

transistors has fast scaled down to 22 nm for massive production in 2012 [43]. When the first

integrated circuit was invented in 1958 by Jack Kilby [2], only two transistors were integrated

within this circuit. In 2012, however, Intel Core i7-990X processor contains more than one

billion transistors integrated within one chip [1]. The number of transistors within one circuit,

the speed of circuit, and the functionality of integrated circuits all increase dramatically as

technology scales , as illustrated in Fig. 1.1 [1, 2].
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2010

(a)

(b)

Figure 1.1: The development of integrated circuits over time, where (a) and (b) are the increase
in the number of transistors and the clock frequency of Intel processors, respectively [1, 2].

2



1.1. Background of 3-D ICs

Nevertheless, as the feature size of transistors becomes smaller than 20 nm, traditional planar

ICs have encountered new challenges. First, due to the limitation of manufacturing technolo-

gies and materials, it is extremely difficult and expensive to continue the scaling of feature

size [44]. Second, the interconnect delay becomes dominant over the gate delay due to the

increase in the interconnect length and RC delay, as depicted in Fig. 1.2 [3]. This increase is

mainly due to the increase in the footprint size of circuits and the decrease in the width, space,

and height of wires. Therefore, it is challenging for 2-D ICs to further enhance the density and

speed of circuits simply by scaling. Consequently, new technologies are required to provide

higher density, higher performance, and more functionalities for integrated systems.

Figure 1.2: The increase in interconnect delay with technology generations [3].

Three-dimensional integration provides a promising solution to continue improving the

performance of integrated circuits. In 3-D ICs, vertical integration can be implemented at

different levels. For instance, multiple chips/dies can be fabricated separately and then

vertically stacked together. Each chip forms a plane or tier of the final circuit. An example of

this type of 3-D circuits is illustrated in Fig. 1.3(a) [4], where a processor layer is stacked on

top of a memory layer. At lower levels, devices (transistors) can be stacked together to provide

higher density. For instance, the first vertically-stacked device was fabricated in early 1980s

as illustrated in Fig. 1.3(b) [5]. By utilizing vertical integration, 3-D ICs exhibit three major

advantages over traditional planar circuits: higher density, shorter interconnects, and easier

heterogeneous integration.
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(a)

Joint gate

Al contacts

Laser recrystallized CVD
polysilicon

Gate oxide for top
level device

Gate oxide for bottom
level device

n-type

p+ p+

n+ n+

(b)

Figure 1.3: Different levels of 3-D integration, where (a) is the cross-section of a 3-D circuit
consisting of two dies [4] and (b) is a vertically stacked inverter [5].

Higher density

By vertically stacking devices or entire circuits, a larger number of transistors can be integrated

with the same area as compared to a planar IC. Assuming that n dies with a similar number of

transistors are vertically stacked in a 3-D circuit, the resulting density is n times that of the

corresponding 2-D circuit. Consequently, the density of circuits can significantly be increased

by 3-D integration. For instance, a 3-D DRAM fabricated by Samsung has achieved a capacity

of 8 GB with a 50% increase in density [45, 46].

Shorter interconnects

For the same number of transistors, 3-D ICs exhibit a smaller footprint than 2-D circuits due

to the higher density. In addition, vertical interconnects are used in 3-D circuits. Conse-

quently, the on-chip interconnect length can be greatly reduced. The decrease in the length

of interconnects with the number of tiers is plotted in Fig. 1.4. As shown in this figure, the
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Figure 1.4: Lengths of the longest and average interconnects vs. the number of tiers [6].

interconnect length decreases significantly as multiple circuits are vertically stacked. This

reduction in interconnect length, consequently, decreases the interconnect delay. As shown in

Fig. 1.2, since the interconnect delay dominates the overall delay of a circuit, decreasing the

interconnect delay helps to enhance the speed of circuits.

Heterogeneous integration

There are currently three main application domains of 3-D ICs: memory stack, memory-

on-microprocessor, and analog/digital mixed-signal circuits. A memory stack is a homo-

geneous 3-D circuit consisting of multiple memory dies [45]. Nevertheless, memory-on-

microprocessor [4] and analog/digital mixed-signal 3-D ICs are heterogeneous 3-D circuits.

Heterogeneous integration, where different types of circuit blocks are integrated within one

circuit, provides multiple functionalities within one system [47, 48]. In 2-D ICs, these different

circuits have to be fabricated with the same technology. In 3-D ICs, however, these circuits

can be located in different tiers and fabricated with different technologies. This feature greatly

eases heterogeneous integration. Consequently, DRAM and processors can be fabricated

separately with different technologies and stacked together [4]. Analog sensors and digital

process units can also be designed and fabricated separately and then integrated into one 3-D

circuit [48].

Several challenging issues of heterogeneous integration can be mitigated with 3-D ICs. For

instance, analog and digital circuits can coexist in heterogeneous circuits. In 2-D ICs, since

the same silicon substrate is shared by the entire circuit, substrate crosstalk can introduce

large noise during the operation of these circuits. 3-D ICs, consequently, provides a novel way

to mitigate this noise. As illustrated in Fig. 1.5 [7], the digital and analog parts of a 3-D circuit

can be located in different tiers manufactured on different substrates. The substrate crosstalk,
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therefore, can significantly be mitigated. In addition, due to the higher density, heterogeneous

3-D ICs provide several functions with a smaller footprint as compared to 2-D systems.

Substrate
Heat Sink

I/O Pad Array

Sensors Antenna

Figure 1.5: An example of a heterogeneous 3-D circuit containing both digital and analog
circuitries [7].

Due to the significant advantages of 3-D ICs over conventional 2-D ICs, a strong research effort

has been put in both academia and industry [7, 49]. Currently, different types of 3-D circuits

have been proposed and fabricated. The classification of 3-D systems is introduced in the

following section.

1.2 Classification of 3-D Circuits

Different types of 3-D integrated systems are introduced in this section. As previously men-

tioned, vertical integration can be implemented at different levels. Based on the integration

level and the interconnection technologies among tiers, 3-D systems can roughly be classi-

fied into three primary categories: System-in-Package (SiP), System-on-Package (SoP), and

fine-grain 3-D ICs [7].

1.2.1 System-in-Package

An SiP is a system assembling either bare or packaged dies along the vertical direction. The

individual dies of an SiP are separately designed. Interconnections among dies are primarily

implemented with four methods [7]:
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Figure 1.6: System-in-Packages implemented with different methods: (a) wire bonding [8],
(b) interconnects on the periphery of dies [9], (c) vertical interconnect array [10], and (d)
interconnects on the faces of a 3-D stack [9].

• Wire bonding, as shown in Fig. 1.6(a)

• Vertical interconnects on the periphery of dies/packages, as illustrated in Fig. 1.6(b)

• Low aspect ratio (length over diameter) and low density vertical interconnects arranged

in an array, as depicted in Fig. 1.6(c)

• Metallization on the faces of a 3-D stack, as illustrated in Fig. 1.6(d)

Due to the ease of design and fabrication, wire bonding is the most common inter-die commu-

nication mechanism used in SiPs [7]. SiPs significantly enhance the packaging efficiency and

reduce the form factor. The dies within an SiP are integrated at the die or package level, where

only coarse-grain interconnections can be achieved among the circuitries in different tiers. As

shown in Fig. 1.6, due to the limited locations and low density of vertical interconnects, the

advantage of 3-D integration to support shorter interconnects cannot be fully utilized in 3-D

SiPs.
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1.2.2 System-on-Package

In SiPs, inter-die communication can only be implemented at specific locations. To facilitate

the communication among dies, System-on-Packages have been proposed [50]. As illustrated

in Fig. 1.7, a silicon interposer is used to host all the dies. Metal wires can be used in this

interposer to interconnect different dies. TSVs are used to connect all the chips through the

interposer with the package. SoPs are also referred as 2.5-D ICs, since multiple dies are located

on a planar interposer. In 2.5-D SoPs, all the chips can be designed similar to conventional 2-D

circuits. These chips are flipped down and bonded to the interposer. Consequently, 2.5-D SoPs

are easier to design and fabricate as compared with fine-grain 3-D ICs. Industrial products of

2.5-D FPGAs have recently been released by Xilinx Inc. [11].

65 nm Silicon Interposer

Package Substrate

BGA Solder Balls

28 nm FPGA Die (SLR)

High-Bandwidth, 
Low-Latency Connections

Microbumps

Through-Silicon Vias (TSV)

C4 Bumps

SLR3 SLR2 SLR1 SLR0

Figure 1.7: Xilinx Virtex-7 FPGA based on 2.5-D System-on-Package [11].

1.2.3 Fine-grain 3-D ICs

To further decrease the interconnect length and delay, fine-grain 3-D ICs have been proposed.

In general, fine-grain 3-D ICs refer to the circuits where the devices, gates, and circuit blocks

can be vertically distributed among physical planes [51]. The interconnection among planes

can be implemented (e.g., by TSVs) at any “legal” location. To avoid confusion, the term “3-D

IC” refers to fine-grain 3-D ICs in the remainder of this dissertation. Differently from the

package-level integration in SiPs, 3-D ICs are integrated at lower levels. Depending on the

fabrication process, 3-D ICs are classified into two main categories: monolithic and polylithic

3-D circuits [7].
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Monolithic 3-D ICs

Monolithic 3-D ICs are fabricated in a batch process. Different planes of a monolithic 3-D

circuit are successively fabricated. The devices in the upper planes are grown above the lower

planes. Monolithic 3-D ICs can be further divided into two types: stacked 3-D ICs and 3-D fin

field effect transistors (fin-FETs).

• In stacked monolithic 3-D ICs, multiple layers of planar transistors are successively

grown on top of conventional CMOS or Silicon-on-Insulator (SOI) planes. As illustrated

in Fig. 1.3(b), the transistor-level integration is achieved by stacking conventional

transistors [52].

• A fin-FET is a nonplanar and multi-gate transistor built on an SOI substrate [53]. The

conducting channel is surrounded by a silicon fin. Fin-FET-like transistors are success-

fully utilized in industrial products, e.g., Intel Tri-Gate transistors [12] as illustrated in Fig.

1.8(a). The advantages of fin-FETs include the high driving current and the significant

reduction in both the gate area and routing within one gate. 3-D fin-FETs are a novel

transistor structure based on conventional fin-FETs. In 3-D fin-FETs, devices stacked

together share the same gate [13, 54], as illustrated in Fig. 1.8(b). The density of devices

is further increased as compared with conventional fin-FETs.

(a)

PMOS 
Source

PMOS 
Drain

NMOS 
Source

NMOS 
DrainShared

gate

PMOS 
Source
PMOS
Source

PMOS
Drain

Insulator Insulator
Insulator

NMOS 
Source
NMOS
Source

NMOS
DrainShared

gate

Buried oxide

Channel 
length, L 

Hn

Hp

(b)

Figure 1.8: Different types of fin-FETs, where (a) and (b) are an Intel Tri-Gate [12] and a 3-D
fin-FET [13], respectively.

Polylithic 3-D ICs

In polylithic 3-D ICs, different planes of a circuit are separately fabricated and then bonded to-

gether. In contrast to SiPs, in polylithic 3-D ICs, vertical interconnections are not limited to the

periphery or in a fixed area array arrangement. These interconnections can be implemented

in all possible locations (not occupied by transistors) by Through Silicon Vias (TSVs) [55],

inductive coupling [56], or capacitive coupling [57], as illustrated in Fig. 1.9.
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1st plane

2nd plane

Through silicon vias (TSV)

( )
(a)

(b)

Receiver

ReceiverReceiver

Transmitter
Transmitter

(c)

Figure 1.9: Communication mechanisms in different fine-grain 3-D ICs [7]: (a) TSVs, (b)
inductive coupling, and (c) capacitive coupling.

Wafer or die-level 3-D integration utilizing TSVs is the most attractive solution for fine-grain 3-

D ICs [7,55]. First, TSVs can be inserted at any available location where vertical interconnection

is required, fully exploiting the advantage of 3-D ICs in reducing interconnect length and delay.

Second, different tiers of TSV-based 3-D ICs are separately fabricated, which shortens the

manufacturing time as compared to monolithic 3-D ICs and allows integration of different

technologies in different tiers. Consequently, TSV-based 3-D ICs are investigated in this

dissertation. In the following context, 3-D ICs directly imply 3-D circuits using TSVs to

communicate among tiers.

1.3 Manufacturing Technologies for 3-D ICs

Manufacturing technologies and processes for 3-D ICs are introduced in this section. Different

fabrication processes of TSVs are introduced in Section 1.3.1. The resulting physical and

electrical characteristics of TSVs are presented in Section 1.3.2.
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1.3.1 TSV-based 3-D ICs

Although no standardized fabrication technique has yet been established, several types of

fabrication processes have been used to manufacture TSV-based 3-D ICs [58, 59]. These

processes, actually, share a similar sequence of fabrication stages [7], as depicted in Fig. 1.10.

As the first step, CMOS or SOI wafers are separately fabricated, which provide the physical

CMOS or SOI

Etching TSV

CMOS or SOI

Form through-silicon vias

Thinned wafer

(a)

(b)

(e)

Bumps(c)

Handle wafer detachment

(d)

CMOS or SOI

Handle wafer

CMOS or SOI

CMOS or SOI

Handle wafer

Figure 1.10: Typical fabrication steps for 3-D ICs [7]: (a) wafer preparation, (b) TSV etching, (c)
wafer thinning, bumping, and handle wafer attachment, (d) wafer bonding, and (e) handle
wafer removal.

planes (tiers) for subsequent bonding, as shown in Fig. 1.10(a). In Fig. 1.10(b), vertical TSVs

are etched and filled with a conductive material, such as tungsten (W), copper (Cu), or low-

resistance polysilicon. To reduce the length of TSVs, wafers need to be thinned to different

thickness depending on the techniques. To mechanically support the thinned wafers which

are difficult to handle and bond, these wafers are attached to “handle” wafers, as shown in

Fig. 1.10(c). The alignment and bonding between dies or wafers follow successively as in

Fig. 1.10(d). Afterwards, the handle wafer is removed and the corresponding side of wafer is

processed and bonded to another physical plane, if any.
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Since all the inter-plane communication is implemented through TSVs, the fabrication of

TSVs with high density is crucial to 3-D ICs. A fabrication technology for TSVs should provide

reliable, inexpensive, low-impedance, and area-efficient vertical interconnections. Depending

on which stage TSVs are fabricated at, there are presently three types of fabrication processes:

via-first, via-middle, and via-last [43, 60–63]. In some other works, via-first and via-middle

technologies are both designated as via-first technology [7]. To avoid confusion, via-first and

via-middle are differentiated from each other in this dissertation.

• In via-first process, TSVs are fabricated before the silicon front-end of line (FEOL) device

fabrication. Polysilicon TSVs are usually employed in via-first processes to avoid metal

contamination. Via-first TSVs usually have small aspect ratio with a diameter below 5

μm [63].

• In via-middle process, TSVs are fabricated after the silicon FEOL device fabrication

processing and before the back-end of line (BEOL) interconnect process.

• In via-last process, TSVs are fabricated after or during BEOL interconnect process [43].

Via-last TSVs can have an aspect ratio between 3 and 20 and the diameter is about 10-50

μm [63]. An important advantage of via-last process is the possibility for the foundries

without TSV manufacturing capabilities to fabricate the individual tiers separately.

Tungsten and copper TSVs can be used in both via-middle and via-last processes.

TSVs exhibit different geometric sizes and electrical characteristics in different fabrication

processes. The physical and electrical characteristics of TSVs are introduced in the following

subsection.

1.3.2 Physical and electrical characteristics of TSVs

Typically, a TSV consists of a dielectric liner, a barrier layer (for copper TSVs to prevent Cu

diffusion), and the filling material. Examples of TSVs with different filling materials are

illustrated in Fig. 1.11. The shape and geometric sizes differ among different types of TSVs. In

general, TSVs have either straight or tapered shape with various aspect ratios [7]. TSVs with a

wide range of diameters and depths have been manufactured. For instance, a comparison in

the diameter and depth of TSVs among different technologies is listed in Table 1.1 [7].

As shown in this table, the diameter of TSVs can range from a few micrometers to nearly 100

μm. The effect of the physical parameters of TSVs on the timing, power, and temperature of

circuits needs to be investigated. Several electrical models have been proposed to model the

electrical behavior of TSVs [67–73]. For instance, an early electrical model of TSVs is illustrated

in Fig. 1.12. The RLC characteristics of TSVs can be abstracted based on the structure and

material of the vias.

The total resistance, capacitance, and inductance are commonly used to concisely describe

the electrical characteristics of TSVs. These electrical characteristics vary with the physical
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Tungsten

Silicon30 μm

(a)

Si

Poly-Si SiO2

(b)

Copper core

(c)

Figure 1.11: Examples of TSVs using different filling materials: (a) IBM tungsten TSV [14], (b)
Tohoku University polysilicon TSV [15], and (c) Cu TSV [16].

Table 1.1: Dimensions and resistances of TSVs from different technologies [7].

Process Depth [μm] Diameter [μm] Total resistance [mΩ]
[64] 25 4 140
[65] 30 2×12 230
[66] 80 5/15 9.4/2.6
[66] 150 5/15 2.7/1.9
[17] 90 75 2.4

TSV

CTSV

Cox Cox

Csi

Csi

Cox Cox

Csi

Gsi

Gsi Gsi

Gsi

Csi

RTSV
RTSV

LTSV
LTSV LTSV

RTSV

GND GNDSignal

SiO2

Si

CTSV

CTSV CTSV CTSV

CTSV

CTSV

CTSV

Figure 1.12: Electrical model of a TSV [7, 17].
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Table 1.2: Electrical characteristics of different TSVs.

Reference Diameter [μm] Length [μm] R [mΩ] C [fF] L [pH]

[68] 2 20 119.3 52.4 13.8
[70] 1.5 18 152.4 2.1 4.7
[17] 55 165 12 922 35

parameters of TSVs. As reported in Table 1.1, the total resistance can vary from a few milliohms

to 200 mΩ. As another example, the electrical characteristics of other TSV processes are listed

in Table 1.2. As reported in this table, the resistance, capacitance, and inductance differ

significantly among fabrication technologies. In general, TSVs with larger diameter produce

lower resistance, but higher capacitance and inductance. These electrical parameters all

increase with the length of TSVs. To compare the electrical characteristics of TSVs with

horizontal wires, a set of typical RLC parameters of global interconnects in 2-D circuits for

different technology nodes is listed in Table 1.3 [41]. As listed in this table, the RC delay of

Table 1.3: Electrical characteristics of horizontal global interconnects [41].

Tech. Width Space Height ILD thickness R C L
[nm] [μm] [μm] [μm] [μm] [Ω/mm] [fF/mm] [nH/mm]

32 0.23 0.23 0.39 0.25 245.3 141.9 1.3
65 0.45 0.45 1.20 0.20 40.7 205.9 1.1
90 0.50 0.50 1.20 0.30 36.7 234.2 1.1

horizontal interconnects significantly increases as technology scales due to the large resistance.

For a wire at 32 nm technology with a length longer than 18 μm, the RC constant is already

larger than the largest RC constant of TSVs in Table 1.2. Consequently, TSVs can provide fast

vertical interconnection in 3-D ICs, thereby decreasing the interconnect delay.

Although 3-D ICs exhibit various advantages over conventional 2-D circuits, new challenges

also come with 3-D ICs that need to be addressed. These challenges include thermal issues,

fabrication difficulties, manufacturing cost, test flow, and physical design issues [7, 49].

Among the physical design issues, synchronization among the tiers is a predominant problem.

As a significantly larger number of devices can be vertically integrated within one 3-D circuit,

synchronizing these devices in different tiers is even more challenging than in 2-D ICs. Differ-

ent sources of variations from different tiers also complicate the synchronization among tiers.

A short discussion on the synchronization approaches for digital circuits is provided in the

following section.
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Data in Data out 

Clock c1 Clock c2

Figure 1.13: A data path including combinational and sequential circuits.

1.4 Clock Distribution Networks in 3-D ICs

The clock distribution networks in 3-D ICs are introduced in this section. Clock distribution

networks are used to synchronize data transfer in digital circuits. The synchronization mecha-

nism in digital ICs is introduced. Different clock distribution topologies for both 2-D and 3-D

ICs are then presented.

A digital circuit consists of combinational and sequential parts, as illustrated in Fig. 1.13. The

sequential elements R1 and R2 are usually implemented with flip-flops controlled by a clock

signal. Depending on the relationship between c1 and c2, the synchronization approaches can

be classified into five categories [2, 74]:

1. Synchronous. Clocks have the same frequency and phase. The data signal can be directly

sampled with the clock.

2. Mesochronous. Clocks have the same frequency but different phases. The data signal

can be sampled with a specified delay.

3. Plesiochronous. Clocks have nearly the same frequency. The difference in phase shifts

slowly with time. The data signal can be sampled with a variable but predictable amount

of delay. The difference in frequency may lead to missed or duplicated data.

4. Periodic. The data generated from the sender (R1) is periodic at an arbitrary frequency.

The data can be sampled with a predicted varying delay based on the periodic property.

5. Asynchronous. Clock signals have unknown difference in both the frequency and phase.

Synchronizers are required to correctly sample the data at the receiver (R2).

Synchronous circuits are the most widely used synchronization approach for on-chip com-

munication due to its simplicity and robustness. In addition, no extra synchronizing element

is required for the receiver. Consequently, synchronous circuits are investigated in this dis-

sertation. The corresponding synchronization mechanism is introduced in the following

subsection.
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c1
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Tclks1,2 TclkTT
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tholdtt tsetup
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Figure 1.14: The waveforms of clock and data signals of the components in Fig. 1.13.

1.4.1 Synchronous circuits

As previously mentioned, all the registers in a synchronous circuit are synchronized by the

same clock. Assuming the circuit in Fig. 1.13 is a synchronous circuit, the waveforms of

the data and clock signals are drawn in Fig. 1.14. The data is sent from R1 to R2, which are

synchronized by clocks c1 and c2, respectively. To correctly sample the data at R2, the time

when the data arrives at R2 should not fall into the shadowed area. This requirement can be

formulated by the following expressions [75],

min(tlogic)+ tCQ ≥ s1,2 + thold, (1.1)

max(tlogic)+ tCQ ≤ s1,2 +Tclk − tsetup. (1.2)

The clock period is denoted by Tclk. The delay from the clock pin to the data output of R1 is

tCQ. The delay of the combinational logic is tlogic. The hold and setup times of R2 are denoted

by thold and tsetup, respectively. These two terms are determined by the design of the flip-flops.

The difference between the delay of c2 and c1 is defined as clock skew s1,2. Expressions (1.1)

and (1.2) describe hold and setup time constraints, respectively.

As shown by (1.1) and (1.2), correct data transfer is determined by the data propagation delay,

the traits of the flip-flops, and the clock distribution. For high-speed digital circuits with a

high clock frequency, clock period Tclk is relatively short. The hold and setup slacks, therefore,
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are highly sensitive to s1,2. In synchronous circuits, clock c1 and c2 ideally have the same

clock frequency and phase. If the delay from the clock source to the clock pins of R1 and R2

is the same, skew s1,2 ideally should be zero (except for intentional skew scheduling [76]).

Nevertheless, due to the large number of flip-flops in a circuit, clock is propagated to all

these sinks through a large clock distribution network. The clock delay to different sinks,

consequently, is significantly affected by the structure of clock distribution networks. A careful

design of the clock distribution is important for the correct operation of circuits.

1.4.2 Clock signal distribution

The design of modern clock distribution networks faces four primary challenges [18]: 1) the

strict constraint on clock skew and jitter due to the high clock frequency, 2) the large capacitive

load of clock networks and long clock paths due to the large number of devices and large

circuit area, 3) the increase in on-chip variations due to technology scaling, and 4) the strict

power envelope imposed by the system specifications. To address these challenges, different

types of clock distribution networks have been proposed.

Unbalanced clock tree

Clock trees are a widely used structure to propagate the clock signal from a unique clock

source to different clock sinks. Clock trees can be classified into two categories: unbalanced (or

asymmetric) and balanced (or symmetric) clock trees. An unbalanced clock tree is illustrated in

Fig. 1.15. Unbalanced clock trees are usually generated from clock tree synthesis flows [77–79].

In unbalanced clock trees, clock sinks can be routed with an asymmetric topology. Different

numbers and sizes of buffers are inserted along different clock paths. Clock skew among clock

sinks is minimized or scheduled as desired. The clock synthesis algorithms can be designed to

optimize different objectives, such as clock skew, total wire length, power, etc. Nevertheless,

due to the unmatched clock buffers and paths, unbalanced clock trees are highly sensitive to

process, voltage, and temperature (PVT) variations. Consequently, unbalanced clock trees are

usually used in small circuits or within several blocks of a circuit.

Clock1

Clock2

Clock3

ClockK

Figure 1.15: An unbalanced clock tree [18].
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Balanced clock tree

Typical structures of balanced clock trees are illustrated in Fig. 1.16. A symmetric topology

(H-tree or X-tree, as illustrated in Figs. 1.16(a) and 1.16(b), respectively) is used to connect

clock sinks. Identical number and size of buffers are inserted along different clock paths.

Consequently, balanced clock trees are more robust than unbalanced clock trees for PVT

variations. The routing resources required by symmetric trees, however, are relatively high.

In addition, since clock buffers are located across the chip, these buffers are non-uniformly

affected by on-chip variations. To further improve the robustness, binary trees are used, as

illustrated in Fig. 1.16(c). Different clock paths can be shorted at different levels. Clock buffers

can be placed close in a clock trunk to ensure the proximity of devices and the robustness of

clock trees [80].

Clock1 Clock2 Clock3 Clock4

ClockK

ClockA

ClockB

(a) (b)

Ck1 Ck2 CkK

(c)

Figure 1.16: Balanced clock trees, where (a), (b), and (c) are an H-tree, an X-tree, and a binary
tree, respectively [18].

Clock spine

A clock spine is a special implementation of binary trees [18]. A clock distribution network

consisting of three clock spines is illustrated in Fig. 1.17. The clock signal is propagated from
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the output of clock spines through individual branches to clock sinks. These ending branches

of clock spines are matched to provide similar clock delays to clock sinks. Within a clock spine,

branches are shorted at different levels of the clock trees to decrease skew.

Clk1

Clk2

Clk3

Clkk

TDELAY

Figure 1.17: A clock distribution network consisting of three clock spines [18].

Clock grid

Clock distribution networks can be implemented based on grid or mesh structures. A clock

grid is illustrated in Fig. 1.18. The clock signal is fed into the grid through the drivers on

each side. The clock skew among clock sinks is significantly decreased as compared with tree

structures. This skew is affected by the location of clock drivers and the pitch of clock grids.

The main disadvantages of clock grids are the high requirement on routing resources and the

high power consumption [75].

Hybrid distribution

To combine different advantages of clock distribution networks, hybrid clock distribution can

be used. For instance, a global H-tree can be used to propagate the clock signal to different

parts of a circuit. Local unbalanced clock trees or clock grids are then used to connect the

global clock tree to local clock sinks [38]. Consequently, a tradeoff between clock skew, wire

resources, and power is achieved.

All these clock distribution networks are fully investigated and optimized for 2-D ICs. In 3-D

ICs, since clock sinks are distributed across different tiers, traditional 2-D clock distribution

networks cannot be directly applied to a 3-D circuit. Alternatively, several 3-D clock trees have

been proposed to support the robust and power-efficient clock signal distribution within 3-D

ICs.
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Figure 1.18: A clock grid with clock drivers on four sides [18].

1.4.3 3-D clock trees

Both balanced and unbalanced 3-D clock trees have been proposed. 3-D H-trees with different

distributions across multiple tiers have been discussed in [19, 81]. Three different types of

3-D H-trees are illustrated in Fig. 1.19. In Fig. 1.19(a), 2-D H-trees are replicated in each tier.

A large TSV or a group of TSVs are used to propagate the clock signal among tiers from the

clock source. This topology only requires a limited number of TSVs and is easy to implement.

Nevertheless, due to the replicated clock paths and buffers, this topology consumes high

power and introduces large skew variation among tiers.

(a) (b) (c)

Figure 1.19: 3-D H-trees with different topologies across tiers, where (a) is a 3-D H-tree with
replicated 2-D H-trees on each tier [19], (b) is a 2-D H-tree with local rings in other tiers, and
(c) is an H-tree with global rings in other tiers.
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Alternatively, only one 2-D H-tree is implemented in Fig. 1.19(b), the clock signal is propagated

to other tiers through TSVs at the leaves of this H-tree. Local rings are used in these tiers

to propagate the clock signal to the flip-flops. Global rings instead of local rings are used

to propagate the clock signal in other tiers in Fig. 1.19(c). Both these topologies produce

lower skew variation and power than replicated 3-D H-trees [19]. The 3-D clock tree using

global rings generates lower clock skew but higher power consumption as compared to local

rings. The number of TSVs of these two topologies, however, is significantly higher than the

replicated 3-D H-trees.

Unbalanced 3-D clock trees are generated from automated clock tree synthesis (CTS) algorithms.

3-D clock tree synthesis algorithms have been proposed in [20, 82–85]. These algorithms focus

on different optimization objectives. Low power clock tree synthesis algorithms considering

pre-bond test problems are developed in [83, 84]. The CTS algorithm in [85] focuses on

enhancing the tolerance of 3-D clock trees to TSV faults. A low power synthesis algorithm

minimizing the number of TSVs is proposed in [20]. CTS considering temperature variations

is proposed in [82]. Examples of these synthesized unbalanced 3-D clock trees are shown in

Fig. 1.20 [20]. As shown in this figure, the resulting 3-D clock trees are asymmetric in both the

horizontal and vertical directions.

(a) (b)

Figure 1.20: 3-D clock trees from the CTS algorithm [20], where (a) is a clock tree in a four-tier
circuit and (b) is the top view of a clock tree in a two-tier circuit. TSVs are denoted by dots in
(b).

Although different topologies of 3-D clock trees have been proposed, the analysis on these

clock trees is mostly based on the deterministic behavior of clock buffers and wires. The

variation of the resulting clock skew and jitter has not been thoroughly investigated. Since

multiple tiers are vertically stacked in 3-D ICs, the effect of different sources of variations,

such as process variations and power supply noise, on clock uncertainty differs from planar
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circuits. Consequently, different sources of variations in 3-D ICs and their effect on 3-D clock

distribution networks are carefully modeled and analyzed in this dissertation.

1.5 Contributions

Modeling and design techniques for 3-D ICs under process, voltage, and temperature vari-

ations are investigated in this dissertation. The proposed models and design techniques

primarily focus on mitigating the effect of these variations on 3-D clock distribution networks.

The main contributions of this thesis are:

1. The effect of process variations on 3-D ICs, especially 3-D clock trees, is investigated.

A statistical model is proposed to describe the process-induced clock skew in 3-D

clock trees. A comparison in skew variations among different topologies of 3-D clock

distribution networks is presented. A set of design guidelines is proposed to mitigate

skew variation.

2. Power supply noise in 3-D ICs is studied. The effect of power supply noise and process

variations on 3-D clock trees is simultaneously modeled to more accurately estimate

clock uncertainty. The resulting clock skew and jitter are statistically modeled in terms

of skitter. Based on the proposed statistical model, a set of guidelines is proposed to

improve the robustness of both 2-D and 3-D clock trees.

3. Two analytic heat transfer models are proposed to model Thermal TSVs (TTSVs) in

3-D ICs, with different tradeoffs in accuracy and run time. The temperature of 3-D ICs

is shown to significantly vary with the physical characteristics of TTSVs. The relation

between the temperature of circuits and geometric parameters of TTSVs is investigated

to facilitate the design and placement of TTSVs in 3-D circuits.

1.6 Assumptions and Limitations

As mentioned before, fine-grain polylithic 3-D ICs based on TSVs are investigated in this

dissertation. The behavior of other types of 3-D circuits, such as SiPs, SoPs, and monolithic

3-D circuits, is not discussed. Other assumptions and limitations are listed below:

• Process variations are approximated by normal (Gaussian) distributions. In the following

chapters, the variation of different parameters of devices and interconnects (TSVs and

wires) is modeled by a normal distribution. This approximation is based on the common

assumption validated in related works [86–89]. In addition, process variations with non-

Gaussian distribution can be converted to a combination of variables following Gaussian

distribution [90].

• The die-to-die process variations are assumed to be independent from within-die varia-

tions [23, 91, 92]. Die-to-die process variations are assumed to be independent among
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tiers in a 3-D IC. The correlation among tiers is neglected according to the analysis and

observations in [88, 89, 93].

• The first droop of the resonant power supply noise is assumed to uniformly affect

the devices across a physical plane (tier) of 3-D ICs. This assumption is based on

the observation in [25, 29, 30, 34, 94] and on the fact that the resonant supply noise is

determined by the total decoupling capacitance and package inductance.

• Clock distribution networks based on tree structures are modeled in this dissertation.

Other topologies of clock distribution networks, such as clock grids and clock spines,

are not modeled. The clock uncertainty in these clock distribution networks, however,

is compared with clock trees through simulations.

• Only the steady-state heat transfer is modeled for thermal TSVs. The transient thermal

behavior of TSVs and 3-D ICs is not investigated. The analysis on the transient heat

transfer is typically implemented with finite element analysis (FEA) or finite difference

analysis (FDA). Related works are described in Section 2.3.2.

1.7 Organization of the Dissertation

The remainder of this thesis is organized as follows. The background of PVT variations and the

related modeling techniques for 2-D ICs are introduced in Chapter 2. The sources of process

variations, the effect of process variations on timing and power, and the delay models used to

describe process variations are introduced in Section 2.1. Power distribution networks and

power supply noise are introduced in Section 2.2, where IR-drop and resonant supply noise

are discussed. The thermal issues in integrated circuits and the related modeling techniques

for 2-D ICs are presented in Section 2.3. Note that all these models are suitable for 2-D circuits.

For 3-D ICs, process variations significantly differ from 2-D circuits, since the stacked dies can

be fabricated separately. Consequently, describing the resulting die-to-die variations through-

out a 3-D stack is a greatly complex task as compared to 2-D circuits. The concept of statistical

timing analysis considering process variations is introduced in Section 3.1, where related works

on process variations in 3-D ICs are also reviewed. The effect of process variations on clock

distribution networks is discussed in Section 3.2. A novel model for process-induced skew in

3-D clock trees is then proposed in Section 3.3. Based on this model, different topologies of

3-D clock distribution networks are compared with each other in Section 3.4. Consequently, a

set of design guidelines is proposed to mitigate skew variation in 3-D ICs.

Voltage variation, or power supply noise, in 3-D ICs is investigated in Chapter 4. Potential

structures of 3-D power distribution networks are introduced in Section 4.1. Due to the

large number of TSVs in 3-D power distribution networks, the conventional methods used to

analyze IR-drop cannot be directly applied to 3-D ICs. Consequently, a novel method for fast

IR-drop analysis is proposed in Section 4.2. On the other hand, the resonant supply noise in

3-D ICs is discussed in Section 4.3. It is shown that the resonant supply noise varies among
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tiers according to the switching current, the resistance of TSVs, and the number of tiers. In

Section 4.4, the effect of resonant supply noise on clock distribution networks is discussed,

where the analytic model of clock jitter is presented.

Since a circuit is simultaneously affected by process variations and power supply noise, the

combined effect of these variations on 3-D clock trees is investigated in Chapter 5. Conven-

tionally, the effect of process variations on clock trees is denoted by clock skew, while the clock

uncertainty caused by power supply noise is described by clock jitter. In Section 5.1, a unified

treatment, based on clock skitter, is used to describe both clock skew and jitter. A simplified

model for skitter in 2-D ICs is proposed in Section 5.2, where methods used to decrease skitter

in 2-D ICs are discussed. This model is extended to accurately model skitter in 3-D ICs in

Section 5.3. The effect of skitter on both setup and hold time slacks is investigated. A set of

guidelines is proposed to mitigate skitter in 3-D ICs in Section 5.4. To illustrate the efficiency

of these guidelines, a case study on the skitter of synthesized 3-D clock trees is presented in

Section 5.5. In this case study, clock buffers are inserted under the constraint in capacitive

load. Alternatively, a fast buffer insertion algorithm used to decrease the total and maximum

path delay in 3-D ICs is proposed in Section 5.6.

Thermal issues in 3-D ICs are investigated in Chapter 6. The significant increase in the

temperature of 3-D circuits is introduced in Section 6.1. The exacerbated temperature highly

affects the timing and power consumption of circuits. To decrease the temperature of 3-D

ICs, TTSVs can be used to improve the heat transfer across tiers. The structure of these TSVs

is introduced in Section 6.2. Two steady-state analytical models for TTSVs are proposed in

Section 6.3. Based on these models, the effect of the physical characteristics of TTSVs (the

diameter, the depth, the density, etc.) on temperature is investigated in Section 6.4. A case

study on 3-D DRAM-Microprocessor structure is presented to show the efficiency of the

proposed models.

The conclusions of this dissertation and the potential future research directions are drawn

in Chapter 7. The models proposed in this thesis can facilitate designers to understand and

quantitatively evaluate the effect of PVT variations on the performance of 3-D ICs. Since PVT

variations become increasingly important as the technology scales, the robustness of circuits

becomes a main challenge. The provided design guidelines help to significantly improve the

robustness of 3-D ICs under these variations.
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2 Process, Voltage, and Temperature
Variations in Integrated Circuits

Both the physical and electrical characteristics of integrated circuits are subjected to fluctua-

tions. Different sources of variability in integrated circuits are introduced in this chapter. These

sources of fluctuations include process variations, supply voltage noise, and temperature/ther-

mal variations (PVT variations). The effect and conventional models of process variations

are introduced in the following section. Power supply noise and temperature variation are

introduced in Sections 2.2 and 2.3, respectively.

2.1 Process Variations

Technology scaling has been the driving force to increase integration density for the past

decades. In very deep sub-micrometer technologies, process variations significantly compli-

cate the IC design process [21]. The different sources of process variations are introduced in

the following subsection. The effect of these variations on the timing and power of circuits is

briefly presented in Section 2.1.2. The models used to describe the statistical delay of devices

and interconnects due to process variations are presented in Section 2.1.3.

2.1.1 Sources of process variability

Process variations are introduced in the manufacturing process and are attributed to the

imperfections of the related equipment. Both the devices (transistors) and interconnects

(metal wires) are affected by process variations. The primary physical parameters of devices

and interconnects are illustrated in Fig. 2.1. For the transistor, the channel length and oxide

thickness are denoted by Lgate and tox, respectively. For the interconnect, the width and thick-

ness of metal wires, the space between wires, and the thickness of the Inter-Layer Dielectric

(ILD) are denoted by w , t , s, and h, respectively. The variability of these parameters increases

significantly as the technology scales, as illustrated in Fig. 2.2. The effective channel length,

the threshold voltage of transistors, and the dielectric constant of the ILD are denoted by Leff,

Vth, and ρ, respectively.
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Source
Gate

Drain

Lgate

tox

(a)

GND

GND

s
w

t

h

(b)

Figure 2.1: Physical parameters of transistors and metal interconnects, where (a) and (b) are
the cross-sections of an NMOS transistor and a metal wire, respectively.
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Figure 2.2: The 3σ variation of several parameters vs. technology generations [21], [22].

The variability of devices is also named front-end variability [22], which mainly includes the

variations in Lgate, tox, transistor width (Wgate), and doping density (NA). The gate length

Lgate and the related parameter Leff strongly affect the drive current and, consequently, the

speed of the transistor. Leff can be defined as Lgate minus the overlapping parts of the gate

with the source and drain. For simplicity, the term Lgate is used in this dissertation to denote

Leff. The variation of Lgate (ΔLgate) is caused by several processing steps and procedures, such

as the mask, the exposure stage, etching, and implantation of the source and drain. Gate

length variation is one of the most important variations for a circuit [22, 23, 91, 92]. The gate

width variation ΔWgate has negligible impact on large-width transistors while a non-negligible

impact on minimum-size transistors has been observed [22]. Mask alignment is a major

source causing ΔWgate.

An important element in the design of the devices is the thin dielectric layer of the gate

terminal. This dielectric film is used to isolate the gate from the channel region. The thickness

of this dielectric film tox significantly affects the drive current, the threshold voltage Vth, and

the leakage current. The silicon dioxide film can be grown with a thermal oxidation process [2].

As the technology scales, tox has now reached the atomic-level (i.e., only a few layers of atoms
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are grown). Consequently, the interface roughness and the atomic-scale discreteness result in

a non-negligible Δtox.

The doping density NA is another important factor affecting Vth and, consequently, the perfor-

mance of the transistors. Dopant atoms are placed into the channel of the transistors by ion

implantation. Both the ion implantation and the following step, activation through annealing,

cause a random distribution of dopant atoms inside the channel. The spread of this random

distribution increases with technology scaling.

The variability of interconnects is called back-end variability referring to the back end of the

IC fabrication process. This variability includes the variations in metal width (Δw), metal

thickness (Δt), the thickness of ILD (Δh), and the material properties (e.g., Δρ) [95]. Many

of the sources of the front-end variability also result in the back-end variability, such as

lithography and etching. In addition, the backend process includes copper electroplating and

chemical-mechanical polishing (CMP), which also introduce variations in both the physical

and material properties of the interconnects. The resulting variations in the resistance and

capacitance of interconnects significantly affect the timing and power of circuits as technology

scales.

The classification or, the decomposition, of process variations is illustrated in Fig. 2.3 [22, 95,

96]. In general, process variations consist of systematic and random variations. The systematic

variations can be modeled deterministically, while the random variation can only be described

statistically. At different design stages of a circuit, specific random variations can be treated

as systematic variations. For instance, during logic synthesis, the layout-related variation

of metal wire thickness Δt is a random variable due to the lack of layout information. After

placement and routing, however, this layout-related Δt can be predicted with a fixed value

based on the pattern of interconnects. In the early stages of the design flow, most of the

systematic and random variations are statistically modeled [96]. The process variations in this

dissertation, consequently, refer to random variations.

Since variations originate from any step of the fabrication stage, the effects of these fluctuations

apply to different physical scales. The random process variations can be decomposed into lot-

to-lot, wafer-to-wafer, across-wafer, across-reticle, and within-die variations [22]. Retaining all

these levels of information in the design process would unnecessarily increase the complexity

of the process. For this reason, the individual sources are abstracted to two major categories:

inter-die and intra-die variations. This abstraction captures the overall effect of the variations

but hides the complicated characterization process from the designers.

Inter-die variations

Inter-die (or die-to-die, D2D) variations affect the characteristics of devices and interconnects

differently among dice, but the same parameter of different components within one die is

uniformly affected. D2D variations include lot-to-lot, wafer-to-wafer, parts of the across-wafer
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Figure 2.3: The classification of process variations.

and across-reticle variations. Traditionally, D2D variations have been the dominant factor in

process variations [95].

Intra-die variations

Intra-die (or within-die, WID) variations affect the characteristics of devices unequally within

one die. For sub-micrometer circuits, WID variations become non-negligible and increasingly

important [91, 92, 97]. WID variations can be further divided to correlated and independent

components. In some publications, the correlated WID variations are also called systematic

variations [91, 92]. To avoid confusion, the systematic variations, herein, only refer to the

deterministic process variations.

Most of the physical parameters are simultaneously affected by D2D and WID variations. For

instance, ΔLgate can be decomposed to D2D variations and across-chip linewidth variation

(ACLV). The D2D ΔLgate is caused by variations in the resist bake, the radial variations in the

photoresist coating thickness, and the fluctuation of the etch process. The WID component,

ACLV, is primarily induced by variations in the stepper, reticle imperfections, etc [22]. The D2D

and WID parameter variations of devices and interconnects, together, lead to variations in the

timing and power of circuits. This effect is discussed in the following subsection.

2.1.2 Effect of process variations on timing and power

The delay and power of transistors highly depend on the drive current and threshold voltage.

These electrical characteristics are greatly affected by process variations. Consequently, pro-
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(a) (b)

Figure 2.4: The delay variation of critical paths due to process variations, where (a) is the
distribution of critical path delay for different parameter variations and (b) is the increase in
critical path delay corresponding to a 3σ delay deviation. [23]

cess variations lead to non-negligible variations in delay, transition time, and dynamic and

leakage power of transistors. In addition, as the interconnect delay increases with the scaling

technology, the variations in the electrical characteristics of the interconnects also introduce

significant wire delay variation into circuits [98, 99].

The device and wire variations result in delay fluctuations in both logic and clock paths. An

example of the increase in the delay of critical paths due to process variations is illustrated

in Fig. 2.4 [23]. As shown in this figure, at advanced technology nodes, the critical delay

variation increases significantly for all cases of process variations (ΔNA, ΔLgate, and Δtox). The

accumulating effect of different sources of process variations causes a wide distribution of the

critical path delay, as shown in Fig. 2.4(a).

In addition to speed, power consumption has become another critical factor in modern IC

design. The power consumed by a circuit includes dynamic and static power. The dynamic

power of devices includes two sources: (1) the charging and discharging of the intrinsic and

extrinsic parasitic capacitances of the transistors and (2) the short-circuit current during the

gate switching. Due to the variation of the drive current, the input transition time, and the

capacitive load, dynamic power is also affected by process variations. The increase in power

corresponding to the distribution of parameters in Fig. 2.4 is illustrated in Fig. 2.5 [23]. Similar

to Fig. 2.4(b), the power variation also increases with technology scaling.

Leakage power is the other power component and becomes increasingly important as the

CMOS technology scales. Sub-threshold leakage and gate oxide leakage are two major con-

stituents of leakage power, both of which are highly affected by process variations of de-

vices [87, 100]. An example of the leakage current distribution of microprocessors is illustrated
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Figure 2.5: The increase in dynamic power due to process variations corresponding to a 3σ
critical-path delay deviation [23].
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Figure 2.6: Distribution of clock frequency and leakage current due to process variations [24].

in Fig. 2.6 [24]. As shown in this figure, both the clock frequency and the leakage current and

consequently, the leakage power, vary significantly with the parameters of transistors.

Since process variations introduce high variation in timing and power of circuits, accurately

modeling these variations is necessary to design a robust circuit. This dissertation focuses

on timing variability. The models used to describe the delay of devices and interconnects are

introduced in the following subsection.

2.1.3 Delay model for devices and interconnects

Multi-corner analysis and statistical models are two common methods to predict the variation

in the delay of transistors and interconnects. The corner-based analysis determines the timing

information of transistors and interconnects based on a finite combination of process, voltage,
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and temperature parameters [101]. For instance, a transistor can be characterized under

three corners: fast, typical, and slow. The actual delay of transistors and interconnects is

approximated to the closest corner. To include the worst case of PVT variations, the resulting

delay is usually pessimistic and can lead to over-designing a circuit.

Statistical models more accurately describe the variations in delay. The statistical delay of

transistors and interconnects can be determined through sensitivity analysis. Due to the

reasonable accuracy and the ease for computation, the first-order Taylor expansion is widely

used to describe the sensitivity of the delay of transistors and interconnects to the variational

parameters [95],

d = d0 + ∂d

∂p
(p −p0), (2.1)

where d and p are the delay and process parameter, respectively. The nominal value of d

and p are denoted by d0 and p0, respectively. The sensitivity of delay d to parameter p is

determined by
Δd

d
= ∂d

∂p

Δp

d
, (2.2)

where Δd = d −d0 and Δp = p −p0. Although (2.1) and (2.2) are only low-order polynomial

approximations to the process-induced delay variation, this approximation exhibits consid-

erably high precision and efficiency in practice [22, 86, 95, 96, 98]. The partial derivative in

(2.1) and (2.2) can be determined through the deterministic delay model of transistors and

interconnects.

Delay model for transistors

A number of analytical models have been developed to describe the delay of transistors

[99, 102–105]. Most of these models obtain a simplified expression for the transistor delay

by introducing fitting parameters. For instance, one of the most prolific analytic models,

Alpha-Power Law Model (α-model) [105], estimates the transistor delay as

τ∝ CloadVdd

Idsat
, (2.3)

where Cload, Vdd, and Idsat are the capacitive load, supply voltage, and saturation drain current,

respectively. The saturation current is approximated with the α-model as,

Idsat =
Wgate

2Lgate
μeffCox(Vgs −Vth)α, (2.4)

where Cox is the gate oxide capacitance per unit area and μeff is the effective mobility. The

short channel effects are described by α. The accuracy of this model is determined by the

proper fitting of “α”. Based on these formulas, the partial derivative in (2.1) and (2.2) can be

obtained.
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Figure 2.7: An RC tree with two sinks.

In industrial standard cell libraries, non-linear delay models (NLDMs) have been widely used

to characterize the timing information of different cells. NLDMs determine the delay of a cell

based on the input slew and output load through a non-linear transformation. Current Source

Model (CSM) is another novel delay model which shows many advantages in predicting

the delay of a cell [106, 107]. Several academic approaches have been developed to use

current source models in statistical timing analysis [108, 109]. Nevertheless, a large number of

simulations is required to generate CSMs. In addition, CSM currently lacks the wide support

from commercial EDA tools [95].

Delay model for interconnects

There are also a large number of delay models proposed for RC and RLC interconnects. For in-

stance, for an RC wire with a capacitive load Cload, the 50% and 90% signal delay corresponding

to a step input, respectively, can be estimated by [39, 110]

d(50%) = 0.38RC +0.69RCload, (2.5)

d(90%) = 1.02RC +2.3RCload, (2.6)

where R and C are the total resistance and capacitance of this wire, respectively. For tree-like

RC interconnects, the Elmore model and the extended versions of this model have broadly

been used to predict the delay from the source to the sinks [111, 112]. For an RC tree shown in

Fig. 2.7, the time constant of the signal delay from the source to C3 and C4 is modeled as

τC3 = R1(C1 +C4)+ (R1 +R2)C2 + (R1 +R2 +R3)C3, (2.7)

τC4 = R1(C1 +C2 +C3)+ (R1 +R4)C4. (2.8)

Based on (2.7) and (2.8), the delay from the clock source to all the clock sinks of an interconnect

tree can be obtained. Closed-form expressions have also been proposed to model the delay of

RLC interconnects [113, 114].
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The electrical characteristics R, C , and L of interconnects can be determined by empirical

analytic expressions [41],

R = ρml

w t
, (2.9)

L = μ0l

2π

[
ln

(
2l

w + t

)
+0.5+ 0.22(w + t )

l

]
, (2.10)

C = 2Cg +2Cc , (2.11)

Cg = ε

[
w

h
+2.04

(
s

s +0.54h

)1.77 (
t

t +4.53h

)0.07]
, (2.12)

Cc = ε

[
1.41

t

s
e−

4s
s+8.01h +2.37

( w

w +0.31s

)0.28
(

h

h +8.96s

)0.76

e−
2s

s+6h

]
, (2.13)

where ρm , μ0, and ε are the resistivity of metal, permeability of wire, and permittivity of

insulator, respectively. Given the distribution of the physical parameters of interconnects, the

variations of electrical characteristics of interconnects can be determined from (2.9) through

(2.13). Consequently, the delay variation of the interconnects can also be determined.

The effect of the delay variation of devices and interconnects on the timing of the circuits will

be discussed in Chapter 3. In general, process variations are time-invariant for a fabricated

circuit. The parameter variation does not vary during operation [95]. The fluctuation in supply

voltage, however, changes with time. The impact of power supply noise and the related models

are introduced in the following section.

2.2 Power Supply Noise

The fluctuation of supply voltage, called power supply noise, is another important source of

variations. This supply noise largely affects the electrical characteristics of transistors. The

supply voltage is provided to the transistors through power distribution networks (PDNs).

Typical structures of power distribution networks are introduced in the following subsection.

The sources and effect of power supply noise are presented in Section 2.2.1. The related

modeling methods are introduced in Section 2.2.3.

2.2.1 Power distribution networks

Due to the increasing number of devices integrated within a chip, supplying power/ground

to a circuit is a challenging task. The design of PDNs significantly affects the supply voltage

and, consequently, the timing and power of a circuit. Typically, a PDN consists of interconnect

networks with decoupling capacitance on the printed circuit board (PCB), the circuit package,

and the circuit die. A cross-sectional view of a typical PDN is illustrated in Fig. 2.8 [25]. As

shown in this figure, the power is supplied from a switching voltage regulator on the PCB.

Decoupling capacitance is placed on the PCB, the circuit package, and the circuit to mitigate
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Figure 2.8: Cross-section of the PDN hierarchy with decoupling capacitance [25].

Figure 2.9: Routed P/G networks [25, 26].

the fluctuation of the supply voltage. Within the circuit, on-chip PDNs are used to properly

distribute the supply voltage.

Typically, the on-chip PDN consists of power and ground (P/G) interconnect networks. Several

topologies have been proposed and used to distribute P/G to the entire circuit. Some of these

topologies are briefly described in the next paragraphs.

Routed networks

A routed network used to propagate power and ground is illustrated in Fig. 2.9 [25, 26].

Dedicated wire trunks are used to supply P/G to circuit blocks. The primary advantage of

routed networks is the savings in routing resources. The main drawback is the low redundancy

of the networks due to the limited number of P/G trunks, which decreases the robustness of

the PDNs.
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Figure 2.10: A power and ground mesh [25].

(a)

M2 VDD M2 GND 
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M1 GND 

VDD Contact 

GND
Contact

(b)

Figure 2.11: A power (VDD) and ground (GND) grid network, where (a) [25, 27] and (b) are a
3-D plot and a top-view of power grids, respectively.

Mesh networks

Mesh-based P/G networks are used to add redundancy, thereby increasing the robustness

of PDNs, as illustrated in Fig. 2.10. Parallel wide wires are placed on the upper metal layers

to globally distribute P/G. Irregular short straps orthogonal to the global wires are used in

lower metal layers to supply P/G to the devices and circuit blocks. Power meshes are used in

low-power circuits with limited routing resources in the upper metal layers. When the upper

metal layers can be utilized to implement a grid structure to distribute P/G, power grids are

usually a more robust solution for PDNs.

Grid networks

The grid-based P/G networks are illustrated in Fig. 2.11. Parallel P/G wires are connected by

vias to the adjacent metal layers. Power grids are more regular structures than power meshes,

which utilize more metal resources in the upper metal layers. For high-performance designs,

power grids provide a PDN with high redundancy and robustness.
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Figure 2.12: A PDN with P/G planes [25], where the power and ground planes are depicted in
dark and light gray, respectively.

P/G planes

For the PDN with P/G planes, an entire metal layer is used to distribute power and ground, re-

spectively, as illustrated in Fig. 2.12 [25, 115]. The dedicated power and ground planes provide

low-impedance current paths for P/G. The cost in metal resources, however, is prohibitively

high, since no signal (or clock) wires can be placed in the P/G planes.

Cascaded P/G rings

PDNs with cascaded P/G rings are used in the circuits with peripheral input/output (I/O) pads.

As illustrated in Fig. 2.13 [25, 28], the P/G are supplied to the chip through the peripheral P/G

pads towards the center of the chip. Sub-PDNs (e.g., power grids) can be placed under the P/G

rings to supply voltage to the devices, where other signals can also be routed. With cascaded

P/G rings, more metal resources are saved for signal routing. Nevertheless, this structure is

typically used for peripheral I/Os and careful design is required for the cascaded P/G rings to

avoid a PDN with large impedance.

Hybrid-structure networks

The boundaries among the listed PDN structures are not strictly defined. For modern VLSI

design, a combination of different types for PDNs is widely used for complex circuits. As the

technology advances, more devices are integrated into a single chip and an increasingly larger

amount of current is required by the circuit. Consequently, power grids are commonly used

for global PDNs and other types of local PDNs can be used for the sub-circuits [25].

2.2.2 Sources and effect of power supply noise

Due to the large amount of current and high switching frequency of modern ICs, the devices

within a circuit can experience significant power supply noise. Power supply noise is caused

by the flow of currents (either DC or transient currents) through PDNs. The supply noise is
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(a)

Substrate

(b)

Figure 2.13: PDNs with P/G cascaded rings [25, 28], where (a) and (b) are the top-view and
cross-section of cascaded rings, respectively.

primarily determined by the impedance characteristics of PDNs. The sources of the power

supply noise include the IR-drop (resistive) and L di
d t (inductive) noise.

IR-drop in PDNs

IR-drop is due to the resistance of the PDNs, which causes a voltage drop when currents flow

through. The resistance along a PDN includes the resistance of on-chip PDN wires and vias,

bond wires or solder bumps to the package, package traces, and PCB planes. Since the copper

wires in the package and PCB are much thicker and wider than the on-chip interconnects,

IR-drop is primarily determined by on-chip PDNs.

Inductive noise

In addition to the resistance, the inductance of PDNs can also cause significant voltage

fluctuations for transient currents. The inductance in PDNs includes the partial self inductance

and partial mutual inductance of the wires, vias, and connectors from the chip, the package,

and PCB. The inductive component of the impedance of PDNs contributes considerable noise

due to the increasing switching speed and, consequently, the faster current transients, of

circuits [116].

The simplified effect of IR-drop and L di
d t drop is illustrated in Fig. 2.14 [25]. As shown in this

figure, the supply voltage seen by the power load (devices) deviates from the ideal voltage with

the transient current. The fluctuations in the supply voltage cause significant variation in the

delay of the transistors. For instance, the delay of a CMOS inverter under different fluctuations

of the supply voltage is illustrated in Fig. 2.15. The ideal Vdd (VDD) for this inverter is 0.9 V. As
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Figure 2.14: Power supply noise caused by IR-drop and L di
d t drop in a simplified PDN [25].
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Figure 2.15: Delay of a CMOS inverter vs. the fluctuation of supply voltage, where (a) is the
schematic of a CMOS inverter. (b) is the change of the inverter delay, where both the rise-fall
(d_r) and fall-rise (d_f) delay are shown.

shown in this figure, under a +10% (-10%) variation in Vdd, the rise-to-fall delay (d_r) can vary

by 37% (-24%). Power supply noise, therefore, highly affects the timing of a circuit.

2.2.3 Modeling techniques for power supply noise

As mentioned above, the power supply noise includes two major components: the inductive

component L di
d t and the resistive component IR. To investigate the two sources of power

supply noise, different models for the PDNs have been proposed. Two important models are

introduced in the following subsections.

The one-dimensional model of PDNs

The one-dimensional model has been proposed to model the entire PDN [25, 117]. For

the PDN shown in Fig. 2.8, the corresponding model is illustrated in Fig. 2.16 [25]. The

electrical characteristics of the voltage regulator, PCB, package, and chip are labeled with the

subscripts “r”, “b”, “p”, and “c”, respectively. The decoupling capacitors are modeled by series

RLC circuits, of which R and L are the parasitic impedances of the capacitors and labeled with

the superscript “C”.
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Figure 2.16: A simplified one-dimensional circuit model for PDNs [25], where (a) models both
the upstream and downstream impedance of all levels of a PDN and (b) is a compact version
of (a).

With the model in Fig. 2.16, the important impedances of a PDN and the decoupling capaci-

tances are modeled as lumped resistance, inductance, and capacitance. The power supply

noise at different frequencies can be estimated efficiently [118]. For instance, the impedance

seen at Iload at different frequencies is illustrated at Fig. 2.17 [29]. For a current pulse (e.g.,

circuit wakeup or clock activation), the resulting resonant supply noise is illustrated in Fig.

2.17(b) [30]. As shown in this figure, the first droop of the supply voltage is the deepest voltage

drop and significantly affects the performance of the system. Consequently, the resonant

supply noise refers to the first droop of supply noise herein [29].

Model for on-chip PDNs

Although the model in Fig. 2.16 provides a fast way to estimate the supply noise in a PDN,

the structure of the on-chip PDNs has been abstracted. Consequently, the difference in the

supply voltage among circuit blocks and devices are ignored. As mentioned before, IR-drop

is primarily determined by the on-chip resistances due to the narrow on-chip interconnects.

To describe the voltage drop within a chip, resistor networks are used to model the on-chip

PDNs.
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(a) (b)

Figure 2.17: Power supply noise in PDNs. (a) is the impedance of a PDN at different frequencies
[29] and (b) is the waveform of a resonant supply noise [30].

The VDD and GND (VSS) parts of an on-chip PDN are usually modeled separately by two

resistor networks. For instance, the GND network of a power grid can be modeled by the

resistor network illustrated in Fig. 2.18(a). The GND wires on different metal layers are

flattened to a planar network. The circuit blocks or devices are modeled as current sources.

Given the resistance of each wire segment, the current through each current source, and the

connections to the package, the voltage at each junction node and current source can be

obtained [119, 120]. This voltage describes the IR-drop of PDNs and the voltage distribution

across the chip. An example of this voltage map is illustrated in Fig. 2.18(b). Since only the

resistance of PDNs is considered, IR-drop analysis focuses on the spatial distribution but not

the temporal change of power supply noise.

In addition to the one-dimensional model for the entire PDN and the resistor networks for

on-chip PDNs, a large number of models has been proposed with emphasis on different

characteristics of the power supply noise [25]. The most detailed models often require a

full-chip transient simulation with given circuit events [121].

2.3 Temperature Variations

In addition to process and voltage variations, the devices and interconnects also experience

temperature variations. The heat generated by devices and interconnects spatially and tem-

porally changes the temperature distribution across a circuit. As the power consumption

increases, thermal issues become increasingly important to integrated circuits. Thermal issues

and related modeling methods are introduced in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Thermal issues in integrated circuits

For advanced technology nodes, on-chip power densities rapidly increase due to the large

number of devices integrated within a circuit and the increased switching speed of devices. For

instance, the power density of Intel microprocessors is illustrated in Fig. 2.19 [31,32]. As shown
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(a)

(b)

Figure 2.18: Resistor network used to model the on-chip PDNs [27], where (a) and (b) are the
topology (not to scale) and voltage drop of the GND network.

in this figure, the power density increases extraordinarily as the feature size of transistors

decreases. This increasing power density can generate high temperatures in integrated circuits,

as illustrated in Fig. 2.20, which results in non-negligible thermal issues. One of the most

important issues is the high junction temperature of transistors. The junction temperature

highly affects the speed, leakage power, and long-term reliability of circuits [33].

The high junction temperature decreases the mobility of the carriers, which decreases the driv-

ing current of transistors. The delay and transition time of transistors, consequently, increases.

Meanwhile, the thermal variation among on-chip devices can lead to spatial and temporal de-

lay variation. The leakage power also increases with the junction temperature. The increased

power, in turn, can further raise the temperature. In extreme cases, this positive feedback

between temperature and power can destroy the circuit due to excessive heat dissipation. The

increasing temperature also reduces the reliability of the circuit. The temperature-related

failures of circuits can be caused by gate oxide breakdown, electro-migration of metal intercon-
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Figure 2.19: The power density of Intel microprocessors vs. feature size of transistors [31, 32].

Figure 2.20: The temperature increase in CMOS circuits vs. feature size of transistors [33].

nects, hot electron effects, negative bias temperature instability, etc. In summary, temperature

variations become a challenge for the design of circuits as technology scales and integration

density increases.

2.3.2 Thermal modeling methods for integrated circuits

To accurately estimate the timing performance and power consumption of circuits under

temperature variations and to mitigate the thermal issues, it is necessary to accurately and

efficiently model the temperature (thermal) profile of circuits. Heat transfer models are

commonly used to estimate the temperature distribution and variations. The heat transfer

models can be divided into two types: steady-state and transient heat transfer models.
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Steady-state heat transfer model

In steady-state models, only the thermal conductance of circuits is considered, which is

determined by the thermal resistance and is time-invariant [122]. Given a constant power

generated in the circuit, the resulting temperature distribution is constant at any time. Based

on the thermal-electrical analogy, thermal resistor networks are commonly used to model the

steady-state heat transfer [123]. The thermal conductance is obtained based on the geometric

parameters and thermal conductivity of different parts of a circuit.

The heat transfer is modeled by Fourier’s law of conduction [124]. Due to Fourier’s law, the

heat flux q (heat generated per unit area) is proportional to the negative temperature gradient

∇T , with a coefficient proportional to the thermal conductivity of the material kt ,

q =−kt∇T. (2.14)

Different models have been developed to obtain T at different abstraction levels. The simplest

model, 1-D thermal model focuses on the vertical heat transfer paths, as illustrated in Fig.

2.21 [34]. Although analytic expressions for temperature can be obtained fast from 1-D model,

non-vertical heat transfer is ignored, which introduces high error to the estimated temperature.

Figure 2.21: One-dimensional steady-state heat transfer model for a two-tier 3-D IC [34], where
TIM is the abbreviation for thermal interface material.

To fully describe the heat transfer and accurately estimate the temperature, the divergence of q

in different directions within a region needs to be considered. Based on (2.14), the steady-state

divergence of q is determined by

∇·q = g (r) =−kt∇2T (r), (2.15)

where r is the coordinate vector of the node where the temperature is being investigated

and g (r) is the power generated per unit volume. This partial differential equation (PDE) is

also called Poisson’s equation. For integrated circuits, finite difference method (FDM) and
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finite element method (FEM) are widely used to discretize equation (2.15) to determine the

temperature distribution. The key difference between FDM and FEM is that FDM discretizes

the differential operator of T in Poisson’s equation [125, 126], while FEM discretizes the

temperature field [127]. In both methods, the entire circuit is divided into multiple cells to

calculate the temperature at a finite number of nodes.

Both FDM and FEM convert the Poisson’s equation (2.15) into a large linear equations array.

The matrices describing this system is usually large and sparse. Consequently, solving this

linear equation array is similar to the IR-drop analysis problem for power grids. Several

methods can be used to obtain the solutions, e.g., Gaussian elimination, iterative methods,

random walk methods, and hierarchical solving methods [126].

Transient heat transfer model

In transient heat transfer model, the time-variant power is considered. The partial differential

of T to time t needs to be added to the heat transfer equation (2.15) to include the time

domain,

−kt∇2T (r) = g (r, t )−ρcp
∂T (r, t )

∂t
, (2.16)

where ρ is the density of the material (kg/m3) and cp is heat capacity of the materials employed

for the circuit. Instead of the resistor networks in steady-state analysis, RC models are used to

denote different parts of an integrated system in transient thermal analysis. FDM models are

widely used to obtain the transient temperature distribution [126].

At the architecture level, HotSpot is widely used to analyze the transient thermal behavior for a

circuit [35, 36, 128]. The objectivity of HotSpot is to obtain a coarsely discretized FDM solution

across the chip, which is modeled by RC models, as illustrated in Fig. 2.22. The temperature

difference within a module is ignored in HotSpot. To obtain a more detailed temperature

distribution, fine grain methods such as alternating-direction-implicit (ADI) method can be

used [129].

2.4 Summary

The background of process variations, power supply noise, and temperature variations is

introduced in this chapter. A number of techniques have been proposed to model PVT

variations in 2-D circuits. In 3-D integration, the vertically stacked tiers have introduced a

new physical dimension and new materials (e.g., TSVs and bonding layers). Consequently,

the traditional modeling and design techniques for 2-D ICs need to be adapted to cope with

3-D circuits. The process, voltage, and temperature variations and the related effects on these

circuits are investigated in the following chapters.
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Figure 2.22: A HotSpot RC model for a circuit with three architectural modules [35, 36].
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3 Process Variations in 3-D ICs

Process variations have been introduced in Section 2.1, where the parameter variations of

transistors and wires have been discussed. The effect of process variations on the timing of 3-D

ICs is investigated in this chapter. In particular, the focus of this chapter is the process-induced

uncertainty in 3-D clock distribution networks.

Techniques to model process variations for the entire circuit are first introduced in Section

3.1. Work related to process variations in 3-D ICs is surveyed in Section 3.1.3. The effect of

process variations on clock distribution networks is investigated in Section 3.2. A novel model

to capture this effect is proposed in Section 3.3. Based on this analysis, new topologies for 3-D

clock trees are proposed in Section 3.4 to mitigate the deleterious effects of process variations.

3.1 Process Variations Modeling for Integrated Circuits

Methods for full-chip process variations modeling are introduced in this section. For the

statistical modeling of circuits, process variations are modeled as D2D and WID variations,

as discussed in the previous chapter (see Fig. 2.3). The variation models introduced in

Section 2.1 are used to describe the behavior of transistors and wires. The objective of full-

chip analysis, however, is to describe the delay variations of data and clock paths. Two

types of methodologies are commonly used to achieve this goal: corner-based analysis and

statistical timing analysis. Corner-based analysis has been introduced in Section 2.1.3, which

usually results in pessimistic results [101]. The statistical timing analysis methods, therefore,

are discussed in this chapter. Two important statistical timing analysis methods, Monte-

Carlo simulations and Statistical Static Timing Analysis (SSTA), are described in the following

subsections.

3.1.1 Monte-Carlo simulations

Monte-Carlo methods have widely been used in statistical modeling [130]. Multiple iterations

of simulations need to be run in Monte-Carlo methods. In each iteration, the random variables
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are re-sampled based on the given distribution of these variables. The statistical results, e.g.,

mean and standard deviation, are obtained after a specified number of iterations.

In general, an accurate estimation of the statistical data can be obtained after a large number

of Monte-Carlo simulations. For instance, SPICE-based Monte-Carlo simulations can be

used to capture the non-deterministic characteristics of devices [131]. Delay variation can be

obtained by applying Monte-Carlo simulations for the entire data or clock paths. Nevertheless,

the runtime for Monte-Carlo simulations is excessively high due to the large number of

simulations. An example for the obtained standard deviation σ of a path delay with the

number of Monte-Carlo simulations is illustrated in Fig. 3.1, where a path with 20 inverters is

simulated. As shown in this example, more than 2000 Monte-Carlo simulations are required

to obtain a converging σ. Considering the time required by the SPICE-based simulations

and the large number of pairs of clock paths in a clock distribution network, this method

is prohibitively time-consuming. Statistical static timing analysis, therefore, is usually an

efficient alternative to obtain the process-induced delay.

Figure 3.1: The standard deviation of the delay of an inverter chain vs. the number of Monte-
Carlo simulations.

3.1.2 Statistical static siming analysis

SSTA has been developed as a statistical version of the classic Static Timing Analysis (STA)

method to analyze the path delay and timing of circuits [96, 132, 133]. Different from the

transient state timing analysis (e.g., SPICE), STA determines the path delay based on the

topology of the circuit and the given static delay model of devices and interconnects. The

topology of the circuit is interpreted as timing graphs, where a node represents a pin of a gate

and the edge denotes a connection between a pair of nodes. A timing graph considering the

delay of both gates and wires is illustrated in Fig. 3.2.

The weight of the edge denotes the delay between two nodes determined by the fanin and

fanout of the related nodes and the given timing models for gates and wires. By traversing
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Figure 3.2: An example of timing graph used in STA, where (a) and (b) are the logic gates
between two Flip-Flops and the corresponding timing graph, respectively.

the timing graphs, the delay can be determined for all the data and clock paths. Two types

of traversal methods have been developed for STA, i.e., path-based and block-based STA. In

path-based STA, the timing graph is traversed path by path to obtain the delay for all specified

data or clock paths [134, 135]. The maximum (minimum) delay between a source and a sink

is determined by the maximum (minimum) delay among all the corresponding paths. Path-

based methods are suitable for small designs but not for the large circuits due to the large

number of paths.

In block-based STA, however, the delay is calculated node by node, where each node is tra-

versed only once [136,137]. The maximum (minimum) arrival time to each node is determined

after the maximum (minimum) arrival time of all its fanins is determined. For large-scale

circuits, block-based STA is more efficient than path-based STA, since the number of nodes is

typically lower than the number of paths between Flip-Flops [138].

The delay of gates and wires in STA is considered to be deterministic. When process variations

are included, however, the delay becomes a random variable. Consequently, SSTA has been

developed to address this situation [96]. The timing graph used in SSTA is similar to STA, except

that the weight of each edge is denoted by a random variable. The target of SSTA is, therefore,

to obtain the distribution of the maximum path delay between the given source and sink.

SSTA can also be classified into path-based and block-based methods. Typically, block-based

methods are preferred due to their higher efficiency, similar to block-based STA. SSTA methods

have been used to model the effect of process variations on the delay of both data and clock

paths for 2-D ICs [96, 139]. For 3-D circuits, SSTA has been used to investigate the effect of

process variations on critical datapaths, which is discussed in the following subsection.

3.1.3 Related works on process variations in 3-D ICs

Recent works analyzing the effect of process variations on the speed of 3-D ICs are presented

in [88,89,140], where the impact of process variations on the delay of datapaths is investigated.

An analytical model, 3D-GCP, for the impact of process variations on the critical path delay

distribution of 3-D ICs is proposed in [88]. The model is used to describe the distribution of
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the maximum delay among a given set of critical paths. The investigated critical paths are

illustrated in Fig. 3.3. In this model, two types of critical paths are modeled: WID paths (shown

Tier 1 Tier 2 TSV

WID path 1 

WID path 2 

D2D path 3 

Figure 3.3: The critical paths modeled by 3D-GCP.

by paths 1 and 2 in Fig. 3.3) and D2D paths (shown by path 3). As with these datapaths, all the

critical paths are assumed to have no common segments. Based on this assumption, it has

been shown that 3-D circuits behave very differently under the impact of process variations as

compared to 2-D circuits [88]. The distribution of datapaths across planes significantly affects

the timing yield (the distribution of the highest clock frequency).

Based on 3D-GCP, a system-level process variations analysis has been presented in [89], where

the timing yield in 3-D ICs with multiple clock domains has also been investigated. Again, only

the effect of process variations on datapaths, which share no parts, is discussed. Furthermore,

it is assumed that for multiple-clock designs, the different clock domains are separately located

in different planes. Another comparison between process variations in 2-D and 3-D ICs is

presented in [140]. The difference in process-induced timing variability has, again, been

observed between 2-D and 3-D circuits. Statistical timing analysis has been implemented

for datapaths to show the advantage of 3-D ICs over 2-D circuits in reducing the variation of

critical path delay due to process variations.

These prior works focus on the timing uncertainty in 3-D ICs caused by the varying delay of the

datapaths. Nevertheless, timing also depends on the clock uncertainty, due to the variations of

the clock distribution. For instance, the setup slack between two flip-flops can be determined

by [75]

slacksetup = clock period+clock skew−Data delay− setup time, (3.1)

where clock skew is the difference between the clock delay to the sink and source flip-flops and

the setup time is determined by the sink flip-flop. Consequently, the timing of a circuit is not

only determined by the delay variation of critical datapaths but is also highly affected by skew

variation within the clock distribution networks. Accurately modeling the skew variability due

to process variations is, therefore, necessary to evaluate the timing of a 3-D circuit.
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The aforementioned modeling methods for the process-induced delay variation in 3-D ICs,

however, cannot be used to analyze clock distribution networks. In these works, the datapaths

are assumed to have no common segments. This assumption cannot be used to determine

the skew of clock distribution networks, since the clock paths to different sinks in clock

distribution networks can (actually are designed to) share segments, as illustrated in Fig. 3.4.

This “structure correlation”, therefore, should be considered when calculating the distribution

of skew variation. In addition, the WID variation is considered either independent or fully

TSV

Tier 1 

Tier 2 

Figure 3.4: Clock paths sharing different branches within a 3-D circuit.

correlated among the devices within the same plane in [88, 89, 140]. The spatial correlation

of WID variations (between zero and one), however, has been shown to be non-negligible

[37,86,97,139,141]. Consequently, clock delay and skew variation in 3-D ICs should be modeled

considering both the shared branches among clock paths and the spatial WID correlation.

The traditional methods employed to model skew variation in 2-D clock trees cannot be

directly applied to 3-D clock trees either. For the same parameter in 2-D ICs, the D2D variation

remains uniform for all the devices or interconnects. Consequently, D2D variations are often

ignored or simplified in skew analysis [37, 139, 142]. In 3-D ICs, however, the D2D variations

differ among tiers (planes). The WID variations are independent among tiers. Both the clock

and data paths can span more than one tier (see Figs. 3.3 and 3.4), which complicates the

statistical timing analysis for 3-D circuits. These observations are considered in the following

sections to accurately model the clock uncertainty, where the effect of process variations on

3-D clock distribution networks is investigated and a novel model is proposed to describe this

effect.

3.2 The Effect of Process Variations on Clock Distribution Networks

As introduced in Section 1.4, the maximum clock frequency of a circuit is significantly affected

by the clock skew between clock sinks. Both the setup and hold slacks vary with clock skew.

Clock skew is introduced at the design and fabrication stages and during the operation of ICs.

There is a plethora of methods to manage the excessive clock skew in the design phase [39,
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(a) (b)

Figure 3.5: The standard deviation of skew between each pair of clock sinks in a 2-D H-tree,
where (b) is the top-view of (a).

75, 79] for 2-D circuits. Careful physical design, however, does not guarantee the elimination

of the undesirable skew since some skew can be introduced in the fabrication phase. This

unwanted skew is due to the process variations of the clock buffers and wires.

3.2.1 Process-induced statistical skew

The delay variations of clock buffers and clock wires introduce differences in the delay among

clock paths. Even for a symmetric clock tree, this difference in the path delay can be significant.

Since the origins of the difference are statistically described, the resulting delay difference also

exhibits a statistical behavior. For instance, for a 2-D H-tree with 256 clock sinks, the standard

deviation of clock skew between each pair of clock sinks is illustrated in Fig. 3.5. In this figure,

σi , j denotes the standard deviation of skew between sinks i and j . Since σi , j =σ j ,i , only half of

the skew array is shown in this figure for clarity. The skew variation changes significantly with

the location of the corresponding pairs. Accurately modeling process-induced skew variation

in a clock tree is, consequently, important to precisely estimate the timing performance of a

circuit.

Several techniques for analyzing the effect of process variation on clock skew have been

developed for 2-D circuits emphasizing intra-die variations. As introduced in Section 3.1,

process-induced timing uncertainty can be modeled by corner-based analysis or statistical

timing analysis. A method for statistical clock skew analysis based on Monte Carlo simulations

is described in [143]. The computational time of this method is, however, prohibitively

high for large scale ICs. Based on statistical timing analysis [133], other statistical skew

modeling methods considering intra-die variations are presented in [37, 139, 142, 144, 145] to

efficiently analyze skew variations. In 2-D ICs, since the inter-die process variations uniformly

affect the devices within a circuit, the majority of the skew analysis methods emphasizes the
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Figure 3.6: Modeling spatial correlations using quad-tree partitioning [37].

intra-die (WID) variations. For WID variations, one of the most important and tedious tasks

is to determine the spatial correlation of the same parameter among different devices (or

interconnects).

3.2.2 Spatial correlation

The WID variations typically exhibit a spatial correlation [37, 92, 97, 141]. In general, the

correlation between a pair of devices (or interconnects) located within the same plane de-

creases with their distance. Several methods have been proposed to model this spatial correla-

tion [37, 86, 141].

The spatial correlation model (multi-level correlation) used in this dissertation is based on

the statistical timing analysis method proposed in [37]. A multi-level quad-tree partitioning is

used and the WID variation of a parameter is divided into l levels, as illustrated in Fig. 3.6 [37].

At the kth level, there are 4k−1 regions.

An independent variable is assigned to each region to represent a component of the WID

variation of a parameter. The overall WID variation of a parameter of a device or interconnect

is composed by the sum of these independent components at different levels. For instance,

the WID variation of the channel length of transistor i is described by

ΔLgate(i ) =
1≤k≤l∑

region r intersects k
ΔLgate(k,r ), (3.2)
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where ΔLgate(k,r ) is the random variable associated with the quad-tree at level k, region (k,r ),

as shown in Fig. 3.6. This distribution is obtained by dividing the total WID variability among

the different levels. All the random variables ΔLgate(k,r ) associated with a particular level k

are assigned to identical and independent probability distributions. Consequently, the spatial

correlation between devices in the same plane can be modeled. Devices located close to each

other are highly correlated, while the devices separated by a large physical distance exhibit

low correlation.

Given that the total WID variation is equally divided into different levels, the total correlation

between the WID variation of the same parameter of devices (or interconnects) i and j is

described by the sum of the correlations at all the levels,

corr(i , j ) = 1

l

l∑
k=1

corrk (i , j ), (3.3)

where corrk (i , j ) is the correlation between buffers i and j at the kth level. As illustrated in Fig.

3.6, assuming buffers i and j are located in the zones (k, regioni ) and (k, region j ), respectively,

corrk (i , j ) =
⎧⎨
⎩1, if (k, regioni ) = (k, region j )

0, if (k, regioni ) �= (k, region j )
. (3.4)

WID variations are well modeled for 2-D ICs. Nevertheless, D2D variations are usually ne-

glected when analyzing the variation of skew in 2-D clock trees. In 3-D ICs, however, both

WID and D2D variations need to be included in the statistical model for skew, as discussed in

the following section.

3.3 A Novel Model for Process-Induced Skew in 3-D ICs

Although statistical skew analysis has been studied in 2-D ICs, the resulting methods cannot

be directly applied to 3-D systems. As mentioned in the previous section, the skew analysis

methods for 2-D clock distribution networks focus on the effect of WID variations, since

D2D variations uniformly affect the devices (wires) within a circuit. For well-designed clock

distribution networks, this uniform effect can be neglected due to the balanced clock paths. In

3-D ICs, however, the D2D variation cannot be neglected, since clock paths can span multiple

dies and these paths are affected by different D2D variations. The problem of modeling

skew variation is formulated in the following subsection. A new method to characterize the

statistical electrical characteristics of clock buffers is presented in Section 3.3.2. This method is

employed to provide the new statistical skew model for 3-D ICs, which is proposed in Section

3.3.3.
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3.3.1 Problem formulation for modeling skew variation

The problem of skew analysis for 3-D clock distribution networks considering process varia-

tions is formulated in this subsection. As discussed in [75], only the clock skew between the

sequential elements which transfer data between each other (data-related or "sequentially-

adjacent" registers) affects the performance of a circuit. Consequently, in addition to global

skew, appropriate pairwise skew distributions are used to evaluate the performance of clock

distribution networks [145].

H-tree is a common topology used to globally distribute the clock signal within a circuit [39,75].

A typical buffered 3-D H-tree is illustrated in Fig. 3.7. The pairwise clock skew is defined as

the skew between every pair of sinks in 3-D clock distribution networks, Sskew = {si , j | si , j =
Di −D j , i �= j and 1 ≤ i , j ≤ nsink}. Sinks i and j can be located in any plane of the 3-D circuit

and si , j denotes the skew between sinks i and j . The clock delay to sinks i and j is denoted by

Di and D j , respectively. The number of clock sinks is nsink.
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Figure 3.7: 3-D H-trees spanning four planes, where (a) is the topology of a 3-D H-tree and (b)
is the 3-D view of a 3-D H-tree.

The number of buffers and the length of the interconnects in clock trees significantly affect

the distribution of clock skew. These quantities depend, in turn, on the area and number

of the physical planes comprising a 3-D IC, affecting the highest clock frequency that can

be supported by a 3-D IC. By investigating the effect of process variations on Sskew, several

guidelines for the design of 3-D global clock trees with a low ΔSskew are offered.

3.3.2 Modeling the statistical delay of a buffer stage

Typical methods to model the process-induced delay of transistors have been introduced in

Section 2.1.3. These methods require the detailed information about the distribution of all the

parameters of transistors. For some industrial device libraries, however, only the Monte-Carlo
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Rin
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Cint

Rint

I OS

{Cb, Db, Rb}

Figure 3.8: An elemental circuit used to measure the variations in the buffer characteristics.

model of transistors is provided, where the parameter variation is unknown [146]. A fast

method to extract the distribution of electrical characteristics of clock buffers is proposed

in this subsection, where the detailed information of the distribution of parameters is not

required.

The fluctuation of the buffer delay is typically approximated as being linear in the device

parameter variations [145,147]. Alternatively, the variation in delay can be determined through

the variations of the input capacitance and output resistance [142]. The second method is

enhanced by considering the input slew rate to more accurately model the distribution of the

buffer delay. The interconnects are modeled as distributed RC wires. The circuit illustrated in

Fig. 3.8 is utilized to obtain the variation of buffer delay for different slew rates of the input

signal.

Let Rin denote the output resistance of a buffer driving the buffer under consideration. The

load capacitance of the buffer under consideration is denoted by Cl. Interconnects with

diverse impedance characteristics are modeled by employing different Rint and Cint, where

Rint and Cint denote the resistance and capacitance of the interconnects, respectively. The

interconnect Rint and Cint can also be adjusted to produce different slew rates for the input

signal of the buffer in Fig. 3.8.

For a step input signal, the Elmore delay [111] from source S to nodes I and O in Fig. 3.8,

respectively, is

DSI = 0.69RinCint +0.38RintCint +0.69(Rin +Rint)Cb, (3.5)

ΔDSI = 0.69(Rin +Rint)ΔCb, (3.6)

DSO = DSI +Db +0.69RbCl, (3.7)

ΔDSO =ΔDSI +ΔDb +0.69ClΔRb, (3.8)

where Cb, Rb, and Db are the input capacitance, the output resistance, and the intrinsic delay

of the buffer, respectively. The variations of Cb, Rb, and Db are denoted by ΔCb, ΔRb, and ΔDb,

respectively. While investigating the buffer as shown in Fig. 3.8, the Rin is presumed constant

(for the moment).
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The delay variation at nodes I and O are evaluated with Monte-Carlo simulations. The stan-

dard deviation σDSI and σDSO can be obtained from these simulations. The distribution of

ΔDSO is measured in two cases:

1. setting Cl to zero (corresponding to ΔDSO0 and σDSO0
)

2. setting Cl to a value close to the actual capacitive load of a buffer stage in a 3-D clock

tree (e.g., 200 fF, corresponding to ΔDSO1 and σDSO1
).

The mean and standard deviation of ΔCb, ΔRb, and ΔDb can, consequently, be obtained by

(3.6) and (3.8). Assuming the sources of the process variations can be described by Gaussian

distribution, the characteristics of a buffer can also be approximated as Gaussian distribution

[86],

ΔCb ∼N (0,σ2
Cb

), ΔRb ∼N (0,σ2
Rb

), ΔDb ∼N (0,σ2
Db

). (3.9)

Given σDSI , the standard deviation of the input capacitance σCb is directly obtained through

(3.6),

σCb =
σDSI

0.69(Rin +Rint)
. (3.10)

According to (3.6) and (3.8), σDSO is determined by σCb , σDb , σRb , and the covariance among

these variables,

σ2
DSO0

= (0.69(Rin +Rint)σCb )2 +σ2
Db

+1.38(Rin +Rint) ·cov(Db,Cb), (3.11)

σ2
DSO1

= (0.69(Rin +Rint)σCb )2 +σ2
Db

+ (0.69σRbCl)
2 +1.38(Rin +Rint) ·cov(Db,Cb)

+1.38Cl ·cov(Db,Rb)+0.952Cl(Rin +Rint) ·cov(Cb,Rb). (3.12)

Recalling that cov(a,b) =σaσbcorr(a,b) and (3.10), the above expressions can be rewritten as

σ2
DSO0

=σ2
DSI

+σ2
Db

+2σDSI σDb ·corr(Db,Cb), (3.13)

σ2
DSO1

=σ2
DSO0

+ (0.69Cl)
2σ2

Rb
+1.38ClσDbσRb ·corr(Db,Rb)

+1.38ClσDSI σRb ·corr(Cb,Rb). (3.14)

Given the measured σDSI and σDSO0
, the standard deviation of the intrinsic delay of buffers

σDb can be obtained based on a quadratic equation transformed from (3.13),

σ2
Db

+ (
2σDSI ·corr(Db,Cb)

)
σDb + (σ2

DSI
−σ2

DSO0
) = 0. (3.15)

With the obtained σCb and σDb , the standard deviation of the output resistance of buffers σRb

is calculated based on the quadratic equation transformed from (3.14),

(0.69Cl)
2σ2

Rb
+ A ·σRb + (σ2

DSO0
−σ2

DSO1
) = 0,
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A = 1.38ClσDb ·corr(Db,Rb)+1.38ClσDSI ·corr(Cb,Rb). (3.16)

As shown in (3.15) and (3.16), the obtainedσRb andσDb depend on the correlation corr(Db,Cb),

corr(Db,Rb), and corr(Cb,Rb). In the proposed model of skew variation, σCb , σRb , and σDb are

used to obtain the delay variation of each buffer stage Δdi , which is similar to ΔDSO1 . The

process to determine Δdi is illustrated in Fig. 3.9. When calculating σdi , the pre-calculated

R, C,
D

DSO1

Correlation
among R, C, D

di

DSO1 and diare based on the same expression 

Figure 3.9: The flow to determine clock skew variation by using the parameters extracted from
the test circuit.

σCb , σRb , σDb , and the correlation among them are substituted into (3.14) again. Note that

these terms are extracted based on the simulation of a test circuit similar to a buffer stage

(see Fig. 3.8). Consequently, the correlation among ΔCb, ΔRb, and ΔDb does not affect Δdi

significantly, as long as Δdi is calculated based on the same correlation. Since ΔCb, ΔRb, and

ΔDb are due to the same process variation sources, these variables are assumed to be fully

correlated herein.

3.3.3 Modeling the statistical skew in 3-D circuits

An example of a 3-D clock path is illustrated in Fig. 3.10. Note that this path is general and

can be applied to any 3-D clock tree in addition to the 3-D topologies investigated herein. The

devices in different physical planes are connected by TSVs [68], which, in turn, are modeled

as RC wires of different resistance and capacitance as compared to the horizontal wires (e.g.,

RTSV and CTSV in Fig. 3.10). RTSV and CTSV are considered fixed.

Consider the clock path consisting of buffers i −1, i , and i +1. From (3.6) and (3.8), the delay

variation Δdi attributed to the variation of buffer i along the investigated path is

Δdi = 0.69(R in(i ) +ΔRb(i−1))ΔCb(i ) +0.69ΔRb(i )(C l(i ) +ΔCb(i+1) +ΔCb( j ))

+0.69Rb(i )ΔCb( j ) +ΔDb(i ), (3.17)
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Figure 3.10: The electrical model of a segment of a clock path.

Rin(i ) = Rb(i−1) +RTSV, (3.18)

Cl(i ) = 2Cint +Cb(i+1) +Cb( j ), (3.19)

where the bar (¯) denotes the nominal value. For buffer i , the ΔRb(i−1) of the upstream buffer

and ΔCb(i+1) of the downstream buffer are both included in (3.17). To determine the delay of a

clock path, Δdi for all the buffers along this path is summed up. In this case, ΔRb(i−1)ΔCb(i )

and ΔRb(i )ΔCb(i+1) are duplicated. Therefore, one of these two terms needs to be removed.

Consequently, Δdi is rewritten as

Δdi = 0.69
(
R in(i )ΔCb(i ) +ΔRb(i )(C l(i ) +ΔCb(i+1) +ΔCb( j ))+Rb(i )ΔCb( j )

)
+ΔDb(i )

=0.69
(
R in(i )ΔCb(i ) +Rb(i )ΔCb( j )

)
+ΔDb(i ) +δi , (3.20)

where δi = 0.69ΔRb(i )(C l(i ) +ΔCb(i+1) +ΔCb( j )).

The variation of ΔCb is relatively low as compared with the nominal Cb (σ/μ< 3% for both

D2D and WID variations in the simulations). The observed delay variation of buffers in other

works is also much lower than the nominal value (e.g., σ/μ ≤ 5% for both D2D and WID

variations as reported in [92] ). δi can, therefore, be approximated linearly using a first-order

Taylor expansion around the nominal value [86],

δi ≈
[

∂δi

∂ΔRb(i )

]
0
ΔRb(i ) +

[
∂δi

∂ΔCb(i+1)

]
0
ΔCb(i+1) +

[
∂δi

∂ΔCb( j )

]
0

ΔCb( j )

= 0.69C l(i )ΔRb(i ). (3.21)

As reported in [88, 89, 92], the σ/μ of the transistor characteristics is typically considered ≤ 5%.

For instance, for transistors and interconnects based on PTM 45 nm CMOS and global wire

models [41] and the ITRS reports [43], the σRb /μRb and σCb /μCb are below 5.1% and 2.3%,

respectively (as will be shown in Table 3.2). The 3σ variation is smaller than 15% of the nominal

value for Rb and 10% for ΔCb. Since ΔCb and ΔRb are modeled by Gaussian distributions,
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for more than 99.7% buffers, ΔCbΔRb is lower than 1.5%CbRb. Moreover, from the nominal

value and standard deviation of Cb, Rb, and Db reported in the simulations, 0.69ΔCbΔRb and

0.69CbRb are much lower than ΔDb and Db, respectively. Consequently, approximating δi

with (3.21) does not introduce significant loss of accuracy.

As mentioned previously, ΔRb(i ), ΔCb(i ), and ΔDb(i ) are approximated as Gaussian distribu-

tions and can be assumed to be fully correlated. According to (3.20) and (3.21), Δdi can be

approximated as a Gaussian distribution,

Δdi ∼N (0,σ2
d D2D

i
+σ2

d WID
i

), (3.22)

σ2
d D2D

i
=

⎧⎨
⎩(σ1 +σ2 +σ3)2 +σ2

4 if buffers i and j are in different planes

(σ1 +σ2 +σ3 +σ4)2 if buffers i and j are in the same plane
, (3.23)

σ2
d WID

i
= (σ5 +σ6 +σ7)2 +σ2

8 +2corr(i , j )(σ5 +σ6 +σ7)σ8, (3.24)

σ1 = 0.69R in(i )σC D2D
b(i )

, σ2 = 0.69C l(i )σRD2D
b(i )

, σ3 =σDD2D
b(i )

, σ4 = 0.69Rb(i )σC D2D
b( j )

,

σ5 = 0.69R in(i )σC WID
b(i )

, σ6 = 0.69C l(i )σRWID
b(i )

, σ7 =σDWID
b(i )

, σ8 = 0.69Rb(i )σC WID
b( j )

.

The correlation between buffers i and j is denoted by corr(i , j ), the model of which has been

discussed in Section 3.2.2.

Consequently, for a 3-D clock path to a sink u which includes nu clock buffers, the variation of

the delay is expressed as the summation of (3.20) applied to each buffer along the path. The

variance of the distribution of a 3-D clock path is a Gaussian distribution consisting of the

WID and D2D variations of the buffers,

ΔDu =
nu∑

i=1
Δdi , (3.25)

ΔDu ∼N (0,σ2
DD2D

u
+σ2

DWID
u

). (3.26)

The D2D and WID sources of delay variation along a 3-D clock path are, respectively, discussed

in the following paragraphs.

D2D Variation Model for the Delay of 3-D Clock Paths

The variation of the delay of 3-D clock paths due to the D2D process variations is the sum of

the D2D variations of the buffer delay in all the planes,

ΔDD2D
u =

Np∑
j=1

ΔDD2D
u( j ) , (3.27)

ΔDD2D
u( j ) =

nu( j )∑
i=1

ΔDD2D
u( j ,i ), (3.28)
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where Np is the number of the planes that the clock tree spans. ΔDD2D
u( j ) is the variation of

the delay of the clock path from the clock source to sink u in plane j . The number of buffers

located in plane j along this clock path is denoted by nu( j ). The variation of the delay related

to the i th buffer in plane j is denoted by ΔDu( j ,i ).

Since the D2D variations affect the buffers in the same plane equally, according to (3.22),

(3.23), and (3.27), the distribution of ΔDD2D
u( j ) is a Gaussian distribution. The D2D variations

affect the buffers in different planes independently and, therefore, ΔDD2D
u( j ) is independent

from ΔDD2D
u(k) for any j �= k. Consequently, according to (3.27), the distribution of ΔDD2D

u is also

a Gaussian distribution,

ΔDD2D
u ∼N (0,σ2

ΔDD2D
u

), (3.29)

σ2
DD2D

u
=

Np∑
j=1

σ2
DD2D

u( j )
=

Np∑
j=1

(
nu( j )∑
i=1

σDD2D
u( j ,i )

)2. (3.30)

WID variation model for the delay of 3-D clock paths

The delay of a 3-D clock path affected by WID variations is the sum of WID variations of all the

buffers along this path. Consequently, according to (3.24), the distribution of ΔDWID
u is also a

Gaussian distribution. The resulting variance of the delay of sink u due to WID variations is

ΔDWID
u ∼N (0,σ2

DWID
u

), (3.31)

σ2
DWID

u
=

nu∑
i=1

σ2
d WID

i
+2

∑
1≤i< j≤nu

corr(i , j )σd WID
i

σd WID
j

, (3.32)

where corr(i , j ) is the correlation between the WID variations of buffers i and j . If buffers i

and j are located in different planes, corr(i , j ) = 0. The spatial correlation of WID variations of

different buffers within the same plane has been discussed in Section 3.2.2.

The clock skew between any pair of sinks in a 3-D clock tree is the difference of the clock delay

between these sinks. For a 3-D clock tree with nsink sinks distributed in Np planes, the nominal

value and the variation of clock skew su,v between sinks u and v , respectively, are

su,v =Du −Dv , (3.33)

Δsu,v =ΔsWID
u,v +ΔsD2D

u,v =ΔDWID
u −ΔDWID

v +ΔDD2D
u −ΔDD2D

v . (3.34)

The mean of Δsu,v is E(Δsu,v ) = E(ΔsWID
u,v )−E(ΔsD2D

u,v ) = 0. The WID part
(
ΔDWID

u −ΔDWID
v

)
and D2D part

(
ΔDD2D

u −ΔDD2D
v

)
are independent from each other. Consequently, ΔsD2D

u,v and

ΔsWID
u,v are discussed separately in the following subsections.
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Skew model of 3-D clock trees with D2D variations

The correlation between each pair of terms in the expression of ΔsD2D
u,v can be one or zero (i.e.,

fully correlated or uncorrelated, respectively). According to (3.27), ΔsD2D
u,v can be written as the

sum of the terms in different planes,

ΔsD2D
u,v =

Np∑
j=1

ΔsD2D
(u,v) j

(3.35)

ΔsD2D
(u,v) j

=
nu( j )∑
i=1

ΔDD2D
u( j ,i ) −

nv( j )∑
i=1

ΔDD2D
v( j ,i ), (3.36)

where ΔDD2D
u( j ,i ) is the D2D delay variation related to the i th buffer in the j th plane along the

clock path ending at sink u. The number of buffers in the j th plane along this path is denoted

as nu( j ).

All the buffers in the same plane are equally affected by the D2D variations, which means

that the correlation between each pair of variables in (3.36) is one. Since ΔDD2D
u( j ,i ) and ΔDD2D

v( j ,i )

are both modeled as Gaussian distributions, ΔsD2D
(u,v) j

is also a Gaussian distribution. In (3.36),

∀ j1 �= j2(1 ≤ j1, j2 ≤ Np), ΔsD2D
(u,v) j1

is independent from ΔsD2D
(u,v) j2

. Consequently, ΔsD2D
u,v is also

described by a Gaussian distribution,

ΔsD2D
u,v ∼N (0,σ2

sD2D
u,v

), (3.37)

σ2
sD2D

u,v
=

Np∑
j=1

σ2
sD2D

u,v( j )
=

Np∑
j=1

(
nu( j )∑
i=1

σDD2D
u( j ,i )

−
nv( j )∑
i=1

σDD2D
v( j ,i )

)2. (3.38)

Skew model of 3-D clock trees with WID variations

According to (3.32), the distribution of ΔsWID
u,v is also a Gaussian distribution,

ΔsWID
u,v ∼N (0,σ2

sWID
u,v

), (3.39)

σ2
sWID

u,v
=

nu∑
i=nu,v+1

σ2
DWID

u(i )
+

nv∑
j=nu,v+1

σ2
DWID

v( j )
+2

nu∑
i , j=nu,v+1

i< j

corr(i , j )σDWID
u(i )

σDWID
u( j )

+2
nv∑

i , j=nu,v+1
i< j

corr(i , j )σDWID
v(i )

σDWID
v( j )

−2
∑

nu,v+1≤i≤nu
nu,v+1≤ j≤nv

corr(i , j )σDWID
u(i )

σDWID
v( j )

, (3.40)

where nu,v is the number of the buffers shared by the clock paths ending at sinks u and v , as

depicted in Fig. 3.11. After buffer nu,v , the sub-paths to u and v do not share any buffer. The

correlation between the variation of buffers has been introduced in Section 3.2.2.
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Clock
source

sink u

sink v

nu,v

nu

nv

Figure 3.11: The clock paths to sinks u and v where the paths share nu,v buffers.

According to (3.34) through (3.40), the variation of the clock skew Δsu,v between sinks u and v

in a 3-D clock tree is modeled as a Gaussian distribution,

Δsu,v ∼N (0,σ2
sWID

u,v
+σ2

sD2D
u,v

). (3.41)

If the maximum tolerant skew variation is ΔS ≥ 0, the probability that a 3-D clock tree satisfies

this constraint is

P (|su,v | ≤ΔS) =
∫ΔS−s̄u,v

−ΔS−s̄u,v

fΔsu,v (t )d t , (3.42)

fΔsu,v (t ) = 1√
2πσ2

su,v

e−t 2/(2σ2
su,v ). (3.43)

The model of skew variations is used to analyze the effect of process variations in various 3-D

clock trees. This model can be extended to include the variations of horizontal interconnects,

as analyzed in Section 3.3.5. The investigated 3-D clock distribution networks and simulation

results are presented in the following section.

3.3.4 Accuracy of the proposed model

The skew variation model is compared with Monte-Carlo simulations in this section. The

structure used for this purpose is an H-tree clock distribution network. This H-tree is placed

in a circuit with total area 10 mm×10 mm.

The circuit is assumed to be implemented at a 45 nm CMOS technology. The parameters of

the transistors and the interconnects are extracted from the PTM 45 nm CMOS and global

interconnect models [41] and the ITRS reports [43]. The clock buffers consist of two inverters

connected in series. The circuit parameters used in the following sections are listed in Table

3.1. The ratio of the width to the channel length is denoted by Wn/Ln and Wp/Lp for NMOS

and PMOS, respectively. The interconnect resistance and capacitance per unit length are

denoted by rint and cint, respectively. The physical and electrical characteristics of TSVs are

also listed in Table 3.1 and are based on the data reported in [68, 71]. The diameter and length

of the TSVs are notated as øTSV and lTSV, respectively.
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Table 3.1: Device and Interconnect Parameters of the Investigated Circuit.

Parameter Wn/Ln Wp/Lp Vdd [V] Rb [Ω] Cb [fF] Db [ps]
Value 30 60 1.0 349.0 5.7 24.8

Parameter rint [Ω/mm] cint [fF/mm] øTSV [μm] lTSV [μm] RTSV [mΩ] CTSV [fF]
Value 51.2 230.2 2 20 133 52

Table 3.2: Variations of the Electrical Characteristics of the Buffers.

Input Slew
Rb [Ω] Cb [fF] Db [ps]

μ σWID σD2D μ σWID σD2D μ σWID σD2D

47 [mV/ps]
371 18.8 15.3 4.9 0.04 0.03 19.9 1.04 0.85
σ/μ 5.1% 4.1% σ/μ 0.8% 0.7% σ/μ 5.2% 4.3%

16 [mV/ps]
349 17.8 14.7 5.7 0.31 0.16 24.8 1.49 1.21
σ/μ 5.1% 4.2% σ/μ 2.3% 2.1% σ/μ 6.0% 4.9%

6 [mV/ps]
345 16.7 13.7 7.2 0.08 0.06 30.1 2.19 1.79
σ/μ 4.8% 4.0% σ/μ 1.1% 0.9% σ/μ 7.3% 5.9%

The variation of the effective channel length of transistors, Leff, is considered in this section,

which has been identified as the most significant component of device variations [21,37,91,92].

Note that the effect of other sources of process variations can also be determined by the

circuit illustrated in Fig. 3.8 and described with the proposed model. The corresponding

nominal Leff, D2D variation (3σD2D
Leff

), and WID variation (3σWID
Leff

) are 27 nm, 2.2 nm, and 2.7

nm, respectively [43]. Cadence Spectre is used for the Monte-Carlo simulations [148]. The

resulting variations of Rb, Cb, and Db are listed in Table 3.2, which are obtained based on

different input transition times (1.7%, 5.0%, and 13.3% of the clock period). The corresponding

input slew rates are 47 mV/ps, 16 mV/ps, and 6 mV/ps, respectively. The mean value and

standard deviation are denoted by μ and σ, respectively. The ratio σ/μ usually indicates the

importance of variations [91]. The Monte-Carlo simulation is repeated 1500 times. As reported

in Table 3.2, the σ of Rb, Cb, and Db also depends on the input slew rate. To consider the slew

rate and the load is, therefore, necessary while evaluating the variations of the buffer delay.

The method presented in Section 3.3.2 is applicable to accurately consider this dependence.

Two H-tree topologies are used to verify the accuracy of the skew variation model. The first

topology (multi-via) is illustrated in Fig. 3.7. The second topology (single-via) is illustrated in

Fig. 3.13. Both these topologies are discussed in the following section. The H-tree spans four

planes. The clock source is located at the center of the first plane. There are 128 clock sinks

in total, 32 in each plane. Clock buffers, which are marked with 
, are inserted following the

technique described in [77]. The clock frequency is 1 GHz and the constraint on the input slew

rate is 16 mV/ps (the transition time is 5% of the clock period). The numbers of the inserted

buffers in the multi-via and single-via topologies are 168 and 540, respectively. Only few of

these buffers are illustrated in Figs. 3.7 and 3.13 for improved readability. The wire segments

between two buffers are simulated using a standard π model.
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Table 3.3: σ of Skew Variation of the 3-D Circuits Shown in Figs. 3.7 and 3.13.

Correlation Independent Multi-Level CPU
Skew variation σs1,2 σs1,3 σs1,4 σs1,5 σs1,2 σs1,3 σs1,4 σs1,5 time

Multi-via
Model [ps] 7.0 14.8 7.4 15.0 7.0 33.6 7.1 32.9 26 sec.
Spectre [ps] 7.3 15.7 7.6 16.0 7.4 34.9 7.3 35.1 48 min.
Error [%] -4 -6 -2 -6 -5 -4 -3 -6 -

Single-via
Model [ps] 3.9 13.6 51.3 51.3 2.4 29.0 71.1 69.6 39 sec.
Spectre [ps] 3.8 13.1 50.1 50.1 2.3 28.1 68.2 67.9 55 min.
Error [%] 2 3 2 2 4 3 4 3 -

As shown in Fig. 3.7(b), sinks 1, 2, and 3 are located in the first plane. Sinks 4 and 5 are located in

the topmost plane. Skews s1,2, s1,3, s1,4, and s1,5 are considered to demonstrate the accuracy of

the developed model. The difference between the resulting standard deviation σ produced by

Spectre simulations and the skew variation model is reported in Table 3.3. The skew variations

with uncorrelated (independent) WID variations are reported as “Independent”. The variations

modeled by the multi-level spatial correlation are reported as “Multi-Level”, where five levels

are assumed (l = 5). The error of the skew variation model is below 6% between any pair

of sinks in the investigated clock tree. As listed in Table 3.3, the distribution of the clock

skew determined by the skew variation model exhibits reasonable accuracy as compared with

Monte-Carlo simulations. The cumulative distribution functions (CDF) from Spectre and the

proposed skew variation model for the 3-D tree with independent WID variations are shown

in Fig. 3.12.
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Figure 3.12: Comparison of skew variation between Spectre simulations and the analytic skew
model, where (a) and (b) are the CDFs of Δs1,4 and Δs1,5, respectively.

The computational time for the proposed model and the SPICE-based Monte-Carlo simula-

tions is also listed in Table 3.3. The proposed statistical model is implemented in Matlab and

run on a PC with Intel i5 M540 CPU@2.53 GHz, 4 GB DDR2 memory, and 64 bit Windows 7

system. The Monte-Carlo simulations are run with Cadence Virtuoso 6.1.4 on a server with
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Intel Xeon X5650 CPU@2.67GHz, 12 GB DDR3 memory, and 64 bit Scientific Linux 6.0 system.

The run time is reported as the average time for independent and spatially correlated WID vari-

ations. To decrease the run time, only the clock paths related to the reported σ are simulated.

Although only a part of the 3-D clock trees is simulated, using the proposed model, the run

time is reduced by 85×. The efficiency of the variability-aware design of 3-D clock distribution

networks can significantly be improved by the proposed model. When comparing different

topologies of clock trees in terms of skew variation, the proposed model helps to fast select

the best solution. When iterative design modifications to the clock tree are required to reduce

skew variation, the proposed model also helps to decrease the iteration time. A comparison of

the run time for the entire 3-D clock distribution networks is provided in Section 3.4.2.

3.3.5 Extension of the model to include interconnect variations

The proposed model can be extended to include the variations of interconnects. Consider the

3-D clock tree shown in Fig. 3.10, where the delay variation of a buffer stage Δdstage(i ) includes

the variation of the capacitance ΔCint and resistance ΔRint of the wires,

Δdstage(i ) =Δdi +0.69(Rb(i ) +ΔRb(i ))ΔCint +0.38(R intΔCint +ΔRintC int +ΔRintΔCint)

+0.69(R intΔCb(i+1) +ΔRintC b(i+1) +ΔRintΔCb(i+1)). (3.44)

According to the definition of Δdi in (3.20), the term 0.69R intΔCb(i+1) is included in Δdi+1.

Consequently, Δdstage(i ) is rewritten as

Δdstage(i ) =Δdi +0.69(Rb(i ) +ΔRb(i ))ΔCint +0.38(R intΔCint +ΔRintC int +ΔRintΔCint)

+0.69(ΔRintC b(i+1) +ΔRintΔCb(i+1)) =Δdi +Δdint(i ), (3.45)

where the delay variation due to the wires is denoted by Δdint(i ).

As discussed in [86], since the variation of the characteristics of metal wires is relatively low as

compared with the nominal value, the variation of the wire delay can be approximated by the

first order Taylor series expansion without significant loss of accuracy. Similar to expression

(3.21), Δdint(i ) can be approximated as

Δdint(i ) ≈
∑

p j∈�P

([
∂Δdint(i )

∂ΔRint

∂ΔRint

∂Δp j

]
0

Δp j +
[
∂Δdint(i )

∂ΔCint

∂ΔCint

∂Δp j

]
0

Δp j

)
, (3.46)

where p j is the j th parameter of the wire and �P is the vector of parameters of wires affected

by process variations. For example, consider the variation of the width and the thickness of

the metal and the thickness of ILD [86, 92], �P = (Wm, tm, tILD). Assuming these parameters are

modeled by Gaussian distributions and independent from each other [86], the distribution of

Δdint(i ) can be approximated by a Gaussian distribution,

Δdint(i ) ∼N (0,σ2
dint(i )

), (3.47)
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σ2
dint(i )

= ∑
p j∈�P

([
∂Δdint(i )

∂ΔRint

∂ΔRint

∂Δp j

]
0

+
[
∂Δdint(i )

∂ΔCint

∂ΔCint

∂Δp j

]
0

)2

σ2
p j

, (3.48)

Rint = ρl

tmWm
, (3.49)

Cint = 2(Cg +Cc)l , (3.50)

where Cg includes the ground and fringe capacitances and Cc is the coupling capacitance. The

expressions of Cg and Cc are obtained from [41].

Considering the delay variation caused by both the clock buffers and wires in (3.45), the skew

variation Δsu,v includes two terms, Δsu,v =Δsb(u,v) +Δsint(u,v). The distribution of Δsb(u,v) is

obtained through (3.20) to (3.41). The distribution of Δsint(u,v) can be obtained through (3.25)

to (3.41) by substituting Δdint(i ) for Δdi . Consequently, Δsu,v can be described by a Gaussian

distribution,

Δsu,v ∼N (0,σ2
sb(u,v)

+σ2
sint(u,v)

). (3.51)

The extended model is compared with Monte-Carlo simulations including the variations of rint

and cint in the π model of interconnects. Based on the parameters used in [86], the nominal

value and standard deviation of the parameters of wires are listed in Table 3.4. Two types of

3-D clock trees, multi-via and single-via trees, are used to verify the accuracy of the extended

model. The topologies of these clock trees will be introduced in the following section. The

results for the independent WID variations are reported in Table 3.5. As reported in this table,

the accuracy of the model including the variation of wires is reasonably high.

Table 3.4: Parameters of Horizontal Interconnects.

Parameters Wm [nm] tm [nm] tILD [nm]
Nominal 430 1000 160
3σD2D 43 50 12
3σWID 21.5 25 6

Table 3.5: Skew Variation of the 3-D Circuits Considering Wire Variations.

Topology multi-via single-via
Skew variation σs1,2 σs1,3 σs1,4 σs1,5 σs1,2 σs1,3 σs1,4 σs1,5

Model [ps] 7.01 15.09 7.45 15.3 3.99 13.94 56.46 56.46
Spectre [ps] 7.19 16.44 7.64 16.55 4.00 13.77 56.38 56.3
Error [%] -3 -8 -2 -8 0 1 0 0
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3.4 Process Variations Tolerant 3-D Clock Distribution Networks

The variation of process-induced skew in different 3-D clock trees is investigated in this section.

The skew variation is first compared among the conventional 3-D clock trees in Section 3.4.1.

Combining the advantages of the conventional clock trees, a novel multi-group topology for

3-D clock trees is proposed in Section 3.4.2. Another type of low-skew 3-D clock distribution

networks, clock grids, are presented and compared with 3-D clock trees in Section 3.4.3. The

skew variation in 3-D ICs with multiple clock domains is investigated in Section 3.4.4.

3.4.1 Skew variation of conventional 3-D clock trees

The skew variation for two types of conventional 3-D global H-trees is investigated in this

subsection. Both of these networks have been utilized in the design of a prototype 3-D

circuit [81] and other case studies of multiplane circuits [149]. H-trees are typically used to

globally deliver the clock signal to large scale circuits [75]. The regularity of these topologies

facilitates the investigation of WID and D2D variations as compared to synthesized clock

trees which exhibit significantly different wire length and TSV density characteristics. In other

words, the main objective is to demonstrate the physical behavior of a 3-D system under these

variations and the related tradeoffs, rather than the decrease in the wire length of a clock tree

produced by an efficient 3-D clock tree synthesis technique. A number of local clock networks,

such as local meshes, clock trees [150], and rings can be used to distribute the clock signal

in the vicinity of each leaf of the H-tree. Although H-trees are considered, the analysis also

applies to other global clock architectures, such as X-trees.

The first topology (multi-via topology) has been shown in Fig. 3.7, where the clock source and

buffers (except for the buffers at the last level) of a 3-D H-tree are located in a single physical

plane (e.g., the first plane). In this topology, the clock signal is propagated to the sinks in other

planes by multiple TSVs. The vertical lines at each leaf correspond to a cluster of TSVs.

The second clock tree topology (single-via topology) is illustrated in Fig. 3.13, where a 2-D

H-tree is replicated in each plane. The clock signal is propagated by a single-via (or a group of

TSVs to prevent TSV failures and to lower the resistance of this vertical path) connecting the

clock source to each H-tree replica.

Skew variations between the clock sinks in the same plane

In 3-D H-trees and for intra-plane paths, the number, size, and location of the buffers along

these paths are equal for a single plane, since the multi-via and single-via topologies are

both symmetric topologies (at least within the x and y directions). The D2D variations in

each plane, therefore, affect these clock paths equally. Consequently, according to (3.36), for

both the multi-via and single-via topologies, only WID variations affect the variation of skew
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Figure 3.13: A single-via 3-D clock H-tree, where 2-D view (a) and 3-D view (b) are illustrated.

between sinks located in the same plane. For both topologies, the variation of skew between

the buffers located in the same plane exhibits the same behavior as in 2-D circuits.

For the considered topologies, the clock buffers are inserted by uniform buffer insertion

techniques under the same constraints of skew and slew rate [77]. Rin and Cl of each buffer,

therefore, are approximately equal. For a 3-D clock tree, as described by (3.40), if Rin and Cl of

each buffer remain unchanged, the σsWID
(u,v)

between two sinks decreases as the number of the

non-shared clock buffers (e.g., the buffers after the nu,v buffers in Fig. 3.11) decreases. For a

3-D IC with total area A, the side length of each plane is L ∝
√

A
Np

. Consequently, the number

of buffers in one plane decreases as L decreases for an increasing number of planes forming

the 3-D circuit.

For the single-via topology, all the clock sinks within a plane are connected to the clock

source by the same TSV. The length of this TSV and the increasing number of buffers vertically

connected to this TSV do not affect the intra-plane skew. Consequently, based on the proposed

model and the above analysis, it is concluded that

Observation 3.1. For the single-via topology, the distribution of the skew between the clock

sinks in the same plane becomes narrower as the number of planes increases.

For the multi-via topology, however, the clock sinks in the same plane connect to different

TSVs. As the number of planes increases, both the number of buffers connecting to a TSV

and the length of the TSVs increase. The input slew rate decreases since an increasing load

is driven. As reported in Table 3.2, the resulting delay variation of the buffers after the TSVs

increases. Moreover, the load of the buffers driving the TSVs increases. These changes of the

topological characteristics result in the increase of σd(i ), as described by (3.24). This increase,

consequently, counteracts and can surmount the decrease in variations due to the decreasing

number of clock buffers along the clock paths.
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Observation 3.2. For the multi-via topology, the distribution of the skew between the clock

sinks in the same plane changes non-monotonically as the number of planes increases.

Example 3.1 : Simulation results exhibiting the different behavior of the single-via and

multi-via topologies are shown in Fig. 3.14. In this example, a global clock tree with 256 sinks

is placed in a 3-D IC with increasing number of planes. A sink can be either a sub-tree, a local

clock mesh, or a cluster of registers (or a buffer driving any of these structures). The total

area of the circuit is 100 mm2. The impact of process variations on the skew between pairs of

sinks within the same plane is demonstrated by skews s1,2 and s1,3. The physical location of

these sinks is illustrated in Fig. 3.7(b). The results of the simulations with the independent

and multi-level correlated WID variations (l = 5) are illustrated in Figs. 3.14(a) and 3.14(b),

respectively.
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Figure 3.14: σ of skew within the first plane for increasing number of planes, where the WID
variations are considered (a) independent and (b) multi-level correlated.

The buffers inserted into the 3-D clock trees are reported in Table 3.6. The number of buffers

inserted within one plane in the single-via topology is lower than the multi-via topology, which

introduces a lower skew variation than the multi-via topology. The total number of buffers in

a single-via topology is, however, much higher than the multi-via topology.
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Table 3.6: The Number of Buffers Inserted into the 3-D Clock Trees.

# of planes 1 2 3 4 5 6 7 8 9 10
multi-via 981 588 558 296 264 242 234 138 134 134

single-via (per plane) 981 460 430 231 199 177 169 105 101 101
single-via (total) 981 920 1290 924 995 1062 1183 840 909 1010

Observation 3.3. The variance of the skew between two intra-plane sinks of the single-via 3-D

H-tree is smaller than the corresponding variance of the skew in a multi-via 3-D H-tree.

The numbers of buffers in each plane for both topologies decrease as the number of planes

increases. The increasing number of buffers connected to TSVs (due to the greater number

of planes) increases σsu,v in the multi-via topology but does not affect σsu,v in the single-via

topology. Consequently, the decrease in the number of buffers leads to a reduction in skew

variation within the same plane for the single-via topology, as shown by the � and � curves in

Fig. 3.14. Nevertheless, for the multi-via topology, as shown by the 
 and × curves, σsu,v within

the same plane changes non-monotonically with the number of planes. For the sinks with

short distance, the σs1,2 even increases with the number of planes. As a result, for multi-via 3-D

H-trees, simply increasing the number of planes does not necessarily improve skew variation.

By employing the proposed skew variation model, the number of planes that produces the

lowest skew variation is determined.

The maximum supported clock frequency fmax of a circuit is constrained by skew [75]. Al-

though fmax is typically determined by the critical path delay, the skew criterion is used here to

offer a tangible explanation of the effect of process variations on the performance of circuits.

The maximum allowed skew is assumed to be 10% 1
fmax

for the simulated 3-D clock trees. To

achieve a timing yield higher than 99%, fmax should be smaller than 10% 1
3σsu,v

, where 3σsu,v is

the skew at the 3σ point from the mean value. Assuming that the clock frequency is limited by

the largest skew variation, the fmax corresponding to σs1,3 shown in Fig. 3.14, is illustrated in

Fig. 3.15. The results with independent WID variations are illustrated by "multi-via (I)" and

"single-via (I)". The results with multi-level WID correlations are illustrated by "multi-via (II)"

and "single-via (II)".

As illustrated in Fig. 3.15, the single-via topology can produce an up to 53% and 64% higher

clock frequency for independent and multi-level correlated WID variations, respectively, as

compared to the multi-via topology. This improvement increases as the number of planes

increases. The fmax in the multi-via topology changes non-monotonically with the number of

planes.

Guideline 3.1. In a 3-D circuit, if the data-related sinks are located mostly within the same

plane, the single-via topology is more efficient in reducing the skew variations and can support

a higher clock frequency.
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Figure 3.15: The maximum supported clock frequency determined by the skew variation
within one plane.
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Figure 3.16: The σ of skew between each pair of clock sinks under the multi-via topology
where (a) is the 3-D view and (b) is the top view.

The fmax produced by a 3-D tree with independent WID variations, not surprisingly, is higher

than a 3-D tree with multi-level correlated WID variations. According to (3.40), this situation

is due to the larger spatial correlation between devices which introduce higher skew variations

into a 3-D clock tree.

Skew variations between the clock sinks in different planes

As described by (3.36)-(3.38), when the investigated clock sinks are located in different planes,

the corresponding clock skew is also affected by D2D variations. As a result, the skew variations

between inter-plane sinks vary from the intra-plane skew variation. To demonstrate this

difference, the σsu,v between each pair of sinks of a multi-via 3-D clock tree is illustrated in Fig.

3.16. Since σsu,v =σsv,u , only half of the skew array is shown in Fig. 3.16 for clarity.
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Figure 3.17: σ of skew between the sinks in the first and the topmost plane for the single-via
and multi-via topologies. The locations of the pairs of sinks defining s1,4 and s1,5 are shown
in Fig. 3.7(a). (a) is based on independent WID variations and (b) is based on multi-level
correlated WID variations.

Example 3.2 : In this example, a 3-D clock tree spanning eight planes is implemented using

the single- and multi-via topologies. The resulting skew of the multi-via topology is illustrated

in Fig 3.16. The electrical parameters of the wires are given in Section 3.3.4. There are 32 sinks

in each plane and 256 sinks in total. Sinks 1 to 32 are located in the first plane and sinks 33 to

64 are located in the second plane, etc. As an example, consider the σ of the skew between

sinks 3 and 4. This standard deviation is determined by the z value of the point x = 3 and y = 4.

From these figures, the σs of inter-plane skew is larger than the σs of intra-plane skew. The

change of skew variation between inter-plane sinks with the number of planes is illustrated in

Fig. 3.17.

For the single-via topology, the skew variation for the inter-plane pairs of sinks remains

approximately the same irrespective of the planes that the sinks belong. This behavior is

because the paths to sinks located in different planes do not share any segment (see Fig. 3.13).

When the number of planes is greater than two, the skew variation decreases as the number of

planes increases, as also shown in Fig. 3.17. Since the paths lay in different planes, according
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Table 3.7: The Maximum Clock Frequency Supported by Multi-Via and Single-Via Topologies.

# of planes 1 2 3 4 5 6 7 8 9 10

I
multi-via [GHz] 1.62 1.93 2.07 2.16 2.15 2.13 2.11 2.09 2.00 1.92
single-via [GHz] 1.62 0.44 0.52 0.60 0.64 0.69 0.75 0.82 0.84 0.86
multi / single 1 4.4 4.0 3.6 3.4 3.1 2.8 2.5 2.4 2.2

II
multi-via [GHz] 0.49 0.74 0.98 0.96 1.05 1.14 1.19 1.33 1.50 1.45
single-via [GHz] 0.49 0.34 0.40 0.44 0.47 0.51 0.56 0.61 0.62 0.63
multi / single 1.0 2.2 2.5 2.2 2.2 2.2 2.1 2.2 2.4 2.3

to (3.38), the effect of D2D variations on the 3-D single-via topology is much larger than in

planar H-trees.

The skew variation under the multi-via topology varies significantly from the single-via topol-

ogy, as illustrated in Fig. 3.17. The skew variation between planes significantly depends on the

location of the related sinks. According to (3.36)-(3.38), the impact of D2D variations increases

as the number of buffers located in different planes increases. For the multi-via topology,

all clock paths preceding the TSVs are in the first plane. The effect of D2D variations on the

multi-via topology, therefore, is much smaller than the single-via topology, as shown in Fig.

3.17. Nevertheless, as shown in Fig. 3.17, the skew variation of the multi-via topology changes

non-monotonically with the number of planes. The reason is similar to the skew variation

within the same plane as discussed previously.

Guideline 3.2. In a 3-D circuit, if the data-related sinks are widely distributed in several planes,

the multi-via topology is more efficient in reducing the skew variation and supports a higher

clock frequency.

Assuming the fmax of a 3-D IC is limited by the inter-plane skew variation, the maximum

operating frequency supported by the single-via and multi-via topologies is reported in Table

3.7. The results based on independent and multi-level correlated WID variations are reported

after "I" and "II", respectively. As listed in this table, for a circuit with a different number of

planes and different clock tree topology, the fmax can vary from 440 MHz to 2.16 GHz. The

corresponding largest σsu,v varies from 77 ps to 15 ps. For the same number of planes, the fmax

of the multi-via topology is up to 4.4 times higher than the single-via topology. As reported by

"I", the single-via topology produces lower fmax than a planar tree when the WID variation is

completely random. The single-via topology, however, can produce a higher fmax as compared

to a 2-D tree when the systematic WID variation is considered as reported by "II".

3-D integration is considered to significantly reduce the interconnect delay and enhance the

clock frequency of circuits [7, 151]. This enhancement, however, is shown to not grow directly

proportionally with the number of planes where process variations (both WID and D2D) are

considered in the design process.
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Results indicate that the performance improvement in a 3-D clock network depends signifi-

cantly on the distribution of the sinks (and consequently the clock paths) among the planes. As

reported in Table 3.7, when the data-related sinks are distributed in different planes, the skew

of single-via 3-D clock trees is affected more by process variations than the corresponding

2-D clock trees. This behavior is consistent with the conclusions made in [88, 93]. The effect

of process variations on 3-D clock distribution networks can be mitigated by employing a

multi-via topology in this case. This topology can better exploit the traits of vertical integration

(i .e., shorter wires) to significantly increase the operating frequency.

3.4.2 A novel multi-group 3-D clock tree

As stated in Guidelines 3.1 and 3.2, the single-via 3-D clock H-tree topology is more efficient in

reducing the skew variation within a single plane, while the multi-via topology is more efficient

in reducing the skew variation between planes. To exploit these advantages, a hybrid H-tree

topology (multi-group topology) combining the features of these topologies is proposed in

this section.

The new multi-group topology is illustrated in Fig. 3.18. The key idea is that the Np planes

forming a 3-D circuit are divided in G groups of "data-related planes". The data-related planes

are the physical planes containing data-related registers. The i th group of data-related planes

consists of hi (≤ Np) physical planes. The clock signal is distributed within these hi planes by

a multi-via topology.

An example of this H-tree topology is illustrated in Fig. 3.18. This H-tree includes two groups of

data-related planes (G = 2). Each group spans three (h1 = 3) and two physical planes (h2 = 2),

respectively. The buffers contained in each group of data-related planes are denoted by 

and ◦. The TSVs connecting these buffers are called "sink-TSVs". The roots of the multi-via

topologies are connected with a "root-TSV" (or a cluster of TSVs) as illustrated by the segment

at the center of the planes.

For a 3-D IC, if all the data-related clock sinks cannot be located within the same plane but

in adjacent planes, the multi-group topology is more efficient in reducing the skew variation

than the aforementioned topologies. Compared with the single-via topology, using G instead

of Np H-trees, the multi-group topology significantly reduces the skew variation between

data-related planes. Compared with the multi-via topology, the buffers connected to the

sink-TSVs for the multi-group topology are fewer than the buffers connected to the TSVs of

the multi-via topology. Therefore, both the skew variation within a single plane and the skew

variation between data-related planes are reduced.

Example 3.3 : A 3-D circuit with eight planes is simulated for the three topologies to investi-

gate the efficiency of the multi-group 3-D clock tree. The physical and electrical characteristics

of the circuit are reported in Section 3.3.4. Two variants of the multi-group topology are
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Figure 3.18: An example of the multi-group 3-D clock H-tree topology.

simulated, including two groups (hybrid_2, G = 2, hi = 4) and four groups (hybrid_4, G = 4,

hi = 2) of data-related planes, respectively. Simulation results are shown in Fig. 3.19.

In Fig. 3.19, skews s1,2, s1,3 (defined in Fig. 3.7(a)), s1,6, and s1,7 (defined in Fig. 3.18) are

depicted showing the skew variation between the nearest and the farthest sinks. The results

based on independent and multi-level correlated WID variations are denoted by (I) and (II),

respectively. The σs1,2 and σs1,3 produced by the multi-group topology are lower than the

multi-via topology and decrease as the number of sub-H-trees increases. For the topology

with four sub-H-trees (hybrid_4), s1,2(I), s1,3(I), s1,2(II), and s1,3(II) are reduced by 55%, 23%,

44%, and 10 % respectively, as compared with the multi-via topology.

Although the σs1,3 within the same plane of the multi-group topology is still greater (4% for

hybrid_4) than the single-via topology, the inter-plane skews σs1,6 and σs1,7 within a group

of data-related planes of the multi-group topology are significantly reduced as shown in Fig.

3.19(b). This reduction is also greater than the multi-via topology. The number of sub-H-trees

within a multi-group 3-D topology can be determined by the distribution of the data-related

sinks.

Guideline 3.3. When the data-related sinks are located in adjacent planes of a 3-D circuit, the

multi-group 3-D clock tree topology is more efficient in reducing the skew variation than both

the single- and multi-via topologies.
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Figure 3.19: σ of skew for three 3-D clock tree topologies. (a) Intra-plane skews s1,2 and s1,3.
(b) Inter-plane skews s1,6 and s1,7 within a group of data-related planes.

Table 3.8: σs1,7 and Computational Time of three 3-D Clock Tree Topologies.

Topology single-via multi-via hybrid_2 hybrid_4

σ1,7

Model [ps] 40.6 15.9 13.0 11.9
Spectre [ps] 41.6 16.8 13.7 12.3
Error [%] -2 -5 -5 -3

CPU time
Model [min.] 29 28 25 27
Spectre [h.] 500 173 221 265
Spec./Model 1034 364 535 582

Furthermore, as illustrated in Fig. 3.19, for the sinks with a short horizontal distance in a

multi-group topology, the multi-level correlated WID variations (denoted by (II)) introduce

lower skew variation than the random WID variations (denoted by (I)), e.g ., s1,2 and s1,6. For

the sinks with a large horizontal distance (e.g ., s1,3 and s1,7), the skew variation produced by

the multi-level correlated WID variations is higher.

The results illustrated in Fig. 3.19 are compared with Monte-Carlo simulations. The setup of

the Monte-Carlo simulation environment is listed in Section 3.3.4. The σ of s1,6 and s1,7 within

a group of data-related planes is reported for the independent WID variations in Table 3.8. As

reported in this table, the above analysis on the multi-group 3-D H-trees is consistent with the

results of Monte-Carlo simulations. The error of the skew variation model is typically smaller

than 5% as compared with the Monte-Carlo simulations.

The computational time is also listed for different topologies in Table 3.8. Since this run time is

for the entire 3-D clock trees, the computational time is significantly higher than that reported

in Table 3.3 for both the proposed model and Monte-Carlo simulations. As the complexity of

the 3-D clock tree increases, the time savings by the proposed model significantly increases, up

to 1000×. Consequently, the efficiency of the variability-aware design of 3-D clock distribution

networks can considerably be improved by estimating the skew variation with the proposed

model.
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Figure 3.20: An example of combining clock trees and grids, where (a) is the topology of a
tree-grid structure [38] and (b) is the investigated global grid.

3.4.3 Mitigating skew variations with clock grids

To compare the skew variation in 3-D clock trees with other clock distribution topologies, the

skew of clock grids is discussed in this section. A typical hybrid structure of clock trees and

grids is simulated and compared with the 3-D clock trees in terms of process-induced clock

skew.

A pregrid clock distribution network is required to drive a grid structure. A combination of

clock trees and grids (tree-grid structure) can meet this requirement [38], as illustrated in Fig.

3.20(a). The sinks of the clock tree are connected to the global clock grid. Buffers are inserted

into the clock tree to meet the constraint on the slew rate.

A clock tree-grid structure with 256 sinks is compared with the previous 3-D clock trees in

terms of skew variation. The 2-D global clock grid has 256 nodes and the area of each cell is

0.58 mm × 0.58 mm, as illustrated in Fig. 3.20(b). When the grid is embedded to a 3-D IC,

the area of the grid is shrunk proportionally to the area of each plane. The grid is located in

the first plane and the clock signal is propagated to other planes through TSVs at each node

similar to the multi-via 3-D tree. The electrical and physical characteristics of the circuit are

reported in Tables 3.1 and 3.2. The Monte-Carlo simulation results of the tree-grid are reported

in Table 3.9, where the independent WID variations are considered. The results correspond to

the circuits with one, two, four, and eight planes, respectively. The maximum mean skew and

the standard deviation within each clock distribution network are denoted by μmax and σmax,

respectively. The average power for each clock distribution network for the nominal device

parameters is also reported at the clock frequency of 1 GHz.

As shown in Table 3.9, the tree-grid structure produces the lowest skew variation (σmax) com-

pared with the other topologies. Nevertheless, the tree-grid produces the largest mean skew,

which is significantly higher than the 3-D H-trees. This situation is due to the considerable

delay and capacitance of the wires in the global clock grid. Furthermore, the average power
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Table 3.9: Monte-Carlo Results of Different Clock Distribution Networks.

# of planes
μmax [ps] σmax [ps] Power@1 GHz [mW]

grid multi single grid multi single grid multi single

1 9.77 0.00 12.00 21.53 189.60 125.90
2 8.83 0.04 0.04 11.25 18.30 76.10 105.10 72.01 110.00
4 4.15 0.15 0.18 6.15 16.22 56.65 67.86 51.70 103.10
8 3.10 0.34 0.38 6.39 16.82 41.58 47.68 39.84 89.71

consumed by the tree-grid is the highest among all the three topologies. Extending the grid to

multiple planes can, however, improve the power consumption and mean skew. In conclusion,

clock grids reduce the skew variations compared with clock trees but increase the mean skew

and the power consumption. The multi-via 3-D H-trees can significantly reduce the power

consumption and maintain a sufficiently low mean skew while reducing the skew variation.

The single-via 3-D H-trees produce the highest power consumption and skew variations due

to the large number of buffers, as reported in Table 3.6.

3.4.4 3-D clock trees with multiple domains

Multi-domain clock distribution networks have widely been used to improve the performance

of complex large circuits [18, 152]. The effect of process variations on the clock skew of

potential 3-D synchronization architectures with multiple clock domains is discussed in this

subsection. The case studies include regular clock networks based on single-domain clock

trees in a 3-D stack [81, 149]. The analysis methods can also be used to analyze synthesized

3-D clock trees [83, 150]. The resulting skew variations in synthesized clock trees also depend

on the efficiency of the synthesis technique. Since the intention is to investigate the effect of

process variations rather than the efficiency of a 3-D clock tree synthesizer, regular structures,

such as H-trees are explored.

Topologies of 3-D clock trees with multiple domains

In 3-D circuits, the clock trees belonging to different clock domains can be located in the

same or different planes. A straightforward idea is to assign each clock domain to a single

tier, as illustrated in Fig. 3.21. For each clock domain, a PLL is assumed to generate the clock

signal for the corresponding clock network. In this scenario, excluding any synchronization

requirement between different clock domains, the impact of D2D process variations expressed

by (3.37) can be eliminated. Only WID variations need to be considered.

As illustrated in Fig. 3.21, the sinks of a clock domain are distributed across the entire plane.

Long interconnects and a large number of buffers can, consequently, be required. Each clock

tree can significantly be affected by WID variations. An approach to mitigate this problem is

to decrease the total wire length of the tree, by distributing the clock registers to other planes.
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1 2

Figure 3.21: A four-plane 3-D IC with four clock domains. A PLL and an H-tree are used to
generate and distribute, respectively, the clock signal within each domain (plane). The clock
sources are located at the center of each plane.

In this case, several clock domains are integrated in one plane, as illustrated in Fig. 3.22(a).

The design of the 3-D clock H-tree within each domain is based on [81].

In Fig. 3.22(a), each clock tree spans four planes through TSVs. The skew variation within each

clock domain is affected by the D2D variations in all the four planes. The topology illustrated

in Fig. 3.22(b) produced by combining the topologies in Figs. 3.21 and 3.22(a) provides another

approach to manage the effect of D2D and WID variations. A comparison of different D2D

and WID variation scenarios for the investigated 3-D circuits with multiple clock domains is

presented in the following section.

Skew variation in different multi-domain 3-D clock trees

The skew variation is compared among different multi-domain 3-D clock trees. Several

combinations of D2D and WID process variations are simulated to investigate the efficiency

of different allocations of the clock domains within a 3-D stack.

The PTM model for a 90 nm technology node is used [41]. The characteristics of TSVs are

extracted based on [68]. An eight-plane 3-D IC (10 mm × 10 mm per plane), envisioning

highly complex 3-D systems, with eight clock domains is simulated. There are 128 clock sinks

within each clock domain i.e., 1024 sinks in total. A clock buffer is inserted at each sink driving

the downstream circuitry (e.g., a cluster of flip-flops or a local clock mesh). Clock buffers are
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Figure 3.22: Different assignments of clock domains in a four-plane 3-D IC. (a) Four clock
domains within each plane. (b) Two clock domains within each plane (a total of four clock
domains).
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Table 3.10: Electrical Characteristics of the Investigated Circuits.

Buffer Interconnect TSV Clock

Rb 536 [Ω] r 244.44[Ω/mm] Rv 0.13[Ω] Vdd 1.2[V]
Cb 15.7[fF] c 225.039[fF/mm] Cv 50[fF] fclk 1[GHz]

inserted into the clock trees after [77], where the constraint on the slew rate is 8.8 mV/ps. The

electrical characteristics of the clock networks are listed in Table 3.10. The output resistance

and input capacitance of the buffers, the resistance and capacitance per unit length of the

interconnects, and the resistance and capacitance of the TSVs are denoted by Rb ,Cb ,r,c,Rv ,

and Cv respectively. Four schemes of multiple clock domains are investigated:

(A) One clock domain per plane (see Fig. 3.21).

(B) Two clock domains per plane, each spanning two planes.

(C) Four clock domains per plane each traversing four planes (similar to Fig. 3.22(b)).

(D) Eight clock domains each extending in all of the planes (similar to Fig. 3.22(a)).

Note that the total number of clock domains remains the same for all four schemes; the

distribution of these domains among and within the planes, however, changes. The objective

is to determine the scheme with the lowest skew variations within each domain. The sinks

located the farthest within one domain demonstrate the largest skew variation smax, e.g.,

smax = s1,3 between sinks 1 and 3 in Fig. 3.21. The smallest skew variation smin is s1,2, a typical

trait of an H-tree.

The variations of the gate length (Lgate) of both the NMOS and PMOS are considered [88].

Other sources of variations can also be described by the proposed model. The resulting

variations in Rb , Cb , and the intrinsic delay of the buffers are extracted by SPICE simulations.

Three different scenarios for D2D and WID process variations are investigated:

1. D2D variations are assumed to be higher than the WID variations (D2D > WID). The

σLgate due to D2D and WID variations is assumed to be σD2D
Lgate

= 6% and σWID
Lgate

= 2%,

respectively.

2. The WID variations are dominant (D2D < WID), σD2D
Lgate

= 2% and σWID
Lgate

= 6%.

3. The D2D and WID variations are equivalent (D2D = WID), σD2D
Lgate

=σWID
Lgate

= 5%.

A clock distribution network based on Scheme (A) is simulated through SPICE. The waveform

of the clock signal at sink 1 is illustrated in Fig. 3.23. The slew rate at the sinks is well

constrained by the buffer insertion. The delay variation due to the process variations, however,
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Figure 3.23: Waveform of the signal at s1 with different gate lengths of MOSFET.

Table 3.11: Skew Variation Analysis of an Eight-Plane 3-D IC with Eight Clock Domains.

σskew [ps]
Uncorrelated WID Multi-correlation
A B C D A B C D

D2D > WID
σsmin 5.0 8.1 9.5 16.1 4.5 9.1 10.2 16.0
σsmax 25.8 23.6 20.0 21.8 50.6 41.3 28.3 28.1

D2D < WID
σsmin 15.1 24.8 29.2 49.5 13.7 27.7 31.1 49.3
σsmax 79.0 69.2 57.7 63.5 154.7 126.1 85.3 85.8

D2D = WID
σsmin 12.6 20.6 24.2 41.0 11.3 23.0 25.8 40.8
σsmax 65.4 57.3 48.1 52.9 128.2 104.5 70.7 71.1

is significant. The delay variation with Lgate −3σLgate and Lgate +3σLgate are -1.2 ns and 1.1 ns,

respectively.

The largest and smallest skew variations within a clock domain are reported for the four clock

schemes (Scheme A, B, C, and D) and the three variation scenarios (Scenario 1, 2, and 3) in

Table 3.11. The numbers of buffers and TSVs per clock domain are listed in Table 3.12, where

the mean skew is also reported.

Table 3.12: Statistics of the Eight-Plane 3-D IC with Eight Clock Domains.

Domain Scheme A B C D

Number of clock buffers 716 533 291 203
Number of clock signal TSVs 0 512 256 128
μsmax [fs] 0 4 29 151
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Uncorrelated WID variations

In this case, the WID variations are assumed to be independent among the devices within one

plane. As reported in Table 3.11, Scheme A produces the highestσSmax for all the three scenarios

of variations. This behavior is because the horizontal area (total wire length) occupied by

each tree in scheme A is the greatest among the four schemes, requiring the largest number of

buffers (see Table 3.12). As described by (3.37) and (3.39), the skew variations of scheme A are

higher than the other schemes.

For clock schemes B, C, and D, σsmax varies significantly with the allocation of 3-D clock trees

to the planes. Note that although reducing the horizontal area of a tree helps to decrease the

WID variations, scheme D does not produce the smallest σSmax . The reason is that scheme

D introduces a larger number of buffers connected to a TSV in different planes. The effect

of D2D variations, therefore, increases. As reported in Table 3.11, scheme C produces the

smallest σSmax in all the three variation scenarios.

As the number of planes that a clock tree spans increases, the load capacitance connected to a

TSV increases. Consequently, more buffers are inserted along the path from the last branching

point to the TSV. For these pairs of sinks which are in short distance, this increase in the

number of buffers along this specific path has a greater effect than the decreasing number of

buffers for the entire tree. Consequently, skew variations between the nearest sinks increase

with the number of planes a tree spans and scheme A produces the smallest σsmin . In the

three investigated variation scenarios, extending a clock tree of a domain to multiple planes

decreases σsmax up to 26% as compared with Scheme A. σsmin increases, however, by 3.3 times.

Guideline 3.4. For independent WID process variations, extending a clock domain to multiple

planes of a 3-D circuit decreases the maximum skew variation. Extending the clock tree to

the greatest supported number of planes, however, does not necessarily produce the smallest

skew variations. If most of the data-related sinks are distributed close to each other, having one

domain within each plane can decrease the skew variations.

Spatially correlated WID variations

In this case, the correlation of WID variations is modeled by (3.3). As reported in the column

"Multi-correlation" in Table 3.11, the behavior of the investigated clocking schemes differs

from the uncorrelated WID variations.

For all the three variation cases, extending a clock domain to multiple planes produces a

smaller σsmax , as compared with scheme A. For "D2D > WID", this decrease in σsmax increases

as the number of planes that a tree spans increases. For "D2D < WID" and "D2D = WID",

extending the clock tree to all the planes does not, however, produces the smallest σsmax .

Consequently, the efficiency of extending a clock tree to multiple planes depends on the

relation between D2D and WID variations. For σsmin , in this correlation model, the behavior of
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the four clocking schemes is similar to the independent WID correlation. σsmin increases as

the number of planes that a clock tree spans increases.

Guideline 3.5. For multi-level WID process variations, increasing the number of planes a

clock domain spans increases the skew variation between sinks located within a short distance.

The change in the maximum skew variation depends on the relation between D2D and WID

variations.

3.5 Summary

The effect of process variations in 3-D ICs is investigated in this chapter. The focus of this

chapter is to model and analyze the effect of process variations in 3-D clock distribution

networks. The contributions and the major points of this chapter are:

• A novel model to describe the distribution of process-induced skew in 3-D clock trees,

which exhibits reasonably high accuracy, is proposed.

• Typical 3-D clock distribution networks are compared among each other in terms

of clock skew variation. 3-D clock grids exhibit the lowest skew variation but with a

significant cost in power consumption.

• For 3-D clock trees, the multi-via topology outperforms the single-via topology in terms

of the maximum skew variation and power consumption, since the single-via topology

requires a larger number of buffers. For clock sinks within the same plane, however,

single-via 3-D clock trees usually produce a lower skew variation due to the smaller

number of buffers per plane.

• A new 3-D clock tree topology is proposed to combine the advantages of both multi-via

and single-via topologies, which produces a low skew variation for the clock sinks within

the same group.

• The skew variation in multi-domain clock trees is also investigated. It is shown that

placing different clock domains in different tiers does not necessarily produce the lowest

skew. Skew variation can be decreased by locating different clock domains within the

same plane and vertically extending these domains.

• For multi-level WID process variations, increasing the number of planes a clock domain

spans increases the skew variation between the sinks located within a short distance.

The maximum skew variation, however, is determined by the sinks with the farthest

distance. The change of the maximum skew depends on the relation between D2D and

WID variations.
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4 Power Supply Noise in 3-D ICs

As introduced in Chapter 2, in addition to process variations, integrated circuits are affected

by the voltage variations across the power distribution systems. The power supply noise in

3-D ICs is investigated in this chapter, where the effect of power supply noise on clock jitter is

also discussed. Power distribution networks for 3-D ICs are first presented in Section 4.1. An

approach for fast IR-drop analysis of 3-D power distribution networks is proposed in Section

4.2. The resonant supply noise determined by the inductance and capacitance of potential

3-D PDNs is discussed in Section 4.3. The clock jitter caused by this resonant supply noise is

introduced in Section 4.4. The conclusions are drawn in Section 4.5.

4.1 3-D Power Distribution Networks

Some PDN structures for 2-D circuits have been introduced in Section 2.2.1. For 3-D circuits,

the off-chip parts of a PDN, i.e., the voltage regulator, PCB, package, and the related decoupling

capacitance are similar to a 2-D system. The on-chip PDN, however, varies from 2-D circuits,

since the power and ground need to be distributed across multiple planes/tier.

In TSV-based 3-D ICs, power/ground TSVs are used to distribute P/G from one tier to another.

A 3-D circuit and the corresponding PDN are illustrated in Fig. 4.1. As shown in this figure,

each tier has its own planar PDN. The planar PDNs are connected with each other at several

nodes by P/G TSVs to form the entire on-chip PDN. Consequently, the voltage variation in

different tiers interacts with each other. Several 3-D PDNs have been investigated in [34, 153].

These 3-D PDNs mainly differ from each other in the electrical characteristics of P/G TSVs.

A 3-D PDN similar to a 2-D network is implemented in [153], while 3-D PDNs with different

characteristics among tiers are discussed in [34]. The resulting supply noise differs among

tiers, which substantially differentiates the behavior of power supply noise from that observed

in planar circuits. To model the supply noise in different 3-D PDNs, a fast method to analyze

IR-drop is proposed in the following section. The method to describe the resonant noise is

presented in Section 4.3.
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Heat sink 
Tier 1 
Tier 2 
Tier 3 

Package
(a) (b)

Figure 4.1: An example of a 3-D circuit where (a) is a schematic of a three-tier circuit and (b) is
the corresponding PDN.

4.2 A Method for Fast IR-Drop Analysis of 3-D ICs

As introduced in Section 2.2.2, IR-drop is an important component of supply noise. The

voltage drop due to the resistance of the interconnects of PDNs is dominated by the on-chip

PDNs. Consequently, a resistor network is used to model a PDN. Power grids are investigated

in this section due to their wide application [25, 27]. A resistor network abstraction of a power

grid is illustrated in Fig. 4.2.

As shown in Fig. 4.2, P/G TSVs are modeled as vertical resistors connecting adjacent tiers. The

voltage at the nodes of the resistor network is the variable to be determined. For instance,

voltage vx,y,1 denotes the voltage of the node in the xth row and the y th column of the first

tier. The devices of the circuit are modeled as constant current sources, as shown by the

current source connecting to vx,y,1. VDD and GND grids are modeled as two independent

networks [27]. Only one network is illustrated in Fig. 4.2. In a VDD grid, the current flows from

the grid through current sources to the ideal ground. In a GND grid, the current flows from

the ideal VDD through current sources to the grid. The voltage at the package is considered

as ideal VDD (or GND). The resistance of package P/G pins and the corresponding vias is

modeled as rpkg. Note that multiple P/G pins are used to connect the on-chip PDN to the

package at different nodes.

4.2.1 Problem formulation

As shown in Fig. 4.2, devices (modeled by the constant current sources) are connected to

different nodes of a power grid. The voltage at these nodes needs to be determined for IR-drop
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Figure 4.2: A resistor network used to model a 3-D PDN for IR-drop analysis.

analysis. A node connected with four resistors in the same tier and two TSVs is illustrated

in Fig. 4.3. This node is denoted by vx,y,z , which is located in the xth row and y th column of

the VDD grid in the zth tier. The four resistors in the same tier connected to this node are

denoted by rx,(y±1),z and r(x±1),y,z , indicating the resistors on the left, right, upper, and lower

side in the topview, respectively. The TSVs connecting vx,y,z to the (z −1)th and (z +1)th tiers

are denoted by rx,y,(z,z−1) and rx,y,(z,z+1), respectively. The voltage vx,y,z is determined by the

adjacent resistance and nodes. According to Kirchholff ’s Current Law (KCL),

(vx,y,z − vx,y−1,z )gx,(y,y−1),z + (vx,y,z − vx,y+1,z )gx,(y,y+1),z+
(vx,y,z − vx−1,y,z )g(x,x−1),y,z + (vx,y,z − vx+1,y,z )g(x,x+1),y,z+

(vx,y,z − vx,y,z−1)gx,y,(z,z−1) + (vx,y,z − vx,y,z+1)gx,y,(z,z+1) =−Ix,y,z , (4.1)

where gi = 1/ri .

For a 3-D power grid with Z tiers, the number of rows and columns in each tier can be different

from other tiers. The numbers of rows and columns in the zth tier are denoted by Xz and

Yz , respectively. Consequently, similar to the IR-drop analysis in 2-D power grids [120], the

voltage in 3-D power grids can be solved by a linear system,

A ·v = b, (4.2)
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Figure 4.3: A node of a power grid connected with four resistors in the same tier and two TSVs.

where A is the conductance matrix. v and b are the voltage and current vectors, respectively,

v = [v1, v2, · · · , vZ ]T, (4.3)

vz = [v1,z ,v2,z , · · · ,vXz ,z ], (1 ≤ z ≤ Z ) (4.4)

vx,z = [vx,1,z , vx,2,z , · · · , vx,Yz ,z ], (1 ≤ x ≤ Xz ) (4.5)

b = [b1, b2, · · · , bZ ]T, (4.6)

bz = [b1,z , b2,z , · · · , bXz ,z ], (1 ≤ z ≤ Z ) (4.7)

bx,z =−[Ix,1,z , Ix,2,z , · · · , Ix,Yz ,z ], (1 ≤ x ≤ Xz ) (4.8)

where vz and bz are the voltage and current in the zth tier, respectively. The conductance

matrix A, accordingly, consists of the conductance of the power grid in each tier and the TSVs,

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 B1

B1 A2
. . .

. . .
. . . BZ−1

BZ−1 AZ

⎤
⎥⎥⎥⎥⎥⎦ . (4.9)

The sub-matrix Az (1 ≤ z ≤ Z ) is the conductance of the power grid in the zth tier and Bi is the

conductance of the TSVs connecting the zth and (z +1)th tiers. Matrix Az is determined by the

conductance of each row and the conductance between adjacent rows,

Az =

⎡
⎢⎢⎢⎢⎢⎣

A1,z D1,z

D1,z A2,z
. . .

. . .
. . . DXz−1,z

DXz−1,z AXz ,z

⎤
⎥⎥⎥⎥⎥⎦ , (4.10)
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where Ax,z and Dx,z are the conductance of the xth row and the conductance between the xth

and (x +1)th rows in the zth tier, respectively. These two sub-matrices are determined by

Ax,z =

⎡
⎢⎢⎢⎢⎢⎣

Gx,1,z −gx,(1,2),z

−gx,(2,1),z Gx,1,z
. . .

. . .
. . . −gx,(Yz−1,Yz ),z

−gx,(Yz ,Yz−1),z Gx,Yz ,z

⎤
⎥⎥⎥⎥⎥⎦ , (4.11)

Dx,z =

⎡
⎢⎢⎢⎢⎣
−g(x,x+1),1,z

−g(x,x+1),2,z

. . .

−g(x,x+1),Yz ,z

⎤
⎥⎥⎥⎥⎦ , (4.12)

where, Gx,y,z is the sum of all the conductances related to the node at (x, y, z),

Gx,y,z = gx,(y,y−1),z + gx,(y,y+1),z + g(x,x−1),y,z + g(x,x+1),y,z + gx,y,(z,z−1) + gx,y,(z,z+1), (4.13)

The node connectivity of the power grid within the x y dimensions of the zth tier can be

described by Az through (4.10) to (4.13). Similarly, the vertical connection between the zth

and (z +1)th tiers is described by Bz ,

Bz =

⎡
⎢⎢⎢⎢⎣

B1,z

B2,z

. . .

BXz ,z

⎤
⎥⎥⎥⎥⎦ , (4.14)

Bx,z =

⎡
⎢⎢⎢⎢⎣
−gx,1,(z,z+1)

−gx,2,(z,z+1)

. . .

−gx,Yz ,(z,z+1)

⎤
⎥⎥⎥⎥⎦ . (4.15)

Consequently, the voltage at all the nodes is determined through (4.2) to (4.15). The objective

of steady-state IR-drop analysis is to determine the voltage of all the nodes in a 3-D power grid

satisfying (4.2).

Note that the total number of nodes, N =∑Z
z=1 Xz ·Yz , is relatively large (≥ tens of millions for

contemporary circuits) [27], which means A is a large sparse matrix. Similar to the conclusion

in [120], A is also a symmetric semi-positive matrix. Special methods, consequently, can be

used to solve this large linear system.

For 2-D ICs, different techniques have been developed to efficiently analyze a power grid.

The grid-reduction [154] and hierarchical analysis [155] methods convert the large power

grid to coarser or smaller blocks to reduce the size of the linear system. The random walk

method can be utilized to solve a subset of a large power grid [156], with a large number of
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iterations. Iterative methods, such as the row-based [120] and multi-grid preconditioned

conjugated gradients [157,158] algorithms have been developed to overcome the drawbacks of

the previous methods. For a 3-D power grid, since A is also semi-positive, the efficient iterative

methods can be extended to solve this linear system.

4.2.2 Row-based algorithm for 3-D PDNs

Since the resistance of P/G TSVs is introduced into 3-D PDNs, the traditional IR-drop analysis

methods for 2-D PDNs, where only four adjacent resistors are considered, cannot be directly

applied to 3-D cases. For 3-D ICs, a voltage propagation algorithm has been proposed in [159]

to solve a specific type of 3-D PDNs, where the resistance of P/G TSVs is assumed to be much

smaller than the resistance within a planar grid. If these two resistances are comparable to

each other, the voltage propagation algorithm may not converge. Nevertheless, as reported in

the industrial benchmarks in [27], the resistors in a planar grid can be lower than 10 mΩ. This

resistance is smaller than the resistance of different proposed TSV technologies [34, 68, 160].

In this case, the algorithm proposed in [159] cannot be utilized. A novel IR-drop analysis

algorithm, therefore, is proposed herein to model different types of 3-D PDNs.

The novel IR-drop analysis algorithm extends the traditional row-based algorithm [120] to

3-D PDNs, which is named by “RB3D”. The key idea is illustrated in Fig. 4.4. The algorithm

iteratively traverses from the first tier (farthest from the package) to the bottommost tier to

calculate the voltage of each node row by row. The pseudocode of RB3D is listed in Algorithm

4.1.

Tier 1 Tier 2 

Tier 3  Tier Z

Figure 4.4: The traversal direction of the row-based algorithm for a 3-D PDN with Z tiers.

The function CALC_ROW_VOLTAGE(x, z) is used to calculate the voltage of the xth row in the

zth tier. This function is adapted from the "Solving-one-row" algorithm in [120] by considering

the resistance of TSVs. For the xth row in the zth tier, the variables a, b, c , and d are determined
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Algorithm 4.1 RB3D algorithm

Input: The topology and current sources of a 3-D power grid.
Output: Voltage at all the nodes v.

Initialize v.
dV ← max difference in v between two iterations � specified by users
Δv ←∞
while Δv > dV do

vol d ← v
for z = 1 → Z do � Z is the number of tiers

for x = 1 → Xz do
v(x,1 → Yz , z) ← CALC_ROW_VOLTAGE(x, z)

end for
end for
Δv ← max(v−vol d )

end while
return v

function CALC_ROW_VOLTAGE(x, z)
u1 ←Gx,1,z

for y = 2 → Yz do
ly ← ay

uy−1
� a, b, c, and d are defined in (4.16) and (4.17)

uy ← by − ly cy−1

end for
w1 ← d1

for y = 2 → Yz do
wy ← dy − ly wy−1

end for
VYz ← wYz

uYz
for y = Yz −1 → 1 do

Vy ← wy−cy Vy+1

uy

end for
vx,z ← [V1, · · · ,VYz ]
return vT

x,z

end function
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by

Ax,z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1

a2 b2 c2

a3
. . .

. . .
. . .

. . . cYz−1

aYz bYz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.16)

⎡
⎢⎢⎣

d1
...

dYz

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
−Ix,1,z

...

−Ix,Yz ,z

⎤
⎥⎥⎦+Dx−1,z ·vT

x−1,z +Dx,z ·vT
x+1,z +Bx,z−1 ·vT

x,z−1 +Bx,z ·vT
x,z+1, (4.17)

where v is the voltage currently obtained. The voltage in different tiers is iteratively calculated

until the difference between two successive iterations is lower than the specified threshold

dV . Since A in (4.2) is positive semi-definite, the algorithm will converge for any initial v [120].

For a 3-D PDN, the algorithm RB3D is applied to the VDD and GND grids independently. The

IR-drop at each node is obtained by adding up the voltage drop on the VDD grid and voltage

rise on the GND grid.

4.2.3 Simulation results

The proposed algorithm “RB3D” is compared with SPICE-based DC analysis to verify the

accuracy of RB3D. The benchmark 3-D power grids are generated from industrial 2-D power

grids [27] by replicating the planar grids in multiple tiers. The statistics of the 2-D benchmarks

are reported in Table 4.1. Among tiers, the P/G TSVs are uniformly inserted based on a

user-specified interval.

Table 4.1: IBM power grid benchmarks for IR-drop analysis.

Benchmark # current sources # nodes # resistors # P/G pads # metal layers
ibmpg1 10774 30638 30027 277 2
ibmpg2 37926 127238 208325 330 5
ibmpg3 201054 851584 1401572 955 5
ibmpg4 276976 953583 1560645 962 6
ibmpg5 540800 1079310 1076848 277 3
ibmpg6 761484 1670494 1649002 381 3

The “RB3D” is compared with HSPICE [161] for the original 2-D benchmarks and the generated

3-D power grids with two and three tiers. To provide enough current, P/G TSVs (50 mΩ each)

are inserted every four nodes. The worst voltage drop for VDD and GND, the maximum error,

and the acceleration in CPU time as compared to HSPICE are reported in Table 4.2.
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Table 4.2: Simulation results for 2-D and 3-D power grids based on IBM benchmarks.

Circuit
max ΔVDD [V]1 max ΔGND [V] 2

error3 time4 #TSVs/Tier
1p 2p 3p 1p 2p 3p

ibmpg1 0.811 1.391 1.953 0.694 0.983 1.260 4% 3× 1510
ibmpg2 0.500 0.866 1.222 0.370 0.566 0.756 0% 22× 5489
ibmpg4 0.012 0.017 0.021 0.004 0.006 0.008 20% 4× 38363
ibmpg5 0.067 0.118 0.161 0.050 0.067 0.090 15% 7× 62543
ibmpg6 0.211 0.308 0.403 0.113 0.167 0.219 6% 2× 97714
1, 2 The maximum IR-drop in VDD (GND) grids among all tiers.
3 The maximum error for both VDD and GND grids as compared with HSPICE.
4 The maximum acceleration in CPU time as compared with HSPICE simulations.

As shown in Table 4.2, for all the benchmark power grids, the proposed algorithm “RB3D”

achieves a reasonably high accuracy as compared to HSPICE simulations. For the circuits

ibmpg4 and ibmpg5, although the percentage is over 10%, the maximum error is actually

below 7 mV since the IR-drop is relatively low. The savings in CPU time depends on the

specified accuracy. The memory required by RB3D is much lower than HSPICE. HSPICE is not

able to simulate large circuits (e.g., ibmpg5 and ibmpg6) at 32 bits platforms, while RB3D is

capable to run at both 32 and 64 bits platforms.

The IR-drop among different tiers of a three-tier VDD grid based on ibmpg1 is illustrated in Fig.

4.5. As shown in this figure, the IR-drop is similar among tiers, since the same planar circuit is

replicated in each tier and the resistance of TSVs is relatively low (50 mΩ). Nevertheless, it is

still clear that the voltage drop of tier 3 (closer to the P/G pads) is lower than tier 1 (farther

to the P/G pads). The maximum difference in Vdd between the first and third tiers is 35.5 mV.

This difference in the voltage drop among tiers significantly increases with the resistance of

TSVs and the number of tiers.

4.3 Modeling Resonant Supply Noise in 3-D ICs

In addition to the IR-drop, the resonant supply noise caused by the inductance and capac-

itance of PDNs also highly affects the timing of circuits, as introduced in Section 2.2.3. To

investigate the resonant supply noise in 3-D PDNs, the 1-D model for 2-D PDNs (see Fig. 2.16)

can be extended to include the electrical characteristics of the TSVs and the on-chip PDNs in

different tiers [34]. The resonant noise is mainly determined by the LC tank formed between

the package inductance and the on-die capacitance. This noise is typically stimulated by a

large current spike due to the clock edge or simultaneous switching of transistors. A simplified

circuit used to simulate the resonant (the first droop) supply noise in 3-D PDNs is illustrated in

Fig. 4.6. A three-tier 3-D IC is shown in this figure. The P/G signal is supplied from the package

to tier 3, tier 2, and to the topmost tier 1. The on-die decoupling capacitance is denoted by C3,
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Figure 4.5: IR-drop in a three-tier circuit based on ibmpg1, where (a) and (b) are the top-views
of tiers 1 and 3 with 50 mΩ TSVs, respectively.
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Figure 4.6: A simplified circuit used to simulate the first-droop of the power supply noise.
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Table 4.3: Electrical Characteristics of the Simplified Circuit.

Rt Lt C1,2,3 I3 I2 I1

[mΩ] [pH] [nF] [A] [A] [A]
Base 50 100 1 0.03 0.04 0.05
Diff_I1 50 100 1 0.02 0.04 0.06
Diff_I2 50 100 1 0.04 0.04 0.04
Diff_I3 50 100 1 0.06 0.04 0.02

C2, and C1, respectively. The resonant noise in different tiers is investigated under different

scenarios of 3-D PDNs in the following subsections.

4.3.1 Resonant Noise vs. On-Chip Current

In 3-D ICs, the current dissipated by the tiers can differ due to the different numbers and

sizes of devices. Moreover, due to the different clock delay and wakeup time among tiers, the

current peaks can temporally vary among tiers. The waveform of the resonant supply noise

due to different turn-on times is illustrated in Fig. 4.7. The time instances where the circuits

in the different tiers switch are separated by 0.1 ns, 1 ns, and 10 ns, respectively, for Switch1,

Switch2, and Switch3 scenarios. The electrical characteristics of the 3-D circuit are listed in

Table 4.3.

As shown in Fig. 4.7, the amplitude of the supply noise decreases with the separation among

the switching instances of the tiers. When the separation is lower than 1 ns (Switch1 and

Switch2), the resonant noise can be approximated by a damped sinusoidal signal. Since the

supply noise of Switch1 and Switch2 is much higher than Switch3, the sinusoidal waveform

can be used to describe the worst resonant noise of 3-D ICs.

Consequently, the resonant supply noise seen by the circuit at time t can be described by a

damped sinusoidal waveform

v(t ) =Vne−σt sin(2π fnt +φ). (4.18)

The clock frequency is much higher than the supply noise frequency and the clock delay is

typically lower than the period of the supply noise. As shown in Fig. 4.7, the worst supply

noise occurs in the first period of the resonant noise. Consequently, to investigate the effect

of the worst supply noise on clock distribution networks, (4.18) can be approximated by an

undamped sinusoidal waveform [94],

v(t ) ≈Vn sin(2π fnt +φ). (4.19)

The amplitude Vn, frequency fn, and the initial phase φ are determined by the switching

current and the characteristics of the circuits. The relation between resonant noise and the

current in different tiers is illustrated in Fig. 4.8. The load current peak in different tiers is
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Switch3

Figure 4.7: Resonant noise in 3-D ICs due to different temporal separation of circuits switching
within the three tiers.
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Figure 4.8: Resonant noise vs. switching current in different tiers. The change of Vn and fn are
illustrated in (a) and (b), respectively.

reported in Table 4.3, where Diff_I1, Diff_I2, and Diff_I3 are given. As shown in Fig. 4.8(a), the

difference in Vn among tiers decreases as I3 increases and I1 decreases. Considering the severe

thermal issues in 3-D ICs, the majority of switching components need to be placed in the tiers

close to the heat sink (Tiers 1 and 2) to reduce temperature [34]. Consequently, the switching

current in Tiers 1 and 2 can be significantly higher than Tier 3, which is similar to Diff_I1 in

Table 4.3. As illustrated in Fig. 4.8(a), this current distribution introduces non-negligible ΔVn

among tiers.

The change of fn with the switch current is shown in Fig. 4.8(b). The frequency of resonant

noise is similar among tiers (Δ fn ≤ 5 MHz) and does not significantly change with the current.

As illustrated in Fig. 4.7, assuming all the components are idle at t = 0, the initial supply noise

is the same for all tiers (v(0) = 0). Due to the same v(0) and similar fn among tiers, the initial

phase φ of the supply noise is similar among tiers.
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4.3.2 Resonant Noise vs. Resistance of TSVs

The electrical characteristics of TSVs differ with the manufacturing technology [68, 71]. The

change of the power supply noise with the resistance of TSVs is illustrated in Fig. 4.9. Larger
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Figure 4.9: Resonant noise vs. resistance of TSVs. The change of Vn, IR-drop, and fn is
illustrated in (a) to (c), respectively.

Rtsv results in both higher DC IR-drop (Fig. 4.9(b)) and higher ΔVn (Fig. 4.9(a)). Moreover, the

difference in IR-drop and ΔVn among tiers increases. The difference in frequency Δ fn also

differs slightly with Rtsv. Consequently, the resonant supply noise is sensitive to the resistance

of TSVs.

4.3.3 Resonant Noise vs. Number of Tiers

The resonant noise for different number of tiers in a 3-D IC is plotted in Fig. 4.10. The total

switch current and on-die decoupling capacitance are assumed identical for all the four cases

and are evenly distributed among tiers. As shown in Fig. 4.10, both ΔVn and Δ fn increase

with the number of tiers. As more dies are vertically stacked, the difference in resonant noise

among tiers increases.
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Figure 4.10: Resonant noise vs. number of tiers. The changes in both Vn and fn are depicted.

4.3.4 High-Frequency Power Supply Noise

Other faster and more mutable droops of power supply noise ( fn ≥ 400 MHz) can be directly

described as random variables with probabilistic formulations, as modeled in [121]. To obtain

the distribution of these variables, the switching activity of all the cells is required. Afterwards,

a full-chip transient simulation of the PDN is performed to determine the temporal and spatial

change of the power supply noise. The high- and mid-frequency supply noise, however, can

be greatly reduced by RC filters [25] and the first-droop of the resonant supply noise is usually

the deepest droop. Consequently, the focus of the remaining part of this dissertation is mainly

on the first-droop (resonant) supply noise.

4.4 Clock Jitter due to the First Droop of Power Supply Noise

The effect of power supply noise on clock distribution networks is discussed in this section.

As presented in [29, 30], the first droop of the power supply noise, or the resonant noise, is

typically the worst (largest) supply noise in a circuit. Consequently, the effect of resonant noise

on the clock uncertainty is the focus of this section. Since the resonant noise is determined

by the LC tank formed by the package/bonding inductance and the on-chip capacitance, the

entire chip is uniformly affected by this noise [29]. A clock path affected by the first-droop

noise is illustrated in Fig. 4.11(a). As introduced in Section 4.3.1, the first-drop power supply

noise can be modeled by a sinusoidal waveform. The path delay of two consecutive clock

edges under this supply noise is illustrated in Fig. 4.11(b).

As shown in Fig. 4.11(b), two consecutive rising clock edges arrive at the source of the clock

path at time t0 and t1, respectively. The ideal clock period is assumed to be t1 − t0. The path

delay of these two edges is denoted by pd0 and pd1, respectively. Since these edges arrive
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Figure 4.11: A clock path affected by the first-droop supply noise, where (a) and (b) are the
clock path and path delay, respectively.

at the clock buffers at different time, the supply noise affecting the buffers is different. The

resulting path delay pd0 is, consequently, different from pd1, which suggests t3 − t2 �= t1 − t0.

Therefore, the clock period seen at the end of the clock path is different from the ideal clock

period. This type of variation of the clock signal is described by clock jitter. Clock jitter is

defined as the deviation of the clock signal from the ideal temporal occurrences [18]. Clock

jitter can be described in three ways: period jitter, cycle-to-cycle jitter, and phase jitter (time

interval error). The corresponding definitions are illustrated in Fig. 4.12, where the clock edges

deviate from the ideal occurrence to a different extend.

• The period jitter can be defined as either the difference between the actual and the

ideal clock periods [18] or the actual clock period itself [94]. The former is used in this

dissertation to avoid the confusion between period jitter and clock period. In Fig. 4.12,

the ideal clock period is denoted by T0. The period jitter for the first and the second

clock periods is determined by J1 = T1 −T0 and J2 = T2 −T0, respectively.

• The cycle-to-cycle jitter is the difference between different clock cycles of the actual

clock signal. As shown in Fig. 4.12, the cycle-to-cycle jitter between the first and the

second clock cycles is determined by C J1,2 = T2 −T1.
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Figure 4.12: Different definitions of clock jitter.

• The phase jitter, or the time interval error, is the difference between an actual clock edge

and the corresponding ideal clock edge. In Fig. 4.12, the phase jitter for the third clock

edge is determined by Δt3 = t3 − t ′3.

These three definitions of clock jitter are essentially similar to each other. The period jitter is

the most explicit description of the clock jitter within a circuit [18]. Therefore, the clock jitter

directly refers to period jitter in the remainder of this dissertation. Note that clock jitter can

be generated by both the Phase-Locked Loop (PLL) and clock distribution network. PLL jitter

can be mitigated by careful PLL design [162]. The clock jitter generated by clock distribution

networks, however, is affected by the power supply noise, as shown in Fig. 4.11(b). In the

following context, the clock jitter implicitly refers to the jitter generated in clock distribution

networks.

In 2-D ICs, closed-form formulas of period jitter are proposed in [94]. Based on the approxima-

tion of the power supply noise, non-recursive and recursive expressions of supply noise can

be used to model period jitter. For a clock path consisting of clock inverters, the non-recursive

period jitter is based on the non-recursive supply noise. When a clock edge arrives at the i th

inverter at time t (i ), the supply noise is approximated by

v(t (i )) ≈ v

(
t0 + (i −1)(d r +d f)

2

)
, (4.20)

where d r and d f are the nominal delay of an inverter stage for the rising and falling input,

respectively. The time where the investigated clock edge arrives at the input of the clock path

is denoted by t0. When i −1 is an odd number, an additional d r or d f is added to (4.20). The

period jitter J1 in Fig. 4.12 can be determined by

J1 = t2 − t1 −T0, (4.21)
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t1 =
k∑

i=1
dp

(
v
(
t1(i )

))+ t0, (4.22)

t2 =
k∑

i=1
dp

(
v
(
t2(i )

))+ t0 +T0, (4.23)

where v(t1(i )) and v(t2(i )) are the supply noise seen by the i th inverter when the first and the

second clock edges arrive, respectively. These supply noises are determined by (4.20). When

the input is a rising (falling) edge, dp equals dr (df). Although the non-recursive expression

provides a concise formula to estimate the period jitter, it determines the supply voltage for

each buffer stage based on the nominal clock delay. This assumption introduces some error,

however, since the actual clock delay is affected by the supply noise.

To further improve the accuracy, a recursive expression for period jitter is developed in [94].

The clock jitter and delay are still determined through (4.21) to (4.23). The supply noise v(t )

seen by the i th inverter, however, is determined based on the actual clock delay t (i ), instead of

the approximation in (4.20). For instance, when the first clock edge arrives at the kth buffer,

the supply noise v(t1(k)) is, recursively, determined through (4.19) by

v(t1(k)) =Vn sin(2π fn · t1(k)+φ), (4.24)

t1(i ) =
i−1∑
j=1

dp

(
v
(
t1( j )

))
. (4.25)

Given the characteristics of the power supply noise, clock jitter can be determined through

(4.21) to (4.25). Nevertheless, as shown in Fig. 4.11, this clock jitter applies to a single clock

path. Considering that the setup and hold slacks are determined by a pair of clock paths, clock

jitter and skew need to be simultaneously modeled to accurately describe the clock uncertainty

of a clock distribution network. This combined model is investigated in the following chapter.

4.5 Summary

The power supply noise in 3-D PDNs is investigated in this chapter. A fast steady-state IR-drop

analysis method is developed for 3-D power grids. In this method, the row-based algorithm for

2-D power grids is extended to consider the influence of P/G TSVs and the interaction among

tiers. Compared to SPICE-based simulations, the proposed method achieves reasonably high

accuracy and savings in the computing resources.

The resonant noise in 3-D PDNs is investigated based on the one-dimensional model. Under

different scenarios of 3-D PDNs, the resonant noise exhibits different characteristics among

tiers.
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• For various schemes of switching current and turn-on time, the tier adjacent to the

package and the heat sink experience the lowest and highest amplitude of resonant

noise, respectively.

• The difference in the amplitude of resonant noise increases with the resistance of P/G

TSVs.

• The difference in the amplitude of resonant noise increases with the number of tiers.

• In all scenarios, the frequency of resonant noise slightly differs among tiers, with a

difference lower than 10% in the simulations.

The clock jitter under power supply noise is introduced. A non-recursive model of power

supply noise provides a concise method to determine clock jitter, while a recursive model

provides a more accurate and complex method to obtain clock jitter. The combined effect of

the power supply noise and process variations on the timing uncertainty of clock distribution

networks is discussed in the next chapter.
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age Variations on Clock Uncertainty

The combined effect of process variations and power supply noise on clock distribution

networks is investigated in this chapter. As shown in Chapters 3 and 4, the process variations

and power supply noise introduce clock skew and jitter, respectively, into clock distribution

networks. Since a circuit is simultaneously affected by these variation sources, the resulting

clock uncertainty needs to be modeled considering process and voltage variations at the same

time.

The term “skitter” [163] is used to denote this combined clock uncertainty in the following

section. A simplified model for skitter in 2-D ICs is proposed in Section 5.2, where the skitter

for different buffer insertion methodologies is also discussed. A more accurate model for

skitter in 3-D ICs is proposed in Section 5.3, where different process variations and supply

noise among tiers are considered. Methods to mitigate skitter are presented in Section 5.4. A

case study for the skitter in synthesized clock trees is presented in Section 5.5, where a 3-D

clock tree synthesis algorithm is also described. To insert buffers along 3-D interconnect trees,

a timing-driven fast buffer insertion algorithm is proposed in Section 5.6. The conclusions are

drawn in Section 5.7.

5.1 Skitter: A Unified Treatment of Skew and Jitter

Clock distribution networks are simultaneously affected by different sources of variations, such

as static process variations and dynamic voltage noise [18]. The resulting clock uncertainty

due to these variations consists of clock skew and jitter. This uncertainty can severely constrain

the highest clock frequency of a circuit. In addition, the design of robust clock distribution

networks requires a comprehensive analysis and proper mitigation of these variations.

3-D integration emerges as a promising solution to alleviate the increasing interconnect

delay and to enhance the density of devices in modern integrated circuits [7]. Multiple

planar circuits (tiers) with different technologies can be vertically stacked, which complicates

the variation analysis for 3-D circuits. The effect of process variations in 3-D ICs has been
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discussed in Chapter 3. The resulting skew variation is modeled by considering the time-

invariant variability in the characteristics of devices and wires. The effect of power supply

noise, especially the resonant noises, on 2-D clock distribution networks has been investigated

in [29, 30, 94]. The effect of power supply noise on 3-D clock distribution networks, however,

has not been adequately explored.

For 3-D ICs, different PDNs have been investigated in Chapter 4. A 3-D PDN similar to a 2-D

network is implemented in [153], while 3-D PDNs with different characteristics among tiers

are discussed in [34]. The resulting amplitude of supply noise differs among tiers substantially

differentiating the behavior of power supply noise from that observed in planar circuits. The

effect of this different power supply noise on the timing uncertainty of 3-D clock distribution

networks, however, remains unclear. The change of the clock uncertainty with both the

different characteristics of supply noise and process variations is investigated in this chapter.

In most of the previous works, the effect of process variations and power supply noise is

discussed separately in terms of skew and jitter. Clock skew, the difference in delay among

clock paths, is considered to be significantly affected by process variations and is well modeled

for 2-D ICs [139, 144]. A model of process-induced skew in 3-D clock trees is investigated in

Chapter 3. The other constituent of clock uncertainty is clock jitter, as introduced in Section

4.4. Period jitter is the difference between the measured clock period and the ideal period. The

period jitter generated in clock distribution networks is mainly due to the power supply noise

on the clock buffers [164]. The effect of the power supply noise on period jitter in 2-D ICs is

analyzed in [29, 30, 94], while to the best of the author’s knowledge, this dissertation discusses

period jitter in 3-D ICs for the first time.

Clock distribution networks are simultaneously affected by process variations and power

supply noise. For 2-D ICs, a statistical timing analysis method considering process variations

and power supply noise is proposed in [165], where full-chip simulations are required to

obtain the distribution of power supply noise. Moreover, the effect of these variations on

clock distribution networks is not adequately explored. The combination of skew and jitter,

"skitter", is introduced in [163] to model the co-effect of all sources of variations on clock

distribution networks, while no closed-form expression is given to model the distribution

of skitter. A subcircuit is designed to measure the skitter in [163], which can be utilized to

mitigate undesired skitter during operation [166]. If the skitter is high, frequent recovery

and adaptation procedures have to be executed to correctly transfer data. Moreover, these

architectural procedures cannot be used for each pair of clock sinks. Consequently, by better

understanding the behavior of skitter, this component of clock uncertainty can be mitigated

through the proper design of clock distribution networks. In addition, the overhead of the

adaptive circuits and architectural procedures can be reduced.

The combined effect of process variations and dynamic power supply noise on 3-D clock

distribution networks has not been explored, although clock skew and jitter need to be treated

cohesively. As mentioned before, these variations in 3-D ICs are more complex due to the
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Figure 5.1: A circuit used to measure the delay variation of one buffer stage due to process
variations and power supply noise.

stacked tiers. The effect of these variations on clock distribution networks is investigated in

terms of skitter in this chapter.

5.2 Modeling Skitter in 2-D Clock Distribution Networks

Skitter in 2-D clock distribution networks is investigated in this section. Considering the

uniform D2D process variations and resonant supply noise in 2-D circuits, a simplified model

is proposed to fast describe skitter. The delay model of a buffer stage considering both process

variations and power supply noise is proposed in the following subsection. Based on this

model, the skitter of clock trees is investigated in Section 5.2.2. The skitter between clock paths

with different numbers and sizes of buffers is discussed in Section 5.2.3. Several methods to

mitigate skitter in 2-D circuits is presented in Section 5.2.4.

5.2.1 Delay distribution of a buffer stage

A simplified method to model the delay variation of a buffer stage simultaneously considering

process variations and power supply noise is presented in this subsection. For a clock tree with

uniform clock buffer insertion, the input slew rate and load of each buffer stage are similar.

Consequently, the delay variation of a buffer stage can be evaluated by a parameterized

lumped circuit, as illustrated in Fig. 5.1. The investigated buffer stage is depicted with a

dashed rectangle in Fig. 5.1. The interconnect between two buffers is modeled as an RLC

network comprising one π-section. The power supply to buffers b0, b1, and b2 can be adapted

to model the power supply noise v . By measuring the delay variation from pin A to pin B, the

effect of process variations under different power supply noise can be described.

An example of the delay variation of a buffer stage with the supply noise is illustrated in Fig.

5.2. The mean and standard deviation of the delay of a buffer stage are shown in this figure.

In this example, a clock buffer is an inverter, based on a PTM 32 nm CMOS model [41]. The

supply voltage is Vdd +ΔVdd, where Vdd = 0.9 V is the nominal supply voltage. As shown in Fig.
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(a)

(b)

Figure 5.2: The mean and standard deviation of the delay of a buffer stage.
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5.2(a), the delay of a buffer stage for a rising and falling input edges is denoted by, dr and df,

respectively. The mean delay μdf decreases with v much faster than μdr . In Fig. 5.2(b), σdr

and σdf also decrease with ΔVdd. Consequently, a higher Vdd can produce lower mean and

standard deviation of the delay of a clock buffer stage.

Both μdr (μdf ) and σdr (σdf ) under different power supply noise can be obtained by polynomial

fitting from SPICE based Monte-Carlo simulations [94]. Considering ΔVdd = v , the delay

variation of a buffer stage is approximated by a second-order polynomial,

y = a2v2 +a1v +a0, (5.1)

where y denotes the mean or standard deviation of the delay of a buffer stage. With the

expressions for the delay variation of one buffer stage, the skitter J1,2 can be obtained by

traversing all the clock buffer stages along the investigated pair of clock paths and estimating

the supply noise at different time instances.

5.2.2 Skitter considering process variations and power supply noise

The skitter in 2-D clock trees can be determined with the delay model of a buffer stage by

estimating the power supply noise in either non-recursive or recursive formulas, as introduced

in Section 4.4. To fast model skitter, the non-recursive formula of supply noise is used in this

section.

The definition of the clock skew, period jitter, and skitter between a pair of clock paths in 2-D

ICs is illustrated in Fig. 5.3. The clock signal is fed into the clock tree from the primary clock

driver. Two flip-flops are driven by this clock signal, denoted as FF1 and FF2 in Fig. 5.3(a). The

corresponding waveforms are illustrated in Fig. 5.3(b). The waveforms clk1 and clk2 denote

the clock signal driving FF1 and FF2, respectively. Assuming the time where the i th rising edge

arrives at clock input is zero, the time where this edge arrives at FF1 and FF2 is, respectively,

denoted by t1,i and t2,i . The number of buffers before the point of divergence (POD) is np . The

numbers of buffers from the clock input to FF1 and FF2 are denoted by n1 and n2, respectively.

The skew between the i th edge of clk1 and clk2 is S1,2(i ). The ideal clock period is Tclk.

The measured clock periods after the i th edge for FF1 and FF2 are T1 and T2, respectively.

The corresponding period jitters are J1 = T1 −Tclk and J2 = T2 −Tclk. Assuming the data is

propagated from FF1 to FF2 within one clock cycle, T1,2 is the resulting time interval that

determines the maximum data transfer speed. Consequently, the variation of T1,2 is denoted

as skitter J1,2,

J1,2 = T1,2 −Tclk

= t2(i +1)− t1(i )−Tclk

= S1,2(i )+ J2.

(5.2)
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Figure 5.3: Clock period jitter and skew between two clock paths. The clock paths and FFs are
illustrated in (a). The corresponding waveforms of the clock signal are illustrated in (b).

As shown in (5.2), the effective time window T1,2 is determined by J1,2, which is the sum of the

skew S1,2(i ) and the period jitter J2 along clock path 2. Simultaneously modeling the skew and

jitter can, therefore, more accurately determine delay uncertainty.

Skitter J1,2 is the difference in the delay between two clock paths,

J1,2 =
n2∑

k=1
d2,k (i +1)−

n1∑
k=1

d1,k (i ), (5.3)

where d1,k (i ) is the delay of the kth buffer stage along the path to FF1 for the i th clock edge. As

modeled in [94] and introduced in Section 4.4, d1,k (i ) can be approximated by a non-recursive

formula for the first-droop power supply noise,

d1,k (i ) =F
(
vk (i ),�P

)
, (5.4)

vk (i ) ≈ v

(
t0(i )+ k (dr(v1(i ))+df(v1(i )))

2

)
, (5.5)

v(t ) =Vn sin(2π fnt +φ), (5.6)
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where vk (i ) is the voltage noise which affects the kth buffer stage when the i th clock edge

arrives at this stage. The power supply noise v is modeled as a sinusoidal waveform with

amplitude Vn, frequency fn, and initial phase φ. This deterministic model is widely used to

describe the first droop of the power supply noise, which is considered as the worst supply

noise in a circuit [29, 94]. Other faster and more erratic droops of the supply noise can be

included as random variables with probabilistic formulations, similar to process variations.

The delay of a buffer stage under v1(i ) for a rising and falling input is denoted by dr(v1(i ))

and df(v1(i )), respectively. The set of parameters affected by process variations is denoted

by �P . For instance, if the variations in channel length and threshold voltage are considered,
�P = {Leff,Vth}. The expression for F

(
vk (i ),�P

)
is obtained by quadratic fitting as presented in

the previous subsection. This expression can be approximated as a Gaussian distribution if

the parameters in �P are also described by a Gaussian distribution.

The distribution of J1,2 is, therefore, approximated as a Gaussian distribution from (5.3) and

(5.4). The mean value and the standard deviation of J1,2 are discussed separately.

• Mean value of skitter μJ1,2 . The term J1,2 can be expressed as the difference of the delay

of the i +1th and i th clock edges,

J1,2 ∼N (μJ1,2 ,σ2
J1,2

), (5.7)

μJ1,2 =
n2∑

k=1
μd2,k (i+1) −

n1∑
k=1

μd1,k (i ). (5.8)

• Standard deviation of the skitter σJ1,2 . The variation on J1,2 is determined by both the

D2D and WID variations, which are independent from each other. All the devices are

affected by D2D variations uniformly. The WID variations on different devices consist of

random and spatially correlated components [37, 92, 144]

σ2
J1,2

=σ2
J D2D

1,2
+σ2

J WID
1,2

, (5.9)

σJ D2D
1,2

=
n2∑

k=1
σd D2D

2,k (i+1) −
n1∑

k=1
σd D2D

1,k (i ), (5.10)

σ2
J WID

1,2
=

n2∑
k=1

σ2
d WID

2,k (i+1)
+

n1∑
k=1

σ2
d WID

1,k (i )
+2

n2−1∑
k=1

n2∑
h=k+1

Cov
[

d WID
2,k (i +1),d WID

2,h (i +1)
]

+2
n1−1∑
k=1

n1∑
h=k+1

Cov
[

d WID
1,k (i ),d WID

1,h (i )
]
−2

n2∑
k=1

n1∑
h=1

Cov
[

d WID
2,k (i +1),d WID

1,h (i )
]

,

(5.11)

Cov(a,b) = corr(a,b)σaσb . (5.12)

In this model, it is assumed that the covariance between the delay variation is deter-

mined by the spatial correlation. Assuming the number of buffers before POD is np ,

for k ≤ np , corr
[

d WID
2,k (i +1),d WID

1,k (i )
]
= 1. Other correlations in (5.12) are determined
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Table 5.1: Different Buffer Insertion Strategies for an Interconnect.

# Buffers 10 14 20 30 40 50 60
length [μm] 1000 714 500 333 250 200 167

min Wn [μm] 1.8 1.5 1.2 0.9 0.9 0.9 0.6

based on the existing models. For instance, WID variations can be modeled as indepen-

dent [91] or spatially-correlated [37, 86], as introduced in Section 3.2.2.

With the delay model of a buffer stage fitted through (5.1) and the skitter model described

through (5.2) to (5.12), the skitter between different paths in a clock tree can be estimated

quickly. Consequently, the effect of process variations and power supply noise can, simultane-

ously, be modeled.

5.2.3 Skitter for different buffer insertions

The skitter is determined by the varying delay of all buffer stages due to process variations

and power supply noise. For the same pair of clock paths, the effect of the number and

size of buffers on skitter is investigated in this subsection. The electrical parameters of the

transistors are based on a 32 nm PTM model [41]. The variation in channel length (σD2D =
3%μ and σWID = 5%μ based on ITRS data [43]) is considered in the simulations. Note that

different sources of variations can also be modeled by the proposed modeling approach. The

parameters of the interconnects are based on an Intel 32 nm interconnect technology [94].

The resistance, inductance, and capacitance of the interconnects per unit length are 388.007

Ω/mm, 68.683 fF/mm, and 1.768 nH/mm, respectively.

The skitter including skew and period jitter between two paths of a clock tree are investigated.

Considering two clock paths with a length of 10 mm, seven cases of buffer insertion are

investigated, as listed in Table 5.1. The maximum size of the investigated nMOS transistors is

assumed to be 22.5 μm. The size of the pMOS transistors is twice the Wn to produce close to

equal rise and fall times. The accuracy of the proposed methodology to estimate J1,2 is verified

in the following subsection. The case, where the paths contain 20 buffers with Wn = 3μm, is

taken as an example. The result is compared with SPICE based Monte-Carlo simulations [148].

The efficiency of different buffer insertion cases in reducing J1,2 is then discussed. The buffer

insertion can be driven by considering 1) only process variations, 2) only the power supply

noise, and 3) both of these sources of variations, respectively. The skitter of the interconnects

with different length, the tradeoff between power consumption and skitter, and the effect of

recombining clock paths and dynamic voltage scaling in reducing skitter are presented in this

section.
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Table 5.2: Comparison between the Proposed Modeling Method and Monte-Carlo Simulations.

np μM [ps] μMC [ps] μ% σM [ps] σMC [ps] σ%
0 -57.63 -54.2 5.4% 32.9 29.5 11.4%

10 -57.63 -55.0 3.8% 22.4 22.5 -0.2%
18 -57.63 -54.6 4.6% 12.4 11.9 3.9%

Accuracy of the proposed methodology

The accuracy of J1,2 obtained from (5.2) through (5.12) is verified by comparing with SPICE-

based Monte-Carlo simulations. Twenty buffers are inserted along one interconnect. For a

fixed φ= 3
2π in (5.6), three cases of np are examined, np = 0,10,18. The estimated μJ1,2 and

σJ1,2 and the results from Monte-Carlo simulations are listed in Table 5.2. The mean delay

from the proposed model and the Monte-Carlo simulations are denoted by μM and μMC,

respectively. As reported in Table 5.2, for all the three cases of np , the proposed model exhibits

reasonably high accuracy (below 5.4% for μ and below 11.4% for σ).

For np = 0, different initial noise phases φ are also examined. The μJ1,2 and σJ1,2 from the

proposed model and the Monte-Carlo simulations (MC) are illustrated in Fig. 5.4. Since J1,2

is approximated as a Gaussian distribution based on (5.2) - (5.12), the probability for J1,2 to

lie within the range [μ−3σ, μ+3σ] is 99.7%. The negative J1,2 with the maximum absolute

value can be expressed as max(J1,2) =μJ1,2 −3σJ1,2 , which results in the shortest time period

for data transfer. The max(J1,2) from the proposed model and the Monte-Carlo simulations is

also illustrated in Fig. 5.4.
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Figure 5.4: μJ1,2 and σJ1,2 from the proposed modeling method and Monte-Carlo simulations
(notated by "MC").

As shown in this figure, the proposed modeling method produces reasonable accuracy for

different φ. The worst max(J1,2) or the worst case period jitter (WJ), occurs where φ= 3
2π (270◦).

This behavior is consistent with the conclusion made in [94], when fn � fclk. Consequently,
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φ= 3
2π is utilized and J1,2 implies WJ in the remainder of this section. In this case, μJ1,2 and

max(J1,2) are both negative and are described with absolute values for clarity.

Different objectives for buffer insertion

The three previously-mentioned objectives for performing buffer insertion are compared in

this subsection. The resulting number and size of buffers are also presented. The slew rate

(rise time) for different buffer insertions is investigated, as shown in Fig. 5.5. Since the rise

time for 10 inverters is greater than 75 ps, these solutions are not considered in the following

analysis.

Figure 5.5: Mean slew rate for different buffer insertion under process variations and power
supply noise.

Buffer insertion under process variations

There are plenty of works focusing on buffer insertion considering process variations [167,168].

In these methodologies, the buffers are inserted to reduce both the delay and power while

alleviating the delay uncertainty due to process variations. All the buffer stages are considered

to be supplied with a constant Vdd (instead of using (5.1) to determine the distribution of the

delay and skew). Consequently, the period jitter J1 and J2 in Fig. 5.3(b) are neglected. The

variation of skew S1,2 determines J1,2.

The buffer insertion cases and the resulting σJ1,2 from Monte-Carlo simulations are illustrated

in Fig. 5.6, where only process variations are considered. The lowest σ1,2 is achieved for 14

buffers with Wn = 12μm. The resulting minimum σ1,2 is 21.17 ps.
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Figure 5.6: σJ1,2 for different buffer insertion under process variations.

Buffer insertion under power supply noise

There are also existing works on buffer insertion considering the power supply noise [94]. In

these works, the effect of the power supply noise on clock jitter is modeled and buffers are

inserted such that this effect is suppressed. In this case, process variations are not considered.

Consequently, S1,2 and J1,2 are constant for a given power supply noise scenario.

The WJ from SPICE based simulations for different numbers and sizes of buffers is illustrated

in Fig. 5.7. The lowest WJ is achieved by 14 buffers but with Wn = 7.5μm. The resulting

minimum μJ1,2 is 36.2 ps. Solutions with fewer buffers produce lower WJ.

Buffer insertion under both process variations and power supply noise

Since the process variations and power supply noise coexist in a real circuit, investigating

the combined effect of these variations is necessary. Skitter J1,2 combining S1,2 and J2 can be

obtained from (5.2) to (5.12). In this case, both the effect of process and voltage variations are

considered to determine the size and number of buffers.

The max(J1,2) from Monte-Carlo simulations for different buffer solutions is illustrated in Fig.

5.8(a). In this example, the minimum μJ1,2 , σJ1,2 , and max(J1,2) from different buffer insertions

are 35.7 ps, 22.36 ps, and 102.98 ps, respectively. The corresponding solutions are 14 buffers

with Wn = 7.5μm,12μm,12μm, respectively. The solution with fewer buffers, again, produces

lower J1,2. The comparison in μJ1,2 and σJ1,2 between the proposed model and Monte-Carlo

simulations for different numbers of buffers (Wn = 7.5μm) is reported in Table 5.3. As reported

in this table, for the clock paths with different numbers of buffers, the proposed model exhibits

117



Chapter 5. Combined Effect of Process and Voltage Variations on Clock Uncertainty

Figure 5.7: WJ1,2 for different buffer insertions under power supply noise.

Table 5.3: Comparison between the proposed modeling method and Monte-Carlo simulations
for different numbers of buffers.

# buf μM [ps] μMC [ps] μ% σM [ps] σMC [ps] σ%
14 -33.3 -35.7 -6.9% 22.5 22.9 -1.8%
20 -39.4 -43.3 -9.1% 22.5 23.9 -5.8%
30 -51.2 -57.1 -10.3% 25.7 28.1 -8.4%
40 -64.0 -69.0 -7.3% 29.8 26.2 14.0%
50 -73.9 -77.7 -4.8% 33.0 28.9 14.0%
60 -80.8 -82.7 -2.3% 34.7 30.6 13.4%
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Figure 5.8: J1,2 for different buffer insertion under process variations and power supply noise.
(a) is the maximum J1,2. The max and min difference on σJ1,2 between PV only and PV&PSN is
shown in (b).

reasonable accuracy (below 10% for μ and below 14% for σ). For clarity, the skitter is described

by the results from Monte-Carlo simulations in the remainder of this section.

Comparing the results of the three considerations for buffer insertion, it is shown that under

process and voltage variations, the mean of the resulting J1,2 is dominated by power supply

noise (the difference in μJ1,2 between considering power supply noise only (PSN) and consid-

ering both process variations and power supply noise (PV&PSN) is typically below 2%). This

behavior is because μJ1,2 is the linear combination of the mean delay of each buffer stage as

expressed by (5.8), which is mainly determined by the power supply noise.

The difference between the σJ1,2 considering process variations only (PV) and PV&PSN is

reported in Fig. 5.8(b). The non-negligible ΔσJ1,2 is reported for the clock paths with different
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Figure 5.9: Skew and jitter with different length of clock paths.

numbers of buffers. The ΔσJ1,2 for 14 buffers is the highest, although this number of buffers

actually produces the lowest skitter. Modeling PV and PSN simultaneously is, therefore,

necessary to estimate the variation of J1,2.

Skitter for various lengths of the clock path

As the length of the clock path changes, the skitter also differ. An example of clock skew and

jitter for different interconnect length is drawn in Fig. 5.9. The same buffers (Wn = 3μm)

are inserted at the same distance (500 μm) for all the clock paths. The ideal clock period

(Tclk = 312.5 ps) is denoted by the dashed line. The actual mean (Tclk −μJ1,2 ), the highest

(Tclk −μJ1,2 +3σJ1,2 ), and the lowest (Tclk −μJ1,2 −3σJ1,2 ) periods within 99.7% confidence range

are denoted by ♦, �, and �, respectively.

As shown in Fig. 5.9, the skitter increases with the length of the clock path, given the same

buffer insertion. The mean and the variation of the period jitter increase with the interconnect

length. The largest clock period, however, remains nearly constant as the interconnect length

varies, since the increase in period jitter and skew counteract each other. The results from the

proposed model are also illustrated in Fig. 5.9, which fit well with Monte-Carlo results.

Power consumption with constraints on skitter

The power consumed by clock distribution networks still constitutes a significant portion of

the total power consumed by a circuit [18, 169]. The power consumption of the clock network

under different constraints on skitter is investigated in this subsection.

For the investigated clock paths, the total power consumption under different constraints

on max(J1,2) is illustrated in Fig. 5.10. As shown in this figure, when max(J1,2) ≥ 220 ps, all

the buffer insertions approximately consume the same power. As the constraint becomes

stricter (max(J1,2) decreases), the power increases and the solutions with fewer buffers are
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Figure 5.10: Power consumption vs. max(J1,2) for different buffer insertions.

more power-efficient. The solution with 14 buffers consumes the lowest power and meets the

constraint on max(J1,2).

The constraint on max(J1,2) ≥ 115 ps can be met with low power overhead. Nevertheless, as the

constraint becomes lower than 115 ps, significant power overhead is shown. For example, to

decrease the max(J1,2) from 118 ps to 103 ps (13% improvement), the 14 buffers inserted along

each clock path are sized up from 4.5 μm to 12μm. The resulting power consumption increases

from 9.1 mW to 19.2 mW (110% increase). In conclusion, pursuing extreme constraints on

clock skew and period jitter results in buffer insertions with high power consumption.

Power consumption with constraints on slew rate

The power consumed by a clock path under different constraints on the slew rate is investigated

in this subsection. The output slew is denoted by the rise time at the clock sinks.

The power consumption under different constraints on the rise time is illustrated in Fig. 5.11.

In contrast with the buffer insertion solutions minimizing max(J1,2), the clock path with more

and smaller buffers produces a lower output slew (higher slew rate). As shown in Figs. 5.5

and 5.11, the minimum slew rate of the clock path with 14 buffers is much higher than other

solutions. Consequently, the solution with 14 buffers can not be used for the clock paths with

the strict slew constraint, although this solution produces the lowest max(J1,2). Among the

other approaches, a clock path with 60 buffers consumes the lowest power under the same

constraint on slew rate.

Similar to the results in Fig. 5.10, the increase in power becomes severe as the slew constraint

becomes stricter (slew rate decreases). For example, as the slew constraint decreases from 21 ps
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Figure 5.11: Power consumption vs. output slew for different buffer insertions.

to 18.5 ps (12% decrease), the size of the buffers increases from 3 μm to 7.5 μm. The resulting

power consumption increases from 17 mW to 38.5 mW (126% increase). In conclusion,

pursuing extreme constraints on slew rate also results in high power overhead.

5.2.4 Decreasing skitter in 2-D circuits

Different methods can be utilized to mitigate the skitter by reducing skew and jitter. Two

typical methods, recombinant trees and dynamic voltage scaling, are investigated in this

subsection.

Mitigating skitter with recombinant clock paths

Recombining clock paths (e.g., in binary trees and clock spines) can mitigate skew by shorting

different paths at the output of the clock buffers [18, 94]. The interconnects can be shorted at

different levels along the clock path, as depicted in Fig. 5.12(a). By shorting the interconnects

at different positions along the clock path, the number of shorted clock buffers ns varies from

0 to max(n1,n2)−np . The skew and jitter for the clock paths with different ns are illustrated in

Fig. 5.12(b), where n1 = n2 = 20,np = 0,ns = {0,5,10,15,20},Wn = 3μm.

As illustrated in Fig. 5.12(b), 3σJ1,2 significantly decreases with ns . The mean skitter μJ1,2

between two clock paths is, however, not affected by the position of the shorted interconnect.

This situation is due to the symmetry between the clock paths. The mean skitter is mainly

determined by the supply noise. Since all the buffers are uniformly affected by resonant noise,

the mean clock delay of these clock paths is similar with each other. Consequently, shorting

clock paths cannot decrease mean skitter in this case. In other words, the variation of skitter is
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Figure 5.12: Skitter and power with the shorted wire at different levels of clock paths. The
number of buffers before the shorted point is denoted by ns.

highly reduced by shorting the clock paths at the clock sinks, while the mean skitter cannot be

reduced by the shorted interconnect. As ns increases, μJ1,2 becomes higher than 3σJ1,2 . This

behavior shows that the period jitter caused by the power supply noise becomes dominant as

the skew variation is reduced by recombinant trees. The power consumed by clock buffers

increases slightly with ns , which indicates that the power does not vary a lot while shorting

the buffers at different levels between two branches.

Effect of DVS on skitter

The effect of dynamic voltage scaling (DVS) on skitter is discussed in this subsection. DVS is

an efficient method to mitigate the impact of PVT variations on data transfer [166, 170]. Since

DVS is commonly applied to the circuit block by block, the supply voltage for the data paths

and the clock distribution networks are both tuned. For example, consider the setup slack

tslack between FF1 and FF2 in Fig. 5.3(a),

tslack = T1,2 −D1,2 − tsetup = Tclk − tsetup + J1,2 −D1,2. (5.13)
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The delay D1,2 is the propagation time of data from the clock input pin of FF1, through the

logic gates between FF1 and FF2, to the data input pin of FF2. The setup time of FF2 is denoted

by tsetup, which is constant.

A positive tslack is required for the data to be successfully latched by FF2. Since both J1,2 and

D1,2 are affected by process variations and power supply noise, DVS can be used to ensure a

positive tslack by voltage scaling [166]. The voltage (consequently, the delay) of logic gates is

adjusted according to the measured delay variation. The clock buffers within the adjusted

circuit block are also affected by the scheduled supply voltage. An example of the skitter due

to different Vdd is illustrated in Fig. 5.13.

Figure 5.13: Skitter between two branches vs. supply voltage.

The skitter between two clock branches with 20 clock buffers (Wn = 3μm) along each branch

is shown in Fig. 5.13. By increasing Vdd, both the mean and variation of the skitter decrease.

The maximum skitter is, therefore, reduced. Regarding the delay variation of a buffer stage

shown in Fig. 5.2, both the mean and variation of the delay decrease with Vdd. As a result, the

induced skitter decreases.

Since J1,2 is negative in this example, decreasing |J1,2| facilitates satisfying (5.13). Increasing

Vdd can improve the performance of the circuit by both speeding up the logic gates and

reducing the skitter of the clock distribution networks. The power consumed by the clock

buffers, however, increases quadratically with Vdd.

5.3 Extending the Skitter Model to 3-D Clock Distribution Networks

The simplified model of skitter proposed in the previous section provides a fast method to

estimate skitter in 2-D ICs. In 3-D ICs, however, high inaccuracy can be introduced due to
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more complicated process variations and different supply noise among tiers. To accurately

describe the skitter in 3-D clock distribution networks, an extended skitter model is proposed

in this section. The delay models for buffers and interconnects are presented in the following

subsection. Both the setup and hold skitter are modeled in Section 5.3.2. The skitter J1,2

is compared for clock paths with different lengths in Section 5.3.3. Skitter under different

scenarios of power supply noise is discussed in Sections 5.3.4 - 5.3.6. In addition, the skitter

for different buffer insertions along 3-D clock paths is discussed. The tradeoff between skitter

and power is also presented.

5.3.1 Linear statistical model for buffers and interconnects

The distribution of the delay of a buffer stage is modeled in this subsection. The delay of

a buffer stage d consists of the delay of the buffer db and the interconnect (horizontal wire

and/or TSV) dI. The variation of d is a random variable affected by both process variations

and power supply noise.

Delay variation due to process variations

Since the variation of parameters due to process variations is typically within a small range,

the delay of a buffer stage considering the parameter variations can be approximated by the

first order Taylor expansion [86],

d(tr,�P ,Clw) = db(tr,�P ,Clb)+dI(�P ,Clw)

≈ d + ∑
p∈�P

(
∂d

∂p

∣∣∣
0
Δp

)
. (5.14)

The input slew of this buffer stage is denoted by tr . The capacitive load seen at the output of

the buffer and wire is denoted by Clb and Clw, respectively. The nominal delay is d and the

subscript "0" denotes the partial derivative with nominal parameters. The set of parameters

affected by process variations is denoted by �P . Each parameter is modeled by a random

variable. For instance, if the variation of channel length of three buffers is considered, �P is

{Lb,1,Lb,2,Lb,3}. The variation of a parameter Δp consists of WID and D2D variations,

Δp =ΔpWID +ΔpD2D, (5.15)

where ΔpD2D is consistent among buffers (interconnects) within the same die, while ΔpWID

varies among the components within the same die [92]. The partial derivatives in (5.14) are

determined by

∂d

∂p
= ∂db

∂tr

∂tr

∂p
+ ∂db

∂Clb

∂Clb

∂p
+ ∂db

∂p

+ ∂dI

∂Clw

∂Clw

∂p
+ ∂dI

∂p
. (5.16)
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(a) (b)

Figure 5.14: Change of the delay and output transition time with (a) effective channel length
and (b) threshold voltage.

The partial derivatives in (5.16) are determined by the expressions of db and dI. The expression

of db(tr,�P ,Clb) can be obtained through analytic formulas [103] or adjoint sensitivity analysis

with SPICE-based simulations. To achieve higher accuracy, SPICE-based sensitivity analysis is

used in this dissertation. For instance, considering a PTM 32 nm CMOS model [41], for a rising

input, the change of db and the output transition time tr,out withΔLeff and the threshold voltage

ΔVth is shown in Fig. 5.14. For horizontal wires, the expression of dI(�P ,Clw) is determined by

the RLC interconnect model proposed in [113, 171].

The variations introduced by TSVs have been discussed in [172, 173], where the TSV stress-

induced delay variation of buffers is well modeled. In the following sections, the keep-out-zone

of TSVs is assumed to be large enough ( ≤ 10μm [67, 172]) to mitigate the effect of TSV stress.

Consequently, TSVs are modeled as RLC wires with different electrical characteristics from

the horizontal interconnects. The effect of the variation of TSVs on the skitter is discussed in

Section 5.3.3.

Delay variation simultaneously considering process variations and power supply noise

Similar to the transistor parameters affected by process variations, supply voltage can be

treated as an additional random variable in (5.14). The first step is to correctly model supply

noise v(t ), as introduced in Section 4.4. The non-recursive expression of supply noise is used

in Section 5.2. To improve the accuracy of the skitter model, the recursive expression is used

in the extended model.

Assuming a clock edge arrives at the source of a clock path at time zero, t j is the time when

this clock edge arrives at buffer j . The supply noise to buffer j at time t j can be expressed as

v(t j ). As aforementioned, to investigate the effect of worst supply noise on clock distribution

networks, (4.18) can be approximated by an undamped sinusoidal waveform [94],

v(t j ) ≈Vn sin(2π fnt j +φ), (5.17)
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t j =
j−1∑
i=1

di . (5.18)

According to (5.14), di , t j , and v(t j ) are all random variables. Since Δt j is low as compared

with t j , v(t j ) can also be approximated by the first order Taylor expansion,

v(t j ) = v(t j )+Δv(t j ) ≈ v(t j )+ ∂v(t j )

∂t j

∣∣∣
0
Δt j , (5.19)

Δv(t j ) ≈ 2πVn fn cos(2π fnt j +φ)
j−1∑
i=1

Δdi . (5.20)

In 3-D ICs, different resonant supply noise among tiers is discussed in Section 4.3. Based on

the electrical characteristics of different PDNs, Vn, fn, and φ can differ among tiers. Within

each tier, the corresponding Vn, fn, and φ are used in (5.19) to describe the supply noise at

different time instances.

According to (5.14), the delay variation Δd is also affected by the input slew Δtr , which is

determined by the previous buffer stage. Considering the effect of Δv and Δtr on Δd , the

delay variation of the j th buffer stage can be modeled as

Δd j ≈
∑

p∈�P j

(
∂d j

∂p

∣∣∣
0
Δp

)
+ ∂d j

∂v

∣∣∣
0
Δv(t j )+ ∂d j

∂tr

∣∣∣
0
Δtr j . (5.21)

The set of statistical parameters of the j th buffer stage is denoted by �P j , which is a subset of

the entire parameter set, �P j ⊆ �P . The input slew of the j th buffer stage Δtr j can be determined

similar to (5.21),

Δtrj ≈
∑

p∈�P j

(
∂tr j

∂p

∣∣∣
0
Δp

)
+ ∂tr j

∂v

∣∣∣
0
Δv(t j−1)+ ∂tr j

∂tr j−1

∣∣∣
0
Δtr j−1. (5.22)

Substituting (5.20) and (5.22) into (5.21), Δd j can be recursively determined considering both

process variations and power supply noise. The coefficients in (5.21) and (5.22) are obtained

through adjoint sensitivity analysis as previously mentioned. The resulting expression (5.21)

is used to determine skitter in the following subsection.

5.3.2 Modeling setup and hold skitter

For a pair of clock paths in 3-D ICs, the definition of the clock skew, period jitter, and skitter

are redrawn in Fig. 5.15 to better follow the discussion in the remainder of the chapter. The

clock signal is fed into the 3-D clock tree from the primary clock driver. Two flip-flops are

driven by this clock signal, denoted as FF1 and FF2, respectively. The numbers of buffers from

the clock input to FF1 and FF2 are denoted by n1 +n2 and n3 +n4, respectively.
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Figure 5.15: Clock uncertainty between 3-D clock paths. Two paths and flip-flops are illustrated
in (a). The corresponding clock signals are shown in (b).

The waveforms clk1 and clk2 in Fig. 5.15(b) correspond to the clock signal driving FF1 and

FF2, respectively. The time where the first rising edge in Fig. 5.15(b) arrives at the clock input is

defined as the origin. The time when this edge arrives at FF1 and FF2 is, respectively, denoted

by t1 and t2. The arrival time of the next rising edge at FF1 and FF2 is t ′1 and t ′2, respectively.

The skew between the first edge of clk1 and clk2 is S1,2. The measured clock periods after

the first edge for FF1 and FF2 are T1 and T2, respectively. The ideal clock period is Tclk. The

corresponding period jitters are J1 = T1 −Tclk and J2 = T2 −Tclk.

The effect of skitter on setup time slack

Assuming the data is transferred from FF1 to FF2 within one clock cycle, T1,2 is the time interval

that affects the highest clock frequency of the circuit. The setup time requirement needs to be

satisfied for the system to work correctly [18]. The setup time slack sl acksetup is defined as

sl acksetup = T1,2 −max(D1,2)− tsetup, (5.23)

T1,2 = (t2 − t1)+T2 = S1,2 + J2 +Tclk, (5.24)
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where max(D1,2) denotes the longest data transfer time from FF1 to FF2. The setup time for

FF2 is tsetup, specified in the cell library. Consequently, the variation of sl acksetup is affected

by the variation of T1,2, called "setup skitter" J1,2, which is similar to the skitter defined in the

previous section,

J1,2 = S1,2 + J2 = t ′2 − t1 −Tclk. (5.25)

To avoid setup time violations, sl acksetup ≥ 0 is required in any operating condition. This

requirement means that sufficient T1,2 should be provided for data transfer. For this purpose,

as shown in (5.24), Tclk should be large enough to compensate the worst J1,2. Consequently,

clock skew and period jitter should be simultaneously modeled to determine the minimum

Tclk (the highest clock frequency) of a circuit.

According to (5.18) and (5.25), skitter J1,2 is the linear combination of the delay of buffer stages,

J1,2 =
n3+n4∑

k=1
d ′

2,k −
n1+n2∑

k=1
d1,k , (5.26)

J 1,2 =
n3+n4∑

k=1
d ′

2,k −
n1+n2∑

k=1
d 1,k , (5.27)

ΔJ1,2 =
n3+n4∑

k=1
Δd ′

2,k −
n1+n2∑

k=1
Δd1,k ≈ ∑

p∈�P

(
∂J1,2

∂p

∣∣∣
0
Δp

)
, (5.28)

where d ′
2,k is the delay of the kth buffer stage along the path to FF2 for the second clock edge.

The mean skitter J 1,2 is determined by the nominal delay of all the buffer stages considering

the nominal voltage supply noise (without process variations). Substituting (5.21) into (5.28),

the partial derivatives ∂J1,2

∂p |0 are obtained. Consequently, skitter J1,2 is approximated by the

first order Taylor expansion.

Assuming all the parameters are described by Gaussian distributions, ΔJ1,2 can also be ap-

proximated by a Gaussian distribution,

ΔJ1,2 ∼N (0,σ2
J1,2

), (5.29)

σ2
J1,2

= ∑
p∈�P

(
∂J1,2

∂p

∣∣∣2

0
σ2

p

)
+2

∑
p,q∈�P

(
∂J1,2

∂p

∣∣∣
0

∂J1,2

∂q

∣∣∣
0

cov(p, q)

)
, (5.30)

where cov(p, q) denotes the covariance between two parameters. Assuming D2D variations

are independent from WID variations [86,88], σ2
p =σ2

p(D2D)+σ2
p(WID). The covariance between

two parameters is determined according to the tiers where these parameters are located and

the spatial correlation between these parameters,

cov(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if p, q are of different type or

belong to different tiers,

cov(p, q)WID +σp(D2D)σq(D2D),otherwise,

(5.31)
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where the WID covariance cov(p, q)WID is determined by the spatial correlation between

parameters p and q within the same tier. Statistically, the devices (wires) close to each other

have higher correlation than those far from each other. This spatial correlation can be obtained

from fabricated wafers [174] or through a spatial correlation model [86, 139].

As shown in (5.30) and (5.31), the variance of setup skitter σ2
J1,2

highly depends on the co-

variance between process-induced parameters. In 2-D ICs, the change of cov(p, q) is mainly

determined by cov(p, q)WID, since the parameters of the same type are affected by the same

D2D variations. Therefore, the distribution of clock paths only affects σ2
J1,2

by changing the

WID covariance. In 3-D circuits, however, D2D variations vary among tiers and WID covari-

ance among tiers is zero. Consequently, the distribution of clock paths will affect the skitter

variation in a more complicated way.

The effect of skitter on hold time slack

In addition to the setup time slack, hold time slack also significantly affects the design of ICs.

Hold time violations can also cause the failure of the entire system [18]. Moreover, this type of

failure cannot be removed by lowering the clock frequency of the system. As illustrated in Fig.

5.15(b), the hold time slack is modeled as

sl ackhold = min(D1,2)−S1,2 − thold, (5.32)

where the hold time requirement thold is also specified in the cell library. The "hold skitter"

affecting sl ackhold is determined by S1,2, which is the skew between clk1 and clk2. Note that

S1,2 is affected by both process variations and power supply noise.

To correctly latch the data in FF2, sl ackhold ≥ 0 is required to avoid hold time violations in any

operating condition. From Fig. 5.15(b), S1,2 can be determined as

S1,2 = t2 − t1 =
n3+n4∑

k=1
d2,k −

n1+n2∑
k=1

d1,k

≈
n3+n4∑

k=1
d 2,k −

n1+n2∑
k=1

d 1,k +
∑

p∈�P

(
∂S1,2

∂p

∣∣∣
0
Δp

)
. (5.33)

Similarly to (5.29) and (5.30), the distribution of ΔS1,2 can be modeled as

ΔS1,2 ∼N (0,σ2
S1,2

), (5.34)

σ2
S1,2

= ∑
p∈�P

(
∂S1,2

∂p

∣∣∣2

0
σ2

p

)
+

2
∑

p,q∈�P

(
∂S1,2

∂p

∣∣∣
0

∂S1,2

∂q

∣∣∣
0

cov(p, q)

)
, (5.35)
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Table 5.4: Variations of Devices, Horizontal Wires, and TSVs

Parameters Nominal 3σ (D2D) 3σ (WID)

Channel length [nm] 32 1.5 2.5
Threshold voltage [mV] 242 24.2 24.2
Wire width [nm] 225 22.5 11.3
Wire height [nm] 388 19.4 9.7
ILD thickness [nm] 252 18.9 9.5
TSV resistance [mΩ] 133 39.9 39.9
TSV capacitance [fF] 52 15.6 15.6

where the partial derivatives are obtained similar to the coefficients in (5.28). As shown

through (5.14) to (5.35), both the setup and hold time violations are simultaneously affected

by the process variations and power supply noise. Similar to the 2-D circuits shown in Section

5.2.3, it is also necessary to model process variations and power supply noise at the same time

for 3-D ICs to accurately capture the clock uncertainty. The accuracy of the proposed model is

verified for different lengths of clock paths in the following subsection. In 3-D ICs, in addition

to different process variations among tiers, power supply noise can also differ from tier to tier,

as discussed in Section 4.3. Consequently, setup and hold skitters under different scenarios of

power supply noise in 3-D ICs are investigated in Sections 5.3.4 to 5.3.6.

5.3.3 Skitter vs. length of clock paths

The paths of a 3-D clock tree with different lengths are simulated. The electrical parameters of

the transistors are based on a 32 nm PTM model [41]. The parameters of the interconnects

are based on an Intel 32 nm interconnect technology [94]. The parameters of TSVs are based

on data from [68]. Both the horizontal wires and TSVs are modeled by π segments in SPICE-

based simulations. The proposed model is implemented in Matlab. All the simulations are

performed in a Scientific Linux server (Intel Xeon 2.67 GHz, 24 Gb memory).

The variations considered in the simulations are listed in Table 5.4. The D2D and WID ΔLb

are extracted based on ITRS data [43]. The wire variations and ΔVth are based on [86]. The

variations of TSVs are based on [173]. Note that other sources of variations can also be

described by the proposed modeling approach. For example, the TSV stress-induced delay

variation in [172] can be included. In this case, the distribution of dB in (5.14) is adapted based

on the distance between the buffer and TSVs and the given expression of stress-induced buffer

delay.

In the simulations, the length of clock paths ranges from 0.5 mm to 12.5 mm within 2- and

3-tier circuits. Buffers are inserted to produce a 10% Tclk input slew for the next stage. To

emphasize the relation between skitter and the length of clock paths, all tiers are assumed to

experience similar supply noise (Vn = 90 mV, fn = 400 MHz,φ= 270◦ [94]). Each pair of paths

is averagely distributed across different tiers, as shown in Fig. 5.15(a). The resulting μJ1,2 and
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Figure 5.16: Skitter vs. length of 3-D clock paths.

Table 5.5: Effect of TSV Variations on Skitter

Length [mm] 0.5 2.5 7.5 12.5

σJ1,2 (0 ΔTSV) [ps] 4.40 10.03 14.14 15.95
σJ1,2 (5% ΔTSV) [ps] 4.35 10.36 13.50 16.78
σJ1,2 (15% ΔTSV) [ps] 4.95 10.96 13.93 17.00

σJ1,2 are illustrated in Fig. 5.16, where the suffixes "2" and "3" denote the results for 2- and

3-tier circuits, respectively.

The data from SPICE-based Monte-Carlo simulations and the proposed model (labeled with

the (m)) are both depicted in Fig. 5.16. As shown in this figure, both μJ1,2 and σJ1,2 deteriorate

with the length of clock paths. This behavior can be described by the proposed model with a

reasonable accuracy. The error of the proposed model is below 11% for μJ1,2 and 12% for σJ1,2 ,

respectively. Not surprisingly, long clock paths introduce high skitter in 3-D clock trees.

Observation 5.1. Both the mean and standard deviation of skitter increase with the length of

clock paths.

The effect of TSV variations in the 3-tier clock paths is reported in Table 5.5. The skitter is

listed for no TSV variation, 5% TSV variation (σ/μ= 5%), and 15% TSV variation, respectively.

The difference in σJ1,2 among these three cases is around 1 ps for all the clock paths. This

situation shows that TSV variations are a second-order effect, consistent with the results

reported in [173].

5.3.4 Skitter vs. Vn in different tiers

3-D PDNs with different amplitudes of power supply noise among tiers are investigated in this

subsection. Due to the different switching current in power supply networks and the vertical

resistance of P/G TSVs among tiers, the devices in different tiers can be subjected to different
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5.3. Extending the Skitter Model to 3-D Clock Distribution Networks

Figure 5.17: Skitter for Vn1 = 90 mV and different Vn2.

ΔVn, as shown in Figs. 4.8 and 4.9. The tier closer to the P/G pads experiences lower supply

noise [34].

The clock paths spanning two tiers with 20 buffers (n1 +n2 = n3 +n4 = 20, see Fig. 5.3(a)) are

taken as an example. The clock source is located in Tier 2. The total length of each path is

5 mm. The initial phase φ (270◦) and frequency fn (400 MHz) are assumed to be the same

for both tiers. Two distributions of clock paths are discussed: (A) n1 = n2 = n3 = n4 = 10 and

(B) n1 = n3 = 15,n2 = n4 = 5. Distribution (A) denotes the equally-divided 3-D clock paths.

Distribution (B) represents placing the longest segment of clock paths in Tier 2. To depict

the accuracy of the model, the simulation results of the setup skitter J1,2 for Vn1 = 90 mV

and different Vn2 are shown in Fig. 5.17. As shown in this figure, μJ1,2 changes significantly

with Vn2, while σJ1,2 does not vary a lot with Vn2. This behavior is accurately described by the

proposed model. The change of setup and hold skitter with both Vn2 and Vn1 is discussed in

the following paragraphs.

Setup skitter J1,2 vs. Vn

The change of J1,2 with (Vn2, Vn1) is illustrated in Fig. 5.18. As shown in Figs. 5.18(a) and

5.18(b), for distribution (A), μJ1,2 increases significantly with both Vn2 and Vn1, since higher

supply noise introduces greater period jitter. The clock paths of (A) are equally distributed

among tiers. As a result, μJ1,2 is affected by Vn1 and Vn2 in the same way. For distribution

(B), however, the situation is different. As shown in Figs. 5.18(c) and 5.18(d), μJ1,2 is mainly

determined by Vn2, since the longest segment of the clock paths in (B) is placed in Tier 2.
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Figure 5.18: Setup skitter vs. (Vn2, Vn1), where (a) and (b) are the 3-D plot and contour for μJA

for distribution (A), respectively. (c) and (d) are the 3-D plot and contour for μJB for distribution
(B), respectively. (e) and (f) are the contours of σJA and σJB , respectively.
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Observation 5.2. For unequally-distributed clock paths, the mean skitter is mainly determined

by the tier where the longest part of the clock paths is placed.

As shown in Figs. 5.18(b) and 5.18(d), assuming Vn1 = 0.09 mV, distribution (A) produces higher

μJ1,2 than (B) for different Vn2. This difference in μJ1,2 increases with ΔVn (ΔVn = Vn1 −Vn2),

from 1% to 42% of μJ A . The reason is that the majority of buffers in (B) is located in Tier 2,

which is more susceptible to Vn2. More generally, given Vn1 >Vn2, the mean skitter of (B) is

always lower than (A).

Consequently, the distribution of clock paths in 3-D ICs significantly affects the mean skitter

due to the different Vn among tiers. However, in 2-D circuits, this mean skitter does not

vary significantly with the distribution of clock paths due to the common effect of the global

resonant noise at low frequencies [118].

The standard deviation σJ1,2 of (A) and (B) is illustrated in Figs. 5.18(e) and 5.18(f), respectively.

Similar to μJ1,2 , σJ1,2 also increases with Vn1 and Vn2. Nevertheless, ΔσJ1,2 is relatively low as

compared with ΔμJ1,2 .

Hold skitter S1,2 vs. Vn

The mean value of S1,2 is relatively low (≤ 0.5 ps), since the two clock paths have the same

number, size, and distribution of buffers. Nevertheless, σS1,2 is non-negligible for both distri-

butions (A) and (B), as illustrated in Figs. 5.19(a) and 5.19(b), respectively. Similar to σJ1,2 , σS1,2

increases with Vn1 and Vn2 but ΔσS1,2 is lower than 1.5 ps.
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Figure 5.19: Hold skitter vs. (Vn2, Vn1), where (a) and (b) are the contours for σSA and σSB ,
respectively.

Observation 5.3. The standard deviation of the setup and hold skitter increases slightly with

the amplitude of resonant supply noise.
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5.3.5 The effect of φ on skitter

The skitter under the power supply noise with different φ is investigated in this subsection. As

shown in Fig. 4.7, the initial phase φ of the supply noise is similar among tiers (φ1 =φ2). The

change of J1,2 and S1,2 with φ is illustrated in Fig. 5.20, where Vn1 = 0.09 V and Vn2 = 0.07 V.

(a)

(b) (c)

Figure 5.20: Skitter vs. different φ (φ1 = φ2), where (a) is the change of μJ1,2 . (b) and (c) are the
change of σJ1,2 and σS1,2 , respectively.

Setup skitter J1,2 vs. φ

As shown in Figs. 5.20(a) and 5.20(b), the difference in φ results in significant change not only

in μJ1,2 , but also in σJ1,2 . For instance, the highest σJ1,2 is 41% higher than the lowest one for

Distribution (A) in Fig. 5.20(b). The worst μJ1,2 occurs when φ1 and φ2 are both around 270◦,

similar to the conclusion for 2-D ICs in [94]. The worst σJ1,2 , however, occurs when φ≈ 225◦.
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Therefore, if the initial phase is not 270◦, the skitter can be still high due to the high σJ1,2 . The

difference in σJ1,2 is low between distributions (A) and (B) since in both cases, the two clock

paths are symmetrically distributed among tiers.

Hold skitter S1,2 vs. φn

The effect of φ1 and φ2 on S1,2 is shown in Fig. 5.20(c). Due to the similarity between the two

clock paths, the resulting μS1,2 is relatively low. The standard deviation, however, is significantly

affected by φ. As illustrated in Figs. 5.20(b) and 5.20(c), the change of σS1,2 is similar to σJ1,2 .

Observation 5.4. For the setup and hold skitter, σ changes considerably with the phase of the

power supply noise. The highest σ and μ of skitter do not happen at the same initial phase of

the supply noise.

Considering the clock paths and waveforms shown in Fig. 5.15, φ is determined by the time

when the first clock edge arrives at the input of clock paths. The worst σ can be obtained by

traversing all the possible φ. Due to the excessive time required by Monte-Carlo simulations,

the proposed model is highly efficient to determine the worst skitter and the corresponding φ

for multi-tier circuits, as compared with Monte-Carlo simulations.

The effect of phase-shifting of the supply noise on skitter

Several techniques, such as RC filtered buffers and “stacked” phase-shifted buffers [29], have

been proposed to shift the φ seen by the clock paths. In 3-D clock distribution networks, these

techniques can be applied to a part of the clock paths in a different tier to adapt Δφ among

tiers. The change of σJ1,2 versus the shifted (φ1,φ2) for distribution (A) is shown in Figs. 5.21(a)

and 5.21(b). As shown in Fig. 5.21(b), the dashed line depicts the σJ1,2 for φ1 = φ2, which

denotes the skitter without phase-shifting. As shown by the arrow, the highest σJ1,2 decreases

with Δφ=φ2−φ1. In this case, since φ2 and φ1 are not simultaneously equal to 270◦, the worst

μJ1,2 is also decreased.

In Fig. 5.21(c), however, σJ1,2 of distribution (B) highly depends on φ2. This behavior is due to

that σJ1,2 is dominated by the supply noise in the second tier. In this case, shifting φ among

tiers provides less than 1.5 ps decrease in σJ1,2 , as shown by the dashed line with arrows.

Observation 5.5. For equally distributed clock paths across 3-D ICs, the worst skitter can be

decreased by properly shifting φ among tiers with phase-shifted clock distribution.

Note that the proper Δφ should be determined by traversing all the combinations of φ in

different tiers. The number of combinations increases exponentially with the number of tiers,

which implies a large number of simulations. Again, the proposed model provides a highly

efficient way to determine a valid shift in φ for multi-tier circuits to decrease skitter.
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Figure 5.21: Skitter J1,2 vs. shifted φ1 and φ2, where (a) and (b) are the 3-D plot and contour
map of σJ1,2 vs. (φ2, φ1) for distribution (A), respectively. (c) is the contour map of σJ1,2 for
distribution (B).
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5.3.6 The effect of fn on skitter

The effect of the frequency of power supply noise on skitter is investigated in this subsection.

This frequency is usually considered similar among tiers [34], as shown in Figs. 4.8(b) and

4.9(c). Different fn are investigated, herein, to demonstrate the change of skitter with the

frequency of supply noise. The amplitude Vn and phase φ are assumed to be the same among

tiers, where Vn1 = Vn2 = 90 mV and φ1 = φ2 = 270◦. The simulation results are illustrated in

Fig. 5.22.

(a)

(b)

Figure 5.22: Skitter vs. fn. The change of J1,2 and S1,2 are illustrated in (a) and (b), respectively.

Similar to the effect of Vn, fn greatly affects μJ1,2 . For instance, μJ1,2 increases with fn up to

70% for distribution (B). The variation of skitter, however, decreases with fn. The resulting

ΔσJ1,2 and ΔσS1,2 are up to 15% for both distributions (A) and (B). This behavior is due to the

decreased voltage seen by the clock buffers during the clock propagation. The change of μd

and σd for the delay of two inverters (a clock buffer) in series is illustrated in Fig. 5.23(a). Both

μd and σd decrease with Vdd. As shown in Fig. 5.23(b), assume that the clock edge seeing the
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worst σJ arrives at the input of the clock path at t0. When fn increases from fn1 to fn2, the

propagation time of this edge decreases from t1 to t2 and the supply voltage within this time

interval increases. This higher supply voltage introduces lower σ in the buffer delay, which

causes lower σJ (1,2) and σS(1,2) according to (5.30) and (5.35).

(a)

t0 t2 t1
fn2

fn1

fn1 < fn2
Vdd0

(b)

Figure 5.23: The effect of the change of fn on delay variation, where (a) is the mean and
standard deviation of buffer delay vs. Vdd. (b) is the supply voltage to a clock path during the
propagation of a clock edge.

Observation 5.6. The mean setup skitter increases significantly with the frequency of power

supply noise, while both σJ1,2 and σS1,2 decrease with this frequency.

As shown in Figs. 5.16 - 5.22, the proposed statistical model for skitter exhibits reasonably

high accuracy as compared with SPICE-based simulations. For the worst-case μJ1,2 (σJ1,2 ) in

Figs. 5.16 - 5.22, the error is -11% (-12%), -7% (-10%), -8% (-4%), and -10% (-9%), respectively.

The behavior of skitter under different scenarios of supply noise can correctly be described by

the proposed model. Since σJ1,2 varies with power supply noise, process variations and power

supply noise need to be simultaneously modeled to correctly describe clock uncertainty.

140



5.4. Methodologies for Skitter Mitigation in 3-D ICs

The difference in mean skitter varies up to 60% due to the different Vn among tiers. σJ1,2 can

vary up to 41% due to different φ (see Figs. 5.20(b) and 5.20(c)). Decreasing the variation as

well as the mean skitter helps to improve the robustness of 3-D clock distribution networks.

5.4 Methodologies for Skitter Mitigation in 3-D ICs

Potential methods for skitter mitigation in 3-D ICs are discussed in this section. The effect

of the number and size of clock buffers on skitter is investigated in the following subsection.

The tradeoff between skitter and power consumption is discussed in Section 5.4.2. Based

on the simulation results and the previous propositions, a set of design guidelines for skitter

mitigation is proposed in Section 5.4.3.

5.4.1 Skitter for different buffer insertion

The change of skitter with the size and numbers of clock buffers inserted along the clock paths

is discussed in this subsection. A pair of clock paths with a length of 5 mm are simulated.

These paths are both equally distributed across two tiers, where Vn1 = 0.09 V and Vn2 = 0.08 V.

The skitter is determined by Monte-Carlo simulations in the remainder of this section.

The worst μJ1,2 (φ= 270◦) for different numbers and size of buffers is shown in Fig. 5.24(a). The

σJ1,2 from Monte-Carlo simulations for different buffer solutions is illustrated in Fig. 5.24(b).

As shown in this figure, both the mean and standard deviation of J1,2 increase with the number

of buffers. For hold skitter, the change of σS1,2 is highly similar to σJ1,2 .

Considering the Gaussian distribution of J1,2 in (5.29), J1,2 falls in the range [μJ1,2 −3σJ1,2 ,μJ1,2 +
3σJ1,2 ] with a probability of 99.7%. Within this range, max(J1,2) is used to indicate the worst

(maximum) skitter. For improved readability, the absolute value of max(J1,2) is shown, where

max(J1,2) = |μJ1,2 |+3σJ1,2 . The relation between max(J1,2) and the transition time at the clock

sinks for different buffer insertion is illustrated in Fig. 5.25.

As shown in Fig. 5.25, for the same max(J1,2), the clock paths with fewer buffers produce

a considerably longer transition time. For the clock paths with 14 buffers, the shaded area

contains the inferior buffer solutions, which can be replaced by smaller buffers with the same

skitter but lower transition time. For instance, the buffer solution B1 can be replaced by the

iso-skitter point B2 with a lower rise time. In the unshaded area, both the transition time

and skitter decrease with the buffer size Wn in region R1. In R2, however, larger Wn decreases

skitter with an increase in transition time.
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(a)

(b)

(c)

Figure 5.24: Skitter for different buffer insertion, where the mean of J1,2 is illustrated in (a) and
σJ1,2 and σS1,2 are shown in (b) and (c), respectively.
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Figure 5.25: Transition time vs. max(J1,2) for different buffer insertion.

5.4.2 Tradeoffs between skitter and power consumption

The power consumed by the clock distribution networks constitutes a significant portion of

the total power consumed by a circuit [18, 169]. The power consumption of the clock network

under different constraints on skitter is investigated in this subsection.

For the investigated clock paths, the total power consumption under different constraints on

max(J1,2) and max(S1,2) is illustrated in Fig. 5.26. The shaded area depicts the inferior buffer

solutions. Point A denotes the lowest skitter that can be obtained. In the unshaded area, skitter

decreases as the buffer size and power increase. For the same constraint in skitter, the clock

paths with fewer buffers are more power-efficient.

For the clock paths with 14 buffers, as the constraint becomes lower than 68 ps, significant

power overhead is shown. For example, to decrease the max(J1,2) from 68 ps to 58 ps (15%

improvement), the buffers are sized up from 4 μm to 10 μm. The resulting power consump-

tion increases from 6.9 mW to 14.4 mW (109% increase). In conclusion, pursuing extreme

constraints on clock skitter results in high overhead in power.

Observation 5.7. Skitter can be decreased by sizing up clock buffers at the expense of power

consumption.

5.4.3 Guidelines to mitigate skitter

Based on Observations 5.1 to 5.7 presented in the previous sections, a set of guidelines is

provided to support the design of robust 3-D clock distribution networks. The objective of

these guidelines is to decrease skitter in 3-D ICs.
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(a)

(b)

Figure 5.26: Tradeoff between power and timing. Power vs. max(J1,2) and max(S1,2) are
illustrated in (a) and (b), respectively.

Guideline 5.1. Given the freedom to choose among tiers for the clock paths in a 3-D circuit, the

mean skitter can be decreased by placing most of the clock path length in those tiers that exhibit

the lowest supply noise.

Guideline 5.2. For 3-D clock paths equally distributed among tiers, the worst-case μJ1,2 and

σJ1,2 can be decreased by shifting φ among different tiers.

Guideline 5.3. By decreasing the frequency of resonant supply noise, mean skitter can be

decreased by trading off the standard deviation of skitter.

Guideline 5.4. Reducing the number of buffers along the clock path can decrease the skitter at

the expense of input slew.
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Guideline 5.5. By properly sizing up the clock buffers, a tradeoff between skitter and power

consumption can be exploited.

5.5 Case Study of 3-D Clock Trees

To illustrate the role of these guidelines, several examples of synthesized 3-D clock trees are

simulated and analyzed in this section. The 3-D circuits are generated from IBM clock network

benchmarks [175] by randomly distributing the clock sinks to different tiers [173]. The 3-D

clock trees are synthesized with a 3D MMM+DME algorithm based on [20]. This algorithm

is briefly introduced in the following subsection. The skitter in the synthesized clock trees

is discussed in Section 5.5.2. Clock buffers are inserted under a specified constraint in the

capacitive load to limit the input transition time. Meanwhile, the buffer insertion should be

optimized to produce a short clock delay. A fast buffer insertion algorithm for 3-D clock trees

is presented in Section 5.6.

5.5.1 3-D clock tree synthesis

The objective of clock tree synthesis is to determine the topology and routing of a clock tree to

propagate the clock signal from the source to all the sinks of this tree. The buffers are inserted

to satisfy specifications on clock skew and slew rate under constraints on the area and power

consumed by these buffers [18, 176, 177]. In 3-D ICs, since the stacked tiers can separately

be fabricated, pre-bond testing issues can arise, where different parts of a clock tree need

to be separately tested. In addition, the number of TSVs used in a 3-D clock tree needs to

be constrained both to save area and to increase yield [20]. The clock tree should also be

designed to tolerate the failure of a certain number of TSVs such that the yield and robustness

are improved.

Several clock tree synthesis algorithms have been proposed for 3-D clock trees. These algo-

rithms focus on different optimization objectives. Low power clock tree synthesis algorithms

considering pre-bond testing problems are proposed in [83, 84]. A TSV-fault-tolerant algo-

rithm is proposed in [85]. A low power synthesis algorithm minimizing the number of TSVs

is proposed in [20]. A synthesis algorithm considering temperature variations is proposed

in [82]. The 3D MMM+DME algorithm proposed in [20] is implemented in this chapter to

generate 3-D clock trees. Note that the proposed model of skitter is applicable to different

types of synthesized 3-D clock trees.

The 3D MMM+DME algorithm consists of two phases. In the first phase, the topology of the

clock tree is determined by the 3D-MMM algorithm under a specified limit on the number of

TSVs. In the second phase, based on the topology from the first phase, the abstract clock tree

is traversed twice to determine the location of each internal node, the routing path, and the

location of TSVs and clock buffers.
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1. In the first phase, the 3D-MMM algorithm based on the classical MMM algorithm [177]

is used. An abstract binary clock tree is generated top-down. The connection among

clock sinks and the topology of the clock tree are determined. The exact locations of

the internal nodes, TSVs, and clock paths, however, are not determined. The basic idea

is to recursively bipartite a given set of clock sinks. When the limit on the number of

TSVs for the current set of sinks is higher than one, this set is bipartited according to

the horizontal distance among sinks. Otherwise, this set is bipartited based on the tiers

where these sinks are located.

2. In the second phase, the 3D-DME algorithm based on the traditional DME algorithm

[78] is used. According to the tree topology from the first phase, the location of the

internal nodes, TSVs, and clock buffers is determined. The routing of clock paths is

also determined. 3D-DME also consists of two stages. In the first stage, the clock tree

is traversed from sinks towards the tree root (clock source). The parent node p of two

nodes (children) i and j should be placed such that the skew between the two subtrees

(rooted from i and j , respectively) is zero. The possible positions for p are denoted by a

merging segment, as illustrated by msp in Fig. 5.27. Clock buffers are inserted to satisfy

the constraint on the capacitive load and zero-skew. In the second stage of 3D-DME,

the clock tree is traversed top-down again. The exact location of each internal node

along the corresponding merging segment is determined to minimize the length of clock

paths, as denoted by p along msp in Fig. 5.27. The clock tree synthesis is accomplished

after all the clock sinks are reached.

msp

i

j

p

(a)

i

j
msp p

TSV

(b)

Figure 5.27: An example of merging two nodes in 3D-DME algorithm, where (a) and (b) are
the top and 3-D views of a 3-D circuit, respectively.

The 3-D clock trees generated from the 3D MMM+DME algorithm achieve near-zero clock

skew and satisfy the constraint on the number of TSVs. In the following subsection, clock trees
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Table 5.6: 3-D ICs Based on IBM Clock Benchmarks

# sinks # buffers area [mm2] ts [h] tm [s] speedup

r3 862 2128 9.8×9.6 1.8 45 142×
r4 1903 4695 12.7×12.7 1.9 53 129×
r5 3101 7496 14.5×14.3 2.4 56 154×

for different benchmarks and different numbers of tiers are simulated. The skitter of these 3-D

clock trees is investigated.

5.5.2 Skitter in synthesized 3-D clock trees

The effect of the design guidelines proposed in Section 5.4.3 is illustrated in this subsection

by taking Guideline 5.1 as an example. Several clock benchmarks have been simulated. The

buffers are inserted with a constraint of 50 fF in the capacitive load. Each clock buffer is

formed by an inverter (Wn = 4.83μm and Wp = 2.1Wn ). An example of the resulting 3-tier

clock trees for "r1" benchmark (267 sinks) is illustrated in Fig. 5.28(a). The clock source, clock

sinks, and TSVs are denoted by �, ×, and •, respectively. The clock networks in tiers 1, 2, and 3

are denoted in blue, red, and green, respectively.

The skitter is measured within two different regions, as illustrated in Fig. 5.28(b). For both

regions A1 and A2, the skitter is reported between the pair of the farthest sinks. The three

largest IBM benchmarks r3, r4, and r5 are simulated. SPICE simulations are performed for the

paths of interest with 2000 Monte-Carlo simulations. The features of these benchmarks are

shown in Table 5.6, where the CPU time is also listed. Note that the simulation time is only for

the selected clock paths, not for the entire clock tree. The initial phase and the frequency of

the supply noise are assumed to be the same among the three tiers ( fn1 = fn2 = fn3 = 400 MHz).

The amplitudes Vn are assumed to differ among tiers (Vn1 = 0.09 V, Vn2 = 0.08 V, Vn3 = 0.065 V).

The skitter is reported in Table 5.7. As mentioned before, the mean hold skitter is close to zero.

Consequently, only the mean setup skitter is reported. The highest mean skitter is obtained

when φ1 =φ2 =φ3 = 270◦ and the highest σ is reported for φ1 =φ2 =φ3 = 200◦. Four design

practices are compared with each other.

• Case 1 (C1), the majority of the clock tree is located in Tier 1, which is adjacent to the

heat sink. Most of the clock buffers are placed to this tier to constrain the increase in the

temperature of the circuit. The power supply noise and process variations are separately

considered for μJ1,2 and σJ1,2 , respectively.

• Case 2 (C2), the majority of the clock tree is also located in Tier 1, but the power supply

noise and process variations are simultaneously modeled.
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Figure 5.28: A synthesized 3-D clock tree with the majority of clock buffers in the first (a) and
third tier (c). The regions where the skitter is measured are illustrated in (b).
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5.5. Case Study of 3-D Clock Trees

• Case 3 (C3), the majority of the clock tree is placed in the middle tier (Tier 2) to decrease

the number of TSVs and power consumption, as proposed in [20].

• Case 4 (C4), based on Guideline 5.1, the majority of the clock tree is located in Tier 3

(with the lowest Vn) as illustrated in Fig. 5.28(c).
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5.6. Fast Buffer Insertion for 3-D Trees

As shown in Table 5.7, μJ1,2 in Case 1 is similar to Case 2. Nevertheless, σJ1,2 and σS1,2 are

significantly underestimated in Case 1, for both regions A1 and A2. As compared to Case 2, the

difference in σJ1,2 and σS1,2 is up to 36%. This difference shows the necessity of simultaneously

modeling process variations and power supply noise.

Observation 5.8. Separately modeling process variations and power supply noise significantly

underestimates the variation of skitter.

The difference between the proposed model and SPICE-based Monte-Carlo simulations is

listed in the Error column of Table 5.7. For all σJ1,2 and σS1,2 , the error of the proposed model

is below 10% as compared to Monte-Carlo simulations. The error in μ is below 7% for J1,2.

Considering the greater than 129× speedup in CPU time as reported in Table 5.6, the proposed

model provides an efficient way to accurately model skitter.

In Case 2, the majority of the CDN is placed in the tier adjacent to the heat sink. In Case 3,

the majority of the CDN is placed in the middle tier to reduce the number of TSVs and power

consumption [20]. The number of TSVs and the power consumption of the entire tree for

Cases 2 to 4 are illustrated in Fig. 5.29. The results are normalized over Case 4. As proposed

in [20], Case 3 produces the fewest TSVs (see “#TSV(C2/C4)” and “#TSV(C3/C4)”). The total

power is similar among the three cases due to the similar number of clock buffers, as shown

by “Power (C2/C4)" and “Power (C3/C4)”. The distribution of this power, however, differs due

to the different distribution of buffers among tiers.

Case 4 mitigates the mean skitter trading off the number of TSVs and the power distribution.

As illustrated in Figs. 4.8(a) and 4.9(a), the tier next to the package has the lowest Vn. Con-

sequently, μJ1,2 of Case 4 is significantly improved over Cases 2 and 3, as shown by the first

three rows of Impr1 and Impr2, respectively. This improvement ranges from 16% up to 31%.

This comparison shows the efficiency of Guideline 1 in decreasing mean skitter. For several

paths, however, σJ1,2 and σS1,2 in Case 4 increase over Cases 2 and 3. This situation is due to the

change of the topology of the clock trees. For instance, for the pair of paths in A2 and circuit r5,

the number of buffers after the merging point of these paths increases as compared to Case 2.

These buffers are located in different tiers. Consequently, σJ1,2 and σS1,2 both increase.

5.6 Fast Buffer Insertion for 3-D Trees

Although 3-D ICs are expected to greatly reduce the wire length as compared to planar circuits,

methods to further improve the interconnect delay are required. This situation is due to the

length of the global interconnects, the high fanout of the interconnect trees, and possibly the

high capacitance of the vertical interconnects [70, 71] that determine the overall performance

of a 3-D circuit.

Many buffer insertion algorithms have been proposed for 2-D interconnects. The optimal

number and size of the buffers to achieve the minimum interconnect delay for a distributed RC
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Figure 5.29: Normalized number of TSVs and power for Cases 2 to 4.

interconnect are described in [39], [178]. A uniform buffer design methodology for efficiently

driving RC tree structures is presented in [40]. All of these methods are based on uniform buffer

insertion, which utilizes the same size of buffers with the same interval within one segment

(branch). Nevertheless, applying the uniform buffer insertion techniques for 2-D interconnects

to 3-D trees traversing multiple tiers does not result in the minimum interconnect delay. In a 3-

D system, each physical tier can be fabricated with a different process or technology node. This

situation results in diverse interconnect impedance characteristics and buffer libraries among

the tiers of a 3-D circuit. In addition, the various manufacturing technologies for the vertical

interconnects (e.g ., through silicon via (TSV)) affect the delay of the intertier interconnects

[7, 179]. All of these factors complicate the buffer insertion task for 3-D interconnects. An

optimal non-uniform buffer insertion algorithm is proposed in [180–182]. The required CPU

time, however, is at least O(n2), where n is the number of nodes within a clock tree.

Few buffer planning algorithms for 3-D circuits have been presented in [183], [184], where

the size and number of the buffers required by 3-D interconnects are considered known.

Nevertheless, there is no method to provide the size and number of the buffers, which are

required by multi-tier interconnect trees considering the disparate impedance characteristics

of interconnects and dissimilar buffer libraries. The contribution of the proposed algorithm is

twofold.

• The number, size, and location of the buffers required for 3-D interconnect trees are

determined. The proposed method extends over traditional uniform buffer insertion

techniques to consider the inherent heterogeneity of 3-D circuits.

• The proposed technique achieves improvement up to 25% in the timing performance of

3-D trees over conventional uniform buffer insertions used for 2-D circuits. The time

complexity of the approach is linear to the number of nodes of a 3-D tree.
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5.6.1 Uniform buffer insertion

The uniform buffer insertion problem for a 3-D interconnect tree is formulated as follows. A

3-D interconnect tree with buffers is illustrated in Fig. 5.30. Rso is the resistance of the driver.

Csi nki is the capacitive load of sink i of the tree.

The nodes of the tree in Fig. 5.30 are labeled from N1 to N9 by pre-order depth-first traversal

(i .e., the tree is traversed depth-first and the parent node is labeled before all of the child

nodes). The nodes of a 3-D tree include the source, roots of the subtrees, and the sinks of the

tree. For this specific example, the roots of the subtrees are the TSVs at nodes N2, N3, and N7

and the root of the subtree at node N6. A branch Bi (e.g ., B1) of the tree is a two-terminal 2-D

wire segment that ends at Ni+1 (e.g ., N2), as illustrated in Fig. 5.30. There are n −1 branches

in a 3-D tree, where n is the number of nodes of this tree.

Figure 5.30: A 3-D interconnect tree with buffers.

The maximum wire delay of a 3-D tree, tmax is the maximum delay of each path from the

source (root) of the tree to any sink of the tree (path delay). The total wire delay of a 3-D tree,

ttot al is the sum of all the path delays. The delay of a path consists of the delay of the branches

and TSVs. The delay of a TSV is modeled as a fixed wire segment delay where buffers cannot

be inserted. The buffer insertion problem for a 3-D tree is to determine the number, size, and

location of the buffers required along Bi (1 ≤ i ≤ n −1), which minimizes tmax and ttot al .

5.6.2 Delay model of 3-D interconnects for buffer insertion

The delay model of a two-terminal 2-D net with uniform buffers and the method to determine

the number, size, and location of the buffers for a point-to-point 2-D net is first presented.

Following this method, the delay model of 3-D trees is presented. The vertical interconnect

technology considered in this section is based on the MIT Lincoln Labs 3-D integration

process [70], [185]. The diameter and length of TSVs are 1.75 μm and 11 μm, respectively. The

resistance and capacitance of TSVs are 170 mΩ and 2 fF, respectively.
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Delay model of a two-terminal 2-D net

The delay model of a point-to-point 2-D net i is illustrated in Fig. 5.31. xi is the distance

between the source and the first buffer of net i . yi is the distance between the last buffer

and the sink of net i . ki is the number of buffers inserted in net i . Uniform buffer insertion

achieves minimum delay for a two-terminal net in a single tier [178]. The size of the buffers is

denoted by hi , which is the multiple of the minimum buffer size that can be used in the tier

that includes net i .

ii xc
ii xr

il

ibi hR /

biiCh

ii yc
ii yr

ibi hR / ibi hR /

biiCh biiCh

ibi hR /

biiCh

Figure 5.31: The electrical model of a 2-D net with buffers.

As shown in this figure, Ri n_i is the output resistance of the driver of net i . CL_i is the ca-

pacitance of the load of net i . Rbi and Cbi are the output resistance and input capacitance,

respectively, of the smallest buffer used in the tier that contains net i . ri and ci are the in-

terconnect resistance and capacitance per length, respectively, in this tier. For net i where

ki (ki ≥ 2) buffers with size hi are inserted, the resulting delay of net i using the distributed

Elmore delay model [111] is

tnet_i = txi + tbu f f er _chai n + tyi

=Rbi Cbi (ki −1)+ (li −xi − yi )2ri ci

2(ki −1)
+ Rbi (CL_i + (li −xi )ci )

hi
+

Cbi (Ri n_i + (li − yi )ri )hi +Ri n_i ci xi +
x2

i ri ci

2
+ y2

i ri ci

2
+ yi ri CL_i .

(5.36)

The physical constraints for the variables hi , ki , xi , and yi , respectively, are

hi ≥ 1; ki ≥ 2; 0 ≤ xi ≤ li ; 0 ≤ yi ≤ li ; 0 ≤ xi + yi ≤ li . (5.37)

To provide a closed form expression that minimizes (5.36) is a rather formidable task [178].

Expressions of ki , xi , and yi are provided by [182] where the size of the inserted buffers is

considered fixed. Alternatively, an efficient method to determine (ki , hi , xi , yi ) is proposed

in this section, where hi is not considered fixed. Let ∂tnet_i

∂hi
= 0 and ∂tnet_i

∂ki
= 0, (ki ,hi ) can be
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written as a function of (xi , yi ),

ki = (li −xi − yi )

√
ri ci

2Rb_i Cbi

+1, (5.38)

hi =
√

Rbi (CL_i + (li −xi )ci )

Cbi (Ri n_i + (li − yi )ri )
. (5.39)

By replacing (5.38) and (5.39) in (5.36) and since xi and yi are constrained according to

(5.37), the minimum wire delay tnet_i and a feasible solution (xi , yi ) can be determined with

numerical methods. If there is only one buffer inserted along the net, applies that ki = 1,

yi = l − xi , and tnet_i = txi + tl−xi . The location and size of the single buffer is also provided

through (5.36) and (5.39).

Delay model of a 3-D tree

For a 3-D tree denoted as Tr with n nodes, let r t denote the root of Tr . The delay of branch

Bi connecting N j and Ni+1 is modeled as a 2-D net. Expression (5.36) is properly adapted to

describe the delay of Bi . Consequently, the expression for Ri n_i includes the resistance of the

TSV, the section y j−1 and the output resistance of the last buffer inserted in B j−1. CL_i includes

the capacitance of the TSV and the sum of the input capacitance of the child branches of Bi ,

Ri n_i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rso , if N j = r t ,
Rb( j−1)

h j−1
+ r j−1 y j−1 +Rt sv , if N j is a TSV,

Rb( j−1)

h j−1
+ r j−1 y j−1, otherwise.

(5.40)

CL_i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Csi nkz , if Ni+1 is the sink z of Tr ,

Ce f f _(i+1) +Ct sv , if N j is a TSV,

Ce f f _(i+1), otherwise.

(5.41)

Ce f f _(i+1) =
∑

Be∈DSi+1

Ci n_e , (5.42)

Ci n_e = ce xe +Cbe he . (5.43)

Ce f f _(i+1) is the effective capacitive load at Ni+1. Ci n_e is the input capacitance of branch Be ,

which is the sum of the capacitance of wire section xe and the input capacitance of the first

buffer in branch Be . DSi+1 is the set of all of the downstream branches starting from Ni+1.

In Fig. 5.30, Ce f f _2 = Ci n_2 +Ci n_5. Due to (5.40)-(5.43), the buffers inserted in one branch

considerably affect the number and size of buffers required in other branches. For a 3-D tree as

in Fig. 5.30, the total delay of the tree and the maximum sink delay of the tree are, respectively,

ttot al =
∑

p∈PT
(

∑
Bi∈p

(tnet_i −Ri n_i Ci n_i )+RsoCi n_1), (5.44)

tmax = max
p∈PT

∑
Bi∈p

(tnet_i −Ri n_i Ci n_i )+RsoCi n_1, (5.45)
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where PT is the set of the paths of the tree, and Ri n_i depends on 1/h as shown in (5.40).

Choosing variables x, y , h, and k to globally minimize (5.44) requires computationally ex-

pensive optimization techniques, since (5.44) is essentially a multi-variable non-polynomial

function. A global optimization technique for 2-D trees is proposed in [40]. In 3-D circuits,

due to the TSVs and the disparate characteristics of buffers and interconnects in different

physical tiers, this optimization method is not applicable. Alternatively, a heuristic approach

is proposed to minimize the delay of each branch iteratively resulting in a near-optimal buffer

insertion in 3-D interconnect trees. This novel approach completes the buffer insertion in

O(n) time, where n is the number of nodes of the tree. Note that the effect of inserting buffers

in adjacent branches on the delay of the investigated branch is considered in (5.36) through

(5.38)-(5.43).

5.6.3 Iterative buffer insertion algorithm

The proposed algorithm determines a near-optimal solution S = {si |1 ≤ i ≤ n −1} for minimiz-

ing ttot al and tmax by iteratively optimizing the delay of each branch based on (5.36). The

solution for each branch Bi is denoted by si = (ki ,hi , xi , yi ). The pseudo-code of the Iterative

Repeater Insertion Algorithm for 3-D ICs (IRI-3D) is illustrated in Algorithms 5.1 and 5.2. The

proposed algorithm comprising two phases is described in the following subsections.

Algorithm 5.1 Pseudo-code of IRI-3D.

Input: A 3-D tree Tr with n nodes.
Output: ttot al , tmax , {(hi ,ki , xi , yi )|1 ≤ i ≤ n}.

� first phase
1: bui ldTr ee(Tr );
2: r t ← root of Tr ;
3: uptRC (r t );
4: optBr anch(r t );
5: [ttot al , tmax ] = uptDel ay(r t );

� second phase
6: while Δttot al > t ar g et_r ati o do
7: uptRC (r t );
8: optBr anch(r t );
9: [t ′tot al , t ′max ] = uptDel ay(r t );

10: Δttot al ← (ttot al − t ′tot al )/(ttot al );
11: ttot al ← t ′tot al ;
12: end while

Initial allocation of buffers

In the first phase, an initial placement of buffers for a 3-D tree with n nodes is obtained. The

minimum delay of each branch is successively determined from Bn−1 to B1, assuming that a

minimum size buffer is inserted exactly before the start node of each branch (except for the
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Algorithm 5.2 Pseudo-code of optBr anch(nd).

Input: A node Ni in tree Tr .
� Bi−1 is the branch before Ni

1: for all child nodes chd of Ni do
2: optBr anch(chd)
3: end for
4: uptRC (Ni );
5: if Ni �= r t then
6: if number of iterations ≤ 1 then
7: Bi−1.(k,h, x, y) ← calc1(Bi−1);
8: else
9: Bi−1.(k,h, x, y) ← calc2(Bi−1);

10: end if
11: end if

root of the tree), as illustrated in Fig. 5.32. By considering a buffer in the previous branch, the

effect of the TSVs and the different libraries of buffers used in different tiers are considered.

Figure 5.32: A minimum size buffer exactly before the starting node is assumed. CL_i is
determined by (5.41).

The algorithm commences from the root of the tree and the tree is traversed depth-first by

recursively invoking the procedure optBranch(). The nodes and branches in the tree are

labeled as described in Section 5.6.1. Bi is processed only after every child branch of Bi has

been processed. The corresponding si is determined by the procedure calc1() based on

(5.36)-(5.41).

In the procedure uptRC(nd), the capacitive load seen at node nd and the resistance of the

driver of the child nodes are updated by (5.40)-(5.43). If nd is the root of the tree, Ri n and CL

of all the nodes in the tree are updated. The delay t 0
tot al of the tree is determined after all the

branches have been processed, where the superscript indicates the number of iterations. At

the end of the first phase where S0 is obtained, the resistance of the driver and capacitive load

{(Ri n_i ,CL_i )|1 ≤ i ≤ n −1} for each branch are updated.
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Refinement of the buffer allocation

The second phase starts with the updated set {(Ri n_i ,CL_i )|1 ≤ i ≤ n −1} obtained during the

first phase. The tree is traversed similar to the first phase, where a new S is obtained. The Ri n_i

used for each branch is updated by considering the effect of the location and size of the last

buffer inserted at the preceding branch (determined during the first phase) as compared to

the initial assumption that a minimum size buffer is placed right before the starting node.

The buffers inserted in Bi described by si = (ki ,hi , xi , yi ) affect the total delay of the tree.

To capture the dependency between any si and ttot al , the terms of ttot al that include the

variables of si are described by

tter m_i = qi tnet_i + (q j −qi )Ri n_i Ci n_i . (5.46)

qi and q j denote the number of the paths containing Bi and B j , respectively, where B j is

the preceding branch of Bi . The expressions for hi and ki are accordingly modified. This

expression is used in calc2() to evaluate the effect of si on ttot al .

During the first phase the assumption of a minimum size buffer at the start node of each

investigated branch results in particularly high Ri n_i . Consequently, the contribution of the

Ri n_i Ci n_i to ttot al as described by the second term of (5.46) is excessive and rather artificial.

Therefore, (5.36) is used instead since the assumption of a minimum size buffer is adopted to

provide a rough initial solution for the first phase.

The ttot al determined at each iteration of the second phase is smaller or at least no greater

than the previously determined delay. The following proposition supports this statement.

Theorem 5.1. Given the initial delay of a 3-D tree t 0
tot al resulting from s0 obtained during the

first phase and the delay t 1
tot al resulting from S1 determined by the first iteration of the second

phase, t 1
tot al ≤ t 0

tot al .

Proof. Theorem 5.1 is proved by induction.

1. After the first phase a solution s0
i for each branch Bi (1 ≤ i ≤ n −1) has been determined

where the superscript indicates the number of iteration. For Bi , s0
i is determined based

on C 0
L_i and the assumption of placing a minimum size buffer in B j−1, as depicted by

the buffer drawn with the dashed line in Fig. 5.33(a). At the first iteration, denote the

total delay of the tree in Fig. 5.33(a) as t 1
i ′ , where i ′ indicates that s1

i for Bi has not been

determined. The solutions at iteration one for all the branches in the subtree rooted at

Ni+1 have been determined since the child nodes of Bi are processed first. The solution

for the branch B j−1 preceding Bi , however, is that of the previous iteration s0
j−1, as

illustrated in Fig. 5.33(a). Consequently, when (5.46) is evaluated during iteration one,

s0
i does not provide the minimum delay from the last buffer (depicted by the solid line)

in B j−1 to Ni+1. This behavior is due to the R0
i n_i updated at the end of the first phase
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Figure 5.33: Iterative procedure to insert buffers along a branch Bi . (a) An initial solution for
branch Bi and (b) refinement of the solution.

(according to s0
j−1) and C 1

L_i (according to the new solution for the child branches of Bi ).

2. Branch Bi (1 ≤ i ≤ n − 1) is now processed. The allocation of the buffers in Bi after

iteration one is depicted in Fig. 5.33(b). ttot al of the 3-D tree in Fig. 5.33(b) is now

t 1
i (= t 1

( j−1)′). The contribution of Bi to t 1
i and t 1

i ′ is described by (5.46). Since s1
i is

determined by minimizing (5.46) for R0
i n_i and C 1

L_i through (5.38)-(5.43), applies that

t 1
i ≤ t 1

i ′ . Since Bi+1 is processed before Bi and t 1
i ′ = t 1

i+1, implies that t 1
i ≤ t 1

i+1.

3. For branch Bn−1, which is the first branch processed in iteration one, C 1
L_n−1 =Csi nk1.

Similar to the above, t 1
(n−1) ≤ t 1

(n−1)′ = t 0
tot al .

Consequently, applies that t 1
tot al = t 1

1 ≤ t 1
n−1 ≤ t 0

tot al .

After the first iteration, S1 and t 1
tot al are obtained, along with a new set {(R1

i n_i ,C 1
L_i )|1 ≤ i ≤

n −1}. Since h1
j−1 and y1

j−1 can be different from h0
j−1 and y0

j−1, R1
i n_i also differs from R0

i n_i .

The solution s1
i for Bi , however, is determined based on R0

i n_i . Consequently, the total wire

delay is further decreased by refining the solution for Bi based on R1
i n_i . Based on S1 and

{(R1
i n_i ,C 1

L_i )|1 ≤ i ≤ n}, the second iteration commences. According to Theorem 5.1, t 2
tot al ≤

t 1
tot al . As illustrated in line 6 of Algorithm 5.1, when Δt is smaller than the t ar g et_r ati o, the

algorithm terminates. The t ar g et_r ati o is considered to be user-specified.
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Figure 5.34: Application of a conventional buffer insertion method [39], [40] in a 3-D tree.

Considering a 3-D tree consisting of n nodes, the time used to minimize (5.36) and (5.46) is

O(1). The time used by uptRC () is O(n) for each iteration. The time consumed in lines 3 and 4

in Algorithm 5.1 is O(n). The time consumed in lines 6-12 in Algorithm 5.1 is O(mn), where m

is the number of iterations. The simulation results show that for a typical 3-D tree, m is quite

small. Consequently, the complexity of the proposed algorithm is practically O(n).

5.6.4 Simulation results

IRI-3D is applied to several randomly generated 3-D interconnect trees and related results are

presented in this section. To investigate the effectiveness of the proposed algorithm, IRI-3D is

compared with a widely used technique for 2-D interconnects [39], [40].

This approach assumes that the buffers are equally spaced in each branch of the tree [39]. If

more than one buffer is required in branch Bi , there is a buffer inserted right after the start

node and before the end node of this branch, respectively, as illustrated in Fig. 5.34. With

this assumption, each segment is effectively treated as a 2-D interconnect. The delay of the

segments is decoupled and buffers are individually inserted in each segment based on the

methods described in [39], [171]. In [39], applies that {xi = 0, yi = 0|1 ≤ i ≤ n−1}. The optimum

number ki and size hi of the buffers are directly determined by (5.38) and (5.39).

Both the IRI-3D and the conventional approach are applied to 3-D trees with different length

spanning several physical tiers varying from three to six tiers. The ASU predictive technology

model (PTM) [41] is used to extract the parameters of the interconnect and the buffers for the

130 nm, 90 nm, and 65 nm technology nodes. The length of the longest path ranges from 0.8

mm to 17.16 mm. The output resistance of the source is Rso = 800 Ω. Csi nk ranges from 1 fF

to 2.5 fF. The resistance per length r ranges from 170 Ω/mm to 450 Ω/mm for intermediate

interconnects and from 30 Ω/mm to 40 Ω/mm for global interconnects. The capacitance per

length c ranges from 190 fF/mm to 250 fF/mm. The output resistance of the minimum size

buffer on different tiers ranges from 800 Ω to 1100 Ω. The input capacitance of the minimum

size buffer varies from 0.9 fF to 1.5 fF.
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Table 5.8: Delay of 3-D interconnect trees after buffers are inserted.

# tiers # sinks
ttot al tmax Impr(k)

Impr11 Impr2 Impr1 Impr2

2 3 86.52% 10.32% 85.87% 9.95% 34.31%
3 4 91.20% 10.54% 90.10% 10.63% 28.59%
3 7 97.47% 15.57% 97.22% 15.99% 24.92%
4 4 97.01% 17.94% 96.42% 19.46% 22.49%
4 9 98.13% 16.71% 97.77% 17.65% 23.52%
4 13 98.55% 16.69% 98.31% 16.95% 23.93%
5 4 97.34% 19.05% 96.71% 20.52% 20.91%
5 8 98.27% 17.86% 97.83% 19.33% 21.59%
5 16 98.85% 17.35% 98.59% 18.18% 22.29%
6 4 97.35% 22.89% 96.71% 24.75% 24.46%
6 8 98.28% 21.48% 97.79% 23.67% 25.38%
6 16 98.87% 20.56% 98.57% 22.46% 25.98%
6 32 99.27% 20.38% 99.10% 21.42% 26.51%

Average 96.70% 17.49% 96.23% 18.54% 24.99%
1 For each case, 500 trees are simulated. Impr1 is the average improvement

of IRI-3D over the trees without buffers. Impr2 is the average improve-
ment of IRI-3D over the conventional method. Impr(k) is the reduction
in k of IRI-3D as compared to the conventional method.

3-D trees consisting of intermediate and global interconnects are investigated. The average

improvement in ttot al and tmax before and after inserting buffers by employing the two

methods are listed in Table 5.8. As listed in Table 5.8, after buffer insertion, both ttot al and

tmax are significantly decreased, demonstrating a more than 90% improvement. As reported

by Impr 1, the improvement in delay increases with the number of sinks of the trees, the

number of tiers, and the length of the longest path. This situation is due to the increase in the

capacitive load of 3-D trees without buffers. Although 3-D ICs reduce the interconnect length,

the total capacitance of the tree remains considerable.

IRI-3D achieves significant improvement over the approach for 2-D trees. The additional

decrease in delay ranges from 10% to 23% in ttot al and from 10% to 25% in tmax . The improve-

ment in ttot al increases with the number of tiers that the tree spans and the path length.

The variation of improvement in ttot al with the number of iterations is reported in Table 5.9.

The improvement decreases fast with the number of iterations. Beyond the second iteration,

the improvement in delay is negligible. The number of iterations is fewer than four in all of

the simulation results.

The number of buffers inserted in 3-D trees by IRI-3D is smaller than that of the conventional

method as reported in the last column of Table 5.8. According to (5.38), fewer buffers are

required by IRI-3D by properly adjusting xi and yi for each branch. The size of these buffers

is typically large wasting silicon area. This area overhead is mitigated by permitting a small
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Table 5.9: The improvement in total delay vs. number of iterations.

# Iteration 2 tiers 3 tiers 4 tiers 5 tiers 6 tiers

1 89.76% 95.03% 95.56% 97.24% 98.29%
2 7.66% 16.30% 19.35% 22.51% 24.96%
3 0.01% 1.07% 1.91% 2.07% 3.76%
4 0.00% 0.01% 0.18% 0.43% 0.55%

Table 5.10: The improvement in delay and area under diverse area constraints.

# tiers # sinks
Impr (Acon ≤ A2−D )1 Impr (Acon ≤ 1.2A2−D ) Impr (no constraint)

ttot al tmax area2 ttot al tmax area ttot al tmax area

2 3 7.9% 7.6% 27.3% 9.2% 9.0% 18.3% 10.3% 10.0% -2.5%
3 4 6.8% 6.2% 22.7% 8.5% 8.1% 11.0% 10.5% 10.6% -20.2%
3 7 7.8% 8.3% 20.3% 10.4% 11.1% 5.9% 15.6% 16.0% -91.7%
4 4 9.5% 10.1% 19.8% 12.3% 13.4% 5.3% 17.9% 19.5% -100.5%
4 9 8.3% 8.7% 20.1% 11.0% 11.7% 5.1% 16.7% 17.7% -97.0%
4 13 8.1% 8.2% 20.1% 10.9% 11.2% 4.9% 16.7% 17.0% -95.3%
5 4 9.8% 10.3% 18.5% 12.9% 13.8% 3.4% 19.1% 20.5% -109.9%
5 8 8.9% 9.4% 18.6% 11.9% 12.8% 3.2% 17.9% 19.3% -105.9%
5 16 8.3% 8.4% 18.8% 11.3% 11.8% 3.3% 17.4% 18.2% -101.3%
6 4 12.0% 13.0% 21.8% 15.4% 16.8% 7.2% 22.9% 24.8% -122.4%
6 8 11.1% 12.2% 22.1% 14.3% 15.9% 7.2% 21.5% 23.7% -116.1%
6 16 10.5% 11.3% 22.2% 13.6% 14.9% 7.3% 20.6% 22.5% -114.1%
6 32 10.3% 10.6% 22.2% 13.4% 14.1% 7.2% 20.4% 21.4% -111.1%

Average 9.2% 9.6% 21.2% 11.9% 12.7% 6.9% 17.5% 18.5% -91.4%
1 For each case, 500 trees are simulated. Impr is the improvement of IRI-3D over the conventional

method.
2 Area =∑n−1

i=1 ki hi , where n −1 is the number of branches of a tree.

penalty in the delay improvement achieved by IRI-3D. Consequently, an area constraint is

applied to IRI-3D, causing a deviation from the optimal hi but with important benefits in

area. This area constraint, denoted as Acon , is added to IRI-3D such that while determining si

for each branch Bi through (5.46), the maximum
∑

hi ki does not exceed Acon . The average

improvement in delay and area under different area constraints is reported in Table 5.10.

In Table 5.10, setting Acon ≤ A2−D means that the resulting buffer area Acon cannot be larger

than the area of the buffers resulting by the conventional method for 2-D interconnects

denoted as A2−D . As listed in columns three to five, both delay and area improvements

are achieved. The area constraint can be employed in IRI-3D trading off area for greater

delay improvement. This improvement, however, comes with a significant area overhead.

By relaxing the area constraint by 20% (i .e., Acon ≤ 1.2A2−D ) an additional delay decrease of

about 3% is produced while the required area is about 7% smaller than A2−D . Removing the

area constraint yields an additional 6% yet the area penalty exacerbates.

Limiting the area occupied by the inserted buffers is particularly important, since silicon area

is also used for the TSVs that go through the substrate. In addition, the power dissipated by
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the buffers is implicitly limited; an important issue for 3-D circuits where thermal effects are

expected to be more pronounced [7].

5.7 Summary

The combined effect of process variations and power supply noise on the timing uncertainty

of clock distribution networks is investigated in this chapter. Skitter consisting of clock skew

and jitter is used to describe the clock uncertainty. The contributions of this chapter include:

• Statistical models of skitter are developed for both 2-D and 3-D clock trees. Simulation

results show that separately modeling process variations and power supply noise will sig-

nificantly underestimate the variation of clock uncertainty. This behavior demonstrates

the necessity to simultaneously model process variations and power supply noise.

• The effect of the number and size of buffers on skitter is investigated. For the same

paths, using fewer buffers produces lower skitter.

• Skitter in different scenarios of power supply noise in 3-D ICs are discussed. Skitter is

shown to be significantly affected by the different amplitudes, frequencies, and initial

phases of supply noise among tiers.

• A 3-D clock tree synthesis algorithm is implemented to analyze skitter in different clock

trees based on industrial benchmarks.

• A fast buffer insertion algorithm for 3-D trees is proposed to decrease the total and

maximum delay of interconnect trees.

Based on the analysis and simulation results, a set of design guidelines have been proposed to

facilitate the design of robust clock trees:

• Using fewer buffers decreases skitter at the expense of input slew. Properly sizing up

buffers help to decrease skitter by trading off power consumption.

• Recombining clock paths and increasing supply voltage both help to decrease skitter at

the expense of power.

• Given the freedom to choose among tiers, for the clock paths in a 3-D circuit, the mean

skitter can be decreased by placing most of the clock path length in those tiers that

exhibit the lowest supply noise.

• For 3-D clock paths equally distributed among tiers, the worst-case skitter can be

decreased by shifting the phase of supply noise among different tiers.

• By decreasing the frequency of resonant supply noise, the mean skitter can be decreased

by trading off the standard deviation of skitter.
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6 Heat Transfer Model of Thermal TSVs

Thermal issues are one of the primary challenges in 3-D integrated circuits. Thermal through-

silicon vias (TTSVs) are considered as an effective means to reduce the temperature of 3-D ICs.

The effect of the physical and technological parameters of TTSVs on the heat transfer process

within 3-D ICs is investigated in this chapter.

Thermal issues in 3-D ICs are discussed in Section 6.1. The structure of TTSVs is introduced

in Section 6.2. Two resistive networks are utilized to model the thermal behavior of TTSVs in

Section 6.3. Based on these models, closed-form expressions are provided describing the flow

of heat through TTSVs within a 3-D IC. The accuracy of these models is compared with the

results from a commercial FEM tool. The effect of the physical parameters of TTSVs on the

resulting temperature is described through the proposed models in Section 6.4. For exam-

ple, the temperature changes non-monotonically with the thickness of the silicon substrate.

This behavior is not described by traditional single thermal resistance models. In Section

6.4.5, the new models are used for the thermal analysis of a 3-D DRAM-μP system where the

conventional model is shown to considerably overestimate the temperature of the system.

6.1 Thermal Issues in 3-D ICs

As introduced in Section 2.3, thermal issues become increasingly important as technology

scales and the density of circuits increases. The resulting increase in temperature leads to

non-negligible increase and variations in the timing and power of circuits. In 3-D integrated

circuits, thermal issues are forecast to be a major challenge. This situation is due to the high

power density, the low thermal conductivity along the primary heat transfer path, and the

smaller footprint area of the circuit attached to the heat sink [186–188].

For instance, the different layers of materials included in a typical volumetric circuit are

illustrated in Fig. 6.1. The substrates and device layers are typically made of silicon. The inter

layer dielectric (ILD) is assumed being SiO2 and metal interconnects (i .e., BEOL) are assumed

made of copper. The bonding layer adhering adjacent tiers is made of polyimide. The thermal
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Figure 6.1: A typical 3-D circuit with different layers.

Table 6.1: The thermal conductivity of different materials used in 3-D ICs

silicon SiO2 copper polyimide
Thermal conductivity [W/(m*K)] 163 1.4 400 0.15

conductivity of the different materials is listed in Table 6.1. As listed in this table, the thermal

conductivity of the ILD and bonding layer is relatively low, which hinders heat transfer and

introduces large difference in temperature among tiers, as illustrated in Fig. 6.1. Assuming the

temperature of the heat sink can be maintained at 80◦C, the resulting maximum temperature

in a 3-D circuit with different numbers of tiers is illustrated in Fig. 6.2. As shown in this figure,

even if the heat sink can be maintained at a temperature of 80◦C, the maximum temperature

increases dramatically with the number of tiers. For a circuit with two tiers, the maximum

temperature is already over 100◦C. Consequently, improving the transfer of heat to decrease

the temperature is necessary for 3-D ICs.

Several techniques have been developed to facilitate the heat transfer within 3-D circuits

to reduce the temperature, such as thermal through-silicon via (TTSV) planning [127, 189],

thermal wire insertion, liquid cooling, and thermal-driven floorplanning [7, 188]. TTSVs are

vertical vias used only to convey heat. Using thermal vias to facilitate the transfer of heat

has been traditionally utilized in the design of packages and printed circuit boards [123].

Several papers have demonstrated that TTSVs can alleviate the thermal problem in 3-D

circuits [127, 189]. Analyzing how the TTSVs affect the developed temperature in 3-D ICs
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Figure 6.2: The maximum temperature of a 3-D circuit vs. the number of tiers.

is important for efficient TTSVs insertion. The thermal properties of TTSVs, in turn, are

determined by several physical and technological parameters.

6.2 Application and Structure of Thermal TSVs

3-D ICs utilizing wafer bonding technology are considered in this chapter [7]. A segment of

a typical three-plane 3-D circuit with a single TTSV is illustrated in Fig. 6.3. The physical

structure is illustrated in Fig. 6.3(a). The cross section of the circuit and the temperature

distribution from COMSOL Multiphysics is illustrated in Fig. 6.3(b). Although for different

fabrication technologies the materials and geometries of the circuit can vary, the underlying

structure remains the same.

As labeled in Fig. 6.3(a), each plane of the circuit consists of three layers describing the

silicon substrate (Si), the inter layer dielectric (ILD) and metal interconnects (i .e., BEOL),

and the bonding layer, respectively. The heat sources include the power generated by the

active devices on the top surface of the Si substrates and the Joule heat generated by the

interconnects surrounded by the ILD. The cross section of Fig. 6.3(a) and the temperature

distribution is illustrated in Fig. 6.3(b). Different paths of the flow of heat are depicted with

the dashed lines in Fig. 6.3(b).

The traditional analytic approach is to thermally model a TTSV as a vertical lumped thermal

resistor in each physical plane, which is proportional to the length and inversely proportional

to the diameter of the TTSV [123, 186, 190, 191]. A TTSV is considered as a one-dimensional

(1-D) network implying a flow of heat only in the vertical direction towards the heat sink

of the system. This method is shown to be insufficient in capturing the thermal behavior

of the TTSVs since the lateral heat transfer through these structures is neglected. Compact

thermal models can capture the heat transfer in all directions by representing a circuit with a

set of nodes connected with thermal resistors [192, 193]. Alternatively, a highly accurate and
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Interconnects (ILD)

Substrate (Si3)

Substrate (Si2)

Substrate (Si1)

Bond

Bond

A0

Interconnects (ILD)

Interconnects (ILD)

(a) (b)

Figure 6.3: A segment of a three-plane 3-D IC with a TTSV, where (a) is the geometric structure
and (b) is the cross section. The footprint area of the circuit is denoted by A0. Three paths of
heat transfer are depicted with the dashed lines.

common mesh-based method to analyze the thermal behavior of a system including TTSVs

is the finite element method (FEM). Nevertheless, neither the compact models nor the FEM

approaches offer a useful link between the heat transfer process and the physical parameters

of the TTSVs.

6.3 Analytical Heat Transfer Model for Thermal TSVs

To accurately describe and offer insight about the thermal properties of these structures,

novel analytical thermal models for the TTSVs are presented in this section. These models

include the most important physical and technological parameters related to TTSVs, such as

the thickness of the insulator liner and the thickness of silicon layers.

A thermal TSV is modeled as a compact resistive network rather than a single resistor. The

accuracy of the resulting models is verified by the COMSOL Multiphysics tool [194]. The effect

of the parameters related to TTSVs on temperature reduction is discussed through simulations

in [195, 196]. There is, however, no analytical method to describe and quantify these effects.

The traditional thermal model of a TTSV only considers the vertical transfer of heat through

TTSVs. Consequently, a single thermal resistance is assumed to suffice. Alternatively, the

compact models consider heat conveyed in all directions for full-circuit analysis [192]. Im-
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proved steady-state analytical models integrating the advantages of these two approaches are

presented in the following subsections.

6.3.1 Lumped heat transfer model for TTSVs

The proposed lumped thermal resistance network (Model A) describing the thermal conductiv-

ity of TTSVs is illustrated in Fig. 6.4. Due to the similarity between heat transfer and electrical

current flow [192], the heat sources are modeled as current sources (q1 - q3 in Fig. 6.4) and the

temperature is analogous to the voltage at a node. In Fig. 6.4, T0 - T5 are used to denote the

difference between the temperature in different planes and the temperature at the bottom of

the first plane, which is adjacent to the heat sink and is considered as a reference temperature.

A voltage source and/or another resistor can be included to describe the ambient temperature

and/or the thermal resistance of the package. These elements, however, are not required for

modeling the thermal behavior of the TTSVs (but rather for the temperature rise within a 3-D

IC). In the proposed model, a TTSV is considered as a stack of TSVs through all the planes, as

depicted in Fig. 6.4. Based on Kirchhoff’s Current Law (KCL),

q3 = T5 −T3

R7
+ T5 −T4

R8 +R9
, (6.1)

q2 + T5 −T3

R7
= T3 −T4

R6
+ T3 −T1

R4
, (6.2)

T3 −T4

R6
+ T5 −T4

R8 +R9
= T4 −T2

R5
, (6.3)

q1 + T3 −T1

R4
= T1 −T2

R3
+ T1 −T0

R1
, (6.4)

T1 −T2

R3
+ T4 −T2

R5
= T2 −T0

R2
, (6.5)

T0 = Rs

3∑
i=1

qi . (6.6)

The resistances R2, R5, and R8 are the thermal resistances of the filling material (e.g ., copper)

of the TTSV. The resistances R3, R6, and R9 denote the lateral thermal resistances of the

insulator liner (e.g ., SiO2) of the TTSV. The resistances R1, R4, and R7 denote the thermal

resistances of the surroundings of the TTSV (see Fig. 6.3(a)) for each of the three physical

planes. The thermal resistance of the silicon substrate of the first plane is denoted by Rs due

to the considerably different thickness of the substrate. These thermal resistances based on

the physical parameters of the TTSVs are determined by

R1 = 1

k1 A
(

tD

kD
+ lext

kSi
), (6.7)

R2 = tD + lext

k1kfπr 2 , (6.8)
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Figure 6.4: Thermal model of a TTSV in a three-plane circuit (Model A).

R3 =
tL∫

0

1

2πkL(tD + lext)(r +x)
d x = ln(r + tL)− lnr

2πk2kL(tD + lext)
, (6.9)

R4 = 1

k1 A
(

tD

kD
+ tSi2

kSi
+ tb

kb
), (6.10)

R5 =
tD + tSi2 + tb

k1kfπr 2 , (6.11)

R6 = ln(r + tL)− lnr

2πk2kL(tD + tSi2 + tb)
, (6.12)

R7 = 1

k1 A
(

tD

kD
+ tSi3

kSi
+ tb

kb
), (6.13)

R8 =
tSi3 + tb

k1kfπr 2 , (6.14)

R9 = ln(r + tL)− lnr

2πk2kL(tSi3 + tb)
, (6.15)

Rs =
tSi1 − lext

k1kSi A0
, (6.16)
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A = A0 −π(r + tL)2. (6.17)

The footprint area of the investigated structure is denoted by A0, as shown in Fig. 6.3(a). The

geometric parameters related to TTSVs are illustrated in Fig. 6.5. The radius of the TTSV and

tILD

tSi2

tb
tLd = 2r

Tier 2 

Figure 6.5: Geometric parameters related to TTSVs in the second tier.

the thickness of the insulator liner are denoted by r and tL, respectively. The thickness of

the silicon substrate, the BEOL layer, and the bonding layer are denoted by tSi, tD, and tb,

respectively. The thermal conductivity of these layers, the liner and filler materials of the TTSV

are denoted by kSi, kD, kb, kL, and kf, respectively. Since the horizontal heat transfer is more

complex than the specific paths described by R3, R6, and R9, the fitting coefficients k1 and k2

are used to decrease the discrepancy of the model from FEM simulations. If the TTSV extends

into the silicon substrate in the first plane, this extended segment is denoted by lext.

Substituting (6.7)-(6.16) into (6.1)-(6.6), the resulting temperature in the three planes can

be determined. Note that Model A can be extended to any number of planes. For a 3-D IC

consisting of N planes, the TTSVs in the first plane are modeled by R1 −R3. The TTSVs in the

N th plane are modeled by R7 −R9. The TTSVs in other planes are modeled similar to R4 −R6.

6.3.2 Distributed heat transfer model for TTSVs

As mentioned before, the fitting coefficients k1 and k2 are required in Model A. This situation

is due to the transfer of heat within one plane, modeled by three primary paths 1, 2, and 3, as

shown in Fig. 6.3(b). To eliminate the need of fitting coefficients, Model A is extended to a

distributed TTSV model (Model B). The lumped thermal resistors of each plane in Model A are

replaced by distributed segments of thermal resistors. The resulting structures in the second

plane are illustrated in Fig. 6.6. As demonstrated in this section, this model can be used to

capture the thermal behavior of TTSVs with reasonable accuracy without curve fitting.

As illustrated in Fig. 6.6, the second plane is modeled by n2 π-segments. There are nD2

segments for the ILD layer and nS2 segments for the silicon layer, where n2 = nD2 +nS2. For an

N -plane circuit, assuming there are nA π-segments in total, nA =ΣN
i=1ni . Consequently, there
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Figure 6.6: Distributed thermal model of a TTSV in the second plane (Model B).

are 2nA temperature nodes (T1, ...,T2nA ) and 3nA resistances (R1, ...,R3nA ) for the entire circuit,

as exemplified in Fig. 6.6. The heat generated in each plane is denoted by qi (1 ≤ i ≤ N ).

A set of expressions similar to (6.1) - (6.5) can be obtained at each temperature node using

KCL. For example, for T2i−1 and T2i in Fig. 6.6,

T2i+1 −T2i−1

R3i+1
− T2i−1 −T2i

R3i
− T2i−1 −T2i−3

R3i−2
= 0, (6.18)

T2i+2 −T2i

R3i+2
+ T2i−1 −T2i

R3i
− T2i −T2i−2

R3i−1
= 0. (6.19)

Consequently, a linear equation system can be obtained for a 3-D circuit,

A ·T = b. (6.20)

In (6.20), T is a 2nA × 1 vector corresponding to the temperatures [T1,T2, ...,T2nA ]′. A is a

2nA×2nA matrix generated from the KCL expressions similar to (6.18) and (6.19). b is a 2nA×1

vector corresponding to the heat input at each π-segment,

∀bi ∈ b (1 ≤ i ≤ 2nA), bi =
⎧⎨
⎩q j /nD j , if bi ∈ j th ILD,

0, otherwise.
(6.21)
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The notation "bi ∈ j th ILD" implies that the node to which the i th expression corresponds is in

the j th ILD layer.

The resistances (R1, ...,R3nA ) are the distributed resistances within each plane. For the i th

segment within the j th plane, the related resistances are determined as follows,

∀1 ≤ i ≤ nA,R3i−1 = RM j /n j , R3i = n j RL j , (6.22)

R3i−2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

RILD j /nD j , if R3i−2 ∈ j th ILD,

RS j /nS j +RB j , for the 1st segment in S j ,

RS j /nS j , otherwise.

The horizontal resistance of the liner, the vertical resistances of the metal, the ILD, the silicon,

and the bonding layer in the j th plane are denoted by RL j ,RM j ,RILD j ,RS j , and RB j , respectively.

These resistances are obtained similar to (6.7) - (6.15) without k1 and k2.

Equation (6.20) can be solved by linear system solvers. The complexity of the linear system and

the required solving time are determined by the number of resistor networks. By increasing

nA, the heat transfer process related to the TTSV is more precisely described, while the time

required to solve (6.20) also increases. A comparison of Model A and Model B is provided in

the following section.

6.4 Effect of the Physical Parameters of TTSVs on 3-D ICs

The proposed models are compared with the results of a FEM tool [194]. The effect of the

parameters related to TTSVs in the heat transfer process is also discussed in this section.

Furthermore, a three-plane 3-D IC is thermally analyzed applying the proposed models.

The materials used for the ILD and bonding layers are assumed to be SiO2 (kD = 1.4 W/(m·K))

and polyimide (kb = 0.15 W/(m·K)), respectively [7]. Since metal interconnects are embedded

in the ILD, the kD can be adapted to include the effect of the metal within the ILD layer. The

liner of the TTSV is SiO2 (kL = 1.4 W/(m·K)). The footprint area, A0, of the investigated 3-D

circuit block is 100 μm × 100 μm. The thickness of the silicon substrate of the first plane is

500 μm and lext = 1μm. Without loss of generality, the temperature of the bottom surface

of the circuit adjacent to the heat sink is assumed to be 27◦C. The device heat sources are

assumed to be uniformly distributed on the top surface of each silicon substrate and the

power density is 700 W/mm3 [195]. The heat generated by the interconnects is assumed to

be uniformly distributed in each ILD layer with a power density of 70 W/mm3. The filling

material of the TTSV is copper (kf = 400W/(m·K)). The reduction in temperature due to the

TTSV is discussed in the following subsections where different parameters are varied. To

emphasize the importance of considering the lateral heat transfer in the analytical thermal

model of TTSV, the proposed models are also compared with a traditional 1-D heat transfer

model [186, 187, 191].
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Figure 6.7: Maximum temperature rise in a three-plane 3-D IC due to different TTSV radius.
tL = 0.5μm, tD = 4μm, tb = 1μm. For 1μm ≤ r ≤ 5μm, tSi2 = tSi3 = 5μm; for 5μm < r ≤ 20μm,
tSi2 = tSi3 = 45μm. k1 = 1.3, and k2 = 0.55.

6.4.1 The effect of the diameter of TTSVs

The effect of the diameter of the TTSV on the temperature reduction is discussed in this section.

In the simulations, the radius of the TTSV, r , ranges from 1 μm to 20 μm. The other parameters

are fixed except for tSi2 and tSi3 . Due to fabrication limitations, the aspect ratio of the TTSV

(typically lower than ten [7, 68]) has to be adapted according to the variation of r . The plots

"Model A", "Model B (100)", "1-D", and "FEM" denote the results of Model A, Model B with

100 segments in planes 2 and 3, the traditional 1-D model, and the FEM tool, respectively.

As illustrated in Fig. 6.7, the maximum temperature rise ΔT decreases as the diameter (or

radius) of the TTSV increases. When r increases, as shown in (6.7)-(6.16), the resistances R2,

R3, R5, R6, R8, and R9 significantly decrease. Consequently, the resulting temperature T5 (see

Fig. 6.4) decreases.

In Fig. 6.7, compared with the FEM, the maximum difference (absolute value) in the steady-

state temperature of Model A, Model B (100), and 1-D model is 6%, 11%, and 21%, respectively.

The average difference is 3%, 3%, and 13%, respectively. Model A is more accurate than Model

B, since in the first model fitting coefficients are adopted to decrease the discrepancy. Model

B, however, also achieves reasonably high accuracy without the need of fitting coefficients.

The 1-D model also captures the relation between r and ΔT , but the error is higher when

the aspect ratio is high. This situation is because as the aspect ratio increases, the lateral
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heat transfer becomes nontrivial as compared with the vertical flow of heat. Consequently,

neglecting path 2 (see Fig. 6.3(b)) introduces a higher error.

6.4.2 The effect of the thickness of the dielectric liner

The effect of the thickness of the dielectric liner surrounding the TTSV on the temperature

reduction is discussed in this section. The dielectric liner ranges from 0.5 μm to 3 μm. The

other parameters are provided in Fig. 6.8.
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Figure 6.8: Maximum temperature rise in a three-plane 3-D IC for different thickness of the
dielectric liner, where r = 5μm. The other parameters are tD = 7μm. tb = 1μm, tSi2 = tSi3 =
45μm. k1 = 1.3 and k2 = 0.55.

As shown in Fig. 6.8, the thickness of the TTSV dielectric liner considerably affects the resulting

temperature, a behavior not captured by the conventional 1-D thermal TTSV model. For

different tL, the ΔT from FEM differs up to 11%, which is approximately 4◦C for this specific

setup.

As expressed by (6.9), (6.12), and (6.15), the resistances R3, R6, and R9 increase as tL increases.

The resulting temperatures, consequently, increase significantly. These resistances R3, R6,

and R9 increase linearly with ln tL. Consequently, the change of ΔT with tL is smaller than

the change of ΔT with r . Since the traditional TTSV model only considers vertical 1-D heat

transfer through the liner [123, 186, 190], the lateral or horizontal heat transfer is ignored.
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Table 6.2: The Error and Run Time vs. # of Segments in Model B.

Model B (1) B (20) B (100) B (500) A 1-D

Max. Error 23% 12% 6% 5% 4% 30%
Av. Error 19% 11% 4% 3% 2% 23%

Time [ms] 1 3 32 2475 - -

For various tL, different number of segments are investigated for Model B. The numbers of

segments within the first plane and the other planes are (1, 1), (2, 20), (10, 100), and (50, 500),

respectively, as denoted by Model B (1) - Model B (500). The maximum and average difference

in the temperature between the four cases and FEM are reported in Table 6.2. The run time

for these four cases is also reported. The accuracy of Model B increases with the number of

segments within each plane, while the run time also increases significantly.

6.4.3 The effect of the thickness of the silicon substrate

The effect of the thickness of the silicon substrate (tSi2 and tSi3 ) on the temperature reduction

is discussed in this section. For 1-D heat transfer models, the temperature increases as tSi2

and tSi3 increase. The results of FEM simulations, however, exhibit a different behavior.

The change of ΔT according to different tSi2 and tSi3 is illustrated in Fig. 6.9. The thickness of

the silicon substrate ranges from 5 μm to 80 μm. The other parameters are listed in Fig. 6.9.

ΔT changes non-monotonically with the thickness of the silicon substrates, another behavior

that cannot be described by the 1-D heat transfer model. As illustrated in Fig. 6.9, within the

range 5μm ≤ tSi2 ≤ 20μm, ΔT decreases as tSi2 increases. For tSi2 > 20μm, ΔT increases with

tSi2 .

Both Model A and Model B capture this behavior. As described by (6.10)-(6.16), the vertical

thermal resistances (R4,R5,R7, and R8) in Fig. 6.4 increase as tSi2 and tSi3 increase, which

implies that the thermal resistance along the vertical path of the heat transfer increases.

Nevertheless, the horizontal thermal resistances described by (6.12) and (6.15) decrease as

tSi2 and tSi3 increase, which indicates that the thermal resistance along the horizontal path

of the heat transfer through the liner of the TTSV decreases. The combination of these two

effects leads to the non-monotonic change in temperature. Consequently, thinning the silicon

substrate cannot always improve the heat transfer within a 3-D IC with TTSVs, since wafer

thinning limits the lateral spreading of heat within the substrate [196].

As shown in Fig. 6.9, the average error of Model A, Model B (100), and 1-D model is 4%, 6%,

and 17%, respectively. The maximum error is 7%, 18%, and 32%, respectively. When the silicon

layer is thin, all the models introduce a high error.
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Figure 6.9: Maximum temperature rise in a three-plane 3-D IC due to different thickness of the
silicon substrate. The other parameters are tL = 1μm, tD = 7μm, tb = 1μm, r = 8μm, k1 = 1.3
and k2 = 0.55.

6.4.4 The effect of TTSV density

The effect of dividing a large TTSV into a cluster of thinner TTSVs on the temperature reduction

is discussed in this section. Several works have shown that by replacing a large-diameter

TTSV with a cluster of small-diameter TTSVs, the temperature of a 3-D IC can be further

reduced [195].

While dividing a TTSV into a cluster of thin TTSVs, the total area of the metal forming the

TTSVs is assumed to be the same, as illustrated in Fig. 6.10. As a result, if a TTSV with radius

Figure 6.10: Dividing a large TSV into four, nine, and 16 smaller TSVs.

r0 is divided into n TTSVs, the radius of the new TTSVs is rn = r0�
n

. The other parameters

remain the same. In the proposed model, the new cluster of TTSVs is modeled as an equivalent

thermal resistance network R ′
i (1 ≤ i ≤ 9). Since the total metal area within the TTSVs remains

the same, the vertical thermal resistances remain the same, R ′
i = Ri (i �= 3,6,9). The horizontal
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resistances are updated from (6.9) as the total lateral surface of the TTSVs increases,

R ′
3 =

ln(tL
�

n + r0)− lnr0

2nπk2kL(tD + lext)
. (6.23)

R ′
6 and R ′

9 are updated similar to (6.23). In the simulations, a TTSV is divided into 2, 4, 9, and

16 TTSVs.
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Figure 6.11: Maximum temperature rise in a three-plane 3-D IC due to different thickness of
the silicon substrate. tL = 1μm, tD = 4μm, tb = 1μm, tSi2 = tSi3 = 20μm, r0 = 10μm, k1 = 1.3,
and k2 = 0.55.

As shown in Fig. 6.11, ΔT decreases as a single TTSV is divided into more TTSVs. This behavior

is because as a TTSV is divided into more TTSVs, the total lateral surface increases and more

heat is conducted through the TTSVs. According to (6.23), as n increases, R ′
3,R ′

6, and R ′
9

decrease, which causes the temperature to decrease. As depicted by the three plots, the

decrease in temperature with the number of TTSVs saturates as n increases. Consequently,

dividing a TTSV into more and thinner TTSVs exhibits a diminishing improvement after a

specific n.

The average error of Model A, Model B (100), and 1-D model is 1%, 2%, and 8%, respectively.

The maximum error is 1%, 4%, and 14%, respectively. As illustrated in Fig. 6.11, both of Model

A and Model B correctly describe the expected behavior of dividing a TTSV. Since the area of
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the metal forming the TTSV remains the same for any n, the 1-D model cannot describe the

temperature reduction with n.

6.4.5 3-D DRAM-μP Case Study

The proposed models are used to evaluate the temperature rise in a 3-D circuit. The physical

parameters of the circuit are based on [191, 195], where a 1-D heat transfer model is used

for the system. The circuit consists of three physical planes with face-to-back bonding. The

footprint area is 10 mm × 10 mm. The thickness of the silicon substrate (tSi) in each plane

is 300 μm. The power dissipated by the μP and DRAM planes is 70 W and 7 W, respectively.

The TTSVs are uniformly distributed with a density of 0.5% of the total circuit area. The

proposed models are embedded in the analytic thermal analysis model of the system. The

FEM simulation and 1-D TTSV model are also implemented for comparison. The structure of

the circuit and the other parameters are illustrated in Fig. 6.12.

Bonding
layer

Plane 2 
(DRAM)

Plane 1
(Processor)

Heat sink

TTSV
Device & ILD

Device & ILD

Bonding
layer

Plane 3
(DRAM)

Package

Device & ILD

Figure 6.12: A three-plane 3-D circuit with TTSVs. tL = 1μm, tD = 20μm, tb = 10μm, tSi1 =
tSi2 = tSi3 = 300μm, r = 30μm, k1 = 1.6, k2 = 0.8, and c1,2 = 3.5.

Since tSi = 300μm, the TTSVs in the second and third planes are divided into 1000 segments

for Model B. For the investigated 3-D circuit, the resulting maximum temperature rise from

the heat sink for Model A, Model B (1000), FEM, and 1-D model are 12.8◦C, 13.9◦C, 12◦C,

and 20◦C, respectively. The runtime of FEM is 59 minutes. The fitting coefficients of Model

A are determined by the simulation of a block of the investigated circuit as shown in Fig.

6.3, the runtime of which is 1.9 minutes. The runtime for Model B (1000) is 8.5 seconds. As

demonstrated by this example, the proposed models are efficient and reasonably accurate

while the 1-D model is highly inaccurate even for this first-order analysis.

6.5 Summary

Heat transfer models of thermal TSVs are investigated in this chapter. Two analytic steady-

state models for TTSVs are proposed. Compared with the traditional 1-D analytic model,

the proposed models produce significantly higher accuracy. Compared with FEM methods,
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the proposed models are significantly faster with reasonably high accuracy. Based on these

thermal models, the thermal behavior of 3-D ICs under different physical parameters of TTSVs

is investigated:

• The maximum temperature of 3-D ICs decreases with the diameter of TTSVs.

• The maximum temperature of 3-D ICs increases with the thickness of the dielectric liner

of TTSVs.

• The maximum temperature of 3-D ICs changes non-monotonically with the thickness

of silicon substrates. When this thickness is relatively small, the temperature decreases

with the thickness of substrates. After a specific thickness, the temperature increases

with the thickness of substrates.

• Dividing a large TTSV into a cluster of thinner TTSVs helps to further decrease the

temperature of 3-D circuits.

Ignoring these effects can result in significant overestimate of the temperature increase in 3-D

ICs where TTSVs are utilized, as demonstrated by a first-order thermal analysis of a 3-D DRAM-

μP system. Adapting a 1-D model, therefore, in a TTSV insertion/planning methodology can

result in excessive usage of TTSVs (a critical resource in 3-D ICs), with an immediate increase

in the total cost of the system.
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The conclusions of this dissertation are drawn in the following section, where the contributions

of this thesis are also summarized. The potential future directions in this area are discussed in

Section 7.2.

7.1 Conclusions

Process variations, power supply noise, and the thermal behavior of 3-D ICs are all investigated

in this dissertation. Novel models for 3-D ICs are proposed to correctly describe process,

voltage, and temperature variations. Design techniques and guidelines are presented to

mitigate the negative clock uncertainty caused by different sources of variations.

Process variations in 3-D ICs are investigated in Chapter 3. The effect of process variations

in 3-D clock distribution networks is modeled and analyzed. A novel model to describe

the distribution of process-induced skew in 3-D clock trees, which exhibits reasonably high

accuracy, is proposed. Typical 3-D clock distribution networks are compared among each

other in terms of clock skew variation. 3-D clock grids exhibit the lowest skew variation but

with a significant cost in power consumption. For 3-D clock trees, the multi-via topology

outperforms the single-via topology in terms of the maximum skew variation and power

consumption, since the single-via topology requires a larger number of buffers. For clock

sinks within the same tier, however, single-via 3-D clock trees usually produce a lower skew

variation due to the smaller number of buffers per tier.

A new 3-D clock tree topology is proposed to combine the advantages of both the multi- and

single-via topologies, which produces a low skew variation for the clock sinks within the same

group. The skew variation in multi-domain clock trees is also investigated. It is shown that

placing different clock domains in different tiers does not necessarily produce the lowest skew.

Skew variation can be decreased by locating different clock domains within the same tier and

vertically extending these domains. For spatially correlated WID process variations, increasing

the number of tiers a clock domain spans increases the skew variation between the sinks
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located within a short distance. The maximum skew variation, however, is determined by the

sinks with the farthest distance. The change of the maximum skew depends on the relation

between D2D and WID variations.

The power supply noise in 3-D PDNs is investigated in Chapter 4. A fast steady-state IR-drop

analysis method is developed for 3-D power grids. In this method, the row-based algorithm for

2-D power grids is extended to consider the influence of P/G TSVs and the interaction among

tiers. Compared to SPICE-based simulations, the proposed method achieves reasonably high

accuracy and savings in the computing resources.

The resonant noise in 3-D PDNs is investigated based on the one-dimensional model. Under

different scenarios of 3-D PDNs, the resonant noise exhibits different characteristics among

tiers. For various schemes of switching current and turn-on time, the tier adjacent to the

package and the heat sink experience the lowest and highest amplitude of resonant noise,

respectively. The difference in the amplitude of resonant noise increases with the resistance

of P/G TSVs and the number of tiers. The frequency of resonant noise slightly differs among

tiers, with a difference lower than 10% in the simulations.

The combined effect of process variations and power supply noise on the timing uncertainty

of clock distribution networks is investigated in Chapter 5. Skitter consisting of clock skew

and jitter is used to describe the clock uncertainty. Statistical models of skitter are developed

for both 2-D and 3-D clock trees. Simulation results show that separately modeling process

variations and power supply noise will significantly underestimate the variation of clock

uncertainty. The effect of the number and size of buffers on skitter is investigated. For the

same paths, using fewer buffers produces lower skitter. Skitter in different scenarios of power

supply noise in 3-D ICs are discussed. Skitter is shown to be significantly affected by the

different amplitudes, frequencies, and initial phases of supply noise among tiers. A 3-D clock

tree synthesis algorithm is implemented to analyze skitter in different clock trees based on

industrial benchmarks. A fast buffer insertion algorithm for 3-D trees is proposed to decrease

the total and maximum delay of interconnect trees.

Based on the analysis and simulation results, a set of design guidelines have been proposed to

facilitate the design of robust clock trees:

• Using fewer buffers decreases skitter at the expense of input slew. Properly sizing up

buffers helps to decrease skitter by trading off power consumption.

• Recombining clock paths and/or increasing supply voltage both help to decrease skitter

at the expense of power.

• Given the freedom to choose among tiers, for the clock paths in a 3-D circuit, the mean

skitter can be decreased by placing most of the clock path length in those tiers that

exhibit the lowest supply noise.
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• For 3-D clock paths equally distributed among tiers, the worst-case skitter can be

decreased by shifting the phase of supply noise among different tiers.

• By decreasing the frequency of resonant supply noise, the mean skitter can be decreased

by trading off the standard deviation of skitter.

The thermal behavior of 3-D ICs is investigated in Chapter 6. Two analytic steady-state

models for thermal TSVs are proposed. Compared with the traditional 1-D analytic model, the

proposed models produce significantly higher accuracy. Compared with FEM methods, the

proposed models are significantly faster with reasonably high accuracy.

Based on these thermal models, the thermal behavior of 3-D ICs under different physical

parameters of TTSVs is investigated. The maximum temperature of 3-D ICs decreases with the

diameter of TTSVs and increases with the thickness of the dielectric liner of TTSVs. When the

substrate thickness is relatively small, the temperature decreases with this thickness. Never-

theless, after a specific thickness, the temperature increases with the thickness of substrates.

In addition, dividing a large TTSV into a cluster of thinner TTSVs helps to further decrease the

temperature in 3-D circuits. Ignoring these effects can result in significant overestimate of the

temperature increase in 3-D ICs where TTSVs are utilized, as demonstrated by a first-order

thermal analysis of a 3-D DRAM-μP system.

The proposed models for skew, skitter, and thermal TSVs are used to fast and correctly estimate

the timing and thermal behavior of 3-D ICs under different sources of variations. The design

guidelines provided with these models facilitate the design of robust 3-D circuits. Since PVT

variations increase significantly as technology advances, efficiently estimating and mitigating

the negative effect of PVT variations is critical to the design of 3-D ICs.

7.2 Future Directions

In addition to the topics investigated in this dissertation, there are other important issues

relating to the variation-aware design of 3-D ICs. Potential future research directions in the

design of 3-D ICs under PVT variations are presented next.

Process-induced skew in other topologies of 3-D clock distribution networks

The skew variation of clock trees is carefully modeled in this thesis. Nevertheless, the skew

in other topologies, such as clock meshes, recombinant clock trees, and clock spines, have

not yet been analytically modeled. Since hybrid clock distribution networks are widely used

in modern high-density ICs [38, 169, 197], it is necessary to model the skew in different clock

distribution networks. The deterministic skew in non-tree based topologies has been modeled

for 2-D ICs. For instance, the skew in 2-D clock meshes is investigated in [198]. The skew in

3-D non-tree based topologies under PVT variations has not been modeled. Fast and accurate
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methods to measure this skew are required to facilitate the design of robust and cost-efficient

hybrid 3-D clock distribution networks.

Accurate models for power supply noise in 3-D power distribution networks

Steady-state IR-drop analysis and resonant noise are discussed separately in this thesis. The

DC IR-drop differs among devices. When analyzing the temporal change of resonant supply

noise the devices within the same tier are assumed to experience similar voltage variations.

An accurate model to fast describe the different transient response of devices to the power

supply noise is required. This type of models has been proposed for 2-D power grids [118].

For 3-D power distribution networks, the correlation among tiers through P/G TSVs has to be

considered.

Clock-data compensation in 3-D ICs

Clock uncertainty is modeled independently from the delay variation of the data signals in

this dissertation. Nevertheless, the highest clock frequency of a circuit is determined by the

setup and hold time slacks, which are determined by the combination of clock and data

delays. Research on 2-D ICs [29, 30] has shown that, when clock and data variations are

considered together, the effect of power supply noise on the speed of circuits significantly

varies. The negative effect of power supply noise can be mitigated utilizing this clock-data

compensation. In 3-D ICs, the effect of clock-data compensation on the speed of circuits

needs to be investigated to provide more efficient design guidelines and methods to distribute

the clock and data signals.

Timing uncertainty under spatial thermal variations

Timing uncertainty of 3-D ICs is modeled in this thesis considering process and power varia-

tions. The timing uncertainty due to the spatial differences in temperature within a 3-D circuit

has not yet been investigated. In 3-D ICs, temperature differs both within a tier and signifi-

cantly across tiers [34]. Since the delay of transistors and wires is sensitive to temperature, the

resulting timing uncertainty needs to be investigated.

As 3-D integration provides significantly higher device density, faster interconnection, and

easier heterogeneous integration, complicated PVT variations also result in more challenges

in the design of robust 3-D ICs. Coping with these challenges is critical to fully exploit the

advantages of 3-D circuits. More research efforts are required to solve the above challenges

and, thereby, improve the performance of 3-D circuits. This dissertation has provided the

necessary means including both models and methods to significantly improve the robustness

of 3-D ICs under these variations.
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List of Abbreviations

3-D Three-dimensional

ACLV across-chip linewidth variation

ADE alternating-direction-implicit method

BEOL back-end of line

CDF cumulative distribution function

CDN clock distribution networks

CMP chemical-mechanical polishing

CTS clock tree synthesis

D2D die-to-die or inter-die process variations

DVS dynamic voltage scaling

FDA finite differential analysis

FEA finite element analysis

FEOL front-end of line

Fin-FET fin field effect transistors

I/O input/output

IC integrated circuits

ILD interlayer dielectric

KCL Kirchholff’s Current Law

NLDM non-linear delay models

P/G power and ground

PCB printed circuit board
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List of Abbreviations

PDE partial differential equation

PDN power distribution networks

PLL phase-locked loop

POD point of divergence

PSN power supply noise

PV process variations

PVT process, voltage, and temperature

SiP System-in-Package

SOI Silicon-on-Insulator

SoP System-on-Package

SSTA statistical static timing analysis

STA static timing analysis

TSV through silicon via

TTSV thermal through silicon via

WID within-die or intra-die process variations

WJ worst case period jitter
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