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Summary

Multipactor and microwave corona breakdown are two high frequency discharges occurring within microwave
components for space applications as well as within particle accelerators. The appearance of these phenomena
results in the exponential growth of the electron population triggered by the interaction of the environmental
charged particles with the microwave component. The consequence of these discharges is an electron cloud
build-up that, for space applications, loads the Radio Frequency (RF) cavities. This entails the increase of the
system noise level and the return loss, generating undesirable harmonics and creating a local augmentation of
the temperature that may destroy internal components, with the subsequent failure of the mission. Concerning
the particle accelerators, the electron cloud induces the deflection and the deformation of the particle beam,
reducing its beam-to beam collision efficiency and causing the malfunctioning of the accelerator.

The lack of a software or a method to predict the multipactor power breakdown threshold of RF components
leads the scientific community to deal with high-cost test campaigns. Although the detection of the radiated
power produced by the multipactor current was proposed as a breakdown detection method, no absolute levels
of radiation were available to compare with measurements and validate this technique to assess the breakdown
onset. In this thesis, an analytical expression to quantify the radiated power spectrum produced by a multipactor
discharge within a parallel-plate waveguide has been developed.

As there must be a mechanism to limit the growth of the electron population and the radiated power spec-
trum depends on the number of electrons, the multipactor steady-state is also analyzed in this thesis. As multi-
pactor breakdown is assumed to be detected when the saturation in the amount of electrons has been reached,
an analytical expression of the electron population in the steady-state has been proposed in this thesis. This
could help to predict the levels of radiation that must be detected when the breakdown occurs, and could be
compared with the measurements to establish a rigorous multipactor detection criterion.

Another part of the thesis deals with the development of a globally convergent algorithm to calculate very
efficiently a large amount of roots of the cross-product of Bessel functions. This algorithm can be employed in
the calculation of the radiated power spectrum produced by a multipactor discharge within a coaxial waveguide
using the appropriated Green function, which needs the evaluation of these roots.

Regarding the corona breakdown, this thesis intends to show the critical dependency of the breakdown
power threshold on the ionization rate model. The ionization rate is a gas parameter that provides the amount
of electrons released per unit time due to the ionization produced in the gas molecules as function of the elec-
tric field amplitude. Three models of the ionization rate found in the literature are considered in this thesis and
the corona breakdown power thresholds predicted are compared. Noticeable differences between the results
obtained with each model have been found in some cases, which are analyzed in this work.

Finally, in line with this thesis, a new high power SMA-like coaxial connector (in mass and size) has been
developed. This thesis shows the design of the “Power Sub-miniature” (PSM) connector, which is capable to
withstand high input powers without the risk of corona or multipactor breakdown to occur. The PSM has been
manufactured and tested showing excellent multipactor withstanding capabilities. This connector is, in fact,
able to withstand, at least, up to 1500 W input power for a pulsed signal of 2% duty-cycle in P-band (438
MHz) as well as in L-band (1124 MHz), without showing any trace of multipactor discharge. This implies an
improvement of 50% compared to other powerful connectors such as the TNC. Concerning corona breakdown,



the PSM is able to withstand more than 80 W CW without showing any sign of glowing or noticeable discharge,
what is a challenge for coaxial connectors of this size at these input powers.

Keywords: Multipactor, radiated power spectrum, Bessel functions, multipactor saturation, corona break-
down, ionization rates, coaxial connectors.



Résumé

Multipactor et l’effet corona microonde sont deux décharges hautes fréquences qui peuvent avoir lieu dans
les composants microondes pour des applications spatiales ainsi que dans des accélérateurs de particules.
L’apparition de ces phénomènes se traduit par une augmentation exponentielle de la quantité d’électrons dé-
clenchée par l’interaction des particules chargées dans l’environnement avec le dispositif microonde. La con-
séquence de ces décharges est la formation d’un nuage d’électrons qui, pour des applications spatiales, charge
les cavités RF. Cela entraîne une augmentation du niveau de bruit du système et une dégradation du coefficient
de réflexion, génère des harmoniques non voulues et crée une augmentation locale de la température qui peut
détruire certains composants internes et ainsi conduire à l’échec de la mission. Pour ce qui est des accélérateurs
de particules, le nuage d’électrons entraîne une déviation et une déformation du faisceau de particules. Cela
réduit l’efficacité de la collision faisceau à faisceau et conduit à un mauvais fonctionnement de l’accélérateur.

Le manque de logiciel ou méthode pour prédire le seuil de rupture de puissance multipactor des composants
RF conduit la communauté scientifique à mener des campagnes de tests à coût élevé. Bien que la détection de la
puissance rayonnée produite par le courant multipactor fût proposée comme méthode pour détecter la rupture,
aucun niveau absolu de rayonnement n’était prédit pour comparer avec des mesures et ainsi valider cette tech-
nique pour évaluer le commencement de la rupture. Dans cette thèse, une expression analytique pour quantifier
le spectre de puissance rayonné produit par une décharge multipactor dans un guide d’onde à plaques parallèles
a été développée.

Comme on sait qu’il doit y avoir un mécanisme pour delimiter la croissance de la population d’électrons et
le spectre de puissance rayonnée dépend du nombre d’électrons, l’état d’équilibre multipactor est aussi analysé
dans cette thèse. Comme la rupture multipactor est supposée pouvoir être détectée lorsque la saturation en
quantité d’électrons a été atteinte, une expression analytique de la population d’électrons dans l’état d’équilibre
a été proposée dans cette thèse. Cela pourrait aider à prédire les niveaux de rayonnement qui doivent être détec-
tés quand la rupture se produit, et cela pourrait être comparé avec les mesures pour établir un critère rigoureux
de détection du phénomène multipactor.

De plus, un algorithme convergeant globalement a été développé dans cette thèse pour calculer très rapi-
dement un nombre élevé de racines du produit croisé de fonctions de Bessel. Cet algorithme a été proposé
pour calculer efficacement le spectre de puissance rayonné produit par une décharge multipactor dans un guide
d’onde coaxial en utilisant les fonctions de Green appropriées, ce qui nécessite le calcul de telles racines.

Concernant l’effet corona, cette thèse a aussi pour but de montrer la dépendance critique entre le seuil de
rupture de puissance et le modèle du taux d’ionisation. Le taux d’ionisation est un paramètre du gaz qui donne
la quantité d’électrons libérée par unité de temps à cause de l’ionisation produite dans les molécules de gaz en
fonction de l’amplitude du champ électrique. Trois modèles de taux d’ionisation trouvés dans la littérature sont
considérés et les seuils de puissance de l’effet corona ainsi prédits sont comparés. Les différences obtenues,
observables dans certains cas, sont discutées dans cette thèse.

Enfin, dans le cadre de cette thèse un nouveau connecteur à haute puissance de type coaxial SMA (en masse
et dimensions) a été développé. Cette thèse montre la conception du connecteur “Power Sub-miniature” PSM
qui est capable de supporter des puissances en entrée élevées sans risque d’apparition de l’effet corona ou rup-
ture multipactor. Le PSM a été réalisé et testé montrant une excellente capacité de résistance au multipactor.



Ce connecteur est en effet capable de résister à au moins 1500 W de puissance en entrée pour un signal de type
impulsion à cycle de 2% en bande P (438 MHz) ainsi qu’en bande L (1124 MHz) sans apparition de décharge
multipactor. Cela signifie une amélioration de 50% par rapport aux autres connecteurs de puissance tels que
le TNC. Concernant l’effet corona, le PSM est capable de résister à plus de 80 W à emission continue sans
produire d’effluve ni de décharge, ce qui est un défi pour des connecteurs coaxiaux de cette taille à de telles
puissances d’entrée.

Mots-clés: Multipactor, spectre de puissance rayonnée, fonctions de Bessel, saturation de multipactor, ef-
fet corona, taux d’ionisation, connecteur coaxiaux.



Kurzfassung

Multipaktor- und Mikrowellenkoronadurchbruch1 sind zwei Hochfrequenzentladungen, die sowohl in Mikro-
wellensystemen für Weltraumanwendungen (z. B. Satellitensystemen) als auch in Teilchenbeschleunigern auf-
treten können. Beide Phänomene führen zu einem exponentiellen Anstieg von freien Elektronen durch die
Wechselwirkung der geladenen Teilchen mit den Bauteilen, wodurch eine Elektronenwolke im Innern der Sy-
steme entstehen kann. Dies führt zu Fehlanpassungen der HF-Komponenten und verstärktem Rauschen, der
Anregung von Oberwellen2 sowie einem lokalen Temperaturanstieg, der zu deren Beschädigung oder sogar
Zerstörung führen kann, was eine gesamte Weltraummission gefährden kann. Bei Teilchenbeschleunigern kann
die Elektronenwolke den Teilchenstrahl ablenken und verformen und dadurch die Effizienz von Teilchenkolli-
sionen verringern.

Da Programme und Methoden zur Simulation der Durchbruchsleistung, also der Eingangsleistung bis zu
welcher keine Multipaktorentladungen auftreten, fehlen, sind oft teure Testkampagnen notwendig. Dabei könn-
te die von der entstehenden Elektronenwolke abgestrahlte Leistung zu Diagnosezwecken verwendet werden und
als Kriterium dienen, um abzuschätzen, ob im Innern einer HF-Komponente Multipaktor auftritt oder nicht.
Um diese Detektionsmethode für Multipaktor einsetzen zu können, müssen aber absolute Leistungswerte in
Abhängigkeit der vorhandenen Elektronenzahl bekannt sein, um von gemessenen Leistungen Rückschlüsse auf
die Elektronenzahl ziehen zu können. Zu diesem Zweck wurde in dieser Dissertation ein Parallelplattenleiter
betrachtet, um ein analystisches Modell herzuleiten, das die abgestrahlte Leistung mit der Anzahl der Elektro-
nen verknüpft.

Weil Multipaktor normalerweise im Sättigungbereich gemessen, d. h. detektiert wird, muß die Elektronen-
zahl für diesen Bereich bekannt sein, um die bei Messungen erwarteten Leistungen vorhersagen zu können.
Dazu wurde in dieser Arbeit ein analytischer Ausdruck für die Elektronenzahl im Sättigungsbereich hergelei-
tet, der zusammen mit dem Modell für die abgestrahlte Leistung als Basis für die Entwicklung einer rigorosen
Meßvorschrift dienen könnte, um zu entscheiden, ob Multipaktor während einer Testkampagne auftritt.

In diesem Rahmen wurde ferner ein effizienter Algorithmus entwickelt, mit dem eine große Anzahl von
Nullstellen der charakteristischen Gleichung für koaxiale Hohlleiter, welche dessen Moden bestimmt, berech-
net werden kann. Die Moden wiederum sind notwendig, um die Greensche Funktion des koaxialen Hohlleiters
zu berechnen, welche ihrerseits zur Berechnung der abgestrahlten Leistung der Elektronenwolke verwendet
werden kann.

Mit Bezug auf Koronadurchbruch versucht diese Arbeit die starke Abhängigkeit der simulierten Durch-
burchsleistung von den Ionisierungsmodellen aufzuzeigen. Die Ionisierungsrate ist ein Gasparameter, welcher
die Anzahl der durch Ionisierung freigesetzten Elektronen pro Zeiteinheit in Abhängigkeit der elektrischen
Feldstärke angibt. Drei verschiedene Modelle wurden betrachtet, die vorhergesagten Durchbruchsleistungen
verglichen und die auftretenden Unterschiede diskutiert.

Schließlich und im Einklang mit dieser Dissertation wurde ein neuartiger koaxialer Steckverbinder vom Typ
SMA3 entwickelt. Dieser neue Verbinder, Power-SMA (PSM) genannt, kann sehr hohe Leistungen übertragen,

1engl. microwave corona breakdown
2engl. harmonics
3engl. SubMiniature version A



ohne daß Multipaktor- oder Koronaentladungen auftreten. Messungen ergaben eine Übertragungsleistung von
mindestens 1500 W gepulst (2% Einschaltdauer4) im P-Band (438 MHz) und L-Band (1184 MHz) sowie 80
W CW. Dies entspricht einer Verbesserung von 50% gegenüber vergleichbaren Steckverbindern wie z. B. dem
TNC, was eine echte Herausforderung für Verbinder dieser Größe bei derartigen Eingangsleistungen darstellt.

Schlagwörter: Multipaktor, Strahlungsleistungsdichte, Bessel Funktionen, Multipaktorsättigung, Korona-
durchbruch, Ionisierungsraten, koaxiale Steckverbinder.

4engl. duty-cycle
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1.1 Framework

The current trend in the market of microwave devices for space telecommunication systems is the fabrication
of devices working at higher frequencies and with higher input powers without limiting any of their features
and still working properly. This is due to the market demand of increasing the amount of information that
telecommunication satellites have to be able to handle within a framework where the welfare of the society
has become more and more dependent on the communications through different services that they can provide:
GPS, GSM, meteorology, exploratory space missions, tele-assisted surgery, etc....

At the same time, the need of reducing costs for launching satellites increasingly forces the weight of the
devices inside them to be reduced. To do so, the inner dimensions of the waveguides are reduced, what enables
the functioning at higher operating frequencies. This yields an increase of the electromagnetic field strength
inside them, what greatly increases the risk of multipactor and corona discharges to occur with the danger of
destroying a part of or the complete telecommunication system.

On the other hand, the casuistry of multipactor breakdown also involves the malfunctioning of particle
accelerators. The radiation produced by the highly accelerated charged particles induces the photo-electron
emission at the boundaries of the beam pipe where the beam particles travel through. The appearance of
an electron cloud within the beam pipe perturbs the beam and reduces the beam-to-beam collision efficiency
drastically, provoking the malfunctioning of the particle accelerator.
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1.1.1 Space weather and applications

The space weather is a very hostile environment for telecommunication satellites: energetic charged particles
with energies in the MeV range are commonly encountered throughout the Earth magnetosphere, in inter-
planetary space and in the magnetospheres of other planets, like Mercury. The origin of these particles is
provided by manifold sources like the energetic solar eruptions (likewise called solar bursts or coronal mass
ejections); the Galactic Cosmic Rays (GCR), whose origin is not completely understood yet; and the sec-
ondary radiation produced by the interaction of these particles with materials of the spacecraft, among oth-
ers [ECSS 2000].

It is interesting to remark that the same agent responsible of trapping these particles around the Earth, which
affects the functioning of the satellites, protects life on the planet from this harsh environment. Indeed, the
Earth magnetic field deflects the charged particles coming from the solar wind or from the above-mentioned
sources and they remain trapped along the magnetic field lines preventing hazardous radiation on the planet
surface. This effect is known as geomagnetic shielding, and creates a region of the atmosphere called mag-
netosphere, which is like a hemisphere on the sun side, with a boundary at approximately 10-12 Earth-radii
(RE = 6370 km). On the anti-sunward direction, it is cylindrical with approximately 40RE in diameter. Due
to the solar wind, the magnetosphere extends over several hundred RE on the night side of the Earth, forming
a magnetic tail. The lower part of the magnetosphere is called plasmasphere, where the trapped radiation is
mainly confined, forming the Van Allen belts (see Fig. 1.1).

The radiation belts, likewise called Van Allen belts, consist of energetic electrons and ions that are magnet-
ically trapped moving back and forth along the Earth magnetic field lines. They are mainly electrons of up to a
few MeV energy and protons of up to several hundreds MeV energy. Nevertheless, though the magnetosphere
contains these particles far from the surface, they can easily reach polar regions and high altitudes such as the
geostationary orbit. Therefore, many orbits are affected by this radiation, and the interaction of the charged
particles with the devices at the payload of the satellites can result in a blackout between the spacecraft and the
base station on the Earth, what can provoke the loss of the spacecraft or the failure of a complete mission.

The electrons that are responsible for the malfunctioning of some components on the satellites come also
from the surface of conductors within the microwave devices when the electric field is very strong so as to
make the electrons overcome the potential barrier by the tunneling effect. This process is named field emis-
sion [Fowler 1928, Woode 1989], and though it predicts the need of very strong electric fields to allow the
release of the electrons, irregularities, oxide or dirt contaminants on the surface can induce electron emission
at appreciably lower field strengths.

In any case, the space weather is not only hazardous for telecommunications satellites, but also for on-
ground applications in power grids like high voltage transmission lines, telephone networks, oil and gas pipelines,
railways and undersea communication cables. The appearance of geomagnetically induced currents is provoked
by the intense magnetic field variations in the magnetosphere occurring when a solar storm arises, which in-
duces large electric fields and currents over large areas of Earth’s surface. The interconnecting networks act as
giant antennas that channel the induced currents from the ground, and provoke the failure of many systems in
few minutes.

The most well-known example is the one that occurred in Quebec in 1989, where a geomagnetic storm
provoked that the power grid in the region experienced 15 failures only during the first 30 seconds, and the
result was a province-wide blackout. And that storm was less intense than others experienced by the Earth
before [IEEE 2012].
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Van Allen belt

Figure 1.1: Sketch of the magnetosphere and of the geomagnetic shielding produced by the Van
Allen belts. Extracted from [ECSS 2000].

1.1.2 Accelerators

The multipactor effect is not only important for space applications, but in particle accelerators as well
[Ohmi 1995,Izawa 1995,Kravchuk 1999,Ohmi 2000,Rummolo 2001,Harkay 2003,Furman 2003,Cimino 2004,
Abe 2006, Gusarova 2009] like, for instance, in the Large Hadron Collider (LHC) in CERN. Nevertheless, the
mechanism of multipactor breakdown in particle accelerators is different to space applications. Beam-induced
multipactor was firstly observed as a pressure rise at the Intersecting Storage Ring (ISR) of CERN in 1977.
Even earlier observations were reported from a small proton storage ring at Novosibirsk. In 1989, a positron-
beam instability at the Photon Factory (PF) in the High Energy Accelerator Research Organization (KEK),
located in Japan, was attributed to the presence of an electron cloud.

A combination of processes leads to an electron-cloud build-up in the vacuum chamber of the LHC. Each
passing bunch, formed by protons, radiates in the X-rays spectrum, generating a number of primary electrons
on the boundaries of the beam pipe by the photoelectric effect. These electrons are accelerated by the beam
field and upon impact on the boundaries of the vacuum chamber generate secondary electrons. If the energy
of the electrons is sufficiently high the number of electrons after the impact becomes larger, and the number
of electrons grows exponentially if there is a certain synchronicity between the motion of the electrons and the
bunch passage periodicity. The electron growth stops when the electron density roughly equals the neutraliza-
tion density, where the attractive force from the beam is, on average, balanced by the space-charge field of the
electron cloud. A uniformly distributed electron cloud all inside the beam pipe can be responsible for bunch
instabilities. Multi-bunch instabilities were first observed at the PF in KEK and are already widely investigated
by means of computer simulations: if a bunch is sent through and offset with respect to the other bunches, it
will perturb the electron-cloud distribution and the next bunch will receive an additional deflection caused by
this perturbation, causing the malfunctioning of the accelerator. The electron cloud can also act similar to a
short-range wake field and drive a single bunch instability.

Observations at the PF included an increased vertical beam size, coupled bunch oscillations, a low threshold
current, a broad distributions of sidebands, and the inefficiency of a clearing gap. The main concern for the LHC
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Figure 1.2: Scheme depicting the delivery working powers of the currently available Traveling Wave
Tubes (TWT’s) at different frequency bands1.

1Extracted from http://www.thales-electron-devices.de/about.php?lang=en
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is the heat load on the cold vacuum chamber inside the super-conducting magnets, for which only limited cool-
ing capacity is available. Since 1998, electron-cloud effects are seen with the LHC beam in the Super Proton
Synchrotron (SPS), which has allowed the development of a suite of dedicated electron-cloud diagnostics and
numerous beam studies. Electron-cloud effects have also been seen in the lower-energy Proton-Synchrotron
(PS) and even in the PS-to-SPS transfer line.

Nevertheless, there is an important difference between the satellite (space) and the accelerator commu-
nity: while in some particle accelerators the occurrence of multipactor, though being harmful, can be accepted
and damaged components be exchanged for space applications the appearance of multipactor can result in a
blackout between the spacecraft and the base station on the Earth, which can jeopardize the complete mission.
Concerning the particular case of the LHC arc beam screens, the components exchange is practically impossible
or not easy, but in space applications there is no way for doing it.

1.2 Corona overview

Corona discharge exhibits the lowest breakdown power threshold under medium-pressure-range conditions,
which comprises the Ionosphere (60 to 800 km height). Although corona seems not to be a potential danger
in satellite applications because the operating condition of a satellite is at very low pressures (much higher
altitudes), the Telemetry, Tracking and Control system (TTC) is sometimes switched on during the launch of
the satellite to check some parameters like the velocity or the position of the spacecraft. This phase of the
launch is important to guarantee the success of the manoeuver and it occurs in fact when the rocket traverses
the upper part of the atmosphere, which corresponds to the Ionosphere (100 to 1000 km height) [ECSS 2000].
The presence of a big amount of electrons and the presence of a non-negligible pressure makes very high the
risk of corona breakdown in the microwave range. In the case of reentry vehicles or during the exploration of
planets and their moons, the presence of the planetary atmosphere implies the risk of corona breakdown, too.

The consequences of a corona discharge for antennas are the decrease of the transmitted signal intensity,
the change in the input impedance and the radiation pattern, the modification of the pulse shape and noise
modulation of the signal. Besides the increase of the return loss, the harmful effects of corona breakdown for
filter-based waveguide technology and for coaxial connectors include a dramatic temperature rise due to the
ohmic losses produced in the plasma that is formed, provoking the partial or total destruction of the onboard
components.

The corona breakdown, also called gas discharge, is produced due to a locally rapid increase of the electron
population because of the ionization of gas molecules trapped within gaps inside microwave devices. This
discharge is produced when the RF field accelerates the environmental electrons and they impact against the
gas molecules with enough energy as to ionize them, releasing new electrons. The electron growth within the
gaps renders the gas conductive, loading the cavity formed by the gap and cutting off the signal transmission. In
order to avoid the corona onset for in-orbit conditions, appropriated venting holes must ensure the evacuation
of the remaining gas trapped during on-ground manufacturing and assembly of the microwave devices.

The mean free-path of a particle within a gas becomes longer as the gas pressure decreases, since the
average number of collisions with the particles performing the gas also decreases. As mentioned before, corona
breakdown is produced under medium-pressure conditions when the mean free-path of the electrons in the gas
is not large enough as to permit the electrons to reach the walls of the devices. If the pressure is too low and the
latter occurs, multipactor breakdown can arise by the release of secondary electrons on the boundaries of the
microwave components. Nevertheless, both discharges can coexist at some pressure when the mean free-path
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is of the order of the air gaps [Höhn 1997].

1.3 Multipactor overview

Multipactor is a vacuum Radio-Frequency (RF) discharge that can occur within the microwave components of
telecommunication satellites [de Lara 2006] as well as in particle accelerator structures [Lyneis 1977] whose
occurrence implies the possible failure of the system. The harsh space weather provides a large amount of free
electrons in the satellite’s environment that can penetrate into the high electric field region of microwave com-
ponents as, for instance, within the gaps existing between cable-connector transitions, male-female interfaces
or within waveguide-based components.

Unlike the corona breakdown, multipactor only occurs under ultra-high vacuum conditions (pressure <

10−5 mBar). The effect of multipactor is the loading of the RF cavities, increasing the system noise level and
the return loss, generating undesirable harmonics [Udiljak 2003] and creating a local augmentation of the tem-
perature that may severely damage or destroy internal components, what would be fatal for the space mission.
The multipactor breakdown also reduces the signal-to-noise ratio due to the absorption of the electromagnetic
energy by the electrons, which are accelerated by the electromagnetic field. It has also been reported that a
multipactor discharge may trigger the corona breakdown by a dramatic temperature rise and the subsequent
increase of pressure due to a fast outgassing process [Woode 1989].

Accelerated by the microwave field, the electrons can collide with the walls of the components and, if
the impact energy is high enough, release other electrons, called secondary electrons [Vaughan 1989]. The
averaged number of released electrons per impacting one is called the secondary-electron-yield (SEY), which
is characteristic of each material, and determines the multipactor power threshold. If the flight time of an
electron launched from the initial plate traveling to the opposite one is an odd number of half periods of the
RF signal, the secondary electrons released will see exactly the same conditions in reverse. If the resonant
condition between the motion of the electrons and the RF signal is maintained and the SEY is higher than one
when colliding with the plates, an electron avalanche builds up and multipactor breakdown arises.

The multipactor phenomenon is a research topic which is becoming important as the technical specifications
of the satellites demand higher input powers into the waveguides that are commonly used for the devices on
board of the satellites, as well as smaller dimensions to reduce the weight of the satellites launched into space.
Furthermore, the need of reducing the dimensions of the microwave devices is due to the trend of using higher
frequencies (see Fig. 1.2), in order to ensure that only the fundamental mode of the waveguide propagates,
avoiding the appearance of higher order modes. The increase of the input power, as well as the decrease of the
dimensions of the waveguides make the appearance of multipactor more likely to occur due to the increase of
the electromagnetic energy density inside the devices.

However, finding a general solution to avoid the problem of multipactor discharge for any case, any geom-
etry or any device is still nowadays a challenge. There is neither a unique nor a definitive model to predict the
multipactor breakdown power threshold and a generally accepted criterion for the experimental detection of the
multipactor onset does not exist yet.

1.4 Thesis scope

The lack of fully-tested softwares or models to assess the occurrence of multipactor and/or corona discharges
results in high-cost test campaigns as well as long design periods to fabricate devices able to cope with power
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handling capabilities demanded by the market. This is the reason for the increasing interest from the satellite
industry to invest in the research area of multipactor and corona breakdown.

The lack of a unique criterion to assess the multipactor breakdown onset experimentally makes difficult the
evaluation of high power withstanding capabilities of microwave devices. A multipactor discharge is known
to radiate at higher frequencies than the one of the signal carrier. Measurements of the radiated power spec-
trum of the electron cloud, using the third harmonic detection technique [Udiljak 2007] (or other harmon-
ics) [Sorolla 2008], can be compared with the predicted radiated power spectrum of a multipactor discharge
following the proposed study. The comparison could establish, indeed, a unique criterion to assess the multi-
pactor onset unambiguously.

The first part of this thesis intends to bring some insights analyzing the radiated power spectrum produced
by a multipactor current and the steady-state or saturation stage of the discharge, since the electron population
growth must reach a limit. The study of the multipactor radiation and of the saturation level of electron popula-
tion are destined to help in the establishment of a criterion to assess experimentally the multipactor occurrence
unambiguously. An algorithm to calculate a large number of roots of the cross-product of Bessel functions and
of their derivatives is also developed in this thesis in order to speed up the calculation of the radiated power
spectrum produced by a multipactor current within coaxial waveguides.

Concerning the corona breakdown it must be mentioned that there is not a unique model of ionization that
could explain satisfactorily the experimental measurements. Another goal of this thesis is the analysis of the
three mostly cited ionization models comparing the measurements of the corona breakdown power threshold
presented in the literature with the results obtained with the numerical solution of the corona equation predicted.
For this, a code that solves the corona equation is developed in this thesis using the Finite Elements method.
It is shown that some models of ionization agree well with the measurements at certain pressures, but no
satisfactory model has been found in the literature that could predict accurately the measurements of the corona
power threshold in the whole pressure range.

Finally, within the framework of the thesis, the analysis of all these problems resulted in the design, manu-
facturing and experimental testing of a new SMA-like coaxial connector, capable of withstanding much higher
input powers than similar devices of previous generations. The conception of this Power Sub-Miniature (PSM)
connector has been developed during this thesis, giving rise to the appearance of a new coaxial connector whose
power-handling capabilities are similar to the ones of a TNC, but with a considerable mass and size reduction.

1.5 Thesis outline

It is always useful to start the analysis of multipactor with the parallel-plate geometry, where the electric field
of the fundamental mode, Transverse Electromagnetic (TEM) mode, is constant along the space between the
plates. This fact simplifies enormously the study of the multipactor discharge since, in this case, the motion
of an electron can be calculated analytically. The study of multipactor under the parallel-plate approximation
can be useful for some devices when one of the dimensions is much larger than the others; for example, within
rectangular waveguides, where the height is much smaller than the width, or within the irises of corrugated
filters where the electric field is homogeneous far from the borders.

In the manufacturing process of more complex devices like in coaxial connectors, small gaps may ap-
pear due to mechanical tolerances like, for instance, in the male-female interface or in the cable-entry of the
connector. If the gaps are small enough, the electric field profile is quite homogeneous and the multipactor
withstanding capabilities of the device can also be studied applying the parallel-plate model. The analysis of
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the multipactor discharge for parallel-plate geometries is studied in Chapter 2, which will be useful to under-
stand the analysis of small gaps where the electric field can be approximated by a homogeneous profile in the
development of the design of the PSM.

In Chapter 3 a simple and novel model to evaluate analytically the radiated power spectrum of a multipactor
discharge within a parallel-plate waveguide is presented. In a first approach, the discharge is modeled as a
uniform electric current radiating inside an infinite parallel-plate waveguide region, the far electric and magnetic
fields are calculated and analytical integration of the Poynting vector associated to the radiated fields for each
harmonic of the current is found. The results are compared with the ones obtained when using the general
frequency domain Green function of the problem applying the image series approach, showing an excellent
agreement between the results obtained with both methods.

In order to detect the presence of multipactor some experimental methods have been proposed in the lit-
erature, like the third harmonic detection technique [Udiljak 2003], which proposes the search of the third
harmonic of the radiated power spectrum of the electron cloud current to witness the presence of the discharge.
As it will be shown in Chapter 3, the intensity of the radiated power spectrum depends on the number of elec-
trons involved in the discharge, and the detection is supposed to take place when the saturation is reached.
Therefore, the saturation stage of multipactor is considered of interest since it can guide towards a criterion to
assess the breakdown onset. In Chapter 5 the equations of motion of the electron cloud formed by the discharge
are calculated taking into account the space charge effects. The saturation is identified by the interaction of
the electron cloud with its image charge through the plates. The stability of the electron population growth
is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above
the threshold onset are identified. It will be shown that the impact energy in the collision against the metal
plates decreases during the electron population growth due to the attraction of the electron sheet by the image
through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over
point the electron surface density tends to a constant value. When the stability is broken before reaching the
first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this
case, an expression to calculate the maximum electron surface charge density is found whose predictions agree
with the simulations when the voltage is not too high.

In Chapter 4 a very efficient globally convergent algorithm to calculate the roots of the cross-product of
Bessel functions and of their derivatives is developed. The numerical calculation of these roots is needed
when finding the radiated power spectrum of a multipactor discharge within a coaxial line, therefore a robust
algorithm to find these roots will accelerate noticeably the evaluation of the radiated power produced by a
multipactor current for coaxial geometries.

The comparison of three ionization rate models found in the literature will be analyzed in Chapter 6 in
the light of the simulations of the corona breakdown power threshold obtained for different microwave devices.
Initially, the corona withstanding capabilities of a parallel-plate waveguide are studied; later on, the rectangular,
circular and coaxial waveguides are analyzed with the Finite Elements code developed; and finally, the corona
breakdown power of a rectangular cavity and a monopole antenna are presented. The simulations have been
obtained in every case with the three different ionization models, showing noticeable discrepancies between
them, due to the highly nonlinear character of the corona equation.

Finally, within the framework of the ESA contract No. 20967/07/NL/GLC “High power SMA connector”,
Chapter 7 shows the steps followed in the development of the PSM connector, which has potential applications
in space telecom missions because of their light weight, small size and high power withstanding capabilities.
The analysis of multipactor and corona breakdown of the connector will be presented together with the steps
followed during the design of the PSM for the optimization of its microwave breakdown withstanding capabil-
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ities. The experimental values of the corona and multipactor power threshold will be shown and its comparison
with the predictions will be analyzed. The result was the manufacturing of a coaxial connector approximately
50% lighter than the TNC but with similar high power withstanding capabilities.

1.6 Original contributions

The primary original contributions developed in this thesis are summarized in what follows.

• Chapter 2, Section 2.5, together with the analysis depicted in Appendix A show the general conditions
under which the returning of an electron to the initial plate for multipactor breakdown within a parallel-
plate waveguide is produced.

• Chapter 3 shows an analytical formula to predict the radiated power spectrum produced by a multipactor
discharge within a parallel-plate waveguide for the “effective electron” model, i.e., without taking into
account space charge effects.

• Chapter 4 describes a globally convergent algorithm that calculates a large number of roots of the cross-
product of Bessel functions and of their derivatives. This algorithm can accelerate noticeably the calcu-
lation of the radiated power spectrum produced by a multipactor discharge within a coaxial waveguide.

• Chapter 5 solves the equations of motion of a multipactor electron cloud in a parallel-plate waveguide
for the mono-energetic model (Sombrin’s model) taking into account space charge effects. For the first
time, multipactor steady-state is predicted by the analytical equations of motion of the electron cloud by
its interaction with the image charge through the plates. The mechanisms of multipactor saturation are
described and an analytical expression for the maximum surface charge density for one of the mecha-
nisms is presented.

• Chapter 6 the comparison of the corona power threshold obtained with different ionization rate models
is shown. The corona breakdown is solved with an in-house Finite Elements code, showing noticeable
discrepancies between the results obtained with the different ionization models and comparing the pre-
dictions with measurements when it was possible.

Chapter 7 shows the steps followed in the design of a new high power SMA-like coaxial connector, the
Power Sub-miniature (PSM) connector. The PSM has been manufactured and tested, exhibiting excellent
high power withstanding capabilities and with similar dimensions as the SMA connector.
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2.1 Introduction

The first studies about electrical discharges at high frequencies and low pressures were made by Camille and
Henri Gutton (father and son) and published in 1928 [Gutton 1928]. However, the origin of the name multi-
pactor dates back to the first works made by Philo Taylor Farnsworth where the author developed a discharge
tube to reproduce images taking advantage of the produced electronic avalanche leading to the advent of the
future television [Farnsworth 1934]. Nowadays the opposite is searched, that is to say, to avoid the avalanche to
prevent the harmful consequences that the discharge creates in the electromagnetic devices on board of space
satellites.

In this chapter the multipactor susceptibility chart for the classical resonance theory is going to be calculated
for a parallel-plate waveguide at a given frequency, f , gap distance between plates, d, and applied voltage, VRF .
To do so we need to study the conditions under which multipactor can occur. Basically, we will see that two
conditions must be satisfied: the resonant condition that predicts the synchronization between the motion of the
electrons and the phase change of the RF field, and the impact energy against the plates being able to release a
bigger number of electrons than originally, named secondary electrons.

2.2 Classical multipactor resonance conditions

The Multipactor phenomenon can be described as an electron avalanche whose electrons resonate with the
electromagnetic field propagating through the waveguide. To describe the process in the parallel-plate wave-
guide we can imagine an initial electron leaving one of the plates with initial velocity v0. This may occur, for
instance, due to the impact of some electron -coming from the outer space that may traverse one of the walls of
the waveguide- against the considered plate releasing a primary electron. The electron coming from the outer
space traversing the walls of the device can be considered as a primary electron as well.
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When the primary electron is accelerated towards the opposite plate by the electric field, one or more
secondary electrons may be released if the primary electron reaches the opposite plate with a kinetic energy
above a threshold value called first cross-over point, which will be described later. The released secondary
electrons can act later as primary electrons, too, being potentially able to release other secondary electrons on
the plate that the primary electron left. This will only happen if the electric field has different polarity, but the
same value, with respect to the one it had when the primary electrons left the plate, just in the instant when
the secondary electrons are released. If this occurs, a self-sustained process is maintained and every secondary
electron is released just when the electric field inverts its polarity, producing an exponential growth of the
electron population causing the multipactor discharge. In Fig. 2.1 the motion of the electrons that leads to the
multipactor onset is shown for a special case where the amount of electrons released by secondary emission is
exactly two per impacting electron. Note that, as the electron has negative charge, the first electron accelerates
towards the opposite plate when the electric field is negative. There is a short period of time in the beginning of
the motion for which the electric field is positive, but the initial velocity of the electron makes the continuous
traveling towards the top plate possible. The electron collides against the plate and two other electrons are
released by the impact that travel, in turn, towards the initial plate with the same initial velocity as the first
electron. Both secondary electrons impact against the bottom plate and four secondary electrons are released,
and so on. Observe that the phase of the electric field when the secondary electrons are released is exactly
π-shifted with respect to the previous collision.

It must be mentioned that other kind of resonances can occur like, for instance, let us imagine many primary
electrons returning to the initial plate entailing usually a low impact energy with the subsequent decrease of the
electron population. If the remaining electrons impact against the opposite plate with such an energy that the
SEY compensates the decrease of the electron population of the first impact, multipactor can also occur when
the product of both SEY is larger than unity. Moreover, the polarity of the electric field when the remaining
electrons after the first impact reach the opposite plate must be the same in reverse as when the primary electrons
were launched [Kishek 2012], like in the classical multipactor resonance. Another type of resonance occurs
when the two-way transit time of the electrons, traveling between the plates, is an integer number of RF periods,
not necessarily implying the same time for the primary electron to reach the opposite plate as for the secondary
traveling in the opposite direction to reach the initial one. The most general case of resonance in case that their
flight times are different is named complex modes [Buyanova 2006] where two particular cases were studied
previously [Gilardini 1992, Kryazhev 2002] named hybrid and polyphase resonances. The rigorous study of
these kind of resonances would extend enormously the discussion of the different conditions that may lead to a
multipactor discharge, which is out of the scope of this chapter, but it must be remarked that the discrepancies
between simulations and measurements that have been observed along the multipactor analysis development
have been explained by the presence of the complex modes, as it will be commented at the end of this chapter.

In order to study the classical multipactor resonance for parallel-plate geometries we firstly assume that
only the fundamental mode of the waveguide is going to be excited (TEM). Secondly, we assume the motion
of the electron to be in one dimension, that is to say, we neglect the magnetic field and consider the motion of
the electron along the z axis which crosses perpendicularly both plates, separated by a distance d. The voltage
applied between the plates, VRF , leads to an electric field which is constant along the z-axis and equal the
voltage divided by the distance, d, (see Fig. 2.2).

We are going to assume that the time between the instant when the primary electron impacts against one
plate and the instant when the secondary electrons are released can be neglected. This can be justified taking
into account that the real time in the releasing process is around five orders of magnitude smaller than the period
of the RF signal. Nevertheless, the growth of the electron population in the waveguides produced by multipactor
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Figure 2.1: Example of the upcoming multipactor discharge for a parallel-plate waveguide repre-
sented by the position of the electron (solid) and the electric field (dashed) vs. the time normal-
ized to the RF period of the signal. The initial velocity is v0 ≃ 1.73 · 106 m/s and the volt-
age VRF = 19.64 V. The phase of the electric field when the electron leaves the initial plate is
α = 1.00388 rad.
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E =
d

cos(  t+α)ω z
d

x

yz

RF
V

RFV

Figure 2.2: The electric field of the fundamental mode of an unbounded parallel-plate waveguide is
uniform across the gap between the plates.
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is noticeable in a few periods what justifies this approximation. To guarantee the existence of the resonance
condition along time, the stability of the resonance is going to be analyzed later in order to see whether a small
delay in the transit from the instant when the primary electron impacts against the plate and the one when the
secondaries are released, affects the resonance condition or not. However, we will leave this point for the end.

If we neglect the presence of the magnetic field and we write the electric field as E = VRF

d cos(ωt)ẑ in
the region between plates, where ω = 2πf is the angular frequency of the RF field, we can write the Lorentz
equation to find the acceleration that the particle is subject to as follows:

mea = −eE

where me and −e are the mass and the charge of the electron, respectively. The equation of motion of the
electron along the z-axis is, thus:

a =
−e

me

VRF

d
cos(ωt)ẑ. (2.1)

In order to find the dependency of the velocity, vz , and the position of the electron, z′(t), on time within the
parallel-plate waveguide we must set the initial conditions. If we call tα the instant when the electron leaves
the plate on the bottom, placed at z′ = 0, ωtα is the phase of the electric field at that instant. If we assume that
the electron leaves the bottom plate with velocity v0 the following initial conditions apply:

α = ωtα

ż′(tα) ≡ vz(tα) = v0

z′(tα) ≡ z′0 = 0

where α represents the phase of the electric field when the electron leaves the initial plate towards the opposite.
Thus, velocity and position can be written as follows:

vz(t) =v0 +
eVRF

meωd
(sinα− sinωt), (2.2a)

z′(t) =
v0
ω
(ωt− α) +

eVRF

meω2d
(cosωt− cosα+ (ωt− α) sinα). (2.2b)

As it will be explained later, it is natural to refer to the velocity of an electron by its corresponding kinetic
energy, usually defined in eV (electron-volt). An electron-volt is the electron charge times one Joule (1 eV =

1.6 · 10−19 J). Therefore, the relation between “velocity” (energy) in eV and velocity in (m/s) is the following:

v [eV] =
1

2e
mev

2 [m/s].

Equations of motion (2.2a) and (2.2b) represent the position and velocity of a single electron with respect to
time. Therefore, the study that follows to know whether multipactor may occur is based on what has been called
the “effective electron” model, where the equation of motion of a single electron does not take into account the
effect of the charge of the rest of electrons within the parallel-plate waveguide on it. The space charge effects
will be considered in Chapter 5, where a more realistic equation of motion for the electrons will be found by
taking into account the influence of the charge density of the electron cloud on its motion.

As it was explained in the introduction, one of the conditions that must apply for multipactor to occur is
the synchronicity between the motion of the electrons and the phase evolution of the RF field in the waveguide.
For the classical resonance theory the electrons leaving the initial plate have to arrive to the opposite one just
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when the RF field has the same value but opposite sign with respect to the one when they abandoned the first
plate. This guarantees that all the secondary electrons are released with the same initial conditions from any
plate and the electron avalanche is developed.

To express mathematically this resonance condition we set the instant ti of the impact against the opposite
plate to be such that the following expression is satisfied:

ωti = α+Nπ, (2.3)

where N is an integer number that represents the number of half-cycles passed since the electron leaves the
initial plate till it reaches the opposite plate, and it is named order of multipactor. In Fig. 2.3 several examples
for the trajectories of an electron for different orders of multipactor are shown starting from tα. Note that N is
an odd integer for the phase of the electric field when the electron reaches the opposite plate to be Nπ-shifted
with respect to that one when the electron left the plate. Note also that the total time for the electron to reach
the opposite plate and return to the initial one is N times the RF period of the signal.

If we apply the resonant condition to (2.2b) setting d as the position of the electron at the instant of impact,
then we get

d =
Nπv0
ω

+
eVRF

meω2d
[Nπ sinα− 2 cosα]. (2.4)

Thus, we can isolate the phase of resonance as function of the frequency, distance and RF voltage applying the
property

a sinx+ b cos x =
√

a2 + b2 sin(x+ λ)

where

λ = arctan
(

b
a

)
+

{
0 if a ≥ 0,

π if a < 0.

Therefore, the phase of resonance can be considered as function of v0 and VRF , and be written as follows:

α(1)
res (v0, VRF ) = −λ+ arcsin

{
meωd

eVRFR
(ωd−Nπv0)

}
(2.6a)

α(2)
res (v0, VRF ) = (π−λ)− arcsin

{
meωd

eVRFR
(ωd−Nπv0)

}
(2.6b)

where R =
√

(Nπ)2 + 4 and λ = − arctan
(

2
Nπ

)
.

The two solutions correspond to the first branch

([
α
(1)
res + λ

]
∈ [−π/2, π/2]

)
and the second branch

([
α
(2)
res + λ

]
∈ [π/2, 3π/2]

)
of the arcsin function, respectively. It must be remarked that the condition ap-

plied to find these phases only represents part of the actual resonance condition since two cases may arise that
do not represent the condition that we are searching. Namely, in Fig. 2.4 the motion of an electron is shown
for two different phases of resonance that, although they predict impact against the opposite plate at ti = α+π

ω ,
they imply impacts against the opposite or the initial plate prior to the expected instant. Therefore, the study of
the electron returning to the initial plate or impacting against the opposite plate prior to the requested instant
will be studied later.

For the moment, let us assume that these two cases will arise under exceptional conditions and let us study
the second condition for multipactor to occur: The impact energy of the electron against the opposite plate
must be high enough as to release some electrons in the collision (secondary electrons). It is known that every
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(a) N = 1, f = 1 GHz.
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(b) N = 3, f = 2 GHz.
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(c) N = 5, f = 4 GHz.
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(d) N = 7, f = 5 GHz.

Figure 2.3: Position of the electron (solid line) and electric field (dashed line) vs. time over RF
period in a parallel-plate waveguide (d = 1 mm).
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Figure 2.4: Theoretical trajectory of an electron for d = 1 mm and f = 0.5 GHz if the plates did
not exist. The solid line is obtained with v0 = 0 eV and VRF = 60 V, (α = 3.45429 rad) and the
dashed line with v0 = 3 eV and VRF = 55 V, (α = 0.55963 rad).
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material, regardless whether it is dielectric or metal, presents a secondary electron yield (SEY) that defines the
mean number of emitted secondary electrons per primary impacting electron as function of the impact energy
and the impact angle with respect to the surface normal at the impact point.

There exist two interesting points associated to the SEY curve corresponding to the beginning and the end
of the range of energies for which the secondary electron yield is above the unity. These points are respectively
named first and second cross-over point, E1 and E2. The SEY curve presents an universal shape for every
material although the measurements at very high energies seem to differ from this shape [Dekker 1957]. Mea-
suring both cross-over points, the maximum SEY and the impact energy of the primary electrons for which
the yield is maximum, allows us to describe the secondary electron emission properties of any material. Other
attempts to describe the secondary emission properties at higher energies have been made where more param-
eters are needed [Furman 2003]. In any case, the low energy range is the most interesting region of the SEY
since the multipactor breakdown threshold occurs at the low impact energy region of the SEY and this is the
critical value that limits the maximum input power that the microwave device can withstand ensuring no risk
of multipactor discharge. The SEY curve of a sample of Gold has been obtained with the measurements of
the SEY parameters and is represented in Fig. 2.5 using Vaughan’s development [Vaughan 1989]. The author
establishes the dependency of the SEY curve on the angle of incidence via an empirical factor, ks, which stands
for the smoothness of the surface of the material and that ranges from 0 to 2. A value of ks = 1.5 has been
chosen in the presented plot of the SEY curve for the sample of Gold.

It must be mentioned that the SEY curve is found by fitting the experimental values like the first and second
cross-over points together with the impact energy for which the SEY is maximum and its value, in three regions
of the spectrum of the collision energy ensuring the continuity of the function at the interface of the different
zones. However, the semi-empirical approach presented in [Vaughan 1989] does not ensure the continuity of
the first derivative of the secondary electron yield function at the bounds of all the regions. This is the reason
why the SEY curve for the normal impact angle shown in Fig. 2.5 exhibits a non-differentiable point

Thus, the electron avalanche may occur, together with the resonant condition, if the impact energy of the
electrons belong to the interval between the points E1 and E2. The cross-over points are often expressed in eV,
this is the reason why the velocity is usually represented by the corresponding kinetic energy of an electron as
it was explained before.

Therefore, the second condition to be considered is the electron impact energy together with the resonance
condition (2.3) to know whether multipactor can occur. Let us name v1 the velocity associated to the first
cross-over point of a material subject to the impact of electrons and vi the impact velocity of the electron on
the metal plates. We can insert the resonance condition and vi into (2.2a) to write:

vi = v0 +
2eVRF

meωd
sin
{
α(a)
res(v0, VRF )

}
, (a) = 1, 2. (2.7)

As the values of the initial velocity, v0, are typically smaller than the impact velocity, vi, we can avoid cases as
the one represented by the solid line in Fig. 2.4 restricting the search of the phases of resonance to the interval
α
(a)
res ∈ [0, π] in order to ensure that sinα(a)

res > 0 and therefore, vi > v0, in (2.7).
Inserting (2.6) into (2.7) we obtain:

vi =v0 + 2vω sin

(
arcsin

[
(ωd−Nπv0)

vωR

]
− λ

)
(2.8a)

vi =v0 + 2vω sin

(
(π − λ)− arcsin

[
(ωd−Nπv0)

vωR

])
(2.8b)
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Figure 2.5: SEY curve obtained for two different angles of incidence. The parameters of the curve
are E1 = 20 eV, E2 = 5016 eV, Emax = 275 eV, δmax = 2.54 .



2.2. Classical multipactor resonance conditions 21

for α(1)
res and α

(2)
res, respectively, where

vω ≡ eVRF

meωd
. (2.9)

If we use the trigonometric relations

sin(η ± µ) = sin η cosµ± cos η sinµ

cos(arcsin x) =
√
1− x2

the expressions (2.8) boil down to

(vi − v0) = 2vω∆
± (2.10)

where ± corresponds to α
(12)
res, respectively, and

∆± =


(ωd−Nπv0)

vωR
cos λ± | sinλ|

√

1−
(
(ωd−Nπv0)

vωR

)2

 ,

where it has been used sinλ < 0, since λ ∈ [−π/2, 0].
Although (2.10) may be used for general purposes, we are mainly interested in cases where the initial

velocity is smaller than the impact velocity. Therefore, taking into account that vω > 0 and cos λ > 0, we can
find the phase of resonance that must be applying depending on the sign of ∆± in order to ensure that the LHS
of (2.10) is positive. Let us rewrite (2.10) as follows:

R

2
(vi − v0)− (ωd−Nπv0) cos λ = ±| sinλ|

√
(vωR)2 − (ωd−Nπv0)2. (2.11)

Besides the sign ± the RHS is strictly positive, therefore, the phase of resonance corresponds to α
(1)
res when

the LHS is positive and to α
(2)
res when it is negative. The condition to know which phase of resonance applies

can be further developed considering the trigonometric properties:

cos(arctan x) =
1√

1 + x2
, x ∈ [0,∞)

sin(arctan x) =
x√

1 + x2
, x ∈ [0,∞)

which allows us to write cos λ = Nπ
R and sinλ = −2

R . Finding the value of ωd that defines the change of sign
of (2.11) allows us to define the phase of resonance according to the sign of ∆±:

{
α(1)
res if 0 ≤ (fd) ≤ vN

α(2)
res if (fd) ≥ vN

(2.12a)

(2.12b)

where

vN =
R2vi +D2v0

4π2N
.

and D =
√

(Nπ)2 − 4.
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Coming back to (2.10) we can isolate VRF and write the multipactor breakdown voltage as function of the
order of multipactor, N , the initial velocity, v0, the impact velocity, vi, and the frequency-gap product fd:

VRF (v0; vi, ωd,N) =

=
meωd

2e

√
R2

4
(vi − v0)2 + (ωd−Nπv0)2 −Nπ(vi − v0)(ωd−Nπv0) (2.13)

provided that the factor inside the square root is positive, what implies that the phase of resonance is real-valued.
To ensure this, the absolute value of the argument of arcsin in (2.6) must be lower than one, what is equivalent
to write: 




0 ≤(ωd−Nπv0)

vωR
≤ 1 if (fd) ≥ N

2
v0

0 ≥(ωd−Nπv0)

vωR
≥ −1 if (fd) ≤ N

2
v0.





These two inequalities define the values of the RF voltage, VRF , for which the phase of resonance is real-
valued as function of the fd product. It can be proved that both conditions are equivalent to the following
one:

VRF ≥ meωd |ωd−Nπv0|
eR

. (2.14)

2.3 Positive relative impact velocity condition

If we call (vi − v0) relative impact velocity, we must ensure that this quantity is positive in order to avoid
the consideration of an impact against the top plate at the instant provided by the resonance condition (2.3)
entailing a negative velocity. This would imply an impact like the one represented by the solid line in Fig. 2.4
or a collision energy lower than v0, which, in practice, is lower than the first cross-over point [Semenov 2005],
and none of these cases is of our interest for the study of multipactor. This condition is equivalent to impose
that sinα(a)

res > 0 (see (2.8)), what can be rewritten as follows:

α(1)
res : 0 ≤ arcsin

{
meωd

eVRFR
(ωd−Nπv0)

}
− λ ≤ π

2

α(2)
res :

π

2
≤ (π − λ)− arcsin

{
meωd

eVRFR
(ωd−Nπv0)

}
≤ π.

In order to find the RF voltage that satisfies the conditions above, we have to recall (2.12) and be careful with
the phase of resonance that applies depending on the value of the frequency-gap product taking into account
that vN > N/2 · v0. It can be proved that the above conditions are equivalent to

VRF ≥ meωd |ωd−Nπv0|
2e

if (fd) ≤ N

2
v0, (2.15a)

VRF ≥ meωd(ωd−Nπv0)

eNπ
if vN ≥ (fd) ≥ N

2
v0, (2.15b)

meωd(ωd−Nπv0)

2e
≥ VRF ≥ meωd(ωd−Nπv0)

eNπ
if (fd) ≥ vN . (2.15c)
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To plot the multipactor breakdown curves taking into account the restriction that the relative velocity at
the instant of impact must be positive, the calculation of the boundaries of the fd product is needed. Inserting
(2.13) into (2.15), the values of the frequency-gap product for which the phase of resonance does not imply
neither an impact against the opposite plate prior to the expected one, nor an impact energy lower than the
initial one, can be expressed as follows:

0 ≤ fd ≤ N

4
(vi + v0) (2.16a)

ṽN ≤ fd (2.16b)

where

ṽN =
N
(
R2vi +

(
D2 − 8

)
v0

)

4D2
.

Fig. 2.6 shows the gap in the fd product for which the multipactor breakdown curves at each impact energy
does not respect that the relative velocity at impact time must be positive, represented by the dashed region,
which becomes larger as the impact energy increases. Considering the results obtained in (2.14) together with
(2.15), and given the initial and impact velocities and the order of multipactor, the domain of validity for the
RF voltage can be plotted vs. the frequency-gap product as in Fig. 2.7. The white region represents the values
of VRF and fd for which the phase of resonance is not real-valued, in contrast with the dashed and gray zones,
which show the areas where the sinus of the phase of resonance is positive or negative, respectively. The
gray zone represents the area where the electron may impact against the top plate prior to the instant expected
according to the resonance condition (as presented by the solid line in Fig. 2.4); and the dashed area represents
the region where this cannot occur, which is of our interest. Note the absence of restriction in the value of the
RF voltage to ensure that the electron will not impact against the opposite plate prior to the time predicted by
(2.3) at fd = N/2 · v0, splitting the domain into two parts according to this value of the fd product. On the
other hand, the region where the electron can overcome the opposite plate before expected according to (2.3) is
bigger in the low fd product region as this is more likely to occur when the distance between the plates (or the
frequency) decreases. On the opposite corner of the plot there is another region that predicts a negative sinus
for the phase of resonance at high values of the fd product and RF voltages due to the periodic character of the
arcsinus function around zero established by the condition fd = N/2 · v0. The plot has been done for a fixed
impact energy, vi = 30 eV, since the domain of validity changes with it, and the multipactor breakdown voltage
predicted by (2.13) has also been represented in Fig. 2.7. Note how the gap in the multipactor breakdown curve
is produced due to the violation of the condition that guarantees that the impact against the opposite plate is
produced with positive relative velocity. The gap for order of multipactor N = 3 is much smaller than for
N = 1 because the range of phases of resonance that imply that the electron impacts against the opposite
plate before the expected instant according to the resonance condition, is narrower. Therefore, the restriction
of positive relative velocity at impact time is more difficult to be violated for higher orders of multipactor.

Usually, the chosen value of the initial velocity to reproduce the multipactor susceptibility chart is small, be-
tween 0eV and 10eV, within the energy range where the number of secondary electrons is maximum
[Schreiber 2002]. Nevertheless, the tail in the energy spectrum of the secondary electrons shows that few
electrons with high initial velocity, till 50 eV in some cases, are present, too [Furman 2003]. In Fig. 2.8 the
curves of the multipactor breakdown voltage for different values of vi have been represented for v0 = 1 eV,
where the plots without and with restriction, regarding the positive relative velocity at impact time, show no-
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Figure 2.6: Gap of the fd product vs. the impact velocity vi in the multipactor susceptibility chart
produced by the constraint of positive relative velocity at impact time; v0 = 1 eV.
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Figure 2.7: Domain of validity for αres without taking into account the restriction of the returning
to the initial plate before reaching the opposite one; vi = 30 eV.
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ticeably differences for order of multipactor N = 1, and slight differences for N > 1, as it was commented
before regarding the gaps in Fig. 2.7.

Regarding Fig. 2.8a it must be mentioned that, above 1 GHz ·mm, the multipactor voltage threshold is
found in curves associated to different values of vi for different values of the fd product, crossing each other.
This implies that the multipactor threshold is not always defined by the curve obtained for the lowest value of
vi, i.e., the first cross-over point of the SEY curve of the material that the plates are made of. Furthermore, this
effect is more visible as the order of multipactor increases. Only in the region of low fd products the multipactor
voltage threshold can be identified with the curve obtained with the lowest vi possible. This connects with the
fact that, as Fig. 2.8b shows, the gap in the fd product seems to decrease as the impact energy increases (in
this case it is more visible for order of multipactor one) whereas Fig. 2.6 showed that this gap grows as the
impact energy increases. The perception of the decrease of the gap is due to the fact that the curves for different
impact energies cross each other. Therefore, the gap for N = 1 and vi = 100 eV in Fig. 2.8b seems to be
smaller than for lower vi, but actually the apparent small gap is produced between the curves for vi = 100 eV

and vi = 30 eV. The gap for N = 3 and N = 5 is less visible in Fig. 2.8b because the distance between
N/4 · (vi + v0) and ṽN , expressed by (2.16), becomes shorter as the order of multipactor increases. At the end,
the overall effect of considering the constraint of positive relative velocity at impact time is that the envelope
of the multipactor threshold in the susceptibility chart is modified.

2.4 Stability condition

Another property that must be verified regarding the resonance is its stability. Let us imagine that the motion of
the electron starts near a certain phase of the RF signal for which the resonance condition applies. To consider
a self-sustained resonance, the difference between the impact and launch phase (between ωti and α) must
converge to the quantity predicted by (2.3) with increasing time. If this does not occur, the motion is to be said
unstable, since the synchronicity between the electron’s motion and the time change of the RF signal breaks
as time advances. The multipactor discharge onset can only be explained by a stable resonant motion, because
the probability of considering an electron starting to travel from one plate to the opposite at the exact phase of
resonance αres is negligible. Therefore, only for values of the initial phase that imply the convergence to αres

can guarantee the permanence of the resonance along time and, thus, the multipactor breakdown onset.
In order to assess whether the resonance is stable or not, we can make use of the stability study presented

in [Riyopoulos 1995], very similar to the general theory of stability of Lyapunov exponents described in [Lya-
punov 1992]. The relation between launch and impact phase, φn and φn+1, respectively, can be defined by an
implicit function using the equation of position of the electron (2.2b) setting z′ = d

F (φn+1, φn; v0, f, d, VRF ) ≡ d− v0(φn+1 − φn)

2πf
+

− eVRF

me4π2f2d

(
cosφn+1 − cosφn + (φn+1 − φn) sin φn

)
, (2.17)

what allows us to define the impact phase, φn+1, as a function of the launch phase, φn

φn+1 = f̃(φn; v0, f, d, VRF ). (2.18)

We can develop (2.18) into a Taylor series up to the first order around αres, which is the fixed phase of reso-



2.4. Stability condition 27

1E-3 0.01 0.1 1 10 20

10
-1

10
0

10
1

10
2

10
3

10
4

10
	

(a) No restriction.

1E-3 0.01 0.1 1 10 20

10
-1

10
0

10
1

10
2

10
3

10
4

10
�

(b) Restriction sinα > 0.

Figure 2.8: Multipactor breakdown voltage vs. fd obtained with (2.13). The initial velocity is
v0 = 1 eV.
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nance, obtaining:

φn+1 ≃ f̃(αres; v0, f, d, VRF ) +
∂f̃

∂φn

∣∣∣∣∣
αres

(φn − αres).

As αres is periodic, the expression αres+Nπ = f̃(αres; v0, f, d, VRF ) is satisfied. If we subtract the first term
from the RHS using the last expression and taking mod(Nπ), we get

φn+1 − αres ≃
∂f̃

∂φn

∣∣∣∣∣
αres

(φn − αres).

Therefore, the partial derivative of the function f̃ with respect to the launch phase, φn, is named stability factor,
G, since it gives the deviation between the initial and final phases with respect to the fixed phase of resonance,
αres, as it is shown next

φn+1 − αres ≃ G(φn − αres) → G =
φn+1 − αres

φn − αres
.

As the function f̃ defines an implicit relation between the launch and impact phases the stability factor can be
calculated using (2.17)

G ≡ ∂F/∂φn

∂F/∂φn+1

∣∣∣∣
φn=αres;φn+1=αres+Nπ

. (2.19)

When the absolute value of the stability factor is below unity the distance between the consecutive launch
phases and the fixed phase of resonance decreases, yielding a stable resonant motion; the opposite case occurs
if the absolute value of G lies above unity. Therefore, the stability factor assesses whether the synchronicity
of the motion with the RF field is guaranteed forever (|G| < 1) or whether, on the contrary, the impact phase
differs from the one fixed by the resonant condition more and more after each impact (|G| > 1):

|G| < 1 (Stable resonance)

|G| > 1 (Unstable resonance)

Substituting φn and φn+1 by αs and αs+Nπ, respectively, in (2.17) and this into (2.19) applying the stable
resonance inequality, the condition of the stability factor being below unity can be rewritten as

∣∣∣∣v0 −
eVRF

me2πfd
Nπ cosαs

∣∣∣∣ <
∣∣∣∣v0 +

2eVRF

me2πfd
sinαs

∣∣∣∣

where αs stands for stable phase of resonance. The values of αs that satisfy this inequality represent the initial
phases that, impact after impact, will converge to the fixed phase of resonance αres. This inequality can be
rewritten as follows

|Vω −Nπ cosαs| < |Vω + 2 sinαs|

where it has been defined the variable

Vω =
v0
vω

=
v0me2πfd

eVRF
. (2.20)

The variable Vω represents the normalized initial velocity with respect to the microwave velocity, vω .
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Figure 2.9: Domain of stability provided by (2.21) for N = 1.

Taking into account the restriction of positive velocity together with the stability condition, the valid range
of the phase of resonance to plot the multipactor susceptibility chart can be written as





ξ − arcsin

(
2Vω

R

)
<αs < π − ξ if Vω ≤ Nπ

2

0 <αs < π − ξ if Vω ≥ Nπ

2





(2.21a)

(2.21b)

where ξ = arctan
(
Nπ
2

)
.

The domain of stability for order of multipactor N = 1 is represented by the dashed area in Fig. 2.9, where
it has been represented within the region defined by the positive relative velocity at impact time, i.e., α ∈ [0, π].
The origin of the restrictions reproduced in the multipactor susceptibility chart in Fig. 2.10 with respect to the
one shown in Fig. 2.8 is twofold. The stability constraint eliminates the very low values of the fd product, but
the other extreme is also interrupted by the condition of positive relative velocity at impact time.

Regarding the analysis of the stability, if we substitute (2.13) into (2.20) it can be proved that Vω is always
smaller than Nπ/2 for the typical values of v0. Therefore, the first condition (2.21a) for the stability restriction
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applies for any value of the frequency-gap product. As (2.12a) predicts, for fd < vN the phase of resonance
is α

(1)
res, and it can be proved that the value of this phase obtained by (2.6a) lies below the range defined by

the stability condition, (2.21a), when the fd product is too small. Above a certain value of the frequency-gap
product the phase of resonance, α(1)

res, lies within the range of validity imposed by the stability condition until
the restriction of the positive relative velocity applies. Later, there is a gap in the value of the fd product defined
by (2.16) and, since ṽN > vN , the phase of resonance outside the prohibited region delimited by the positive
relative velocity condition is defined by α

(2)
res. However, all the values of the phase of resonance yielded by

(2.6b) lie above the range that guarantees the stability. This implies that the maximum value of the fd product
defining the region where multipactor of order N occurs is fd = N/4 · (vi + v0). Beyond this point, the
expression (2.13) predicts values of the multipactor voltage threshold that cross the predictions obtained for
bigger values of vi within the first part of the curves, when fd < ṽN .

Therefore, the right side of the envelope for each order N is delimited by the condition of positive relative
velocity at impact time. The left side boundary of each region is provided, however, by the stability condition,
and the bottom and top boundaries are provided by the first and second cross-over point, respectively. The
multipactor susceptibility chart is shown in Fig. 2.10 for an initial velocity of v0 = 1 eV, where the boundaries
come closer to each other as the order of multipactor grows, what results in the narrowing of the zones where
the discharge occurs as the order increases, almost depicting a single line for high orders of resonance.

2.5 Returning condition

It has not been checked yet that the multipactor susceptibility chart yields with values of the RF voltage and
the fd product for which the electron does not return to the initial plate before arriving to the opposite one.
The goal of this section is, analogously to the analysis of the stability condition, to find the values of the launch
phase ensuring that the electron does not return to the initial plate. As it will be shown later, the solution that
is going to be found gives us the maximum launch phase that induces the return of the electron to the initial
plate, what implies that for smaller values the return also occurs. Beyond the maximum launch phase that is
to be found, the electron will reach the opposite plate without colliding with the initial one. The limiting case
corresponds to the return of the electron to the initial plate with zero velocity, which is the condition that we are
going to consider in order to find that maximum. The returning limit has already been analyzed in the literature
and some analytical approximations to the launch phase that makes the electron to return to the initial plate
with zero velocity have been given for very small values of the initial velocity [Semenov 2005].

Therefore, we have to solve the following system of equations to calculate the launch phase that makes the
RF field pull back the electron to the initial plate such that it reaches the origin with zero velocity and positive
acceleration (see Fig. 2.11):





z′ = 0

ż′ = 0

z̈′ > 0





(2.22a)

(2.22b)

(2.22c)

Here we only present the results, the detailed analysis of this system of equations is described in the Ap-
pendix A, whose solution is found at the end by searching the roots of a single function (A.17). The solution
of that function provides the returning initial phase, αR, which is the launch phase that induces the impact
of the electron against the initial plate with zero velocity. The impact against the initial plate is produced at
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Figure 2.10: Multipactor susceptibility chart taking into account sinα > 0 and the stability condi-
tion. The parameters are v0 = 1 eV, E1 = 30 eV, E2 = 1200 eV.
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Figure 2.11: Example of returning for fd = 1 GHz ·mm and v0 = 1 eV. Note that the origin
is represented at zero for all the launch phases whose values are αR = 0.0258557 rad (solid),
αR = 0.438889 rad (dashed) and αR = 0.796789 rad (dotted).
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the returning impact phase, φR, which can be calculated from the returning initial phase as it is shown in the
Appendix A. The results are presented in Fig. 2.12, where the returning initial and impact phases are plotted as
function of Vω . The gray zone represents the values of the launch phase that guarantee the non-returning of the
electron to the initial plate. The thin solid line represents the solution of (A.17) for the first branch defined by(
αR ∈

[−π
2 , π2

])
, which defines the values of the launch phase, α(1)

R , for which the electron will impact against

the initial plate with zero velocity at the impact phase, φ(1)
R , defined by the dashed line. For values of the initial

phase above α
(1)
R the electron cannot return, since they define the maximum launch phase able to induce the

impact of the electron against the initial plate as mentioned before.

However, there is a second branch solution of (A.17) for

(
α∈

[
π
2 ,

3π
2

])
, what results in the returning initial

phase α(2)
R represented by the thick solid line in Fig. 2.12. The electrons launched at the initial phase represented

by that line will collide against the initial plate at the returning impact phase φ
(2)
R , represented by the dashed-

dotted line, provided that they do not collide previously with the opposite plate. For values of the initial phase
above α

(2)
R the electrons that will not impact against the opposite plate will collide against the initial one with

negative velocity. As the initial phase increases exceeding the limit imposed by α
(2)
R , the electrons will collide

with the initial plate increasing the absolute value of the negative velocity at the impact.

Since the transit time from the beginning of the motion to the impact against the initial plate is represented

by the difference between
(
φ
(1)
R − α

(1)
R

)
, from Fig. 2.12 it can be inferred that the electron cannot reach the

opposite plate before colliding with the initial one satisfying the resonance condition (2.3). Even in the limit
for values of Vω ' 1.1 the difference of phases yields π, but it is still insufficient to allow the electron to impact
against the opposite plate satisfying the resonance condition. Furthermore, for values of Vω > 1.1, the returning
launch phase predicted by the solution of (2.22) lies below 0 rad, and we have already seen that for the classical
multipactor resonance condition the initial phase must be greater than zero to ensure that the velocity is positive
when colliding against the opposite plate. Therefore, we do not have to worry for the possibility that the study
of the returning limit could neglect the possibility of a classical multipactor resonance because the solution
provided by the returning limit is incompatible with the classical resonance condition.

We can see how the distance between the dashed-dotted and the thick solid lines in Fig. 2.12 is bigger than
the distance between the thin dashed and solid ones, therefore, the transit time from launch to impact is much
larger for the second branch solution of (A.17) than for the first one. This occurs because the values of the
initial phase belonging to the second branch induce a much higher acceleration in the beginning of the motion
of the electron, what pushes the electron further away from the birth plate. This implies that the electron needs
more time to return to the initial plate than when the initial phase lies within the first branch. However, the
solution of the second branch has not been taken into account when plotting the multipactor susceptibility chart
because the phases of resonance that belong to the second branch violate the positive relative velocity condition
at collision time on the opposite plate.

Note how in Fig. 2.12 the predicted maximum launch phase to induce the collision of the electron against
the initial plate decreases as the normalized initial velocity Vω augments. To understand this, observe that in
Fig. 2.11 the electron stays longer within the region between the plates prior to the returning, as the value of
Vω increases. As the initial velocity increases Vω does likewise, thus the RF field needs more time to accelerate
the electron such that it returns to the initial plate. This is only possible when the launch phase, αR, decreases
below zero, explaining why αR decreases when Vω grows. As Vω represents the relative initial velocity, v0,
with respect to the microwave velocity, vω , it is natural expecting that above a certain value of Vω the initial
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Figure 2.12: Solution of the returning limit. The variables α
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R are the two initial phases

for which the electron will impact against the initial plate with zero velocity at the impact phases
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velocity will be so high (or the field strength so low) that the force of the RF field will not be able to make
the electron return to the initial plate for any initial phase. In the Appendix A this limit has been found to be
located around V max

ω ≈ 1.26.

The differences between the multipactor susceptibility chart taking into account the stability and the return-
ing limit conditions can be seen in Fig. 2.13a. The dashed lines represent the multipactor onset region including
unstable phases of resonance but limited to the returning condition. This means that the dashed lines show the
regions for which the motion of the electron satisfies the resonance condition and the impact energy above the
first cross-over point ensuring that the electron does not return to the initial plate before reaching the opposite
one. Nevertheless, this case includes values of the phase of resonance that may lead to unstable resonant mo-
tions. On the contrary, the solid line represents the values of the RF voltage and the fd product for which the
resonance is stable but it is not guaranteed that the electron does not return to the initial plate before reaching
the opposite one.

It is interesting to note that the returning condition is less restrictive for low voltages than for high ones. This
can be understood if we remark that, for low voltages, Vω is larger than in the high voltage region. Therefore,
it is more likely to occur the return of the electron to the birth plate when the voltage applied is low because
the range of values of the launch phase that provoke the return of the electron to the birth plate enlarges as
Vω increases (see Fig. 2.12). The restriction of the returning limit predicts a smaller region for the multipactor
occurrence in the high-voltage region, however, it only modifies the left boundary of the multipactor chart
(see Fig. 2.13). On the right boundary of the envelope, the positive relative impact velocity condition until
fd = N/4 · (vi + v0) provides the vertical limit of the multipactor chart. Interestingly, the returning limit does
not seem to delimit the roof of the multipactor chart, as depicted by the dashed lines in Fig. 2.13a, though they
imply unstable phases of resonance. This was already pointed out in [Shemelin 1986], and it has been verified
that the values of the phase of resonance corresponding to the dashed lines above the upper limit, fixed by the
stability condition, lie within the non-returning area depicted in Fig. 2.12, what shows a clear difference in the
analysis of the returning limit done in other studies like in [Udiljak 2007].

2.6 Multipactor susceptibility chart

The envelope of the multipactor susceptibility chart considering the restrictions imposed by the returning limit
and the stability conditions represented in Fig. 2.13a is plotted in Fig. 2.13b. Comparing both figures it can be
seen that the envelope is mainly the same, except on the left side, which differs from the left boundary provided
by the stability condition shown in Fig. 2.13a. Indeed, the upper region of the left boundary of the envelope
narrows the multipactor susceptibility chart beyond the stability condition due to the returning limit restriction.

For higher orders of multipactor the returning limit does not impose any restriction to the envelope of the
multipactor susceptibility chart beyond the constraint provided by the stability condition (see Fig. 2.14a). The
multipactor voltage breakdown increases with the order of multipactor thus the variable Vω decreases. We
should recall the fact that the amount of initial phases that lead the electron to return to the initial plate is less
restrictive as Vω decreases. Therefore, for high orders of multipactor the returning limit is less important than
the stability condition in the envelope of the multipactor susceptibility chart.

To finish, it must be remarked that some parts of the multipactor curves taking into account the returning
limit (dashed lines) with high impact velocity, vi, lie below the curves obtained with lower values of vi, as it has
already been mentioned regarding Fig. 2.8, because the lines corresponding to different values of the collision
energy cross each other.
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Figure 2.13: Multipactor susceptibility chart for N = 1 for v0 = 1 eV, E1 = 30 eV, E2 = 1200 eV.
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Figure 2.14: Multipactor susceptibility chart for N = 3 using the same parameters as for Fig. 2.13.
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The predicted multipactor breakdown voltage threshold depends on the initial velocity of the secondary
electrons, which usually ranges from 0 to 10 eV, as it can be observed in Fig. 2.15, where the analytical mul-
tipactor susceptibility chart is represented for two illustrating values of the initial velocity. Note how the band
for N = 5 obtained with v0 = 5 eV (dashed line) overlaps the band for N = 7 obtained with v0 = 1 eV (solid
line). Therefore, it is shown that the initial velocity represents a crucial parameter in the understanding of the
experimental measurements of the multipactor breakdown threshold, however, the initial velocity distribution
of the secondary electrons follows a Maxwellian distribution [Semenov 2001,Coves 2008] and no fixed velocity
can be assumed to calculate accurately the multipactor susceptibility chart.

It is interesting to observe that the multipactor breakdown threshold does not necessarily decrease as the
initial velocity of the electrons increases, as a too much simplified approached to the problem could infer, be-
cause the electrons need less energy to reach the first cross-over point for high initial velocities. This simplistic
model would overlook the fact that not only the required energy to guarantee the secondary emission is re-
quested for the discharge to arise, the resonance together with the stability condition also fix the boundaries of
the multipactor zones.

The experimental measurements of the multipactor power threshold on a silver-plated parallel-plate wave-
guide carried out at ESA-ESTEC and extracted from [Woode 1989] have been included in the plot for com-
parison with the predictions. The first cross-over point of the SEY curve of silver is E1 = 30 eV. The
agreement of the measurements with the predictions is quite good for the first order of multipactor if we
consider the first three experimental values. Nevertheless, as the frequency-gap product increases different
types of resonances might appear like the hybrid and polyphase modes, which have been proposed to bet-
ter explain some experimental points obtained between the bands of different orders of multipactor [Gilar-
dini 1992,Kryazhev 2002,Buyanova 2006,Udiljak 2007]. But the spread in the initial velocity of the secondary
electrons shows already the possibility of finding experimental points between the bands for different orders of
multipactor when the initial velocity is varied. Moreover, taking into account that the right-side boundaries of
the multipactor zones are defined by fd = N/4 · (vi + v0), if we consider zero initial velocity, the multipactor
susceptibility chart could also fit more experimental points.

Finally, the flow chart showing the procedure to assess the breakdown onset and to represent the suscepti-
bility zones plotted in Fig. 2.15 is outlined next. We are going to enumerate the steps to follow in order to know
whether multipactor of order N occurs within a parallel-plate waveguide assuming a fixed value for the initial
velocity of the electrons. The impact velocity corresponding to the first and second cross-over point of the
material considered is named v1 and v2, respectively, and must be known to plot the multipactor susceptibility
regions.

1. Fix the values of v1 and v2 according to the SEY properties of the material that the plates are made of.

2. Fix the order of multipactor, N , and the initial velocity, v0, that will be used.

3. Choose a value of the fd product.

4. Find the phase of resonance, αres, that must apply, according to the value of fd:

• If fd < vN , the phase of resonance is αres = α
(1)
res.

• If fd > vN , the phase of resonance is αres = α
(2)
res.

5. Choose a value of the applied voltage between the plates, VRF .
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6. To ensure that the phase of resonance is real-valued, (2.14) must be satisfied.

7. To ensure that the relative impact velocity is positive, (2.16a) must be satisfied.

8. To ensure the stability of the resonant motion of the electron, the inequality (2.21a) must be satisfied for
the αres obtained according to the value of the fd product.

9. To ensure the non-returning of the electron to the initial plate, the phase of resonance must satisfy π >

αres > α
(1)
R , where α

(1)
R is plotted in Fig. 2.12.

10. If everything above is satisfied, calculate the value of the impact velocity (2.7):

• If vi < v1 or vi > v2, multipactor does not occur.

• If v1 < vi < v2, multipactor occurs.

2.7 Summary

In this chapter, we have presented the steps to follow in order to plot the multipactor susceptibility chart for
a parallel-plate waveguide. This allows the study and design of new devices, where the parallel-plate approx-
imation can be done, ensuring their optimal performance regarding the multipactor withstanding capabilities
avoiding the risk of multipactor breakdown. Although the presence of hybrid modes allow a better fit of the
predicted multipactor breakdown threshold to the experimental measurements, the classical resonance provides
a satisfactory explanation of the multipactor breakdown voltage threshold. The plot of the multipactor suscep-
tibility chart represents a useful tool in the study and design of corrugated filters or of more complex devices
where small gaps might appear as a result of mechanical tolerances produced during the manufacturing process,
like in coaxial connectors.

A slightly different interpretation of the boundaries of the multipactor susceptibility chart has been ex-
plained based on the restrictions imposed by the positive relative velocity at the impact time together with the
stability and returning limit conditions. The value of the initial velocity has been proved to be crucial in the pre-
diction of the multipactor breakdown threshold, showing a satisfactory agreement between the measurements
and the predicted multipactor susceptibility chart for two different values of the initial velocity.

The multipactor breakdown threshold can also be studied tracking the motion of electrons subject to the
electromagnetic field and calculating the collision energy and the corresponding SEY when impacting against
the plates. The calculation of the SEY along the simulation time allows the calculation of the susceptibility
chart and the plot of the breakdown voltage vs. the fd product by showing the amount of released secondary
electrons at the end of the simulation. This analysis has shown to be useful for multi-carrier signals or for highly
inhomogeneous distributions of the electromagnetic field, however, this process is, by far, computationally more
expensive than the plot of the susceptibility chart in the way as presented in this chapter.
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Radiation of a multipactor discharge
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3.1 Introduction

The analysis of the radiated power produced by a multipactor current is very important from a practical point
of view, because the noise created by the discharge is employed to experimentally detect the occurrence of the
phenomenon (as the third-harmonic detection technique) [Udiljak 2003]. This method proposes the search of
the third harmonic of the radiated power spectrum of the current produced by the electron cloud to witness the
presence of the breakdown, since the first harmonic of the multipactor current is assumed to be obscured by
the signal. The intensity of the radiated power spectrum depends on the number of electrons involved in the
discharge [Sorolla 2008], and as multipactor steady-state is supposed to occur very quickly, the detection is
assumed to take place when the saturation is reached.

The problem of saturation is analyzed in Chapter 5, but there is another ingredient that must be added
to the analysis of the multipactor discharge in order to establish a criterion to assess its occurrence. In this
chapter we are going to analyze the problem of the radiation of a multipactor discharge within a parallel-plate
waveguide applying the “effective electron” or “single electron” model as in Chapter 2. In order to describe the
multipactor current, the considered equations of motion do not take into account neither space charge effects, as
presented in 2.2, nor the presence of the magnetic field. Then, the current of the electron cloud produced by the
discharge will be assumed to move perpendicular to the plates, denoted as z-direction. The current produced
by the electron cloud will be decomposed into harmonics and the electromagnetic field of each harmonic will
be calculated finding the electromagnetic potentials. Once the electromagnetic fields are known, the radiated
power of each harmonic will be found by evaluating the Poynting vector integrated across an imaginary surface
far enough from the source, yielding the radiated power spectrum of the multipactor discharge.

The prediction of the radiated power spectrum together with an estimation of the saturation levels, and the
comparison with measurements, should allow to define a criterion to assess the breakdown onset. This is the
reason why the analysis of the radiated power spectrum produced by a multipactor current is important, since
it will bring new insights towards the joint development of a multipactor onset criterion.
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Figure 3.1: Electron moving between the parallel-plates.

3.2 Theory

If we consider the origin of coordinates at the bottom plate (see Fig. 3.1), we can describe the velocity of the
electron by a piecewise function using (2.2a) as follows:

vz(t) =





v0 + vω (sinα− sinωt) , t ∈
(
tα, tα +N

T

2

]

−v0 − vω (sinα+ sinωt) , t ∈
(
tα +N

T

2
, tα +NT

]
(3.1a)

(3.1b)

where N is the order of multipactor, vω = eVRF

meωd
, T is the period of the microwave signal and tα = α/ω is

the instant when the electron leaves the bottom plate, since the time origin has been referred to the microwave
signal. The variables α and ω = 2πf are the phase of the RF field when the electron leaves the birth plate and
the angular frequency of the signal, respectively.

Note that this function is a periodic signal of period NT , thus the microwave frequency is given by f and
the frequency of the signal represented by the velocity function is f/N . In Fig. 3.2 an example of velocity
function for order of multipactor N = 7 is plotted, where the vertical axis shows the velocity of an electron
driven by a harmonic electric field and the horizontal axis shows the time normalized to the RF period. Note
how the velocity changes sharply from positive to negative values and later from negative to positive, what
indicates the occurrence of the impact against the top and bottom plates, respectively. This cycle defines the
period of the signal that represents the multipactor current.

By calling r
′ and r the electron’s position vector and the observation point vector, respectively (see Fig. 3.1),

we can define the current density generated by an electron moving with velocity vz within the parallel-plate
waveguide as:

J = −evz(t)δ(x − x′)δ(y − y′)δ(z − z′(t))ẑ = Izδ(x− x′)δ(y − y′)ẑ, (3.2)

where ẑ is the unit vector in the z direction. Note that the current has been calculated for a single electron,
following the approach of the “effective electron” model. If we assume a homogeneous distribution of electrons



3.2. Theory 43

0 1 2 3 4 5 6 7 8 10 11 12 13 14

-4x10
6

-3x10
6

-2x10
6

-1x10
6

0

1x10
6

2x10
6

3x10
6

4x10
6

Figure 3.2: Example of the velocity function of an electron under multipactor regime for N = 7.

across the space between the plates that do not interact with each other, the total current defined by the electron
cloud for the “effective electron” model in z-direction is defined by

Iz
[
z′(t)

]
= −evz(t)δ(z − z′(t)). (3.3)

3.2.1 Uniform current model

Taking into account that the distance between the plates is usually much smaller than the observation distance,
we can calculate the space-averaged current associated to each electron defining an equivalent current as

Ieq ≡
〈
Iz
[
z′(t)

]〉
=

−e

d

∫ d

0
vz(t)δ(z − z′(t))dz =

−e

d
vz(t). (3.4)

Once the equivalent current, which will be used to calculate the radiated power spectrum, has been defined,
we can take advantage of the periodicity of the velocity function to develop it into a Fourier series. We can,
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therefore, obtain the harmonics of the equivalent current that will be used later, approximating the velocity by

vz(t) ≈
1

2
a0 +

∞∑

m=1

{
am cos (ωmt) + bm sin (ωmt)

}
, (3.5)

where the angular frequency of the m-th harmonic is defined by ωm = m
N ω.

The coefficients am and bm are given by the integrals




am =
2

NT

∫ tα+NT

tα

vz(t) cos (ωmt) dt, m = 0, 1, 2, ...

bm =
2

NT

∫ tα+NT

tα

vz(t) sin (ωmt) dt, m = 1, 2, ....

(3.6a)

(3.6b)

Then, substituting (3.1) into (3.6) we can find the coefficients




am =
2
[
(−1)m − 1

]
(v0 + vω sinα) sin(mα/N)

mπ

bm =− vωδm,N +
2
[
(−1)m − 1

]
(v0 + vω sinα) cos(mα/N)

mπ

(3.7a)

(3.7b)

where δm,N is the Kronecker delta.
As the velocity defined in (3.1) is an odd function, only the odd harmonics do not vanish, as it can be

seen by substituting the index m by any even number in (3.7), which sets null the numerator of the fractions.
Moreover, since the order of multipactor for the classical resonance conditions is also and odd number, the
Kronecker delta yields a null value and the coefficient bm vanishes for every even harmonic, too.

We can make use of an alternative expression for the Fourier series defined in (3.5) as follows:

vz(t) ≈
∞∑

m=1

cm cos (ωmt− δm) , (3.8)

where the new coefficients are related to am and bm by the expressions





cm =
√

a2m + b2m

δm = arctan

(
bm
am

)
.

(3.9a)

(3.9b)

Thus, we can rewrite the equivalent current as follows:

Ieq = − e

2d

+∞∑

m=−∞
(m odd)

cmej(ωmt−δm) =
+∞∑

m=1
(m odd)

(
−e

d
cm cos(ωmt− δm)

)
(3.10)

which allows us to define a complex current Ĩm ≡ − e
dcmej(ωmt−δm) for which the m-th harmonic is defined as

im = −e

d
cme−jδm . (3.11)
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Figure 3.3: Description of the multipactor current. (a) Sketch of the set of images for a point current
between two parallel-plates. (b) Sketch of the set of images for the equivalent uniform current
within the parallel-plate region. (c) Equivalent multipactor current in the parallel-plate waveguide is
equivalent to an infinitely long uniform wire current.

Once the current associated to each harmonic is found, the vector potential can be calculated by finding the
Green function of the Helmholtz equation for the vector potential within a parallel-plate region and integrating
with the equivalent current. For an unbounded parallel-plate waveguide, the image theory provides a very easy
solution for representing the Green function. It is known that the image of a negative point charge in front of
an infinitely long metal plate is the same charge with opposite sign, placed on the other side of the plate at the
same distance [Panofsky 1955]. Therefore, the current source and the image currents are oriented in the same
direction. Taking into account the presence of both plates and the superposition principle, it can be proved that
the set of images can be represented by the sketch shown in Fig. 3.3 (a). If we consider the space-averaged
equivalent current of multipactor, the image theory defines a set of images that has been depicted in Fig. 3.3
(b). At the end, the problem has become the calculation of the radiation of a limitless uniform vertical current
im radiating into the free-space sketched in Fig. 3.3 (c).

Therefore, we need to calculate the electromagnetic fields radiated by a uniform time-harmonic current
oscillating with frequency fm, as shown in Fig. 3.3 (c). For simplicity, the cylindrical coordinates system will
be used to calculate the radiated fields. We will use the scalar and vector potentials formulation for the time-
harmonic fields in free-space, which is based on the calculation of both the electric scalar φ and the magnetic
vector potential A, satisfying the Lorenz gauge [Balanis 1989]. Since the current im is oriented along the
z-axis, it can be proved that the only non-zero component of the vector potential is the z component, denoted
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as Azm , which satisfies the Helmholtz differential equation

∇2Azm + k2mAzm = −µ0im (3.12)

where µ0 is the magnetic permeability of free-space and km = m
(
k/N

)
, with k = ω/c .

In order to find the vector potential from the Helmholtz equation we can apply the convolution of the
free-space Green function with the current im,

Azm(r) = µ0

∫ ∞

−∞
img(0)m (r, r′)dz′ (3.13)

where the free-space Green function g
(0)
m (r, r′) is defined as

g(0)m (r, r′) =
e−jkmR

4πR
. (3.14)

The variable R is the magnitude of the vector R, which defines the relative position of the observation point, r,

with respect to the source point, r′, i.e.,

(
R =

√
(ρ− ρ′)2 + (z − z′)2

)
(see Fig. 3.4).

Therefore, the expression of the vector potential can be found in cylindrical coordinates as follows:

Azm(r) =
µ0

4π
im

∫ ∞

−∞

exp

{
−jkm

√
ρ2 + (z − z′)2

}

√
ρ2 + (z − z′)2

dz′ (3.15)

where ρ′ = 0 has been substituted in the expression of the free-space Green function. The result of the integral
can be proved to be

Azm(ρ) = µ0im


H

(2)
0 (kmρ)

4j


 (3.16)

where H
(2)
0 is the zeroth-order Hankel function of the second kind. In fact the term between brackets repre-

sents the free-space 2D Green function, since the dependence of the vector potential on the z-coordinate has
disappeared by the symmetry of the structure. Once the scalar potential is known, the electric scalar potential
can be found using the Lorenz gauge, resulting in

φm = j
c

km
∇ · (Azm ẑ) = j

c

km

∂Azm

∂z
= 0. (3.17)

The electromagnetic fields can be calculated using the electromagnetic potentials as follows:




E =−∇φ− ∂Ã

∂t

H =
(
1/µ0

)
∇× Ã.

(3.18a)

(3.18b)

where Ã = Aejωmt.
In order to calculate the far-field expressions of the electromagnetic fields the approximation of the Hankel

function for large values of the argument is applied:

H
(2)
0 (x) ≈

√
2

πx
e−j(x−π/4),
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Figure 3.4: Radiated electromagnetic field and the cylindrical system of coordinates used in the
calculation of the radiated fields.
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which can be substituted into (3.16) and (3.18) to obtain




E
rad
m =− jωmAzm ẑ ≈ −µ0ωmim

√
1

8πkmρ
e−j(kmρ−π/4)ẑ

H
rad
m =

1

µ0
∇× (Azm ẑ) ≈

( −j

2ρ3/2
+

km

ρ1/2

)
im

√
1

8πkm
e−j(kmρ−π/4)ϕ̂.

(3.19a)

(3.19b)

The first term within the brackets in the expression of the magnetic field will be neglected, since it will
not contribute to the radiated power as the product with the electric field will decay faster than the differential
surface element, which is proportional to ρ. The configuration of the far fields of the considered problem is
shown in Fig. 3.4. Note that the electric and magnetic fields are supposed to be far enough from the current
source to be considered as the radiated electromagnetic fields.

With the values of the far fields, the radiated power can be calculated by integrating the Poynting vector
on the surface of an imaginary cylinder of radius L surrounding the uniform current (see Fig. 3.5). Since the
electromagnetic fields are time-harmonic signals, the time-averaged Poynting vector associated to the electro-
magnetic fields (3.19) for each harmonic of the current can be written

P rad
m =

1

2

∫ ϕ=2π

ϕ=0
ρdϕ

∫ z=d

z=0
Re

[
E

rad
m ×

(
H

rad
m

)∗]
dz (3.20)

for ρ = L, where * denotes the complex conjugate.
Therefore, the time-averaged power radiated by a single electron moving in resonance with the RF field

within the parallel-plate waveguide is given by

P rad
m =

µ0ωm

16π
|im|2

∫ ϕ=2π

ϕ=0
Ldϕ

∫ z=d

z=0

dz

L
= 10−7 π2m

N
fd |im|2, (3.21)

where the value for the free-space permeability µ0 = 4π · 10−7 V · s/(A ·m) has been used.
Taking into account (3.6), (3.9) and (3.11) the value of |im|2 can be expressed as function of the variables

used in Chapter 2 in order to rewrite the analytical formula for the radiated power of the multipactor discharge
in a more useful way

P rad
m = 10−7 π2m

N

f

d
e2



(

x

mπ

)2

+

(
vω +

4x cos
(
mα/N

)

mπ

)
vω δm,N


 (3.22)

where the variable x = (v0 + vω sinα) has been defined.

3.2.2 Point current model

In order to validate the expression of the radiated power spectrum for a multipactor discharge (3.22), we are
going to calculate the radiated power spectrum of the same problem applying the image method to the infinites-
imal current produced by the electron moving between the plates driven by the microwave field.

To do so let us recall (3.3) and let us apply the property of the Dirac delta distribution

δ
[
h(t)

]
=

M∑

p=1

δ(t − tp)

|ḣ(tp)|
, |ḣ(tp)| 6= 0, (3.23)
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Figure 3.5: Imaginary cylinder surrounding the uniform current. The radial component of the Poynt-
ing vector is integrated on the side walls of the cylinder.

where h(t) = z− z′(t) and M is the number of roots of this function, tp representing the value of the root. The
time derivative of that function is represented by ḣ(t) = vz(t), which is evaluated at the instant tp. Thus, the
rigorous form of the multipactor current is

Iz
[
z′(t)

]
= −evz(t)

M∑

p=1

δ(t− tp)

|vz(tp)|
= −e

M∑

p=1

vz(tp)

|vz(tp)|
δ(t − tp) (3.24)

where the dependency on the z-coordinate has been transferred to the knowledge of the instant tp when the
electron is placed at the position z′. In general, the amount of roots, M , for the classical resonance condition
(2.3) is two for any order of multipactor, N , as it can be clearly seen in Fig. 3.6a.

Nevertheless, there might be some cases for which the number of roots is bigger than two if the electron
reduces its velocity below zero and it passes by the same point three times during its flight from the bottom to
the top plate. As the classical resonance predicts the same transit time from the top plate to the bottom one, the
same occurs when traveling in the opposite direction, as it has been depicted in Fig. 3.6b, where the number of
roots at z = 0.4 mm is M = 6. This must be taken into account when using (3.24), since the amount of roots
that must be calculated depends, in general, on the position of the electron between the plates.

As (3.24) is non-zero when t = tp, the coefficients of the Fourier series of the point current read as follows:





ãm(z) =
2

T

M∑

p=1

sgn
[
vz(tp)

]
cos(ωmtp) ,m ∈ N

0

b̃m(z) =
2

T

M∑

p=1

sgn
[
vz(tp)

]
sin(ωmtp) ,m ∈ N

+

(3.25a)

(3.25b)
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Figure 3.6: Roots of the function g(t) within a period of the velocity signal for d = 7 mm and
N = 7.
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where the coefficients of the Fourier series depend implicitly on the z coordinate via the instant tp. Using the
alternative definition of the Fourier series, the point current can be represented as

Iz(z) ≈ −e

∞∑

m=1

c̃m(z) cos(ωmt− δ̃m(z)), (3.26)

where the new coefficients c̃m and δ̃m depend now on the position of the electron. Some examples of the
Fourier coefficients vs. the position of the electron within the plates are shown in Fig. 3.7 for different orders
of multipactor.

In this case the complex current is defined as Ĩm(z) ≡ −ec̃m(z)e
j
(
ωmt−δ̃m(z)

)

for which the m-th harmonic
is now defined as

im(z) = −ec̃m(z)ejδ̃m(z). (3.27)

The representation of the current provided by (3.26) at different values of the z coordinate is shown in
Fig. 3.8 calculated with 100, 1000 and 10000 harmonics. Note that the current is negative in the first part of
the plot since the electron’s charge is negative and the electron travels from the bottom to the top plate in the
positive direction of the z-axis. The positive current represents the travel back of the electron from the top
to the bottom plate. The current actually represents the motion of the electron vs. time at different positions.
Indeed, note that the negative current evaluated at z = 0.75 mm becomes positive prior to currents evaluated
at other positions, since the electron passes by that point before arriving to the subsequent positions on its way
back to the bottom plate. It is worth-while remarking that the vertical scale of the plot increases by an order of
magnitude as the number of harmonics used to represent the point current is augmented by the same factor.

In this case, as the direction of the currents is along the z-axis, the non-null component of the vector
potential is the z component as well. Substituting the harmonic current (3.27) into (3.13) with the corresponding
Green function the vector potential for the point current can be calculated as

Azm(ρ, z) = −eµ0

{∫ d

0
c̃m(z′)ejδ̃m(z′)gm

(
r; r′

)
dz′

}
(3.28)

where the Green function of the point current within the parallel-plates in this case is calculated applying the
image method for a point current, thus, becoming a series of free-space Green function applied at the position
of the image currents. Thus, the Green function of the vector potential can be expressed as [Hanson 2002]

gm
(
r; r′

)
=

+∞∑

s=−∞
g(0)m

(
r; r′s

)
=

1

4π

+∞∑

s=−∞

(
e−jkmR+

s

R+
s

+
e−jkmR−

s

R−
s

)
≡ gm(r; z′) (3.29)

where R±
s =

√
ρ2 + (z ∓ z′ − 2sd)2, with z and z′ the vertical coordinate of the observation and the source

point, respectively, in the cylindrical coordinates system, and where the radial coordinate of the electron has
been arbitrarily taken to be ρ′ = 0.

The magnetic field can be calculated using the expression (3.18b) and (3.29), what results in

Hm = Hϕm
ϕ̂ = − 1

µ0

∂Azm

∂ρ
ϕ̂ = eϕ̂

∫ d

0

∂gm
(
r; z′

)

∂ρ
c̃m(z′)ejδ̃m(z′)dz′. (3.30)

In order to calculate the electric field we need to calculate the electric scalar potential from the Lorenz
gauge, obtaining

φm =
j

ωmµ0ǫ0
∇ ·Azm ẑ, (3.31)
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Figure 3.7: Fourier coefficients of the current (3.24) for the harmonics m = 1 (solid), m = 2

(dashed), m = 5 (dotted). The parameters for N = 1 are: f = 10 GHz, d = 0.1 mm, v0 = 2 eV,
VRF = 60 V and αres = 68.16 deg. For N = 5: f = 1 GHz, d = 15.65 mm, v0 = 3.68 eV,
VRF = 412.34 V and αres = 97.15 deg.
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(c) m = 10000.

Figure 3.8: Fourier series representation of the point current within a parallel-plate waveguide of
distance d = 1 mm at different positions for 100, 1000 and 10000 harmonics (a-c), respectively.
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where ǫ0 is the free-space permittivity. Then, the electric field Em = Eρm ρ̂ + Ezm ẑ = −∇φm − jωmAzm ẑ

can be calculated using (3.18a), whose components are





Eρm =
−j

ωmµ0ǫ0

∂2Azm

∂ρ ∂z

Ezm =
−j

ωmµ0ǫ0

∂2Azm

∂z2
− jωmAzm .

(3.32a)

(3.32b)

Substituting the value of the vector potential given by (3.28) into (3.32) we can rewrite the components of
the electric field as





Eρm =ξ

∫ d

0

∂2gm
(
r; z′

)

∂ρ ∂z
c̃m(z′)ejδ̃m(z′)dz′

Ezm =ξ

∫ d

0

[
∂2gm

(
r; z′

)

∂z2
+ (mkm)2 gm

(
r; z′, ẑ

)
]
c̃m(z′)ejδ̃m(z′)dz′

(3.33a)

(3.33b)

where ξ ≡ j e
ωmǫ0

.

The main difference between the electric field evaluated with the point current model and the one done with
the uniform current model (Section 3.2.1) is the appearance of a radial component. But this component is only
important near the source, and it has shown to be around 5 orders of magnitude smaller than the z component
of the field for large values of ρ. This is expected since both models of the current must yield the same results
at the far-field region. It must be remarked that the near field decays faster for the high harmonics than for the
fundamental one, whose frequency lies closer to the carrier frequency. This results in some differences between
the electromagnetic fields evaluated with both models near the source for the first harmonic, as it will be shown
later.

An accurate evaluation of the electric field and, subsequently, of the radiated power spectrum, requests many
terms in the image series (3.29) in order to suitably represent the Green function due to the slow convergence
of the series. This makes impractical the calculation of the vector potential at several points to integrate and
calculate the electric field, and the same can be said for the evaluation of the space-integral of the time-averaged
Poynting vector. In order to circumvent this problem some acceleration techniques [Ewald 1921, Park 1998,
Kustepeli 2000, Capolino 2005, G. Valerio 2007, Gimeno 2009] have been applied to that series which reduced
noticeably the time in the calculation of the electric and magnetic fields.

Once the electromagnetic fields are known, the Poynting vector can be found and the integral of its time-
average value evaluated on the side walls of an imaginary cylinder of radius ρ = L surrounding the source
current and its images, as done in the previous model. Therefore, we substitute the fields given by (3.30) and
(3.33) into (3.20) to calculate the radiated power as follows:

P rad
m = lim

ρ→∞

{
1

2

∫ ϕ=2π

ϕ=0
ρdϕ

∫ z=d

z=0
Re
[(
Eρm ρ̂+Ezm ẑ

)
×H∗

ϕm
ϕ̂
]
· ρ̂dz

}
. (3.34)

The first term of the integral above does not contribute to the radiated power since ρ̂ × ϕ̂ = ẑ, which is
perpendicular to the unit vector ρ̂, but the second term provides the radiation that, for practical purposes, will
be evaluated at a finite distance ρ = L far enough from the source as to be considered the far-field contribution.
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3.3 Results

The electromagnetic fields obtained with both models of the current are presented and compared in this section.
In Fig. 3.9 the real and imaginary parts of the z component of the electric field are shown vs. the distance over
the microwave wavelength ratio for the first and third harmonic of the Fourier series. It must be remarked that
only the odd harmonic provide non-zero values of the electromagnetic field.

Note the excellent agreement between the results obtained with both models of the current even for points
near the source, except for the imaginary part of the magnetic field of the first harmonic near the source (see
Fig. 3.10b). This discrepancy arises because the curl of the vector potential for the uniform current model
introduces a pure imaginary factor that decays as −ρ−3/2, which is negligible far from the source. However,
near the source this term appears as a result of the uniform current model that assumed the presence of an
unbounded source, what differs from the reality more remarkably near the actual point charge. This factor tends
to minus infinity close to the source point, what predicts a singularity in the imaginary part of the magnetic
field near the source (see (3.19b)), whereas for the point current model the imaginary part of the magnetic
field for the fundamental harmonic tends to zero near the source. As it was commented above, the near field
for higher harmonics than the fundamental one decays faster beyond a certain distance, what explains why
this discrepancy is not observed in the magnetic field for the third harmonic. Nevertheless, the values of the
magnetic field calculated with both models of the current beyond a certain distance agree very well with each
other, as it has been pointed out above.

It must be remarked that the frequency in the oscillations of the electric and magnetic fields for the third
harmonic is higher than for the first one, what implies that the high harmonics of the radiated power spectrum
are more expensive to calculate. Since the high harmonics oscillate more rapidly than the low ones, the number
of sampling points that must be considered in the numerical calculation of the integral (3.34) must be larger as
the harmonic number increases to ensure the accuracy of the cubature used. This entails that the evaluation of
the radiated power spectrum for the high harmonics will be less accurate than for the low harmonics with the
same number of sampling points. The results of the radiated power spectrum shown later, as well as the ones
of the electric and magnetic fields, have been obtained using the Gauss-Legendre cubature in the calculation
of (3.30), (3.33) and (3.34) with enough number of sampling points as to ensure that the results are accurate
enough.

The radiated power spectrum of a single electron in resonance with the electromagnetic field of a parallel-
plate waveguide for order of multipactor one has been plotted in Fig. 3.11 using (3.22), and evaluating numer-
ically the integral (3.34) with ρ = 1 m. The distance between the plates is d = 1 mm and the microwave
frequency f = 1 GHz. The initial velocity of the secondary electrons was assumed to be v0 = 3.68 eV, the RF
voltage VRF ≈ 86.32 V and the phase of resonance αres = 50 deg. Note the perfect agreement between the
radiated power spectrum predicted by both models of the current for the first 5 non-vanishing harmonics. The
number of points considered in the calculation of the integral (3.34) for the highest harmonic was 100 for the
evaluation of the Poynting vector at ρ = 1 m. This distance implies around 3 times the microwave wavelength,
thus around 30 times the wavelength associated to the harmonic m = 9, so 100 points seem to be enough in the
Gauss-Legendre cubature to evaluate accurately the radiated power spectrum for this harmonic.

Note that the radiated power spectrum plotted in Fig. 3.11 shows a decrease in the power levels following
a 1/m behavior, as predicted by (3.22), except for the harmonic m = N , whose power level is maximum.
Note also that, as expected, the maximum in the power spectrum lies always on the microwave frequency, f ,
regarding the order of multipactor, N . Nevertheless, as the frequency associated to the m-th harmonic of the
electron current is given by mf/N , the maximum in the power spectrum occurs at the harmonic that coincides
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Figure 3.9: Vertical component of the electric field vs. ρ/λ for the first (top) and third (bottom)
Fourier harmonics. Like for the uniform current model, in this case the values of the electric field
for the even harmonics are null because of the odd symmetry of the velocity function. The crosses
show the results obtained with the uniform current model and the solid line the ones with the point
current model in the center of the region between the plates.



3.3. Results 57

0 1 2 3 4 5 6 7 8 9 10

-1�0

-0�5

0�0

0�5

1�0

(a) Re
[
Hφ1

]
.

0 1 2 3 4 5 6 7 8 9 10

-20

-15

-10

-05

00

05

10

(b) Im
[
Hφ1

]
.

0 1 2 3 4 5 6 7 8 9 10

-1�5

-1�0

-0�5

0�0

0�5

1�0

1�5

(c) Re
[
Hφ3

]

0 1 2 3 4 5 6 7 8 9 10

-1�5

-1�0

-0�5

0�0

0�5

1�0

1�5

(d) Im
[
Hφ3

]
.

Figure 3.10: Azimuthal component of the magnetic field vs. ρ/λ for the first (top) and third (bottom)
Fourier harmonics. Due to the symmetry of the velocity function, the values of the magnetic field
corresponding to the odd harmonics are null. The crosses show the results obtained with the uniform
current model and the solid line the ones with the point current model in the center of the region
between the plates.
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Figure 3.11: Radiated power spectrum of a multipactor discharge within a parallel-plate waveguide
obtained with both models of the current.

with the order of multipactor.

In Fig. 3.12 the radiated power spectrum has been plotted for different orders of resonance, N . It can be
observed that the harmonics appear at odd multiples of f/N , which means that harmonics will be generated at
lower frequencies than the RF signal frequency for multipactor orders N > 1. The radiated power spectrum
predicted by (3.22) is shown together with the one obtained with a PIC code for comparison [Vicente 2005],
demonstrating the excellent agreement, as well, with this method. The results obtained with the PIC code show
the radiated power spectrum of a single electron driven by the microwave field at the center of the cross-section
of a rectangular cavity where the electric field is the same as in the parallel-plate considered. In all these plots
the RF frequency is f = 1 GHz, what coincides with the harmonic that exhibits the highest radiated power
level.

Regarding the third harmonic detection technique, the results shown in Figs. 3.11 and 3.12 imply that, for
the case of multipactor order N = 1, the mentioned third harmonic coincides indeed with the harmonic m = 3,
being detected at a frequency three times higher than the RF one. As it is well known, this harmonic is chosen
for detecting multipactor because it is the one with the highest power level apart from the main one (m = 1)
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at the RF frequency f , which is obscured by the carrier in the experiments. However, for higher orders of
multipactor more harmonics appear at both sides of the RF carrier at odd multiples of f/N . For instance, in
Fig. 3.12c the radiated power of the first harmonic is predicted at 200 MHz, what could be used for detecting
multipactor of order higher than one, since its amplitude is close to the one of the driven frequency, and it is
not obscured by the carrier. Similarly, the radiated power spectrum for N = 11 plotted in Fig. 3.12d shows
that the first harmonic is also predicting a power level comparable to the one corresponding to the microwave
frequency. In these cases, where the harmonics different to the order of multipactor are propagated and are
not obscured by the carrier, they could give a more precise reference for detecting multipactor than the third
harmonic detection technique.

It is important to understand that the radiated power spectrum plotted in Figs. 3.11 and 3.12 shows the power
spectrum radiated by a single electron within a parallel-plate waveguide, however, since the multipactor current
is directly proportional to the number of electrons involved in the multipactor discharge [Hatch 1958], the power
emitted by Ne electrons in resonance with the microwave field is simply given by N2

e P
rad
m . Some authors have

proposed values for the number of electrons at the steady-state multipactor stage [Vaughan 1988], suggesting
typical values of the electron population around Ne = 108. The radiated power spectrum of the plot for the
cases where this applies should be, therefore, +160 dB shifted, predicting more realistic values of the radiated
power spectrum. Therefore, an accurate evaluation of the number of electrons in the multipactor saturation
must be found in order predict accurately the power radiated by the multipactor current at the saturation stage.

Finally, the good agreement between the radiated power spectrum obtained with both models of the current
validates mutually the formulae, suggesting no major error existing in the formulation of (3.22) within the limits
imposed by the “effective electron” model. As it has been mentioned above, the space charge effects have not
been considered in the equation of motion of the electron cloud within the parallel-plate waveguide, and the
estimations of the number of electrons predicted in the literature have not been confirmed yet. In Chapter 5, the
equations of motion of the electron cloud within a parallel-plate waveguide considering the space charge effects
will be solved, showing a natural limit in the number of electrons released by secondary emission. Together
with the new equations of motion, an analytical estimation of the electron density at the steady-state multipactor
will be presented.

3.4 Summary

The radiated power spectrum of the electron cloud produced by a multipactor discharge within a parallel-plate
waveguide has been calculated by the “effective electron” model, obtaining an analytical expression whose
validity has been confirmed by other methods. An interesting result is that, according to the formula that has
been found, the radiated power spectrum of an electron under multipactor regime does not depend on the fd

product, unlike the multipactor breakdown voltage [Hatch 1958, Vaughan 1988]. In fact, the power level is
proportional to f/d for all the harmonics, if working with a fixed fd product. This implies, for instance,
that the predicted harmonic levels for real low band waveguides (low frequency, large gap) would be lower
than for high band ones, even if working with the same fd product. In addition, multipactor in typical large
gap structures, such as bandpass filters, would generate considerably lower harmonics than other structures
with shorter gaps, such as transformers or low-pass filters. Such implications should be also considered when
measuring multipactor in real devices.

Another feature of the radiated power spectrum presented is the prediction of harmonics at frequencies
lower than the carrier one for orders of multipactor bigger than one. This opens the possibility of extending
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(a) N = 1, VRF = 30 V, d = 1 mm and αres =

92.49 deg.
(b) N = 3, VRF = 383.64 V, d = 5 mm and
αres = 101.96 deg.

(c) N = 5, VRF = 412.34 V, d = 7 mm and
αres = 97.15 deg.

(d) N = 11, VRF = 953.14 V, d = 15.65 mm

and αres = 93.3 deg.

Figure 3.12: Radiated power spectrum of the multipactor current within a parallel-plate waveguide
for different orders of multipactor, N . All the simulations have been obtained with f = 1 GHz and
v0 = 3.68 eV. The dots correspond to the radiated power spectrum obtained with (3.22) and the
lines have been obtained with a PIC code.
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the third harmonic detection technique to the search of other harmonics that can propagate, which are not
obscured by the carrier of the signal, which may give a more precise reference for detecting multipactor than
the observation of the third harmonic.

The next step in the evaluation of the radiated power spectrum of a multipactor discharge is the consideration
of the space charge effects in the motion of the electron cloud produced within the parallel-plate waveguide.
The equations of motion of the electron cloud within the parallel-plate waveguide taking into account the
space charge effects due to the presence of the boundaries will be solved in Chapter 5 analytically. Once the
analytical solution of the equations of motion will be shown, an estimation of the maximum number of electrons
in the saturation will be presented like a natural consequence of the rupture of the resonance condition by the
interaction of the electron cloud with its image charge through the metal plates.

It would be interesting, therefore, to develop the current produced by the electron cloud taking into account
the space charge effects in a Fourier series applying the same reasonings done here. In this case, the veloc-
ity is not a periodic signal anymore, since the electron density of the electron cloud appears explicitly in the
expression of the velocity, which increases with time by the secondary emission. Nevertheless, some approxi-
mations to this problem may be found for a relatively slow increase of the electron population, near above the
multipactor threshold, when the velocity function would not change abruptly and it could be considered as a
quasi-periodic signal. Another possibility is the consideration of the current once the saturation level has been
reached, for which the velocity is a periodic function if certain conditions are satisfied, as it will be explained
in Chapter 5.

The analysis of the radiated power spectrum produced by a multipactor discharge together with the study
of the saturation may lead towards an unambiguous criterion to uniquely assess the multipactor onset, an open
problem that has not been solved yet, and for which the contribution of this thesis is intended to help in the
joint success of this task.





CHAPTER 4

Roots of the cross-product of Bessel functions

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Roots of TM0,s modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Roots of TMν,s modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Roots of TEν,s modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Introduction

The two cross-product combinations of Bessel functions and their derivatives appear frequently in physical
problems having cylindrical [Stratton 1941] or spherical [Boyer 1969] symmetry in different fields such as
fluid mechanics [Bauer 1988], mechanical [Olçer 1968] or electrical engineering [Marcuvitz 1951]. The roots
of the cross-product of Bessel functions and their derivatives represent the eigenvalue solutions of problems
like the accurate simulation of the behavior of discontinuities involving coaxial geometries. This is a basic
staple in modern CAD tools for designing waveguide networks [Gimeno 1996,Gimeno 1997,Arndt 2004]. The
computation of the radiated field produced by an open-ended coaxial probe, a very useful tool in electromag-
netic diagnosis, also needs the calculation of these roots [Mosig 1981, Yung 1984, Noh 1999, Lee 1996, Pa-
nariello 2001, Asvestas 2006]. Finally, the representation of the electromagnetic field within curved waveg-
uides [Petrusenko 2001], as well as the prediction of the radiated power spectrum of charged particles within
accelerating cavities [Nagesh 2005], also require the efficient and fast calculation of these roots. An algorithm
for the efficient numerical calculation of the roots of the cross-product of Bessel functions and their deriva-
tives has been developed especially for the last problem in order to improve the speed in the calculation of the
radiated power spectrum of a multipactor current within a coaxial waveguide.

This work also opens the possibility of studying the problem of the radiated power spectrum of a multipactor
discharge within coaxial geometries. There has been an article dealing with this problem [Nagesh 2005], but no
image theory has been applied to this problem nor an acceleration technique has been proposed to the evaluation
of the Green function of the coaxial waveguide. This algorithm intends to improve the speed in the evaluation
of the radiated power spectrum produced by a multipactor discharge within a coaxial waveguide. However, the
study of the image method for the coaxial waveguide has not been solved yet to the best of our knowledge,
which could bring a new insight into the problem of the multipactor radiation for coaxial geometries.
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Many studies have been realized to calculate the roots of these functions [McMahon 1894, Bridge 1962,
Laslett 1962, Bauer 1964, Cochran 1966b, Salchev 1973, Koss 2004], but they have not provided a globally
convergent algorithm or, in the best cases, they have found solutions only valid for certain extreme values of
the coaxial cable aspect ratio q, or the order of the involved Bessel functions.

In this chapter the summary of the work presented in [Sorolla 2011] together with the optimization of the
algorithm presented in [Sorolla 2012] are described. The optimization of the algorithm described in the last
reference exhibited a dramatically decrease in the amount of iterations needed to find the first root for ν = 1

of the TE-mode with respect to the previous algorithm. Moreover, the optimization of the method extended the
range of q for which the algorithm converges by optimizing the position of the seed in the root search within
the boundaries of the search intervals. The bounds of q that ensure the convergence are determined by the
numerical limits of floating-number implementation.

4.2 Theory

The problem of the radiation produced by a current source within a coaxial waveguide has been solved by
calculating the electromagnetic fields using the dyadic Green’s functions for coaxial geometries [Tai 1983].
The calculation of the Green’s function implies the search of the roots of the functions

gν(q, x) ≡ Jν(qx)Yν(x)− Jν(x)Yν(qx) (4.1a)

g̃ν(q, x) ≡ J ′
ν(qx)Y

′
ν(x)− J ′

ν(x)Y
′
ν(qx) (4.1b)

where Jν(x) and Yν(x) are the Bessel function of first and second kind, respectively, and J ′
ν(x) and Y ′

ν(x) are
the first derivatives of the Bessel functions with respect to x. The coaxial aspect ratio q = b/a has been defined,
where a and b are the inner and the outer radius of the coaxial waveguide, respectively. The roots of gν(q, x)

and g̃ν(q, x) are named c
(s)
ν and c̃

(s)
ν , respectively, and since x = λa, they define the cut-off wavelength of the

TM and the TE modes, respectively. The wavelength of the signal λ = c/f relates the speed of light in free-
space, c, to the signal frequency, f , what allows to calculate the cut-off frequency of each mode by knowing
the values of the above-mentioned roots as follows:





f (s)
ν =

ca

c
(s)
ν

f̃ (s)
ν =

ca

c̃
(s)
ν

(4.2a)

(4.2b)

where f
(s)
ν and f̃

(s)
ν define the cut-off frequencies of the TM and the TE modes, respectively.

In order to calculate the radiated electromagnetic fields produced by a current within a coaxial waveguide
a certain number of roots (s = smax) for ν = 0 and a certain maximum index (ν = νmax) will be needed to
define accurately the Green function and, consequently, the electromagnetic fields. As it will be shown later,
the roots of gν−1(q, x) are needed to obtain the ones of gν(q, x), Thus, the roots for ν = 0 are calculated firstly
and the rest of roots are found in ascending order of ν, defining an inverted pyramidal scheme where the first
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roots are shown on the top (the same holds for the roots of g̃ν(q, x)):
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It is required that smax ≥ νmax + 1 in order to calculate the last root of the scheme. For instance, if p roots
are requested for νmax = m to reach the desired accuracy in the calculation of the electromagnetic fields, the
expression smax = p+m must be satisfied.

4.2.1 Roots of TM0,s modes

To calculate the first set of roots of g0(q, x) an auxiliary function is used following a similar approach as
in [Segura 1998]

G0(q, x) ≡
g0(q, x)

g′0(q, x)
(4.3)

since the roots of g0(q, x) and g′0(q, x) never coincide [Cochran 1966a]. Thus, the roots of G0(q, x) and g0(q, x)

are the same, with the advantage that G0(q, x) shows a tangent-like function behavior, as it is shown next. This,
indeed, guarantees the success of the Newton-Raphson (NR) algorithm [Press 1992] in the root search since all
the approximations along the iterative process will lie inside the interval defined by the branches of the function
G0(q, x).

Let us first calculate G′
0(q, x0) when G0(q, x0) = 0:

G′
0(q, x0) =

(
g′0(q, x0)

)2 − g0(q, x0)g
′′
0 (q, x0)(

g′0(q, x0)
)2 = 1 (4.4)

since g0(q, x0) = 0 in this case.

Let z(s)0 be the positive roots of g′0(q, x) i.e. the extremes of g0(q, x)

z
(s)
0 = x ∈ (0,∞) | g′0(q, x) = 0

and let us study the asymptotes of the auxiliary function G0(q, x) in these limits taking into account the periodic
character of the function g0(q, x) [Gray 1895]:

lim
x→z

(s)
0 (−)

sgn
[
g0(q, x)

]
abs

[
g0(q, x)

]

sgn
[
g′0(q, x)
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[
g′0(q, x)

] =
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= +∞ (4.5)
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The limits from the other side are

lim
x→z
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= −∞ (4.6)

Furthermore, due to the periodicity of g0(q, x) we know that there is a single root in between two extrema, thus,
between two roots of g′0(q, x) there is a single zero of the function G0(q, x).

These properties show that G0 resembles a tangent-like function. In Fig. 4.1 the auxiliary function G0(q, x)

is plotted using solid line together with the seeds used in the root search for ν = 0, represented by dots, for
two extreme values of the parameter q. The seeds of the root search are chosen accordingly to McMahon’s
expansion formula [McMahon 1894]. Note that the s-th seed lies within the branch corresponding to the same
index of the root, and, since McMahon’s expansion formula provides a more precise approximation the larger
the value of the root, the consecutive seeds corresponding to larger values of s are expected to lie within
the corresponding branches, too. This guarantees the success of the root search using McMahon’s expansion
formula as seed for ν = 0.

The NR iteration formula needs the calculation of the first derivative of the auxiliary function. Therefore,
recalling (4.3) and (4.4) we can write the root search formula as

Xn+1 = Xn − G0(q,Xn)

G′
0(q,Xn)

= Xn −
(
g′0(q,Xn)

g0(q,Xn)
− g′′0 (q,Xn)

g′0(q,Xn)

)−1

, (4.7)

where the prime indicates derivative with respect to x, with

g′0(q, x) =
[
J ′
0(qx)Y0(x)− J0(x)Y

′
0(qx)

]
+ q

[
J0(qx)Y

′
0(x)− J ′

0(x)Y0(qx)
]
, (4.8)

g′′0 (q, x) = A0(x) + 2qB0(x) + q2C0(x) (4.9)

and
A0(x) = J ′′

0 (qx)Y0(x)− J0(x)Y
′′
0 (qx)

B0(x) = J ′
0(qx)Y

′
0(x)− J ′

0(x)Y
′
0(qx)

C0(x) = J0(qx)Y
′′
0 (x)− J ′′

0 (x)Y0(qx).





(4.10)

The algorithm to calculate the roots of g0(q, x) requests as input the ratio q and the desired maximum amount
of roots, smax, that are to be calculated for ν = 0. It is crucial to remember that, according to the pyramidal
scheme, smax is not independent of the largest order νmax for which the p roots are searched (see pyramidal
scheme). The desired accuracy and the maximum amount of iterations are given by eps and imax, respectively,
where eps has been chosen equal to the machine precision in the following. The algorithm to obtain the set of
roots for ν = 0 is then summarized in Algorithm 1.
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Figure 4.1: Auxiliary function (solid line) and McMahon’s expansion formula (dots) for the roots of
(4.1a) for ν = 0.
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Algorithm 1 Calculate c
(s)
0 ∀s ∈ [1, smax]

Input: q, νmax, smax; Output: c
(s)
0 ; Constants: eps, imax;

while (smax − νmax) ≥ 1 do

for s = 1 to smax do

i := 0; err := 1

Xi :=
sπ

(q − 1)
{Seed for the s-th root (McMahon).}

while (err > eps ∧ i ≤ imax) do

Xi+1 := Xi −
G0(q,Xi)

G′
0(q,Xi)

err := abs

[
Xi+1 −Xi

Xi+1

]

i := i+ 1

c
(s)
0 := Xi

4.2.2 Roots of TMν,s modes

It has been observed that the function gν(q, x) presents one and only one root in between two consecutive roots
of gν−1(q, x) for any value of q and ν [Boyer 1969]. The interlacing property of the roots ensures the good

performance of the algorithm, since the roots of the set Cν =

{
c
(s)
ν |gν

(
q, c

(s)
ν

)
= 0, s, ν ∈ N

}
are bounded

by the roots of Cν−1 as follows:

c
(s)
ν−1 < c(s)ν < c

(s+1)
ν−1 ∀ν > 0. (4.11)

Thus, to find the roots for ν > 0, the set C0 is used as basic set from which the rest of roots will be found
using the original function gν(q, x). The interlacing property can be observed in Fig. 4.2a, where the roots of
the function gν(q, x) for q = 100 and different ν-orders are shown. The search interval of each root for the
order ν is, therefore, well-established by the interlacing properties and defined by

Is→s+1
ν−1 ∈

(
c
(s)
ν−1, c

(s+1)
ν−1

)
∀ν > 0

which is split into nsub subintervals (see Fig. 4.2b). The division of that interval in subintervals is done in order
to ensure the convergence of the method when the approximation of the root lies outside Is→s+1

ν−1 . The seed
is placed slightly above the beginning of the first subinterval by ǫ, a quantity that is fixed by the maximum
among the quantities: “machine precision times the interval length” and “machine precision” (see Algorithm

2). Then, the NR iteration is applied and, if some approximation to the root lies outside the interval defined by
the interlacing property, the seed is placed at the beginning of the next subinterval and so on till the solution
converges inside Is→s+1

ν−1 . The quasi-periodicity of the cross-product of Bessel functions [Salchev 1973] ensures
that, placing the seed within some of the subintervals, the NR algorithm will necessarily converge. The typical
values of nsub chosen are between 5 and 10, observing that the algorithm had to restart the root search within
the second interval in the worst case, as it will be shown later. The procedure to calculate the roots of the
function gν(q, x), c

(s)
ν , till ν = νmax is reached requests the same input parameters as the Algorithm 1 plus the

smax roots: c(s)0 . The steps to follow are summarized in Algorithm 2.
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(a) Interlacing properties.

(b) Definition of sub-intervals.

Figure 4.2: All the roots calculated by the algorithm for smax = 6, νmax = 5 and q = 100

(top). Sketch showing how the interval Is→s+1
ν−1 is split into an arbitrary number of subintervals nsub

(bottom).
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Algorithm 2 Calculate c
(s)
ν ∀(s, ν), s ∈ [1, smax − ν], ν ∈ [1, νmax]

Input: c
(s)
0 , νmax, smax; Output: c

(s)
ν ; Constants: eps, ǫ, nsub;

for ν = 1 to νmax do

for s = 1 to smax − ν do

i := 0; err := 1; count := 0;

ǫ := max

{
eps ·

(
c
(s+1)
ν−1 − c

(s)
ν−1

)
, eps

}
;

delta :=

(
c
(s+1)
ν−1 − c

(s)
ν−1

)

nsub
;

while (err > eps ∧ count < nsub) do

Xi := c
(s)
ν−1 + ǫ+ count · delta

count := count+ 1

while
(
Xi ≥ c

(s)
ν−1 ∧Xi < c

(s+1)
ν−1 ∧ i ≤ imax

)
do

Xi+1 := Xi −
gν(q,Xi)

g′ν(q,Xi)

err := abs

[
Xi+1 −Xi

Xi+1

]

i := i+ 1

c
(s)
ν := Xi

4.2.3 Roots of TEν,s modes

To calculate the set of roots of (4.1b) for ν = 0 the property Z ′
0(x) = −Z1(x) [Abramowitz 1970] is used,

where Zν(x) is any of the two Bessel functions, either Jν(x) or Yν(x). This property leads to c
(s)
1 = c̃

(s)
0 , (s =

1, 2, 3, ...), thus, the set of roots of g̃ν(q, x) for ν = 0 is already given since it is the same as the set of roots of
gν(q, x) for ν = 1, previously calculated. The interlacing property:

c̃
(s)
ν−1 < c̃(s)ν < c̃

(s+1)
ν−1 ∀ν > 0 (4.12)

is also valid for all the roots except for c̃
(1)
1 since it lies before c̃

(1)
0 [Truell 1943]. This root is, therefore,

searched inside the interval Ĩ0 ∈
(
δ, c̃

(1)
0

)
, where δ is an arbitrary number smaller than the root to be found,

and c̃
(1)
0 ≡ c

(1)
1 has been calculated previously. In the algorithm δ = 10−3 has been chosen, since the smallest

root that can be found by our algorithm corresponds to q = 1000 and, in this case, the searched root is around
1.8 · 10−3. Once this root has been found the remaining ones are automatically calculated following the same
inverted pyramidal scheme and relying on the subdivision of the intervals performed by the roots of the previous
ν-order, as described above. Note that the index s for the roots of g̃ν(q, x) does not correspond to the one of
McMahon’s expansion since smaller roots than predicted for s = 1 are found [Truell 1943, Dwight 1948].
Thus, the index s is shifted by one in this case with respect to McMahon’s nomenclature for the roots of this
function.

The algorithm to calculate the set of roots C̃ν =

{
c̃
(s)
ν |g̃ν

(
q, c̃

(s)
ν

)
= 0, s, ν ∈ N

}
till reaching the order

νmax is presented in Algorithm 3.
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Algorithm 3 Calculate c̃
(s)
ν ∀(s, ν), s ∈ [1, smax − ν], ν ∈ [0, νmax]

Input: c
(s)
1 , νmax, smax; Output: c̃

(s)
ν ; Constants: eps, ǫ, nsub, δ;

c̃
(1)
0 := δ {This root is discarded later, since it is only an artificial bound to find the first root for ν = 1.}

c̃
(s)
0 := c

(s−1)
1 ∀s ∈ [2, smax]

for ν = 1 to νmax do

for s = 1 to smax − ν do

i := 0; err := 1; count := 0;

ǫ := max

{
eps ·

(
c̃
(s+1)
ν−1 − c̃

(s)
ν−1

)
, eps

}
;

delta :=

(
c̃
(s+1)
ν−1 − c̃

(s)
ν−1

)

nsub
;

while (err > eps ∧ count < nsub) do

Xi := c̃
(s)
ν−1 + ǫ+ count · delta

count := count+ 1

while
(
Xi ≥ c̃

(s)
ν−1 ∧Xi < c̃

(s+1)
ν−1 ∧ i ≤ imax

)
do

Xi+1 := Xi −
g̃ν(q,Xi)

g̃′ν(q,Xi)

err := abs

[
Xi+1 −Xi

Xi+1

]

i := i+ 1

c̃
(s)
ν := Xi
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4.3 Main results

In this section the roots of the two functions (4.1) are shown for two extreme values of the coaxial cable aspect
ratio (q = 1.001 and q = 1000) in order to check the reliability of the algorithm for limiting cases. This
ensures that the algorithm will work as well for ratios of q as they are found in practical applications. For these
two extreme values the interlacing properties of the roots of both, the cross-product of Bessel functions and
their derivatives, are verified.

As for low values of q and for a given s the roots of (4.1) lie very close to each other as ν increases, and
the interlacing properties cannot be easily verified by visual inspection, we represent the roots for q = 1.001 in
tabular format normalized by the quantity (q − 1). In Table 4.1 the 10 first roots of (4.1a) for values of ν from
0 to 5 are shown. In Table 4.2 the 11 first roots of (4.1b) for values of ν from 1 to 5 for the same value of q are
shown. The reason why the roots in Table 4.2 for ν = 0 are not shown is because they are the same as those
ones of Table 4.1 for ν = 1 as it was pointed out before. It can be seen that the values of the normalized roots
tend to multiples of π, as expected when q → 1 since this limit corresponds to the solution of the eigenvalues
of the parallel-plate waveguide [Cochran 1966b]. The results certify that the interlacing property of the roots
of both functions hold for all of them.

For large values of q the verification of the interlacing property can be easily performed by visual inspection.
The 10 first roots of the cross-product of Bessel functions and the ones of the cross-product of their derivatives
are shown for the 10 first values of ν for q = 1000 in Fig. 4.3, top and bottom, respectively. In this case it can
be noticed that the roots of (4.1a) tend to the ones of the Bessel function of the first kind, that is, the roots of
Jν(qx) = 0; while the roots of (4.1b) tend to the ones of the derivative J ′

ν(qx) = 0, as expected for large values
of q [Kline 1948].

In order to show the efficiency of the roots search the number of iterations needed to reach machine preci-
sion for the first root of the functions defined in (4.1) is represented in Fig. 4.4. The convergence study of the
first root of gν (see Fig. 4.4a) shows that the number of iterations needed to reach machine-precision accuracy
increases as ν grows for a given q, though the convergence seems to depend more on q than on the index of
the Bessel functions. Namely, for a given ν, the convergence is more quickly attained as the ratio q decreases
and gets close to one. This is due to the fact that McMahon’s expansion provides a better estimate of the roots
as the ratio s/(q − 1) increases. Another reason to explain why the algorithm needs less iterations for lower
values of q than for larger ones is due to the fact that the algorithm places the seed slightly above the value of
c
(s)
ν−1 to find the root c(s)ν . Thus, as the root lies closer to the seed for smaller values of q than for larger ones

(compare results in Table 4.1 with those of Fig. 4.3) the convergence is more quickly attained for q → 1. The
fast and accurate character of the algorithm to find all the roots of functions (4.1) for any ν is, indeed, based
on the knowledge of the set C0 and the properties of its elements with respect to the roots for higher orders ν.
Nevertheless, the plot shows that in the worst case, corresponding to (q−1) = 1000, the algorithm only needs
six steps to reach machine-precision accuracy for ν = 100, which reflects its fast performance.

It must be remarked that the eventual jump of the seed (cf. Figure 4.2b and Section 4.2.2) to the beginning
of the second or the third subintervals when the approximation to the root lies outside the search interval has
been recorded and taken into account in the plot of Figure 4.4. The convergence study of the root search for
nsub = 10 shows the presence of the jump of the seed to the second and the third subintervals for values of
q above q = 5 and q = 50, respectively. No jump of the seed beyond the third subinterval was observed for
values of q below q = 1000 for ν and s ranging from 0 to 100 and from 1 to 100, respectively. The appearance
of jumps in the seed to the next subintervals does not follow a clear tendency with the parameter q or the index
ν, since it depends on the slope of the function fν(q, x) evaluated at x = c

(s)
ν−1, the NR iteration approximating
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(a) Roots of gν(q, x).
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(b) Roots of g̃ν(q, x).

Figure 4.3: Roots of (4.1) for q = 1000.
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Figure 4.4: Iterations needed to reach machine accuracy in the root search of the first roots of the
functions (4.1).
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the root within or outside the search interval defined by Is→s+1
ν−1 .

For example, for q = 5, jumps to the second subinterval were recorded for values of ν between 21 and 55
for few values of the root index, s. For ν = 21 it was observed the jump of the root approximation to the second
subinterval only for s = 18, 19. For ν = 55 this jump was observed only for s = 44, 45. The behavior of the
jump of the seed to the second subinterval for intermediate values of ν was different, for instance, for ν = 41

this occurred for the roots lying from s = 33 to s = 43.

For q = 1000 the presence of the jumps of the seed to the next subintervals was observed for values of ν
from 2 to 47. For values of ν below 15 the jump to the third subinterval occurred in few cases for large values
of the root index, s (between 70 and 90). For big values of ν the jump occurred only to the second subinterval
for few roots (typically 8 for each value of ν). It has also been observed that the number of roots for which this
jump occurs decreases as the index ν grows, disappearing the presence of jumps for ν > 47.

Figure 4.4b shows that the convergence of the first root of g̃ν is mainly achieved in four or less iterations
for any value of q as long as ν is larger than one, reflecting the fast performance of the root search. It is
worthwhile to mention that, unlike the convergence of the search of c(1)ν , the number of iterations needed to
find c̃

(1)
ν is practically independent of q, except for the first order, showing a satisfactory performance of the

root search for any order. The exception to the fast convergence of the algorithm occurs for ν = 1, where the
algorithm needs up to 24 iterations to converge for q = 1.001, though it is better compared to the previous
algorithm [Sorolla 2011], where 81 iterations were required for q = 1.01. Although the comparison is made
for different values of q it must be noted that the lower the coaxial cable aspect ratio the worse the convergence
speed. The current algorithm finds the first root 4 times faster than the previous one and, moreover, for a smaller
value of q.

The reason of the slow performance in the root search of c̃(1)ν is twofold: the seed to calculate c̃
(1)
1 is placed

slightly above δ within the interval Ĩ0 ∈
(
δ, c

(1)
1

)
, and this may lie far away from the actual root; the second

reason is that the slope of the function g̃1(q, x) is very steep close to the origin, what makes the convergence of
the NR algorithm difficult to converge when the seed is far from the root. Let us remind that the lower bound of
the search interval was optimized to lie close to the first root for q = 1000 (see Fig. 4.5b) and the NR algorithm
in this case needs only four steps as it is shown in cyan in Fig. 4.4b. For lower values of q the first root for
ν = 1 lies far above the lower bound of the search interval, what slows down the convergence. Nevertheless, all
the roots c̃(s)ν are calculated based on the knowledge of c̃(s)ν−1. Therefore, the drawback found in the root search
of the first root of g̃1(q, x) does almost not affect the whole performance of the algorithm since, once the value

of c̃(1)1 is found, the procedure calculates the rest of the roots very efficiently for any value of ν and q.

It must be mentioned that the algorithm still works for values of q > 1000 as long as the amount of
roots requested for ν = 0, smax, and the largest order of the Bessel functions, νmax, are not too big. For
example, the algorithm is still able to find the roots for q = 2000 when smax = νmax = 30 but when
these values were increased to 40, the values of the argument of the Bessel functions were so small such that
underflow error messages were received. On the other hand, the calculation of the roots of the cross-product
of Bessel functions for extreme values of the coaxial cable aspect ratio have already been developed by other
authors using the asymptotic expansion of the Bessel functions for small or big arguments [McMahon 1894,
Laslett 1962, Cochran 1966b].

The average number of iterations needed to calculate the eigenvalues of the TM-modes is around 6 per roots
for q > 3 and around 2 for q < 1.1. For the TE-modes the behavior of the convergence is in general a bit better,
apart from the fact that for low values of q the convergence for ν = 1 is very slow for the reasons mentioned
above. In the end, the overall effect is that the average number of iterations in the search of the eigenvalues of
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Figure 4.5: Plots of the function g̃ν(q, x).
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TM- and TE-modes is very similar. The previously developed algorithms that analyzed the calculation of the
roots of (4.1) were based either on the approximation by a series [McMahon 1894, Bridge 1962], sometimes
only valid for asymptotic values of q or ν [Laslett 1962, Cochran 1966b], or on the solution of an eigen-
value problem in a fast and efficient way as most recent works have done [Gimeno 1996, Gimeno 1997, Ruiz-
Cruz 2004, de la Rubia 2005]. These last studies showed very efficient calculation of the eigenvalues of more
general structures, though the accuracy presented for coaxial cables was lower than the one achieved with the
algorithm presented in this article. Nevertheless, as the computational cost to solve a linear eigenvalue problem
grows with the square of the amount of roots, the method presented here is much more efficient when a large
number of roots is requested, since its computational cost grows only linearly.

4.4 Summary

A globally convergent algorithm to find a large amount of roots of the cross-product of Bessel functions and
their derivatives has been developed for the first time for a large range of values of the parameter q and the
order ν. Its efficiency has been checked analyzing the amount of iterations needed to reach convergence up
to the 14-th digit, underlining its good performance. The algorithm with the detailed steps to follow has been
depicted in pseudo-code, showing the easy implementation using the Newton-Raphson iteration scheme.

In average, approximately only 6 iterations per root are required considering two extreme values of the
parameter q, with the exception of the first root of the cross-product of derivatives of Bessel functions (TE
modes). However, this isolated case only affects slightly the overall performance of the algorithm.

The speed of the algorithm has been tested for q = 1.001 and q = 1000, showing a speed of 81000
and around 16000 roots per second, respectively, all calculated on a current desktop computer (Intel 4-core
2.4 GHz).
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Table
4.1:

R
oots

of
g
ν (q,x

)
for

q
=

1.001.

(
q
−

1
)
c
(
s
)

ν

❍
❍
❍
❍
❍

s
ν

0
1

2
3

4
5

1
3.14159261384070

3.14159277283666
3.14159324982459

3.14159404480405
3.14159515777465

3.14159658873654
2

6.28318528730424
6.28318536680294

6.28318560529729
6.28318600278670

6.28318655927254
6.28318727475406

3
9.42477794751978

9.42477800051970
9.42477815951523

9.42477842450749
9.42477879549898

9.42477927248715
4

12.5663706044217
12.5663706441725

12.5663707634179
12.5663709621625

12.5663712404052
12.5663715981467

5
15.7079632599985

15.7079632917983
15.7079633871946

15.7079635461920
15.7079637687865

15.7079640549799
6

18.8495559149138
18.8495559414141

18.8495560209108
18.8495561534082

18.8495563389043
18.8495565773960

7
21.9911485694487

21.9911485921646
21.9911486603049

21.9911487738743
21.9911489328691

21.9911491372929
8

25.1327412237482
25.1327412436240

25.1327413032459
25.1327414026220

25.1327415417425
25.1327417206116

9
28.2743338778918

28.2743338955588
28.2743339485548

28.2743340368878
28.2743341605521

28.2743343195481
10

31.4159265319259
31.4159265478225

31.4159265955208
31.4159266750207

31.4159267863192
31.4159269294122
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5.1 Introduction

In order to detect the presence of multipactor some experimental methods have been proposed in the literature,
like the third harmonic detection technique [Udiljak 2003], which proposes the search of the third harmonic
of the radiated power spectrum of the electron cloud current to witness the presence of the discharge. As the
electron population cannot grow indefinitely there must be a mechanism that limits the number of electrons
released by secondary emission, i.e., the saturation mechanism. On the other hand, the intensity of the radiated
power spectrum depends on the number of electrons involved in the discharge [Sorolla 2008], and the detection
is supposed to take place when the saturation is reached. Therefore, the study of the multipactor saturation is
important in order to estimate the number of electrons in the steady-state and establish a measurable criterion
for the discharge onset, since a criterion to determine whether multipactor has unambiguously occurred does
not exist yet.

The parallel-plate waveguide is a good model to study many structures like irises or small gaps where
the electric field is reasonably homogeneous [Woode 1990]. The physical mechanism to explain the classical
multipactor breakdown has been studied by several authors. Initially, analytical expressions for the equations
of motion of the electrons within a parallel-plate waveguide were found without considering space charge ef-
fects [Hatch 1954, Vaughan 1988]. They were used to explain the conditions that lead to the multipactor onset
and to calculate the voltage threshold that would trigger the electron avalanche. Nevertheless, they could not
predict a limit in the amount of electrons released by secondary emission, though a tentative description of the
saturation taking into account the thermal spread in the initial velocity of the secondary electrons, and the con-
sequent bunch breakup produced by the mutual repulsion between electrons, was considered [Vaughan 1988].
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Other authors have studied the multipactor discharge using a PIC (Particle-In-Cell) code considering the ther-
mal effects and the change of the total electric field due to the presence of the boundaries on the electron
cloud as well [Riyopoulos 1995, Riyopoulos 1997, Gopinath 1998, Buyanova 2010]. Their works showed the
limit in the increase of the electron population and remarked the importance of the interaction of the elec-
tron cloud with its image through the metallic boundaries to explain the achievement of steady-state mul-
tipactor. The spread in the initial velocity of secondary electrons also explained the multipactor saturation
by the de-bunching of the electron cloud against the phase-focusing effect. Other works have been devel-
oped to study the saturation of multipactor discharge in more general geometries or with different approaches
[Kishek 1995, Kishek 1996, Ang 1998, Kishek 1997, Somersalo 1998, Gorshkova 1999, Blyakhman 2000, Se-
menov 2007, Coves 2008]. However, the mono-energetic model of secondary emission has been proposed
in this chapter model as a good approximation to describe the steady-state multipactor under certain condi-
tions. It was suggested that steady-state multipactor, if it exists, may be adequately described by a single sheet
model [Kishek 1996]. Furthermore, it has been shown that, when fluctuations in the initial energy distribution
of the secondary electrons are small enough and the SEY is slightly larger than one, the steady-state with a tight
bunch preventing bunch breakup may occur [Riyopoulos 1997].

Therefore, in this chapter, like in Chapter 2, the initial velocity of all secondary electrons is assumed to
be constant and the impacts against the metal plates are assumed to imply a SEY slightly above unity, so that
the presented calculations of the saturation charge density are a good approximation of the saturation levels
found near above the multipactor threshold. Nevertheless, as multipactor breakdown is usually detected near
the threshold, the saturation levels calculated in these conditions are representative of steady-state multipactor.

The results of the electron population evolution obtained show that the image charge of the electron sheet
has a strong influence on the appearance of the steady-state multipactor, as it will be presented later. Two
mechanisms of saturation have been identified to explain the multipactor saturation for order one of resonance
(see Section 2.2). The conclusions of this chapter agree with those ones already found by other authors: the
decrease in the impact energy of the electron cloud with the increase of the electron surface density till reaching
the unity SEY [Kishek 1995, Riyopoulos 1997, Kishek 1997], and the transient from double-sided to single-
sided multipactor by the attraction of the electron cloud by its image through the plates [Buyanova 2010]. These
two effects have also been identified in this work as the mechanisms to explain the multipactor steady-state.

We will model the electron cloud by an infinitely thin sheet and calculate the equations of motion within
a parallel-plate waveguide excited by the Transverse-Electromagnetic (TEM) mode taking into account space
charge effects. The equations of motion of the electron sheet will be presented (for details see Appendix C)
and a description of the physical mechanisms that lead the electron cloud to the saturation stage provided by
this model will be done. The analysis of the stability of the electron population growth will be developed and
employed to explain how the multipactor steady-state is attained.

5.2 Multipactor breakdown with space charge effects

The electron cloud generated during the discharge in parallel-plate geometries has traditionally been modeled
by an infinitely thin, flat and continuous charge distribution (electron sheet) [Vaughan 1988, Kishek 1995,
Riyopoulos 1997, Coves 2008] using the theory of Sombrin [Sombrin 1983] in which the initial speed of all
the secondary electrons is the same. Analogously to [Kishek 1995], the self-field of the electron sheet when
calculating its equations of motion has been considered to take into account the space charge effects in the
motion of the electron cloud.
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Like in Chapter 2, the SEY model of Vaughan [Vaughan 1989] has been chosen to calculate the electron
population growth along the time evolution. The dependency of the first cross-over point of the material of
the plates on the electron density at the steady-state will be studied, showing an important influence on the
maximum charge density of the electron cloud in the saturation.

5.2.1 Equations of motion of the electron sheet

Let us consider the set of electrons within the region between the plates represented in Fig. 5.1a that describes
the electron cloud produced by the multipactor discharge in a parallel-plate waveguide. This can be modeled
by an unbounded 2D continuous charge distribution whose surface charge density is Σ = −eσ, where −e is
the electron charge and σ[m−2] is the electron surface density of the sheet. The charge distribution is assumed
to move in one dimension along the z axis between the plates of the waveguide (see Fig. 5.1b). As the plates
of the waveguide are supposed to have infinite dimensions, edge effects are not present and the electric field
within the region between the plates can be calculated analytically. It is assumed that all the secondary electrons
are released from the plates at the same time and with the same initial velocity. Thus, the motion of a single
electron of the sheet taking into account the interaction with the rest of the electrons is calculated, since it
is representative for the motion of the electron sheet. The electric field evaluated at the position of a single
electron belonging to the sheet will be calculated applying the superposition principle: the total electric field
will be the sum of the generator field plus the field produced by the electron sheet between the parallel-plates
without the contribution of the single electron whose motion is considered.

The infinite parallel-plate waveguide is excited with the fundamental mode, thus, the electric field coming
from the generator points the z-axis and is given by:

ERF(t) =
VRF

d
cos(ωt)ẑ (5.1)

where VRF is the RF voltage, ω is the angular frequency of the RF signal and d is the distance between the
plates (see Fig. 5.1b).

The electric field provided by the electron sheet is oriented along the z-axis, and it is described by a piece-
wise function where the electron sheet introduces a discontinuity at z = z′(t) [Stakgold 1979]:

Esheet(z, t) =





Ebelow =
−eσ[z′(t)−d]

ǫ0d
ẑ, 0 ≤ z < z′(t)

Eabove =
−eσz′(t)

ǫ0d
ẑ, z′(t) < z ≤ d

where ǫ0 is the vacuum permittivity.
Our goal is to find an expression for the position of the electron sheet, z′(t), and its velocity, ż′(t), as

function of time. To do so, we are going to apply the total electric field on a single electron of the sheet. By the
superposition principle the total electric field will be

Etotal(t) = ERF(t) +Esheet(z = z′(t), t) (5.2)

To calculate Esheet(z = z′(t), t) the approach of [Griffiths 1999] has been followed: the electric field at a
point on a conductor is the mean value of the electric fields above and below the discontinuity evaluated at that
point, z′(t). Thus, we can write the total electric field on a single electron of the sheet as:

Etotal(t) =

(
VRF

d
cos(ωt)− eσ(z′(t)/d − 1/2)

ǫ0

)
ẑ (5.3)
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(a) Sketch of the electron cloud. Note that the equations of motion are found for
the electron represented by the big black sphere.

(b) Electron sheet model of the electron cloud.

Figure 5.1: Electron cloud produced by a multipactor discharge predicted by Sombrin’s model
within a parallel-plate waveguide.
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The first term represents the field from the generator and the second the field from the image charges induced
by the electron sheet due to the presence of the plates, as it has already been identified in [Kishek 1995].

If the Lorentz force is applied to an electron of the sheet (e.g. the black one in Fig. 5.1a) neglecting the
magnetic field, we find a differential equation that can be solved analytically. The details of the solution of that
differential equation are shown in Appendix C. Thus, the velocity of the electron sheet can be written

ż′(t) = (v0 + z̄σω sinφ1) cosh

(
δφ√
Kσ

)
− ω√

Kσ

(
d

2
− z′0 + z̄σ cosφ1

)
sinh

(
δφ√
Kσ

)
+

− z̄σω sin(φ1 + δφ) (5.4)

and the position is:

z′(t) =
d

2
+ z̄σ cos(φ1 + δφ) +

√
Kσ

(
v0
ω

+ z̄σ sinφ1

)
sinh

(
δφ√
Kσ

)
+

+

(
z′0 −

d

2
− z̄σ cosφ1

)
cosh

(
δφ√
Kσ

)
(5.5)

where v0 is the initial velocity of the electron sheet when leaving the initial plate located at z′0 at the instant t1,
and φ1 is the phase of the RF field at t1; δφ is the phase shift between the phase for any subsequent instant t
(φ = ωt) and φ1 (δφ = ω(t− t1)); the quantity z̄σ is given by the expression

z̄σ =
ǫ0VRF

eσ(1 +Kσ)

where Kσ is a dimensionless parameter defined by

Kσ ≡ ǫ0meω
2d

σe2
,

me being the electron mass. The parameter Kσ stands for the intensity of the interaction between the electron
sheet and its image, since it is easy to prove that, as σ tends to zero, z̄σ tends to eVRF /meω

2d and (5.4) and
(5.5) tend to the expressions obtained in the literature where space charge effects are neglected [Vaughan 1988,
Hatch 1954].

5.2.2 Stability of the multipactor discharge

The time evolution of the electron population has been calculated using the equations of motion introduced
in Section 5.2.1 for different values of the initial velocity, frequency, distance, voltage and the first cross-over
point of the SEY. The phase of resonance is obtained using the “effective electron” model, since the initial
electron surface density has been taken low enough as to represent accurately this model at the beginning of the
motion (σ ≤ 10−6 m−2). The simulations were carried out during hundreds of periods of the signal and they
all showed a limit in the increase of the surface electron density (see e.g. Fig. 5.2). When the RF voltage is
near above the breakdown voltage threshold (SEY slightly above unity) the simulations showed that the ceiling
in the evolution of σ with time for multipactor of order one is reached in different ways.

For very low values of the RF voltage the electron surface density reaches a constant value in the steady-
state as it is shown in Fig. 5.2a for VRF = 30 V and in Fig. 5.2b for VRF = 70 V. However, when the voltage
increases, the steady-state is characterized by a fast oscillation of σ, what can exhibit different behaviors. The
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electron surface density may oscillate chaotically below a certain limit which is never exceeded (see the case
for VRF = 60 V in Fig. 5.2a), or if the voltage is too high, the values of σ exhibit big oscillations without
a well-defined top limit. Interestingly, the electron population growth with space charge effects may exhibit
different behaviors as time passes. An example of this is plotted in Fig. 5.2b for VRF = 1400 V, where the
steady-state seems to have been reached when the chaotic oscillations of σ appear but after a certain instant the
fast variations exhibit a coherent behavior.

The different ways for the multipactor discharge to reach the steady-state can be explained by analyzing the
stability factor of the resonant motion of the electron sheet. For example, for very low values of the RF voltage,
but still able to fulfill the conditions of resonance, and for impact energies higher than the first cross-over point,
the electron sheet impacts against the plates with enough energy so that its charge increases gradually. Above a
certain value of σ, the image charge of the electron sheet with respect to the initial plate is able to slow down the
motion of the electron cloud so that the impact energy against the opposite plate decreases wandering around,
before converging to the first cross-over point. In Fig. 5.3 the impact energy vs. the electron surface density
for the cases obtained with VRF = 30 V and VRF = 70 V presented in Fig. 5.2 shows that the saturation is,
indeed, attained when the impact energy reaches the first cross-over point. In these cases the mechanism that
describes the process of saturation has been named “impact energy limit” model. This mechanism consists
of the decrease of the impact energy as the electron surface density increases, but maintaining the stability of
the resonance till the impact energy reaches the first cross-over point, when the electron population does not
increase anymore. When the voltage is higher, such that the electron sheet returns to the initial plate attracted
by its image before reaching the opposite plate, the maximum value of the electron surface density can be
predicted by the “returning limit” model. Both models will be mathematically developed later.

In order to understand the mechanisms that lead the multipactor breakdown to the steady-state let us study
the stability of the motion of the electron sheet for each case. To do so, the stability factor as presented in
Section 2.4

|G| ≡
∣∣∣∣
∂φ

∂φ1

∣∣∣∣
φ=φ1+π

is calculated using (5.5) to determine whether the resonant motion is stable or not. Therefore, using the defini-
tion of F employed in Section 2.4, the stability factor for order of multipactor one can be written as

G =
∂F/∂φ1

∂F/∂φ

∣∣∣∣
φ=φ1+π

=

=
v0/ω cosh

(
π/

√
Kσ

)
−
[
d/2 + (Kσ + 1)zσ cosφ1

]
hσ

(
d/2 + zσ cosφ1

)
hσ − zσ sinφ1

[
1 + cosh

(
π/

√
Kσ

)]
− v0/ω cosh

(
π/

√
Kσ

)

where hσ ≡ sinh(π/
√
Kσ)√

Kσ

.
The stability factor is plotted in Figs. 5.4a and 5.4b as function of σ for different values of the initial phase

φ1 applying the resonance condition for order of multipactor one, i.e., φ = φ1 + π. For example, the stability
factor plotted in Fig. 5.4a for VRF = 30 V and φ1 = 1.6 rad shows that the resonant motion of the sheet is
stable for values of σ . 3.5 · 1012 m−2. Part of the motion, together with the phase evolution of the impacts of
the multipactor discharge, corresponding to the cases presented in Fig. 5.2 are shown in Fig. 5.5. The two top
figures show the position of the electron sheet and the value of σ vs. time, and the two bottom figures show the
impact phase, φn, vs. the initial one, φn−1. It must be noted that the resonance phase changes as the value of σ



5.2. Multipactor breakdown with space charge effects 87

0 100 200 300 400 500 600 700 800

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

(a) f = 1 GHz, d = 1 mm, v0 = 3.68 eV, E1 = 20 eV.
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(b) f = 5 GHz, v0 = 2 eV, E1 = 50 eV.

Figure 5.2: Evolution of the electron surface density. (a) For VRF = 30 V, φ1 = 1.06 rad and
for VRF = 60 V, φ1 = 1.6 rad. (b) For VRF = 70 V, d = 0.2 mm and φ1 = 1.1 rad and for
VRF = 1400 V, d = 1 mm and φ1 = 2 rad.



88 Chapter 5. Multipactor saturation

10
8

10
9

10
10

10
11

10
12

10
13

20

30

40

50

E

E

Figure 5.3: Impact energy as function of σ for f = 1 GHz, d = 1 mm, v0 = 3.68 eV and
φ1 = 1.6 rad (black dots) and f = 5 GHz, d = 0.2 mm, v0 = 2 eV and φ1 = 1.1 rad (circles).
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grows (see Figs. 5.5c and 5.5d), this is the reason why the stability factor has been plotted for different values
of φ1. Interestingly, Figs. 5.5c and 5.5d show that for low voltages (represented by crosses) the resonant phase
seems to increase slowly as the electron surface density grows. On the contrary, for higher voltages (represented
by dots) the evolution of the initial phase changes more remarkably. The first case corresponds to the one when
the value of the RF voltage is low enough so that σ does not overcome the values that would lead to an unstable
resonant regime for the attained resonant phases. The second case shows that, at a certain instant, the resonance
becomes unstable because the value of σ for the corresponding value of φ1 entails a value of |G| above unity.

For instance, Fig. 5.3 shows that the electron surface density in the steady-state for VRF = 30 V is around
σ = 5 · 1011 m−2, while Fig. 5.5c shows that the resonant phase ranges from φ1 = 1.6 rad, at the beginning
of the motion, to φ1 = 2 rad in the saturation, whereas the stability factor stays below unity as long as σ

stays below 4 · 1012 m−2 (see Fig. 5.4a). Analogously, the evolution of the resonant phase for VRF = 70 V

(plotted in Fig. 5.5d) shows that the stability factor (Fig. 5.4b) lies below one as the resonant phase evolves from
φ1 = 1.1 rad to φ1 = 1.3199 rad. Although the stability factor for φ1 = 1.1 rad is in the limit of unity close
to the saturation value of σ (8 · 1012 m−2 according to Fig. 5.3), the evolution of the resonant phase towards
φ1 = 1.3199 rad changes the profile of |G| such that the maximum value of σ that keeps the stability factor
below one increases, too, lying around σ = 1.5 · 1012 m−2 (see Figs. 5.4b and 5.5d).

Due to the presence of the image charge, the consequences of the electron population growth are the de-
crease of the impact energy and the increase of the resonant phase. The overall effect by the increase of the
electron population is equivalent to a reduction of the electric field in the “effective electron” model without
space charge effects. One important difference between these two scenarios is that, as σ grows, the resonant
phase increases and the stability factor changes in such a way that the resonant motion of the electron becomes
stable for values of σ that would previously lead to unstable regimes (see e.g. Fig. 5.4a for VRF = 30 V for
φ1 = 1.6 rad and φ1 = 2 rad). Another difference is that the intensity of the electric field induced by the
image charge changes not only with time, but with the position of the sheet, too. There are, thus, two facts
that explain why in this case the saturation results in a constant electron surface density: 1) The resonant phase
increases with σ (see crosses in Figs. 5.5c and 5.5d); 2) the maximum value of σ that yields a stability factor
below unity increases with φ1 (see Fig. 5.4a). These two effects allow the electron population to increase with
the subsequent decrease of the impact energy until the first cross-over point is reached. This occurs before the
value of σ that would entail a stability factor above one is attained when the growth rate is moderate. Thus, the
calculation of the surface charge density in the steady-state obtained with the “impact energy limit” model is
justified as long as the RF voltage is low enough to ensure that the SEY lies near above one during the increase
of the electron population.

As it is shown next, the stability break is more likely to occur at some moment of the electron avalanche
onset as the voltage increases. For higher voltages, the electron cloud also exhibits at the beginning a periodic
motion (see Fig. 5.6b) but with the electron population increasing faster. Above a certain value of σ the stability
factor exceeds unity marking the presence of an unstable resonance. The initial and final phases between
successive impacts split up and resonance breaks. At this stage the image charge through the metal plates
reduces the speed of the electron sheet and diminishes its impact energy against the opposite plate inducing a
SEY close to unity (e.g. for impact 7 in Fig. 5.5a, the value of σ did not change significantly with respect to
what occurred after impact 6); or the impact can entail a low SEY with the subsequent decrease of the electron
population (e.g. impacts 8 and 9 in Fig. 5.5a). The initial phase and the attraction between the sheet and its
image imply the return of the electron cloud to the initial plate decreasing (e.g. impact 10 in Fig. 5.5a) or
increasing (e.g. impact 1 in Fig. 5.5b) the electron surface density, respectively. In the first case, the minimum
value of σ that provokes the return of the sheet to the initial plate for any value of the initial phase, inducing
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Figure 5.4: The stability factor calculated for different values of the initial phase corresponding to
the cases presented in Fig. 5.6.
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(c) Phase evolution of part of the motion shown
in Fig. 5.6a.
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Figure 5.5: Analysis of the motion of the electron sheet for the cases shown in Fig. 5.6. (a) shows the motion
(solid) and the electron surface density (dashed) during a short time slot for VRF = 60 V presented in Fig. 5.6a;
(b) shows the coherent part of the motion (solid) and the electron surface density (dashed) (after t = 124 ns)
for VRF = 1400 V presented in Fig. 5.6b; (c) and (d) show the phase at each impact, φn, vs. the one at the
previous impact, φn−1, corresponding to the motion of the cases shown in Figs. 5.6a and Fig. 5.6b.
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a SEY below unity, is identified as the saturation level, σsat in the “returning limit” model. The calculation of
this value will be presented later and it is represented by the dotted line in Fig. 5.6. When the RF voltage is low
enough, the impact energy in the collision against the initial plate lies below the first cross-over point and the
electron surface density never goes above σsat (see Fig. 5.6a). On the contrary, when the RF voltage is much
higher the initial phase may provoke a high impact energy against the initial plate with a SEY larger than unity,
exceeding the value of σsat predicted by the “returning limit” model. An example of this is shown in Fig. 5.6b,
where the maximum electron surface density exceeds the value obtained with this model when the voltage is
too high.

The presence of three regions can be noted in the growth of the electron surface density obtained for
VRF = 1400 V in Fig. 5.6b. Initially, the electron sheet moves in resonance with the RF field increasing
σ quickly till the electron surface density overcomes the value for which the stability factor lies above one.
From then on, the coherent motion of the electron sheet is destroyed and the electron population oscillates
chaotically around the maximum value predicted by the “returning limit” model. However, after t = 124 ns,
another type of resonant motion is found, differently of the initial one. In Fig. 5.5b the position of the sheet
corresponding to the beginning of this part of the motion, where σ oscillates between two well-defined values,
exhibits a multipactor resonance of order 3. In Fig. 5.5d the phase evolution from the beginning of this part
of the motion till the end of the simulation shows a stable 4-cycle phase diagram which provides us with the
values of the impact phases to evaluate the stability factor according to the value of σ obtained. The dots of
the phase diagram show in Fig. 5.4b the evolution of the stability factor at each impact. Indeed, when the sheet
reaches a high electron surface density (impact 1) the resonance becomes unstable and the initial phase induces
a low energy impact (impacts 2 and 3), but when the value of σ has decreased below 5 · 1013 m−2 the phase
at 3 is favorable to an impact against the opposite plate π/3 rad later (impact 4). However, with the increase
of the electron surface density the resonance becomes unstable once more with the particularity that the next
impact leads to the initial phase and to the electron surface density of dot 1. Therefore, this cycle repeats, and
the oscillation in the values of σ limits the electron population growth in the steady-state, though the maximum
value of the electron surface density lies above σsat predicted by the “returning limit” model.

5.3 Mechanisms of saturation

Therefore, when the RF voltage is not too high the steady-state can be explained by the two mechanisms
described in what follows. The values of the surface electron density in the steady-state predicted by the “impact
energy limit” model is shown in Fig. 5.6 for VRF = 30 V and VRF = 60 V. Note the good agreement between
the predictions obtained with the numerical solution of (5.6) and the simulations of the electron population
increase with the equations of motion. On the other hand, the maximum electron surface density predicted by
the “returning limit” agrees with the case shown in Fig. 5.6a for VRF = 60 V but it does not agree with the
case represented in Fig. 5.6b for VRF = 1400 V. It has been shown that in this case the voltage is so high that
the stability is broken before reaching the steady-state, provoking oscillations in the values of σ beyond the
maximum electron surface density predicted by the “returning limit” model.
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(a) f = 1 GHz, d = 1 mm, v0 = 3.68 eV, E1 = 20 eV.
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(b) f = 5 GHz, v0 = 2 eV, E1 = 50 eV.

Figure 5.6: Evolution of the electron surface density. (a) For VRF = 30 V, φ1 = 1.06 rad and
for VRF = 60 V, φ1 = 1.6 rad. (b) For VRF = 70 V, d = 0.2 mm and φ1 = 1.1 rad and for
VRF = 1400 V, d = 1 mm and φ1 = 2 rad.
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Figure 5.7: Steady-state surface charge density vs. RF voltage for f = 1GHz, d = 1mm and
v0 = 3.68 eV obtained with the equations of motion and with (5.6).

5.3.1 Impact energy limit mechanism

In this model, the value of σsat for which the resonance condition is fulfilled and the impact energy is equal to
the first cross-over point is calculated as the solution of the following system of equations:

d− z′[δφ = π;σ = σsat] = 0√
2eE1
me

− ż′[δφ = π;σ = σsat] = 0



 (5.6)

that represents the classical system of equations to find the resonance condition. In this case the unknowns
are the resonant phase and the density of electrons as the new variable. The values of f , d and v0 are fixed in
(5.4) and (5.5) and VRF is calculated using the “effective electron” model as presented in Chapter 2 to ensure
the multipactor occurrence of order one. Thus, the value of σ that verifies both equations is calculated and
identified as σsat.

The value of the electron surface density as solution of the system of equations is compared with the results
obtained with (5.4) and (5.5) by recording the electron growth during more than 900 periods using the SEY
model of Vaughan. The RF voltage has been varied and the maximum electron surface density recorded for
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each case. The results of the surface charge density (Σ = −eσ) obtained with the equations of motion are
compared with the solution of (5.6) in Fig. 5.7 for two different values of E1. The agreement certifies that the
multipactor saturation obtained with the equations of motion of the electron sheet in this case can be explained
by the “impact energy limit” mechanism. Note that the maximum surface charge density obtained with two
different values of the first cross-over point, E1, differ noticeably for low voltages, decaying in the low voltage
region. This can be understood by the fact that, for a given voltage, the electron sheet impacting against a
material with E1 = 30 eV increases its charge till the impact energy reaches the first cross-over point; the
electron sheet subject to the same voltage impacting against a material with E1 = 20 eV has still some energy
to increase its charge, however. In the high voltage region, the condition of the synchronous motion of the
electron sheet with the RF signal has more influence on the solution of (5.6). Therefore, the “impact energy
limit” mechanism predicts the same surface charge density of saturation independently of the first cross-over
point for high voltages.

5.3.2 Returning limit mechanism

The calculation of the surface charge density of saturation described by the second mechanism is more cum-
bersome. As it was explained above, there is a minimum charge for which the image of the electron cloud with
respect to the initial plate pulls the electron sheet back to this plate for any value of the initial phase before
reaching the opposite plate. This model is based on the assumption that the collision against the initial plate
entails a low impact energy and, thus, a decrease of the electron density, fixing so a maximum limit for σ, which
is identified like the value of saturation of this model. Accordingly, the model assumes that the value of the
first cross-over point of the SEY is much higher than the initial velocity so that E1 does not play any role in the
motion that fixes the value of σsat, which induces the return of the electron sheet to the initial plate, as long as
the RF voltage is not too high. If the RF voltage produces a too intense electric field, or the first cross-over point
is too small, the impacts against the initial plate may provoke an uncommon increase of the electron population
and the electron surface density of saturation will lie above the maximum one predicted by this model.

Let us find the maximum surface charge density predicted by this model by establishing the condition of
returning to the initial plate and defining the implicit function |Σ (φ1, δφ) | = |eσ (φ1, δφ) | as

|Σ (φ1, δφ) | : z′(z′0, v0, f, d, VRF , φ1, δφ; |Σ|) ≡ 0 (5.7)

The function |Σ(φ1, δφ)| represents the value of the surface charge density of the electron sheet, leaving
the initial plate at φ1, needed to cause the impact against the initial plate after the time (phase) span δφ. This
function has been plotted vs. φ1 and δφ in Fig. 5.8, and it is clear that, for a given δφ, there is an initial phase
φ1 for which the density of electrons presents a local maximum. This can be understood by noting that, for
δφ and |Σ| fixed, there is a certain value of the initial phase for which the speed of the electron sheet flying
from the initial to the opposite plate is maximal (see Fig. 5.9 for an example). Therefore, it is natural to expect
a local maximum at the minimum charge needed to force the electron sheet to return to the initial plate near
the phase for which the maximum of the speed of the electron sheet is found. Below and above that phase, the
speed of the sheet is lower, and the minimum charge, |Σmax|, needed to slow down the electron sheet by its
image in order to induce the impact against the initial plate is expected to be lower, too. The local maximum
surface charge density of (5.7), |Σmax|, is represented as function of δφ in Fig. 5.10. Note in this plot that, for
a sufficiently big phase span, δφ, the local maximum of the surface charge density, depicted in Fig. 5.8, tends
to a constant value, what allows us to identify that value as the saturation surface charge density searched by
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Figure 5.8: Surface charge density obtained by (5.7) vs. φ1 and δφ for f = 2GHz, d = 1mm,
VRF = 300V and v0 = 3.68 eV.

this model. This model can be employed to describe the multipactor saturation provided that the electron sheet
does not impact with the opposite plate before.

To calculate the analytical expression that links the RF voltage to the maximum charge that the electron
sheet can hold under multipactor resonance in the steady-state, (5.5) is used to rewrite (5.7) as follows:

ǫ0VRF

eσ(1 +Kσ)





[
cosh

(
δφ√
Kσ

)
− 1

]
cosφ1 −

√
Kσ sinh

(
δφ√
Kσ

)
sinφ1



+

+
d

2

[
cosh

(
δφ√
Kσ

)
− 1

]
− v0

√
Kσ

ω
sinh

(
δφ√
Kσ

)
= 0 (5.8)
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Figure 5.9: Velocity of the electron sheet for f = 2GHz, d = 1mm, δφ = 2 rad and v0 = 3.68 eV

for different values of the surface charge density.
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Figure 5.10: Maximum surface charge density of the function defined by (5.7) vs. δφ for different
parameters.
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Factoring out the trigonometric terms and rearranging them, (5.8) can be written as

ǫ0VRF

eσ (1 +Kσ)

√
cosh2

(
δφ√
Kσ

)
+Kσ sinh

2

(
δφ√
Kσ

)
· sin (φ1 − β) +

−d

2
cosh

(
δφ√
Kσ

)
+

v0
√
Kσ

ω
sinh

(
δφ√
Kσ

)
= 0 (5.9)

where β = arctan
(

1√
Kσ

)
. For large values of the argument of the hyperbolic trigonometric functions,

cosh(δφ/
√
Kσ) ≃ sinh(δφ/

√
Kσ), and (5.9) reduces to

ǫ0VRF

eσ
√
1 +Kσ

sin (φ1 − β)− d

2
+

v0
√
Kσ

ω
= 0 (5.10)

provided that δφ√
Kσ

≫ 1. That condition ensures the maximum value of the surface charge density, as solution
of (5.7), to be stable (see Fig. 5.10). As (5.10) is independent of δφ, φ1 can be isolated resulting in:

φ1(σ) = arcsin





eσ
√
1 +Kσ

ǫ0VRF

(
d

2
− v0

√
Kσ

ω

)
+ β (5.11)

The maximum of the function σ(φ1, δφ ≫
√
Kσ) can be found by using

dσ

dφ1
≡
(
dφ1

dσ

)∣∣∣∣∣

−1

σ=σmax

= 0

and its value can be calculated by solving the equation

(eσmax)
2 (1 +Kσmax

)

ǫ20V
2
RF

(
d

2
− v0

√
Kσmax

ω

)2

= 1 (5.12)

After some algebraic manipulations and replacing eσmax by |Σmax| we find the maximum surface charge
density as function of the input voltage

VRF =
d

2ǫ0

√
1 +Kσmax

∣∣∣∣∣∣
1−

√
Σ0

|Σmax|

∣∣∣∣∣∣
|Σmax| (5.13)

where Σ0 =
4v20meǫ0

ed provides the minimum value of the saturation charge, coming from the condition VRF →
0, and resulting in

|Σmax| ≥
4v20meǫ0

ed
(5.14)

providing the bottom limit to the charge for which the electron will return to the initial plate for any value of φ1

under the above-mentioned conditions. This expression shows that the minimum saturation level, when it can
be described by the “returning limit model”, does not depend on the frequency, but on the initial velocity of the
electrons and on the gap distance between the plates. Indeed, it is natural to expect that the bigger the initial
velocity the higher the minimum surface charge density so that the image charge is strong enough to pull back



100 Chapter 5. Multipactor saturation

150 200 250 300 350 400 450

700

1000

2000

3000

4000

5000

6000

7000

Figure 5.11: Maximum surface charge density vs. the RF voltage obtained with the simulations
and with the predictions made by the “returning limit” model for v0 = 3.68 eV. The maximum
secondary-electron-yield is two.
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the electron cloud to the initial plate. On the other hand, as the gap distance decreases, for a given voltage, the
electric field increases and therefore, the minimum surface charge density must increase in order to counteract
the RF field and to pull back the electron cloud to the birth plate. Several examples of |Σmax| as function
of the voltage are shown in Fig. 5.11. The values of the maximum surface charge density obtained with the
simulations of the motion of the electron sheet are slightly higher than the ones predicted by the “returning limit
model”, though they never differ by more than the maximum SEY considered (in this case max{SEY} = 2).
This can be explained by taking into account that (5.13) predicts the minimum surface charge density above
which the electron sheet will return to the initial plate for any initial phase; however, nothing forbids the surface
charge density to overcome that prediction if its value is below and after some impact increases above it. This
can be verified noting the fact that discrepancies between both results are always within the margin given by
the maximum SEY.

5.4 Range of validity of the saturation mechanisms

As it has been mentioned before, the two identified mechanisms of saturation to describe the multipactor sat-
uration for resonance of order one are based on the assumption that the spectrum of the initial velocity of
secondary electrons is mono-energetic, so that the spread of the electron cloud due to the mutual repulsion of
electron populations with different initial velocities is neglected. Furthermore, the “impact energy limit mech-
anism” assumes that for low RF voltages, the electron population grows slowly and the image charge does not
alter the stability of the resonant motion of the electron sheet, reaching a stable value of the surface charge
density for which the impact energy tends to the first cross-over point; on the other hand, the “returning limit”
mechanism assumes that above a certain surface charge density, the electron sheet, attracted by its image, im-
pacts against the initial plate provoking a decrease of the electron population as long as the RF voltage is not
too high as to induce a SEY above unity.

Nonetheless, it has been observed that the voltage, the gap distance, the first cross-over point associated to
the SEY curve or the initial velocity, limit the validity of these mechanisms to explain the multipactor saturation.
For high voltages the charge of the electron sheet increases gradually after each impact till the moment when
the image charge breaks the resonant motion of the electron sheet with the RF field. If the voltage is not too
high (the gap distance or the first cross-over point are not too small) the rupture of the resonance by the return
of the electron cloud to the initial plate attracted by its image leads to a low impact energy collision decreasing
its charge, and limiting the maximum surface charge density as described before. However, if the voltage is too
high or the distance between plates too small, the electron sheet may reach the opposite plate increasing even
more its charge if the energy of collision is high enough despite of the solution provided by (5.13). Another
possibility is that the electron sheet returns to the initial plate with an impact energy above the first cross-over
point, increasing its surface charge density even more than predicted by the “returning limit” model. This
happens when the initial velocity and the first cross-over point approaches each other.

In Fig. 5.12 the saturation charge predicted by the two models proposed in this work together with the
results obtained with the equations of motion exemplify the range of validity of these models. As the difference
between the initial velocity and the first cross-over point of the SEY decreases, the maximum surface charge
density increases drastically because the impact energy is likely to exceed the first cross-over point E1 in every
collision. Nevertheless, this limit is not very representative since, in a realistic scenario, the first cross-over
point and the initial velocity lie far from each other. Note that the maximum surface charge density predicted
by both models tends to the results obtained with the equations of motion as the first cross-over point moves
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Figure 5.12: The surface charge density of saturation obtained by three methods: the maximum
obtained by the simulation of the motion of the electron sheet (disks and triangles), the “return-
ing limit” model (dashed line) and the “impact energy limit” model (thick solid line). Note how
the maximum obtained by the equations of motion increases remarkably as E1 tends to the initial
velocity of the secondary electrons considered (v0=5 eV).
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Figure 5.13: Comparison of the surface charge density of saturation vs. the RF voltage obtained
with the equations of motion and by the “returning limit” and “impact energy limit” models for
f = 1GHz, d = 1mm, v0 = 3.68 eV and E1 = 20 eV. The bars show the values of the surface
charge density obtained with the “returning limit” model multiplied by the maximum SEY (two in
this case).

away from the value of the initial velocity. The curve obtained with the equations of motion for VRF = 30 V

predicts a saturation surface charge density till a certain value of the first cross-over point is reached, because
when the first cross-over point exceeds E1 = 20 eV for that voltage, the conditions for multipactor to occur do
not apply and the electron population does not grow anymore.

Figure 5.13 shows that the surface charge density of saturation predicted by the “impact energy limit” model
fits well the values obtained with the equations of motion in the low-voltage region. Above a certain RF voltage
the trend of |Σmax| changes and it seems to closely follow the predictions obtained by the “returning limit”
model, that has been represented by the search of the stable maximum of (5.7) and by the analytic formula
(5.13), showing practically the same results, validating the approximation done. The bars plotted in Fig. 5.13
show twice the value of σ obtained with the “returning limit” model, because in this case the maximum value
of the SEY is two. The bars point that the discrepancies between the simulations and the values obtained with
the “returning limit” model, though increasing with the voltage, they never go beyond the maximum SEY.
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Therefore, though (5.4) and (5.5) are able to predict the electron population saturation, the magnitudes VRF ,
d, v0 and E1 limit the validity of the two afore-mentioned models to explain the saturation mechanism. Their
validity lies in the existence of electrons’ initial velocity far from the first cross-over point, and in the presence
of an electric field whose voltage lies near above the multipactor threshold and a gap distance big enough. In
those cases, the mechanism of saturation of a multipactor discharge within a parallel-plate waveguide can be
well explained by the models described above. These cases are, nevertheless, the most important ones since the
smallest voltage (power) near above the multipactor threshold is searched in the design of microwave devices
able to withstand high input powers without the risk of multipactor occurence.

5.5 Summary

The electron cloud produced by a multipactor discharge has been modeled by a 2D homogeneous charge distri-
bution and the equations of motion of the electron sheet driven by the RF electric field of the fundamental mode
of an infinitely wide parallel-plate waveguide have been found and employed to simulate the electron popula-
tion growth. The steady-state multipactor has been found and the surface charge density of saturation has been
predicted by the “impact energy limit” and “returning limit” models. Their predictions have been compared
with the simulations for voltages near above the breakdown threshold. In this limit the results obtained with
both models have shown a good agreement with the ones provided by the equations of motion.

The equations of motion that have been found considering the space charge show that the resonance, the
stability and the returning conditions studied in Chapter 2 change as the surface charge density increases.
This study yields thus the possibility to find other types of resonances or other conditions under which the
resonant motion of the electron cloud can occur by taking into account the electron surface density as a new
variable in the equations of motion. The jump from a resonant order to a different resonance during the electron
population growth has been observed and the study of the stability of the resonant motion of the electron cloud
as function of the electron density has been done as well. The analysis of multipactor saturation in parallel-plate
geometries can be extended to the study of the motion of two or more electron sheets representing the spread
in the initial velocity as well. Other structures, for example coaxial or rectangular waveguides, can also be
simulated following the same approach to analyze the steady-state multipactor.

For instance, the analytical motion of the electron cloud within a coaxial waveguide of large coaxial aspect
ratio [Udiljak 2007] could be considered to find the surface charge of saturation and once it will be known,
the radiated power spectrum using the efficient algorithm of the roots search of the cross-product of the Bessel
functions could be calculated (see Chapter 4). For rectangular waveguides, the electron cloud may be modeled
by a continuous distribution of charge on a thin layer whose profile follows the one of the electric field for the
fundamental mode (TE10) mode.

On the other hand, the presented results provide the possibility of evaluating the radiated power spectrum
of a multipactor discharge considering the space charge effects. As the motion of the electron cloud within
the parallel-plate waveguide taking into account the space charge is analytical, the same approach as that one
presented in Chapter 3 can be done at the saturation stage. For this, the number of electrons in the steady-state
predicted by the models developed here must be substituted into the equations of motion.

It would be interesting, therefore, to develop the electric current, produced by the electron cloud taking into
account the space charge effects, into a Fourier series to find the radiated power spectrum for a more realistic
case. Nevertheless, the velocity is not a periodic signal anymore when space charge effects are considered,
since the electron population increases with time and this effect modifies the dynamics of the electrons. Thus,
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the analysis of the radiated power spectrum produced by a multipactor discharge considering space charge
effects could be done when the conditions to explain the saturation with the “impact energy limit” model apply.
In this case the development of the current into a Fourier series could be done once the saturation level has
been reached leading to a constant value of the surface charge density and the velocity is a periodic function.
For the conditions when the maximum value of the surface charge density predicted by the “returning limit
model” agrees with the maximum value obtained with the equations of motion, the value of |Σmax| predicted
by (5.13) can be employed to calculate the radiated power spectrum considering space charge effects. For the
cases when σ oscillates chaotically around a certain value in the steady-state, the current can be modeled using
the time-average of the surface charge density or the study could be done using the Fourier transform of the
velocity function.

This analysis and the presented results might help to establish a criterion for multipactor occurrence. Mea-
surements of the radiated power spectrum of the electron cloud, using the third harmonic detection technique
(or other harmonics), can be compared with the predicted radiated power spectrum of a multipactor discharge
following the proposed study. The comparison could establish, indeed, a unique criterion to assess the multi-
pactor onset unambiguously.
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6.1 Transport theory of charged particles in gases

The onset of gas breakdown at high frequencies -also called corona discharge- has been analyzed by many
authors from the beginning of the twentieth century [Ryan 1915, Margenau 1946, Herlin 1948a, Chown 1959,
Brown 1951, MacDonald 1963, Mayhan 1969, Anderson 1986], citing only a few. The first analysis of corona
breakdown at microwave frequencies incorporated physical aspects that were found in DC discharges, more
well-known in the beginning of the twentieth century. Later, some authors started to recognize the differences
between the high and the low frequency discharges. Whereas the electrons in a DC breakdown are continuously
swept out by the field from the critical region, which forces the presence of a source of electrons produced by
secondary effects on the electrodes to trigger the discharge, the gas ionization due to the electron motion driven
by the RF fields is the physical phenomenon, together with diffusion and attachment, that control the breakdown
in high frequency discharges.

Let us imagine an electron within a very low pressure gas accelerated by a uniform microwave electric field
E = E0e

jωt oscillating with a radian frequency ω. If the pressure is so low that the collision rate between
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electrons and gas molecules is much lower than the RF frequency, we can integrate the collision-less equation
of motion

me
dv

dt
= −eE0e

jωt (6.1)

to give

v = v0 +
eE0

meω
ej(ωt+

π

2 ) (6.2)

and integrating again we obtain

r = r0 + v0t+
eE0

meω2
ejωt. (6.3)

The quantities me and −e are the mass and the charge of the electron, respectively.
The kinetic energy conveyed to the electrons driven back and forth by the microwave field is, therefore

T =
1

2

e2E2
0

meω2
, (6.4)

which cannot explain the electron avalanche produced when the corona onset arises if we consider the measured
field strengths obtained for breakdown. The ionization energy of a gas molecule present in the air is of orders of
eV, but the kinetic energy gained by the electrons by the presence of the electromagnetic fields is around meV.
But let us calculate the mean-value of the energy density that the RF field transmits to the electrons within
the gas. We know that the energy transfer from the electric field to an electric charge is found using Ohm’s
law. Thus, if we consider that the electron density within the gas is of n electrons per unit volume and that
the current density is J = −env, we can use the equations of motion to calculate the time-averaged energy
density:

〈
Re (J) · Re (E)

〉
= −env0 · E0

〈
cos (ωt)

〉
+

ne2E2
0

2meω

〈
sin (2ωt)

〉
= 0. (6.5)

It is then proven that the electrons can only gain energy from the microwave field by colliding randomly with
the gas molecules until they reach enough energy to produce the ionization. It imposes thus the consideration
of the impacts against the gas neutrals in the description of the corona breakdown at microwave frequencies.
When the electron is accelerated by a uniform electric field and the pressure is not so low, the equation of
motion of an electron can be written as follows [Lorentz 1909]:

me

(
dv

dt

)
+meνcv = −eE0e

jωt (6.6)

where the second term on the LHS represents a net damping force produced by the random collisions of the
electrons with the gas molecules. The collision frequency, νc, stands for the number of electron-molecule
collisions per unit time. The pressure is a measure of the number of molecules in the gas, and it is intuitive
to expect that the larger the amount of molecules, the larger the number of electron-neutral collisions per unit
time. Therefore, as the experiments have shown [Nielsen 1937, Ryzko 1965] the collision frequency increases
with the pressure and it does not depend on the electric field intensity in a first-order approximation.

Integrating the equation above we obtain for the velocity

v = v0e
−νc(t−t0) +

−eE0e
jωt

me (jω + νc)
. (6.7)
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However, the first term of the RHS decays very quickly as there are usually many collisions per unit time for
the typical pressures under consideration. Therefore, the second term remains and allows us to calculate the
averaged rate of energy gain of the electrons provided by the RF field as follows:

〈
Re (J) · Re (E)

〉
=

ne2E2
0

me

〈
νc cosωt+ ω sinωt

ν2c + ω2
· cosωt

〉
,

where the integration of sinωt ·cosωt vanishes and it remains the integration of cos2 ωt, which yields one half.
Therefore the averaged rate of energy that the microwave field conveys to the electrons within the gas is

〈
Re (J) ·Re (E)

〉
=

ne2E2
0

2meνc

(
ν2c

ν2c + ω2

)
.

The above expression has been obtained multiplying numerator and denominator by the collision frequency
because it is interesting to define an effective electric field,

E2
e ≡ E2

rms

(
ν2c

ν2c + ω2

)
, (6.8)

in order to find an analogy with the energy transfer for a DC signal, as it will be commented later, such that the
averaged rate of energy gain of the electrons is

〈
Ṗ
〉
=

ne2E2
e

meνc
. (6.9)

As it is described in [Raizer 1991], the expression (6.9) is analog to the energy transfer from a DC field
to the electrons of a gas if we replace Ee by the amplitude of an electrostatic field. Therefore, the effective
electric field plays the role of a correction factor that is applied to the physical parameters that describe the DC
discharge in order to suitable analyze the microwave corona breakdown. As the collision rate increases with
the pressure, it is expected to retrieve the same results for microwave breakdown as for DC discharges when
the pressure tends to atmospheric values, since in this case the effective electric field tends to Erms, which does
not depend on the microwave frequency. Obviously, the same limit is obtained when the RF frequency tends to
zero. The study of the microwave discharge will show significant differences with respect to the DC breakdown
especially for low pressures, as it is the case for space applications.

The expression (6.9) is also useful to understand the dependency of the energy transfer from the microwave
field to the electron population on the collision frequency and, therefore, on the pressure. When the period of
the microwave signal is much longer than the time between collisions of the electrons with the gas neutrals, an
electron collides against many gas molecules within a period of the signal. As the collision rate increases with
the pressure, we can imagine that for very high pressures, the electrons collide many times with the molecules
within a period, and the impact energy is not controlled by the microwave field because the electrons cannot gain
enough energy from the electric field before any collision. In this regime the energy transfer from the electric
field to the electrons is not very efficient due to the random nature of the motion of the electrons mainly driven
by the collisions rather than the RF field. On the contrary, if the signal frequency is too high, the electrons’
position oscillates many times before impacting with a gas molecule and the collision energy is a random
function that depends on the phase of the field at the impact instant. The energy transfer is not very efficient in
this case, either. If we plot the averaged rate of energy gain of the electrons vs. the collision frequency we can
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Figure 6.1: Normalized averaged energy transfer function from the microwave field to the electron
gas as function of the normalized collision frequency.

see the maximum energy transfer just when the collision frequency equals the angular frequency (see Fig. 6.1).
This is natural taking into account that when both, the collision and the microwave frequencies approach, the
transit time between collisions tends to the period of the signal, and the electrons can acquire the maximum
speed in the collision accelerated by the microwave electric field. The pressure for which the collision rate
equals the angular frequency of the RF signal provides the condition for the maximum energy transfer, as it is
studied next.

In order to find the maximum energy transfer let us rewrite (6.9) using (6.8) as follows:

〈
Ṗ
〉
=

ne2E2
rms

me




1

νc

(
1 +

(
ω
νc

)2)


 . (6.10)

We can define the new variable x ≡ νc
ω in order to write the normalized version of the energy transfer from the
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microwave field to the electron population within the gas as

meω
〈
Ṗ
〉

ne2E2
rms

=
1

x
(
1 + x−2

) . (6.11)

If we differentiate this expression with respect to x we get

meω

ne2E2
rms

d
〈
Ṗ
〉

dx
= −

(
1 + x−2

)
− 2x−2

x2
(
1 + x−2

)2 = − 1− x−2

x2
(
1 + x−2

)2 .

In order to find the extreme of (6.11) we set the numerator of this expression to zero and we find that the
physically meaningful solution that satisfies this condition corresponds to x = 1 → νc = ω, as it was predicted
before by physical reasonings. Note that the normalized maximum energy transfer from the microwave field to
the electrons within the gas is 1/2 (see Fig. 6.1), what results from substituting Ee by Erms/2 (see (6.9)) when
νc = ω. This means that the maximum energy transfer for microwave frequencies is half the averaged rate of
energy gain of electrons for DC signals.

As the collision frequency increases with pressure, the results above suggest that, for a given RF frequency,
there is a pressure for which the energy transfer from the microwave field to the electrons is maximal. This
implies, as it will be shown later, that the input power for which the corona discharge occurs at that pressure
is minimal, since the maximum energy transfer from the electric field to the electron population applies at that
pressure. It is natural to call this pressure the critical pressure, since it fixes the limit of the corona withstanding
capabilities of the microwave device at a given frequency.

6.2 Corona breakdown

When the electrons collide with the gas neutrals, driven by the microwave field, some molecules can be ionized
and some electrons released. On the other hand, the electrons tend to move away from the zones of high
electron population density, trying to reach the chemical equilibrium leveling out the number of electrons per
unit volume, process that is called diffusion. Furthermore, there is another loss mechanism that becomes
important at high pressures, and that accounts for the attachment of the electrons to the neutrals by the affinity
of the molecules to catch electrons. However, the presence of the attachment in the analysis of the corona
breakdown does not change significantly the predicted breakdown threshold, except at high pressures.

The corona breakdown is produced when the intensity of the electric field is so high that the increase of the
electron population by ionization is not compensated anymore by the diffusion loss of electrons and attachment.
At this stage, the electron population grows dramatically producing an avalanche. The gas becomes conductive
and a glowing emission is produced by the radiation of the accelerated particles [Ryan 1915, Akishev 1999],
which may severely damage the microwave component due to the produced temperature increase.

In order to describe mathematically this process, let us consider an imaginary small volume within the gas
(see Fig. 6.2), where the increase of the electron population by ionization results in a positive current flow
across its surface, Γi. On the other hand, the local decrease of the electron population by diffusion will produce
a current flow across the boundaries of the imaginary volume given by ΓD = ~∇ · JD. From ordinary kinetic
theory considerations, the diffusion current can be expressed as [Kennard 1938]

JD = −~∇
(
Dn (r, t)

)
(6.12)
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where the negative sign shows that the diffusion current flows in the direction of the maximum decrease of the
electron population, since the gradient gives the direction of maximum increase of a scalar field. In this case, the
scalar field, n (r, t), represents the electron population density at the position r within the gas. The variable D

is the diffusion coefficient, which is usually considered independent of the electric field, though some authors
consider the influence of the RF field an important factor to describe it. Finally the ionization current flow
is given by Γi = (νi − νa)n (r, t), where νi and νa are the number of electrons released by ionization and
attached to the gas neutrals per unit time, respectively. In the definition of the flux Γi the attachment has been
considered, defining a net ionization rate (or ionization frequency) by subtracting the attachment rate from
the ionization one. The attachment rate is usually considered to be a single function of the pressure, but the
ionization rate depends on the electric field and this, in general, depends on the position, thus the ionization
frequency may, in general, depend on the position, too.

The first exhaustive analysis of the diffusion coefficient at microwave frequencies was made by [Kelly 1960],
where the author found a good agreement between the proposed theoretical model of the diffusion coefficient
and the measurements for O2. In [Kelly 1960] it is found for this gas the expression

Dp = 1.63 · 106
[
Torr · cm2 · s−1

]
, (6.13)

where the units are given in the CGS system, then p is expressed in Torr or mmHg. The diffusion coefficient
found by [MacDonald 1963] for the same gas was

Dp =

[
29 + 0.9

(
Ee

p

)]
· 104

[
Torr · cm2 · s−1

]
. (6.14)

The comparison of both expressions shows a good agreement between the models as long as the pressure is not
too low. Otherwise, the latter equation starts to deviate from the former one and the electric field starts to play
an important role, obliging us to consider the dependency of the diffusion coefficient on the position. However,
as it will be discussed later, the values of the ratio Ee/p for which the expressions of the ionization frequency
are valid lie within the range for which both equations lead to the same diffusion coefficient.

If we recall the continuity equation we can consider these flows to write

∂n

∂t
= Γi − ΓD.

If we use the above-mentioned definitions of the current flows that account for the ionization and the diffusion,
the continuity equation can be rewritten as

∂n

∂t
= (νi − νa)n+D∇2n (6.15)

where the diffusion coefficient has been assumed to be independent of the electric field and, therefore, of the
position. The last equation is the usual expression of the corona equation, and the critical electric field is
determined by the condition that the increase of the electron population by ionization and the electron loss
produced by diffusion and attachment are balanced. This implies that the solution of the stationary equation

(νi − νa)n+D∇2n = 0 (6.16)

together with the boundary conditions define the corona breakdown threshold.
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Figure 6.2: Sketch of gas transport properties within a parallel-plate waveguide.
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Figure 6.3: Example of the Paschen curve at microwave frequencies.

As we are going to deal with homogeneous dielectric materials, the analysis of the corona breakdown for
perfect electric conductors implies the use of Dirichlet boundary conditions for the electron population density
on the boundaries, since a grounded conductor acts like a sink of charges. Thus, the electrons of the gas
recombine with the atoms within the lattice of the metal and the electric charge remains zero by the presence
of the electron gas at the boundaries of the microwave device. Therefore, the solution of the corona equation
for the following examples have been solved establishing the boundary conditions that set null the electron
population density at the metal walls of the devices.

The plot of the corona breakdown power threshold vs. the pressure defines the Paschen curve [Paschen 1889]
and it provides the minimum input power for which the corona discharge occurs. As it was commented in
Sec. 6.1 and it will be shown later, the Paschen curve exhibits a minimum corona breakdown power threshold
at the critical pressure (see Fig. 6.3).

The critical pressure is a very important parameter because it fixes the pressure that limits the performance
of any microwave device subject to the space weather. At this pressure the corona breakdown threshold is
minimal, limiting the input power that the device can withstand without the risk of corona breakdown. In order
to predict the value of the critical pressure the dependency of the collision rate on the pressure must be known.
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As it will be shown later, the value mostly found in the literature is νc = 5.3 · 109 p, where the pressure is
given in Torr. Although the transport properties of the gas are expressed for the pressure given in Torr, the
Paschen curve is commonly plotted for the pressure in mBar, but both cases will be used later interchangeably,
according to the preference chosen in the corresponding reference. The relation between Torr and mBar is
1 Torr ≃ 1013/760 mBar ≃ 1.33 mBar.

According to the analysis made in Sec. 6.1 and the above-mentioned expression for the collision rate, the
critical pressure will be found at:

νc = ω → pcrit (mBar) ≃ 1.6 f (GHz), (6.17)

where f is the frequency of the RF signal. Below and above that pressure the corona threshold is higher,
therefore, a good venting of the microwave devices, e.g. through appropriate venting holes, must be guaranteed
to eliminate any residual gas. This procedure avoids the gas ionization and the corona discharge at low powers,
since the corona breakdown threshold is always lower than the multipactor one, arising at much lower pressures.

6.3 Ionization rate models

In order to predict accurately the corona breakdown threshold an accurate model of the ionization rate is needed.
The model must be able to relate the rate of ionizations produced within the gas with the amplitude of the
electric field. The model must predict the increase of the ionization rate with the intensity of the electric field,
since the energy transfer from the microwave field to the electrons is proportional to the square of the rms
amplitude of the signal (see (6.9)).

The ionization rate for DC discharges has been measured by many authors for different gases [Sanders 1932,
Jones 1953,Kuffel 2004] and some authors have applied the transport theory of charged particles in gases for AC
signals in order to measure or describe the ionization rates at microwave frequencies numerically [Gould 1956,
Rose 1957,MacDonald 1949,MacDonald 1959,Bell 1970]. However, analytical expressions relating explicitly
the ionization frequency with the amplitude of the microwave electric field were proposed later [Mayhan 1971,
Lupan 1978b,Woo 1984]. Other expressions for the ionization rate can be found in the literature showing slight
differences with the cited ones, but the most representative ones or those most often found in the literature when
analyzing the corona discharge have been considered in this manuscript.

6.3.1 Woo’s model

In the following it has been named Woo’s model of the ionization rate to the next parameter [Woo 1984]:

νi = 5.14 · 1011p exp
{
−73α−0.44

}
(6.18)

obtained for O2 as the most representative gas among all the air elements, where the pressure is given in Torr
and α is the parameter defined by

α = Ee/p. (6.19)

The expression for the ionization rate was extracted from [Druyvesteyn 1940,Dutton 1963] and considered that
it is valid within the range α ∈ [32, 100]

[
V cm−1 Torr−1

]
with an error of 10%-20%. These units for α are

going to be used along all this chapter following the CGS system of units, according to the literature and all the
works developed in the study of gas discharges.
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The collision frequency was described in [Woo 1984] using the results of [Nielsen 1937, Ryzko 1965]
obtaining

νc = 5 · 109p
√

α

α+ 8
. (6.20)

This model takes into account the two-body attachment process, which occurs when an electron binds to an
Oxygen molecule (e + O2); and the three-body attachment occurring when an electron binds to two Oxygen
molecules (e + 2O2). These models are extracted from [Chatterton 1965, Harrison 1953, Chanin 1962] and
it seems that they are valid within a narrow range of values of α, namely 0 < α < 60

[
V cm−1 Tor−1

]
and

0 < α < 5
[
Vcm−1 Torr−1

]
, respectively.

We will consider only the two-body attachment rate, which was found by the author and can be expressed
as follows:

νa = 7.6 · 10−4 pα2(α+ 218)2 (6.21)

where the pressure must be given in Torr.

6.3.2 Lupan’s model

The name of this model comes from the author who found the expression of the ionization rate described
in [Lupan 1978b]. The author proposes two expressions for the ionization rate as function of the effective
electric field that are valid within the same range of validity for α as the previous model. The expressions are

νi =2.5 · 107p
[
1.45

√
α+ 0.01

√
α3
]
exp

[
−278

α

]
(6.22a)

νi =8.35 · 10−4pα5.34. (6.22b)

The author comments that both expressions seem to agree with the experimental measurements as long as
30 < α < 100 is satisfied, in the CGS system of units.

The author considers the collision rate between electrons and gas molecules as

νc = 5.3 · 109p, (6.23)

which is very similar to the one of the Woo model within the range of values of α for which the ionization rate
is accurate enough.

Interestingly, the attachment rate coefficient is not considered in this work, but a correction factor is pro-
posed to be subtracted in the variable α so as to fit the measurements to the proposed model of the ionization
rate, beyond the above-mentioned range for which it is accurate.

6.3.3 Mayhan’s model

The main work where the influence of the electron temperature on the ionization rate is taken into account is
done by Mayhan’s model [Mayhan 1971]. The author recalls the results presented in [Gould 1956,Light 1969]
and proposes an expression for what he calls net ionization rate, where the attachment rate has been subtracted
to the actual ionization rate. Though the transport properties of different gases are studied, the author considers
the Nitrogen as the most important gas element for the air, obtaining the expression:

νi =
8.35 · 10−4 (0.7885)2.67[

1− exp
(
−3395/Tv

)
χ2.67
N2

] p|E|5.24
(p2 + γ2)2.67

− 6.4 · 104p (6.24)
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where p is given in Torr, Tv is the vibrational temperature of the N2 constituent of air and χN2 is the molar
fraction of N2 present. For ambient conditions the vibrational temperature of the Nitrogen is not expected to be
very high, therefore, the value of the exponential function is negligible and the denominator of the first factor
can be approximated by one. Furthermore, the molar fraction of Nitrogen in air is around 0.78. Note how,
under these approximations, the expression of the ionization rate is a slight modification of (6.22b).

The fact that this model takes into consideration the dependency of the common afore-mentioned param-
eters on the pressure, frequency and electric field strength, leads the model to apply a correction factor to the
parameter α. The experiments show that the parameter α decreases with respect to the common definition,
which is strictly valid only for very low pressures, or very high frequencies. Inspecting Fig. 4 of [Gould 1956]
it can be established that the correction factor to the variable α is negligible as long as it is satisfied

f

p
> c

where f is the RF frequency and c is the speed of light in vacuum. When the frequency decreases or the
pressure increases much with respect to this expression, the effective electric field-to-pressure ratio starts to
deviate from its common form. Unfortunately no analytical expression was proposed for this correction factor.

The author also considers the dependency of the collision frequency on the pressure, the electric field
strength and the presence of contaminants, like CO2, CO, etc.... The collision frequency seems to change no-
ticeably for very strong electric fields, doubling its value when α changed from 30 to 300

[
V · cm−1 · Torr−1

]

for pure air. However the presence of different substances within the air did not alter noticeably the values of
the collision rate. Mayhan presents a table with the values of the collision frequency vs. the effective electric
field over pressure for different gases: pure air, air 10% CO2, etc.... However, the author mentions that the
average of the collision rate over the table has been used in their analysis of the corona breakdown, which
results in the well-known value of νc = 5.3 · 109p, as the one of Lupan’s model.

On the other hand, the diffusion coefficient proposed in this model is the same as (6.14), and the parameter
γ is the pressure times the angular frequency over the collision rate. Choosing the average value of the latter,
the variable γ can be written as follows:

γ =
ω

5.3 · 109 .

6.3.4 Comparison of the ionization rates

The ionization rates described above have been chosen as a sample of the models that can be found in the
literature. In many occasions the models that appear in the literature are small variations or approximations
of the ionization rates already proposed [Anderson 1986], and sometimes the proposed models are completely
new [Tao 2008].

The validity of Mayhan’s model seems not to be bounded by any value of the effective electric field over
pressure, though strictly speaking a correction factor should be applied to the expression of the effective electric
field and the dependency of the collision frequency on the electric field should be considered, too. As no
analytical formula has been defined to express these dependencies, no author has considered these effects for
Mayhan’s model, or their works were confined within the range of validity of α defined above [Lupan 1978a,
Lupan 1978b, Ney 1987, Rasch 2009].

The problems appear when the analysis of the corona breakdown threshold for open structures, like anten-
nas, or for microwave devices where the field is strongly inhomogeneous, is required. In these cases, a wide
range of values of α have to be considered in the solution of the corona equation outside the range of validity,
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Figure 6.4: Comparison of the ionization rate obtained with three different models. The ionization
rate has been plotted for f = 994 MHz and p = 1.5 Torr.

and the error in the solution of (6.16) due to the inaccurate model of the ionization rate is added to the inherent
inaccuracy of the numerical technique applied to find the electric fields within the structure or when the corona
equation cannot be solved analytically, what occurs in most of the cases.

The plot of Fig. 6.4 shows that the ionization rate of Lupan’s and Mayhan’s models behave in the same way
with the variable α, however, Woo’s model differs noticeable from the previous ones, decreasing drastically as
the effective electric field over pressure lies outside the range of validity.

The range of values of α for which the models of Lupan and Woo are valid is represented by the gray area
in Fig. 6.4. Note how the three models predict the same ionization rates within this zone. Fig. 6.5 shows a
zoom of the ionization rates within the range of validity and it can be observed that the values of the ionization
rate do not differ much in this region. Therefore, the predicted corona breakdown threshold obtained with the
three models are expected to be similar when the electromagnetic field within the microwave device does not
result in a wide spread of values of α needed to find the minimum breakdown power [Rasch 2009].

In general, the decrease of the ionization rate of the Woo model outside the range of validity will result in
the overestimation of the corona breakdown threshold when solving the corona equation. The other two models
follow the same tendency, but the later study of the corona breakdown threshold obtained with the three models
will show some differences that will be discussed.
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Figure 6.5: Ionization rate within the range of validity of α for the same parameters of Fig. 6.4.

6.4 Numerical solution of the corona equation

The corona equation (6.16) has been numerically solved using the Finite Elements Method (FEM). The exam-
ples that are going to be presented are separated into two cases: waveguides or cables, i.e., 2D structures, where
the translational symmetry of the solution can be applied; cavities, resonators and open-structure problems, i.e.,
3D geometries. In the first case, where the corona equation can be reduced to a 2D operator, the results that will
follow have been obtained with an 2D Galerkin in-house FEM code based on the very pedagogical approach
of the technique exhibited in [Polycarpou 2006]. The solution of the corona equation for closed cavities and
open structures has been done using another in-house tool based on GetFEM [Renard 2010], adapted to the
resolution of the corona equation.

The Finite Elements (FE) technique is based on the partition of the geometrical domain into canonical
shapes. The choice of triangles and tetrahedra have been followed in this work for the 2D and the 3D problems,
respectively. A set of linear interpolation functions is proposed as the approximated solution of the profile of
the electron population density within each element. The unknowns of the interpolation function are placed on
the vertices of the elements. By forcing the same unknown value at the node that is shared among neighboring



120 Chapter 6. Corona breakdown

elements, the continuity of the numerical solution is guaranteed. Finally, the imposition of the Dirichlet bound-
ary conditions at the boundary nodes results in the formation of a homogeneous system of equations where
the unknowns are the values of the electron population density located at the mesh nodes. Since the system is
homogeneous, the non-trivial values of the electron population density at the nodes of the mesh that satisfy the
corona equation are calculated by setting the determinant to zero.

The coefficients of the corona equation depend on the ionization rate and the pressure. Then, the ionization
rate depends on the rms electric field and this, in turn, on the input power. Therefore, the null-determinant
condition sets an implicit function of the input power on the pressure. Finding the minimum power that sets the
determinant to zero for each pressure defines the Paschen curve of the device.

The numerical modeling of the problem using the FEM can be summarized in the following steps:

1. Discretize the domain into finite elements.

2. Obtain the corresponding linear equation for a single element by first deriving the weak formulation of
the differential equation.

3. Form the global system matrix of equations through the assembly of all the elements.

4. Impose Dirichlet boundary conditions.

5. Fix the pressure and find the minimum input power that sets the determinant of the global matrix to zero.

6.5 Results

The results of the eigenvalue problem applied to different examples appearing in the literature are going to be
analyzed using the three ionization rate models presented before. The attachment rate of Woo’s model has been
used because it is the only model where the range of validity is specified, and this will be useful to understand
the reliability of the Paschen curve obtained.

Fortunately, the devices that are going to be studied correspond to geometries where the electric field
can be expressed analytically. However, the analytical solution of the electric field can only be found in few
cases. Therefore, it is interesting to compare the corona breakdown threshold calculated using the electric field
obtained by numerical methods, as it is the case for many realistic devices, with the Paschen curve obtained
using the exact value of the electric field evaluated at the nodes of the mesh. It must be mentioned that the
comparison between the results obtained with both methods for the 2D cases will be presented using the same
number of triangles. The numerical method to obtain the electric field numerically has been chosen the same
as to solve the corona equation. The commercial software HFSS is a code that applies the FEM and that has
been utilized in the calculation of the electric fields of the problems analyzed next.

The solution of the eigenvalue problem described before provides the corona breakdown power threshold.
The plot of the minimum input power for which the balance between the ionization gain and the diffusion
loss of electrons occurs vs. pressure results in the Paschen curve. For higher input powers the diffusion of
electrons will not be able to offset any more the increase of the electron population due to the ionization and
the breakdown occurs.

Therefore, the Paschen curve of different devices is going to be analyzed in the following, together with
a study of the convergence in order to analyze the impact of the mesh on the predicted values of the corona
threshold. The influence of the nature in the calculation of the electric field in the solution of the corona equation
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is also going to be analyzed. In view of the development of a new high power SMA connector, presented in
Chapter 7, these studies are used to assess the implemented FEM-2D program and the available ionization rate
models to design the connector and predict its corona breakdown withstanding capabilities.

6.5.1 Corona discharge in a parallel-plate waveguide

The first analysis of the corona breakdown threshold is going to be done for the unbounded parallel-plate
waveguide separated a distance d and excited by the fundamental mode (TEM mode). In this case the electric
field is uniform and points along the direction perpendicular to the plates (see Fig. 6.6). As the ionization rate
is a scalar quantity, the rms is enough to describe the ionization rate which is also uniform within the region
between the plates and can be expressed as

Erms =
VRF√
2d

. (6.25)

This enables the calculation of the electron population density by solving analytically the corona equation
(6.15).

This example intends to compare the results of the corona breakdown threshold obtained with different
ionization rate models for a simple case where no influence of the method of solution on the predicted threshold
could arise. As the ionization rate in this case is a constant, the electron density profile can be easily found by
applying the method of separation of variables, which can be written

n(z, t) = n(z, 0) sin Λ−1
m e(ν̄i−D/Λ2

m)t, (6.26)

where Λm is the diffusion length and m is an integer that accounts for the m-th profile of the electron popula-
tion density that satisfies the corona equation. The inverse of the diffusion length is given by Λ−1

m =
(
mπ/d

)

and the corona breakdown condition is found by setting the exponent of the time-dependent part of (6.26) to
zero. Indeed, when the ionization rate exceeds the value (D/Λ2

m), the electron population density grows expo-
nentially, turning the gas into a conductor and triggering the corona discharge. In order to find the minimum
voltage breakdown which onsets the corona discharge, the integer m must be equal one, in this case the corona
breakdown condition reads: (

ν̄i −D

(
π

d

)2
)

= 0. (6.27)

The diffusion coefficient is a function of the pressure and the ionization rate is a function of the rms electric
field and the pressure. Thus, the corona breakdown threshold is obtained by calculating the rms electric field
that satisfies (6.27) at a given pressure. By finding the root of (6.27) at each pressure the Paschen curve can be
plotted.

6.5.1.1 Paschen curve

The Paschen curve obtained for a parallel-plate of distance d = 4.744 cm excited by a voltage generator at the
frequency f = 994 MHz is plotted in Fig. 6.7. The plot shows the results obtained with the three ionization
rate models together with the experimental measurements extracted from [MacDonald 1966].

The Paschen curve obtained shows that Mayhan’s model predicts the lowest corona breakdown threshold.
Observing Fig. 6.4 and Fig. 6.5 we can see that Mayhan’s model yields the highest values of the ionization fre-
quency, except around the middle value within the range of validity of the parameter α, where Woo’s ionization
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Figure 6.6: Sketch of a parallel-plate waveguide separated by a distance d.
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Figure 6.7: Paschen curve obtained with three ionization rate models for a parallel-plate waveguide
of distance d = 4.744 cm excited at f = 994 MHz together with the measurements extracted
from [MacDonald 1966].

rate model predicts the highest value of the ionization frequency (see Fig. 6.5). Nevertheless, for the rest of
the domain of α, Mayhan’s model exhibits the highest ionization frequency. It is thus natural that this model
predicts the lowest corona breakdown threshold. Indeed, the higher the rate of electrons released by ionization
for a given field strength, the bigger the ionization gain, so that the lower the input power needed to exceed
the diffusion loss to trigger the discharge. On the other hand, the Paschen curve obtained with Woo’s model
exhibits the highest corona breakdown threshold, since the values of the ionization rate of this model are the
lowest for most of the values of the effective electric field over pressure, as it is shown in Fig. 6.4.

By comparing the values of the ionization rate shown in Fig. 6.5 for the different ionization rate models it
can be inferred that relatively small differences in the ionization frequency may lead to noticeable differences
in the electric field breakdown and the corona breakdown power threshold, considering the results plotted in
Fig. 6.7. An example of this effect is the fact that the results obtained with Woo’s and Lupan’s models lie
quite close to each other, whereas Mayhan’s model predicts a Paschen curve that lies noticeably below. It
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Figure 6.8: Sketch of the rectangular waveguide.

is also interesting to remark that the measurements lie in between the predictions obtained with the different
ionization rate models around the critical corona threshold region, what suggests that the real values of the
ionization rate model lie in between the ones corresponding to the presented models of ionization at this region
of the Paschen curve. Interestingly, the measurements at the low and high pressure regions exhibit values
of the corona breakdown power threshold much higher than the ones predicted by the ionization rate models
presented in Section 6.3. This suggests that the real values of the ionization frequency must be smaller than the
ones predicted by the described ionization models at low and high pressures.

Concerning the critical pressure, note how the measurements exhibit the minimum corona breakdown
threshold around 1.3 mBar, close to pcrit ≃ 1.57 mBar, predicted by (6.17). However, the Paschen curve
obtained with the three different ionization rate models show the minimum corona threshold at a lower pres-
sure, around 0.8 mBar. It seems that the dependency of the ionization rate on the effective electric field over
pressure is not able to predict accurately the pressure for which the corona threshold is minimal. However,
the measurements show that the minimum corona threshold lies close to the value predicted by (6.17), what
validates that expression.

6.5.2 Corona discharge in a rectangular waveguide

The second analysis of corona breakdown is going to be done for a rectangular waveguide with a small aspect
ratio such that the breakdown threshold will be similar to the one of a parallel-plate. The sketch of the wave-
guide is shown in Fig. 6.8 whose height and width are a = 1 cm and b = 10 cm, respectively, so that the aspect
ratio is a/b = 0.1. The exciting frequency that has been considered is f = 1.5 GHz, which lies between the
cut-off frequency of the fundamental mode (TE10) and the one of the higher-order mode.

The electric field in this case points along the y direction and reads [Pozar 1998a]:

E =
−jωµb

π
A10 sin

πx

b
exp {−jβz} ŷ, (6.28)

where µ = 4π 10−7 V · s/(A ·m) is the free-space magnetic permeability, A10 is the electric field amplitude
and β is the propagation constant, which is given by

β =

√(
ω

c

)2

−
(
π

b

)2

(6.29)
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for the fundamental mode of the rectangular waveguide. Therefore, as the ionization rate needs the rms value
of the electric field, this can be found by the expression:

Erms =

√
E · E∗

2
. (6.30)

On the other hand, the relation between the electric field amplitude and the input power, Pin is given by

|A10| =
√

4π2

ωµa3bRe [β]
Pin. (6.31)

In order to check the validity of the solutions obtained with the FEM-2D code, the corona analysis for the
rectangular waveguide has been compared with the analytical solution for a parallel-plate waveguide of distance
d = a and an electric field equal to the maximum of the rectangular waveguide. For this, the relation between
the maximum electric field amplitude and the input power must be found, which can be written as follows:

|Emax| = 2

√
ωµ

abRe [β]
Pin. (6.32)

6.5.2.1 Convergence

For the study of the corona discharge, firstly we are going to analyze the convergence of the numerical method
evaluating the evolution of the critical corona threshold as the number of elements increases. This quantity has
been chosen for the convergence criterion since it is the most important parameter in the design of microwave
components for space applications. The convergence was analyzed by calculating the relative error

εr(%) =
|P crit

n − P crit
n−1|

P crit
n

· 100, (6.33)

where P crit
n is the critical corona threshold obtained in the n-th step.

The simulations were done increasing the number of triangles till the convergence was reached, established
when the relative error decreased below 5% (see Fig. 6.9). In this case the convergence was found when using
7831 triangles.

6.5.2.2 Results

The simulations were only done with Woo’s ionization rate model since the purpose in this section was not
to compare the ionization models but to check the validity of the results obtained with the FEM-2D code for
the later analysis. The plot of the Paschen curve for the rectangular waveguide obtained numerically with the
FEM-2D code and with the analytical approximation of the parallel-plate are represented in Fig. 6.10.

It must be mentioned that the critical pressure predicted by both methods agree quite well, presenting the
critical corona breakdown threshold around pcrit = 2 mBar, whereas (6.17) predicts pcrit = 2.4 mBar. On
the other hand, the satisfactory agreement between the predicted Paschen curve predicted by both methods,
with a discrepancy smaller than 10%, shows the suitability of the parallel-plate approximation for rectangular
waveguides with small aspect ratio, and the reliability of the in-house software.

The small discrepancies can be explained by taking into account the different electric field profiles of the
structures. The electric field within the rectangular waveguide is uniform along the y direction and it is maximal
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Figure 6.9: Convergence study of the Paschen curve for the rectangular waveguide calculated with
the FEM-2D code.



6.5. Results 127

1 10 15

10

20

30

40

50

60

70

80

0

100

waveguide

Figure 6.10: Paschen curve of the rectangular waveguide together with the one of a parallel-plate
waveguide of distance d = a.
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at x = b/2, decreasing as approaching the side walls. For the parallel-plate the maximum electric field of the
rectangular waveguide has been assumed to be distributed within the space between the plates. It is, therefore,
expected to need a higher input power in the rectangular waveguide to induce the discharge than for the parallel-
plate, where the value of the electric field is the same across the whole structure. Moreover, the diffusion length
of the rectangular waveguide is smaller than the one of the parallel-plate [Jordan 2006], what defines a higher
corona breakdown power threshold for the rectangular [Brown 1951] than for the parallel-plate waveguide.
These two factors account for the fact that the Paschen curve of the rectangular cavity lies above the one of
the parallel-plate. This suggests the reliability of the in-house FEM-2D code in the calculation of the corona
breakdown threshold for microwave devices where the corona equation cannot be solved analytically in light
of the results that have been obtained.

6.5.3 Corona discharge in a circular waveguide

The next analysis of the corona discharge is going to be done for a circular cavity of radius a = 1 cm as
presented in [Tomala 2005], where the fundamental mode of a circular waveguide, (TE11), is excited with a
frequency of f = 10 GHz. The sketch of the circular waveguide is shown in Fig. 6.11, and the analytical
expressions for the components of the electric field of that mode read as follows: [Pozar 1998a]

Eρ =
−jωµ

k2cρ
A cosφJ1 (kcρ) (6.34a)

Eφ =
jωµ

kc
A sinφJ ′

1 (kcρ) , (6.34b)

where J1 and J ′
1 are the first-order Bessel function of the first kind and its derivative, respectively. The free-

space permeability is defined by µ and the parameter kc = p′11/a is the cut-off wave-number of the fundamental
mode of the circular waveguide, which can be calculated by finding the first root of the derivative of the Bessel
function, p′11. Once the electric field is known, the rms value of the electric field, needed for the calculation
of the ionization rate, is calculated using (6.30). The parameter A and the input power in the waveguide are
related by the integration of the Poynting vector associated to the fundamental mode on the cross-section of the
waveguide, and their relation is given by the expression

|A| = 2k2c
J1 (kca)

√
Pin

πωµ(p′211 − 1)Re [β]
. (6.35)

Finally, the propagation constant β is given by

β =

√(
2πf

c

)2

−
(
p′11
a

)2

(6.36)

where c is the speed of light in free-space.

6.5.3.1 Convergence

The convergence analysis of the FEM-2D for evaluating the Paschen curve of the circular waveguide is repre-
sented in Fig. 6.12 for the analytical and the numerical electric field. The results show that in the first steps the
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Figure 6.11: Sketch of the circular waveguide.
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converge seems to have been attained for the analytical electric field as well as for the numerical. However, a
further increase in the number of elements shows the growth of the relative error. At the end, the convergence
for the analytical electric field was established when using 5886 triangles with a relative error below 2%, while
the Paschen curve for the numerical field has not converged yet.

6.5.3.2 Paschen curve

The Paschen curve of the circular waveguide obtained with 5886 triangles elements using the analytical electric
field is presented in Fig. 6.13. The predicted values of the corona breakdown threshold for different ionization
rate models are plotted together with the results of the simulations presented in [Tomala 2005]. It can be seen
that the values of the corona breakdown threshold predicted by Woo’s and Lupan’s models lie quite close to
the results presented by Tomala, what is expected since the ionization model used in that work results in values
of the ionization frequency very similar to the ones of Lupan’s model. It can also be observed that Mayhan’s
model predicts a Paschen curve for the circular waveguide that lies relatively far below the ones predicted by
the other models, as it was shown for the parallel-plate. Again, since Mayhan’s ionization model exhibits the
highest values of the ionization frequency, the solution of the corona equation using this model predicts the
lowest corona breakdown threshold.

In Fig. 6.14 the critical pressure predicted by the different ionization models is represented vs. the number of
elements used in the solution of the corona equation. Note that the predicted critical pressure for Woo’s model
lies below the ones obtained with the rest of the models for any number of elements. The critical pressure
predicted by Lupan’s model agrees quite well with the results of Tomala, what can be explained again by the
fact that the ionization rate model chosen by Tomala is very similar to Lupan’s one. Note as well how the critical
pressure varies with the amount of triangles, showing that the mesh has some influence on the calculation of
the critical pressure with the FEM. Therefore, although the critical pressure is supposed to depend only on the
collision rate, it can be concluded from the results that the ionization rate and the mesh of the geometry have
some influence on the qualitative behavior of the predicted critical pressure. It seems then, that the calculation
of the critical pressure is influenced by the ionization rate, whose dependency on the collision rate must be
correctly defined to avoid the calculation of a wrong critical pressure.

The predicted values of the critical pressure obtained with the numerical solution of the corona equation
presented here wander around the same value exhibited by Tomala as the number of elements increases for any
model of ionization (see Fig. 6.14). This is another indicator to assess that numerical convergence has been
attained. Nevertheless, (6.17) predicts a value for the critical pressure around 16 mBar corresponding to the
exciting frequency of the waveguide, 10 GHz, but the simulations presented here as well as the ones exhibited
in [Tomala 2005] show the critical pressure lying around 10 mBar.

An inaccurate value of the collision frequency, which in reality is known to change with α [Mayhan 1971],
and an inappropriate ionization rate model, could explain the discrepancies between simulations and measure-
ments. However, the results presented here are compared with the predicted values of the corona threshold
obtained by the method studied by Tomala, and the method presented here as well as the solution of the corona
equation shown by Tomala, do not assume any dependency of the collision rate on the electric field. The same
can be declared for the theory of the transport properties of charged particles within gases. Therefore, a possible
explanation for the discrepancy between numerical results and theory is that the dependency of the ionization
rate on the collision frequency for the models presented here, as in [Tomala 2005], are not correctly described
for the prediction of the critical pressure. Interestingly, the study of this issue does not appear in the literature,
nevertheless, for the moment no definitive explanation has been found for the discrepancy between simulations
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(a) The electric field has been obtained analytically.
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(b) The electric field has been obtained numerically.

Figure 6.12: Convergence study of the minimum corona breakdown threshold for the circular wave-
guide obtained with three different models of the ionization rate. The number of triangles used is
represented by crosses.
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Figure 6.13: Paschen curve for the circular waveguide obtained with three different models of the
ionization rate together with the simulations presented in [Tomala 2005]. The electric field has been
obtained analytically.
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Figure 6.14: Convergence study of the critical pressure for the circular waveguide obtained with
three different models of the ionization rate. The dashed line is the critical pressure predicted by
(6.17) and the dotted line the predictions shown in [Tomala 2005]. The electric field has been
obtained analytically.
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and theory concerning the critical pressure.

6.5.3.3 Range of validity of parameter α

The last analysis concerns the evaluation of the percentage of nodes that lie outside the valid range of the
parameter α to suitably describe the different ionization rate models. As the electric field is proportional to the
square root of power, and the input of the corona equation is the electric field evaluated at the nodes of the mesh
for 1 W rms input power, the value of (6.19) can be calculated at each node for any input power. From the
values of pressure and power of each point of the Paschen curves obtained with the analytical and the numerical
electric field, the value of (6.19) can be calculated at the mesh nodes.

The results are depicted in Fig. 6.15, where the plot shows that the Paschen curve at the low pressure
region for Woo’s and Lupan’s models is well represented by their values of the ionization frequency since only
few nodes are outside the valid range of values of α. The corona threshold predicted by Woo’s and Lupan’s
models lie close to each other up to 11 mBar (see Fig. 6.13); at higher pressures the results start to differ, what
corresponds to the region of the plot in Fig. 6.15 for which more than half of the nodes of the mesh exhibit
values of α outside the range of validity. As it has been shown in Fig. 6.4, the value of Woo’s ionization
frequency outside the valid range of α is lower than the one of Lupan, thus the corona breakdown power
threshold is expected to be higher than the one predicted by Lupan in this region. This is the reason why the
Paschen curves obtained with Woo’s and Lupan’s models plotted in Fig. 6.13 start to deviate from each other at
the high pressure region.

6.5.3.4 Summary

The analysis of the corona discharge done with the FEM-2D code for a circular waveguide has shown that the
convergence is reached with less number of triangles when the electric field is analytical than for the numerical
calculation of the field.

The ionization rate models predict different values of the corona breakdown power threshold. The case of
Mayhan’s model is more remarkable. Like in the parallel-plate waveguide, it exhibited much lower values of
the corona breakdown powers than Woo’s and Lupan’s models. The results obtained with these models lie close
to each other, and close to the reference values for values of (6.19) within the range of validity.

It has also been concluded that the ionization frequency model seems to have some influence on the pre-
dicted critical pressure obtained by the numerical solution of the corona equation, since the values that the
different ionization rate models yield differ noticeably from the one that would be expected according to the
theory expressed in (6.17).

The Paschen curve obtained with Woo’s and Lupan’s models predicted similar values of the corona thresh-
old when most of the nodes of the mesh exhibited values of α within its region of validity. Moreover, these
models predicted values of the corona threshold that lie close to the reference results presented by Tomala.
Like in the parallel-plate waveguide, Mayhan’s model exhibited lower values for the corona threshold though
Fig. 6.4 does not show many differences in the values of Mayhan’s model with respect to the rest of the models.
This suggests that a small difference in the value of the ionization rate may lead to a noticeably different value
of the corona breakdown power threshold.
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Figure 6.15: Percentage of nodes outside the range of validity for the parameter α to describe accu-
rately the ionization rate models when the electric field of the circular waveguide has been obtained
analytically.
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Figure 6.16: Sketch of the coaxial cable.

6.5.4 Corona discharge in a coaxial waveguide

The next analysis has been done for the coaxial waveguide presented in [Herlin 1948b] for a microwave fre-
quency of f = 3.125 GHz, where a large coaxial cable aspect ratio is considered, b/a = 15 (see Fig. 6.16),
provoking a quite inhomogeneous field between the electrodes. The values of the radii of the inner and outer
conductor for this case are a = 0.318 mm and b = 4.77 mm, respectively.

The considered frequency is only able to excite the fundamental mode of the coaxial waveguide (the TEM
mode), for which the electric field points along the radial direction and it is given by

Eρ =
VRF

ρ ln b/a
, (6.37)

where VRF and ρ are the applied voltage between the electrodes and the radial coordinate, respectively (see
Fig. 6.16). The relation between the rms input power, Pin, and the RF voltage applied between the conductors
of an air-filled coaxial waveguide, VRF , is given by

Pin ≈ 1

2

V 2
RF

60 ln b/a
, (6.38)

where the air impedance has been approximated by the free-space impedance η ≈ 120π Ω.



6.5. Results 137

6.5.4.1 Convergence

The convergence analysis of the Paschen curve for the coaxial waveguide is represented in Fig. 6.17 for the
analytical and the numerical electric field. Unlike the results obtained for the circular waveguide, in the coaxial
the convergence is similar for both cases. At the 5-th step the relative error for the numerical electric field is
smaller than for the analytical one, but although it is difficult to see, the relative error shown in Fig. 6.17b is
slightly above the 5% delimited by the dashed line. The main difference between the convergence study for
the analytical and the numerical electric fields is that Woo’s model has not converged for the numerical electric
field at the 10-th step (see Fig. 6.17b), while for the analytical all the models have converged at the last step
(see Fig. 6.17a). The convergence was thus reached when using 8545 triangles within the space between the
coaxial conductors.

6.5.4.2 Paschen curve

The Paschen curve of the coaxial waveguide for this number of elements is plotted in Fig. 6.18 for different
ionization rate models and the exact values of the electric field. The predicted values of the corona breakdown
threshold are presented together with the measurements shown in [Herlin 1948b]. We can see that Woo’s model
agrees quite well with the author’s measurements in the low pressure region. As it will be shown later, the values
of α at the nodes of the mesh corresponding to every point of the Paschen curve obtained with Woo’s model
lie outside the range of validity. As Woo’s ionization rate exhibits the lowest value of the ionization frequency
outside the range of validity of α, in view of the good agreement between measurements and results obtained
with Woo’s model, it seems that the low pressure region needs a lower value of the ionization rate than the
one predicted by Lupan’s and Mayhan’s models. This can also be extended to the high pressure region where,
even Woo’s model does not reach the experimental values of the corona breakdown power threshold. As it was
discussed for the parallel-plate waveguide, it is also clear for the coaxial waveguide that smaller values of the
ionization rate are needed to better agree with the corona breakdown measurements at high and low pressures.

The critical pressure corresponding to the frequency used to excite the coaxial cable (3.125 GHz) should be
5 mBar according to theory expressed by (6.17). The measurements presented in [Herlin 1948b] showed that
the critical pressure was lying around 4.7 mBar, near the predictions made by the transport theory of charged
particles in gases. Note that the critical pressure predicted by Woo’s ionization rate model is the closest to
the theoretical value (see Fig. 6.19). As it was observed before, the choice of the ionization rate model has
some influence on the prediction of the critical pressure obtained with the FEM, whereas the theory shows
that it only depends on the collision rate. Another interesting property that the plot shows is that the critical
pressure seems to depend significantly on the number of elements for Woo’s model only, since the predicted
value obtained with the rest of the models did not change with the mesh (see Fig. 6.19). Indeed, the ionization
rate model influences the predicted critical pressure as it has been observed for the circular waveguide more
remarkably. At the same time the number of elements modifies the predicted values of the critical pressure,
though, apparently, only for Woo’s model, what has not been explained yet.

6.5.4.3 Range of validity of parameter α

To finish the analysis of the coaxial cable, we are going to study the accuracy in the evaluation of the ionization
rate to solve the corona equation by checking the amount of nodes of the mesh that exhibit a value of (6.19)
outside the range of validity corresponding to the powers plotted in the Paschen curves shown in Fig. 6.18. The
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(a) The electric field has been obtained analytically.
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(b) The electric field has been obtained numerically.

Figure 6.17: Convergence study of the minimum corona breakdown threshold for the coaxial wave-
guide obtained with three different models of the ionization rate. The number of triangles used is
represented by crosses.
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Figure 6.18: Paschen curve for the coaxial cable obtained with three different models of the ioniza-
tion rate. The electric field has been obtained analytically.
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Figure 6.19: Convergence study of the critical pressure for the coaxial cable obtained with three
different models of the ionization rate. The dashed line is the critical pressure predicted by (6.17) and
the dotted line the measurements presented in [Herlin 1948b]. The electric field has been obtained
analytically.
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Figure 6.20: Percentage of nodes outside the range of validity for the parameter α to describe accu-
rately the ionization rate models when the electric field of the coaxial waveguide has been obtained
analytically.

percentage of nodes for which the parameter α lies outside the region of validity is plotted in Fig. 6.20 for the
different ionization frequency models.

The high coaxial cable aspect ratio of this coaxial waveguide leads to a highly inhomogeneous electric field,
what implies that few nodes of the mesh will lie within the range of validity, thus a high portion will lie either
above or below it for any pressure and input power. As it was commented before, the values of (6.19) evaluated
at the mesh nodes corresponding to the powers of all the points of the Paschen curve obtained with Woo’s model
lie above the range of validity (see Fig. 6.20). Nevertheless, the small percentage of nodes outside the range
of validity shown for Lupan’s and Mayhan’s models in the low pressure zone suggests that the discrepancies
between measurements and simulations in Fig. 6.18 are not due to the invalidity of the value of α to represent
the ionization rate values. It is actually the Paschen curve obtained with Woo’s model the one which lies closer
to the measurements than the rest of models, at the same time that it is the only model for which every node of
the mesh lies outside the range of validity according to Fig. 6.20.
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6.5.4.4 Summary

Unlike for the circular waveguide, the convergence of the corona breakdown threshold obtained with the FEM-
2D for the coaxial waveguide did not show much difference when evaluating the electric field numerically as
for the analytical field.

As it was observed in the results for the circular waveguide, Mayhan’s model predicts values of the corona
breakdown threshold that lie remarkably below the ones obtained with the other models. In general, the simula-
tions showed that the currently used ionization models predict values of the corona threshold that lie below the
measurements, what suggests the need of smaller values of the ionization rate to better fit the measurements.
An exception to this trend is shown for the results obtained with Woo’s model at low pressures. Smaller values
of the ionization rate at low and high pressures could make Lupan’s and Mayhan’s models fit better the experi-
mental values, as it was pointed out in the case of the parallel-plate waveguide. Smaller values of the ionization
rate for Woo’s model are also required in order to fit the measurements in the high pressure are of the Paschen
curve. This, together with the fact that the values of α corresponding to the Paschen curve obtained with Woo’s
model lie above the validity range, suggest that a smaller value of the ionization frequency is requested for α
bigger than 100

[
Vcm−1 Torr−1

]
.

In the problem of the coaxial waveguide the ionization models showed to have some influence on the
predicted critical pressure obtained by the numerical solution of the corona equation. Nevertheless, the discrep-
ancies between the results obtained with the different ionization rate models and the one predicted by the theory
in (6.17) are much smaller than in the case of the circular waveguide. The main difference between both struc-
tures is the working frequency, although other factors like the inhomogeneity of the electric field profile may
be the reason of the smaller discrepancies. The influence of the critical pressure predicted by Woo’s ionization
rate model on the mesh has been also observed in the coaxial waveguide like for the circular one, however, no
reason has been found to explain why it does not occur the same for the other ionization frequency models.

The Paschen curve obtained with Woo’s model predicted values of the corona threshold close to the mea-
surements in the low pressure regions while all the mesh nodes exhibited values of α outside its region of
validity. Therefore, the influence of the values of α at the mesh nodes lying outside the range of validity in
the solution of the corona equation (6.16) is not enough to explain the discrepancies between simulations and
measurements. New ionization rate models are, therefore, required to predict correctly the experimental values
of the corona breakdown power threshold.

6.5.5 Corona discharge in a rectangular cavity

The analysis of the corona discharge for two rectangular cavities is done in this section with the three ion-
ization rate models. The results obtained have been compared with the simulations and measurements shown
in [Rasch 2009]. In order to study the corona breakdown power threshold, a 3D Galerkin in-house FEM code
has been developed using the GetFEM libraries [Renard 2010]. The solution of the corona equation has been
carried out importing the analytical values of the electric field corresponding to the fundamental mode of a
rectangular cavity (TE110) or (TE011) with a resonant frequency of f = 8.85 GHz into the FEM software.

The dimensions of the considered rectangular cavities are given in Table 6.1 where the geometry of the
cavity has been drawn in Fig. 6.21.

The magnitude of the electric field within a rectangular cavity excited by the fundamental mode reads

TE110 → E = E0 sin

(
πx

a

)
sin

(
πy

b

)
ẑ, (6.39)
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Table 6.1: Dimensions of the rectangular cavities.

Label a (cm) b (cm) L (cm) Mode
Cavity 1 2.286 2.492 1.016 TE110

Cavity 2 0.9525 2.32 1.47 TE011

a
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z

Figure 6.21: Sketch of the rectangular cavity.

for the first cavity and

TE011 → E = E0 sin

(
πy

b

)
sin

(
πz

L

)
x̂, (6.40)

for the second one, where E0 is the maximum value of the electric field in the center of the cavities.
Since the walls of the device have been assumed to be perfectly conducting, it is not possible to calculate

the input power that would trigger the corona discharge onset. As no losses apply at the boundaries of the
cavity for this ideal case, the constant insertion of energy within the cavity by a power source would imply a
never-ending growth of the electromagnetic energy. Instead, the total energy stored for a given E0 can be used
to study the convergence of the solution of the corona equation. The electromagnetic energy stored within a
rectangular cavity is expressed as [Pozar 1998b]:

Wem =
ǫabL

8
E2

0 , (6.41)

where ǫ is the relative permittivity of the medium inside the cavity, in our case, air.
The convergence study of the solution of the corona equation has been done showing the total energy stored

in the second rectangular cavity associated to the electric field breakdown vs. pressure for one of the ionization
rate models augmenting the number of tetrahedra used. The plot in Fig. 6.22 shows that the convergence in
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Figure 6.22: Convergence study of the corona breakdown threshold for the second cavity analyzed
with Lupan’s model.

this case is much smoother than in the previous examples where the minimum breakdown power threshold of
the Paschen curve varied quite abruptly as the number of elements increased. This shows that the rectilinear
devices present a smoother convergence than the curvilinear ones, which entails a more stable solution of the
corona equation for the rectangular cavity with the FEM. The convergence can be clearly established for this
structure when using 4300 elements.

Regarding the critical pressure, note in Fig. 6.22 how it lies around 10 mBar as the number of elements
increases, what shows a better agreement with the theory than in the case of the circular waveguide. According
to (6.17) the critical pressure must lie around 14 mBar, what yields a noticeable discrepancy, though smaller
than for the circular waveguide.

In Fig. 6.23 the solution of the corona equation for the first cavity calculated with the different ionization
rate models using 4000 elements is represented together with the results exhibited in [Rasch 2009], showing a
very good agreement between the different models. The vertical axis shows the maximum value of the effective
electric field over pressure within the cavity that induces the microwave gas breakdown. The horizontal axis
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shows the pressure in Torr multiplied by the length of the cavity, L, over π. The area where the maximum
value of the effective electric field over pressure lies within the range of validity of the ionization rate models
as mentioned above, is found between the two horizontal dashed lines drawn in Fig. 6.23. Although the values
of the maximum effective electric field over pressure lie within the range of validity for most of the area of the
plot, it must be mentioned that there are nodes of the mesh for which the values of the parameter α do not stay
within it because the intensity of the electric field is smaller. Let us remind that the plot shows the maximum
effective electric field over pressure inside the cavity. Therefore, the solution of the corona equation is found
using some values of the electric field for which the ionization rate is not accurately described by the used
models.

The percentage of nodes that lie outside the range of validity of the parameter α for the solution of the
corona equation in the case of the first cavity are represented in Fig. 6.24. It can be seen that the minimum
percentage of non-valid nodes to represent the ionization frequency is placed at the low pressure region, what
corresponds to the case when the parameter α, presented in Fig. 6.23, is close to the maximum of the valid range.
This occurs because the value of the electric field at any node of the mesh is lower than the one represented
in Fig. 6.23, which corresponds to the maximum one inside the rectangular cavity. Thus, when the maximum
value of the electric field yields the maximum value of α within the valid range, the amount of nodes within the
range of validity is maximal.

The fact that the electric field evaluated at most of the nodes do not accurately represent the ionization rate
does not seem to affect much the results comparing our predictions with the results and measurements shown
by Rasch. In this example the electric fields evaluated at nodes that yield values of α outside the range of
validity result in points below the lower limit of the validity range.

The corona breakdown threshold of the second cavity has been simulated using 4300 elements, and the
results are shown in Fig. 6.25 for the three ionization rate models together with the predictions obtained by
Rasch. In this case, it can be noticed again the satisfactorily good agreement between the results obtained with
the different ionization rate models. Note how the trend of the plot obtained with Woo’s model changes at low
pressures where the parameter α is outside the range of validity, showing a trend that predicts an increase of
the corona threshold above the one predicted with Mayhan’s model. This can be expected by recalling that the
values of the ionization rate presented by Woo’s model are lower than the ones of the other models outside the
valid range of α, as it is shown in Fig. 6.4. Therefore, as the ionization frequency is lower, the intensity of the
electric field must increase to enhance the electron gain and provoke the corona discharge.

In the second cavity the percentage of nodes outside the range of validity of the parameter α is more or
less the same as in the first cavity. In any case, the analysis done for these two rectangular cavities show the
best agreement between the different models and the reference among the cases studied before, what reflects
the fact that the withstanding corona capability of structures with a smooth electric field profile whose corona
breakdown threshold lie within the range of validity of the parameter α for most of the points within the
structure can be satisfactorily analyzed with the ionization rate models presented here.

6.5.6 Corona discharge of a monopole antenna

The occurrence of corona discharge for open structures is an important issue for devices like slot or monopole
antennas in CW operation as well as for pulsed signals [Chown 1959,Scharfman 1960,Fante 1965a,Fante 1965b,
Clavier 1966, Fante 1968, Fante 1969, Fante 1970, Fu 2008]. The presence of the discharge affects the VSWR,
the pulse shape of the signal, it modifies the radiation pattern and decreases the radiated power of the antenna,
provoking the blackout of the communication system of the air- or the space-craft if the distortion of these
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Figure 6.23: Corona electric field breakdown threshold of the first cavity together with the sim-
ulations presented in [Rasch 2009]. The dashed lines delimit the range of values of α where the
ionization rate models are valid.



6.5. Results 147

0 2 4 6 8 10 12 14 16 18

40

50

60

70

80

Figure 6.24: Percentage of nodes outside the range of validity of the parameter α for the first cavity
presented in [Rasch 2009].
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Figure 6.25: Corona electric field breakdown threshold of the second cavity together with the sim-
ulations presented in [Rasch 2009]. The dashed lines delimit the range of values of α where the
ionization rate models are valid.
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Figure 6.26: Percentage of nodes outside the range of validity of the parameter α for the second
cavity presented in [Rasch 2009].

parameters is too severe with respect to the normal functioning of the microwave device.

An example of analysis of the corona discharge for open structures is going to be presented in this section,
where the corona withstanding capabilities of a monopole antenna are studied. The open space problem has
been approximated by a vertical rod placed in the center of the side of an air-filled box with perfect conductor
walls, which encloses the solution domain of the corona equation. The space defined by the metallic box
surrounding the monopole has been meshed with tetrahedra and the Dirichlet boundary conditions have been
applied on the walls as in the cavity case. The analytical electric field has been evaluated at the nodes of the
mesh and imported into the 3D FEM software as input for the ionization rate. This is a good approximation of
the real situation when the size of the box is big enough, since the electron population density is negligible far
from the source in a realistic scenario when the corona discharge occurs. Furthermore, it has been concluded
by other authors that when the electric field is strongly inhomogeneous, the near field is the main responsible
of the corona breakdown threshold by the high ionization within a relatively small region near the microwave
source and the subsequent outward diffusion of the electrons [Jordan 2006].
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Figure 6.27: Sketch of the monopole antenna of length l/2 on a grounded perfect electric conductor.

The simulations of the Paschen curve obtained with the three ionization rate models have been compared
with the measurements presented in [Scharfman 1960], where the experimental values of the corona breakdown
power threshold of a monopole antenna placed on a grounded perfect electric conductor are presented. The
radius of the monopole is r = 1.5875 mm, the height h ≡ l/2 = 0.3 m, the exciting frequency f = 240 MHz

and k = 2πf/c is the wave-number of the signal. The sketch of the problem is shown in Fig. 6.27, where a
harmonic signal driven by a current generator excites the monopole with a current amplitude I0, as it can be
seen in the drawing.

Applying the image theory, a grounded monopole antenna can be considered as a dipole antenna of double
length of that one of a monopole, as depicted in Fig. 6.28a. As the thickness of the monopole antenna satisfies
r < λ/200, the electric field of the monopole can be found analytically at any point of the space, and the
components of the electric field are given by [Balanis 1997a]:

Eρ =j
ηI0
4πρ

[(
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2

)
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]
(6.42a)
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where η is the free-space impedance, and the following variables have been used:

r =
√

ρ2 + z2, (6.43a)
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, (6.43b)
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(
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2

)2

, (6.43c)

which are depicted in Figs. 6.28a and 6.28b.
The relation between the current amplitude I0 and the input power of the generator is Pin ≈ 32.47|I0|2 for

this particular case, as it is calculated in Appendix B. The value of Erms is calculated as

Erms =

√
|Eρ|2 + |Ez|2

2
.
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(a) Dipole antenna as equivalent to a grounded monopole
antenna.

(b) Cylindrical coordinates system defined in order to de-
scribe the electric field radiated by the antenna.

Figure 6.28: Sketch of the equivalent problem to describe the electromagnetic field of a monopole
antenna.
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We use the rms values of the electric field evaluated at the nodes of the mesh to solve the corona equation and
plot the Paschen curve of the monopole antenna. In Fig. 6.29 the rms value of the electric field is represented
on a cross section of a squared cavity of 1 m side-length, where the monopole antenna is enclosed. Note how
the electric field profile becomes quite homogeneous near the walls of the cavity. It must be mentioned that the
simulations have been done for a cavity of 2 m side-length to guarantee the suitability of the approximation
to the open space problem. Furthermore, the simulations have been done with a much finer mesh close to the
rod in order to accurately describe the near-field profile of the monopole when solving the corona equation.
In Fig. 6.30 an example of the mesh profile on a cross section of a 2 m side-length box is shown around the
monopole when using 1259 elements. Note how the mesh is quite fine near the surface of the monopole.

The simulations of the Paschen curve have been done meshing a 2 m side-length squared box surrounding
the monopole with 3779 tetrahedra, for which the convergence was attained. The results of the simulations ob-
tained with the three ionization rate models are shown in Fig. 6.31 together with the experimental measurements
of Scharfman. In this case we can see that all the ionization rate models predict the same corona breakdown
threshold at high pressures, where the microwave discharge is mainly controlled by the attachment rate. There-
fore, as the value of the different ionization rates becomes less important as the attachment frequency increases
with the pressure, there are not many differences in the results at the high pressure region since the expression
of the attachment rate (6.21) is the same for all the models. The experimental values of the corona breakdown
power threshold lie, however, far below the predictions obtained with Woo’s model. Lupan’s and Mayhan’s
models predict values of the corona breakdown threshold that lie closer to the experimental results.

A possible reason to explain the discrepancies between simulations and results is also that the value of
the attachment rate is overestimated, since the simulations predict higher input powers than the experimental
results to trigger the discharge. Indeed, if the attachment rate is higher than in the reality, the loss of electrons is
overestimated and a more intense electric field is needed to increase the gain of the electron population density
by ionization, resulting in an overestimated input power needed to induce the breakdown. On the other hand,
a too low ionization frequency may lead to values of the corona breakdown power threshold higher than in the
reality, as it occurs with Woo’s ionization rate model.

However, the discrepancies between the measurements and the simulations obtained with Mayhan’s and
Lupan’s models are quite reduced at low pressures, and the tendency of the Paschen curve obtained with Woo’s
model seems to agree better with the experimental measurements at the low pressure region, too. As it was
described in the analysis of the circular waveguide, recalling the theory of the corona discharge at very low
pressures, it is expected that under these conditions the corona threshold does not depend on the ionization
frequency model.

The first source of error that can be remarked in the analysis of the corona breakdown for this problem
is due to the mesh of the problem. In fact, the profile of the electric field corresponds to an infinitely thin
monopole antenna but the mesh was made around a rod of finite radius. Therefore, the values of the electric
field predicted by (6.42) cannot be adequately described for a thick monopole because the maximum electric
field on the surface of the rod, which defines the corona withstanding capabilities of the antenna [Jordan 2006],
will be smaller than in the reality at ρ = 0, (0 ≤ z ≤ l/2) for an infinitely thin antenna. Therefore, the
actual electric field of a thick monopole evaluated on its surface will be smaller compared to the infinitely thin
antenna evaluated at the position of the surface of the thick rod. Then, the approximation that has been done
represents the solution of an intermediate problem between the ideal infinitely thin monopole antenna and the
actual thick one. Indeed, the experiments show that the corona breakdown power threshold grows as the radius
of the monopole augments [Scharfman 1960], since the maximum electric field decreases as the radius of the
rod grows. It is thus natural expecting that the simulations obtained using the electric field of an infinitely thin
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Figure 6.29: Profile of the rms electric field provided by the monopole antenna for 1W input power.
The monopole antenna has been placed within a squared cavity of 1 m side-length.
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Figure 6.30: Example of the cross-section of the mesh made within a squared box 2 m side-length
enclosing the monopole antenna with 1259 elements.
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Figure 6.31: The Paschen curve of the monopole antenna obtained with the three ionization rate
models presented together with the measurements shown in [Scharfman 1960].

monopole antenna meshing as if there was a thick one lie above the experimental measurements, as shown in
Fig. 6.31.

On the other hand, we know that there are many nodes for which the parameter α evaluated at the cor-
responding power breakdown threshold lie outside the range of validity to suitably define the value of the
ionization rate (see Fig. 6.32). This source of error could be considered to contribute to the inaccuracy of
the numerical calculation of the corona breakdown power threshold, however, all the models exhibit similar
percentages of non-valid nodes whereas their predicted Paschen curves differ noticeably. Furthermore, it has
already concluded from the previous examples that the profile of nodes whose parameter α lies outside the
range of validity does not have much influence on the solution of the corona equation. It is rather the maximum
electric field which determines the critical corona breakdown power threshold.

In order to quantitatively estimate the error in the Paschen curve induced by an inaccurate value of the
ionization rate, the plot of the corona breakdown threshold vs. pressure has been plotted in Fig. 6.33 for Woo’s
ionization rate model modifying the ionization frequency by ±20%. This is the relative error that the author of
this model claims to exist between both extremes of the valid range of α where this model is supposed to be
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Figure 6.32: Percentage of nodes outside the range of validity of the parameter α to accurately
represent the ionization rate of the models presented.
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Figure 6.33: The Paschen curve obtained with Woo’s model for the ionization rate modified by
±20%.

accurate enough [Woo 1984]. It can be clearly seen that the Paschen curve obtained with only 0.2 times a higher
value of the ionization rate shows a corona breakdown threshold that approaches remarkably the experimental
results. As it is shown in Fig. 6.4, the ionization frequency of Woo’s model outside the range of validity is
smaller than for the other two, this is the reason why the consideration of an ionization rate 20% higher predicts
a Paschen curve that lies close to the one obtained with the other models of ionization.

The plot shows that a value of the ionization rate modified by 20% can lead to differences in predicted
corona breakdown threshold above +3dB. For instance, at the high pressure region of Fig. 6.33, the two last
points of the curve show that the breakdown power threshold can vary from around 60 W to almost 200 W

and from around 75 W to around 230 W, respectively. Taking into account the fact that ±20% is the relative
error of the ionization rate for Woo’s model within the range of validity, the error in the value of the ionization
frequency outside the range of validity is expected to be larger. Therefore, the prediction of the Paschen curve
with an accurate model of the ionization frequency should be able to retrieve the experimental results of the
corona breakdown threshold obtained by Scharfman for the monopole antenna.
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To finish the study of the microwave gas breakdown for the monopole antenna the maximum effective elec-
tric field corresponding to the corona breakdown power threshold evaluated at the surface of the monopole is
calculated. The results are compared with the experimental results shown in [Scharfman 1960] and plotted in
Fig. 6.34 vs. the pressure (Torr) times the radius of the antenna (cm). The experimental data, represented by
circles in the plot, correspond to the average of the corona breakdown threshold obtained for many monopoles
of different dimensions collected by the author. His goal was to find a scaling law applicable to any monopole
antenna regardless its height and radius. And it seems that the scaling law that he found is satisfactorily repre-
sented by the results obtained in our simulations with Woo’s ionization rate model at any pressure. Therefore,
although the Paschen curve obtained with Woo’s model of ionization differs from the experimental measure-
ments noticeably, the average corona breakdown threshold obtained for many monopole antennas seems to be
better described by Woo’s model of ionization. In any case the other models of ionization do not differ much
from the experimental values mostly at the high pressure region, or for thick monopoles.

Nevertheless, it has been observed experimentally that the corona breakdown power threshold is subject to
a source of fluctuations [Mitani 1957,Jordan 2006], which could be due to the presence of impurities in the gas,
changes in the humidity conditions, contamination, etc. and lead to a spread in the experimental values of the
microwave gas discharge threshold that requests a statistical post-processing of the data.

6.6 Summary

The analysis of the corona breakdown threshold has been studied by solving the corona equation at different
pressures using the FEM for three different ionization rate models found in the literature. The Paschen curve
predicted by the three models have been plotted for different devices and there have been found some discrep-
ancies between the different predictions. The results obtained with Woo’s and Lupan’s models for the coaxial
cable and the circular waveguide were similar to measurements and simulations obtained by another method,
respectively. Mayhan’s model always predicted the lowest corona breakdown power threshold.

It seems, then, that Mayhan’s model exhibits a value of the ionization frequency that is too small to suitably
describe the corona discharge. The results presented by Woo’s model exhibited the highest breakdown power
threshold in every example, as it is natural since it defines the lowest ionization rate in most of the domain of
the parameter α. In any case Woo’s model predicted quite accurately the experimental corona threshold, except
at high pressures, where a slightly higher ionization frequency would be required to better fit the measurements.

The simulations of the corona withstanding capabilities made for the coaxial and the circular waveguides
have been done with the analytical values and the numerical calculation of the electric field. The convergence
of the critical corona threshold when the electric field was analytical was attained using less elements than for
the numerical approximations of the electric field.

A result that could not be explained was the remarkable discrepancy between the predicted critical pressure
obtained by the simulations for the circular cavity at f = 10 GHz with any ionization rate model, and the the-
oretical value predicted by (6.17). Moreover, the discrepancy extends as well to the critical pressure predicted
by [Tomala 2005], which was quite close to the results obtained with our simulations and far from the value
predicted by the transport theory of electrons in gases.

For the three-dimensional cases the simulations done for the two rectangular cavities showed satisfactory
agreement between the corona breakdown threshold predicted by the different ionization models when the
values of the effective electric field over pressure did not exceed much the top of the range of validity of α.
It seems that the withstanding corona capability of structures with smooth electric field profiles whose corona
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Figure 6.34: The maximum value of the effective electric field over pressure plotted vs. pr where r

is the monopole radius.
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breakdown electric field threshold lies within the range of validity of the parameter α, can be satisfactorily
analyzed with the ionization rate models presented here. However, the constraints in the specifications of
the microwave devices used for space applications do not necessarily fulfill those conditions, what obliges
us to search a more general ionization rate model capable to suitably prognosticate the corona breakdown
threshold of the device under more general conditions. Nevertheless, a small deviation in the corona electric
field breakdown entails a larger inaccuracy in the calculation of the corona power breakdown threshold, since
the power is proportional to the square of the electric field, and the relative error propagates by a factor of two.

For the antenna monopole it must be remarked that open-structure problems can also be satisfactorily an-
alyzed by solving the equivalent problem of enclosing the microwave device within a sufficiently big perfect
electric conductor box, as long as the size is big enough as to suitably represent the diffusion of the electrons.
A fine mesh near the electromagnetic source is also needed so that the maximum electric field of the structure,
responsible of the maximum ionization frequency, is suitably represented, and the corona breakdown threshold
accurately calculated. However, the convenience of modeling a finite thickness monopole with the electric field
expressions of an infinitely thin one was questioned at high pressures, since the maximum electric field of a
thin monopole is higher than the one of a thick monopole antenna. Therefore, the predictions of the corona
breakdown power threshold obtained when modeling the problem with a thick monopole lie naturally above
the experimental measurements since the maximum electric field is lower than what would correspond to a
real thin monopole. The influence of the accurate value of the ionization and attachment rates was also ana-
lyzed, showing the importance of a universal expression for these parameters, essential in the calculation of the
Paschen curve. Nevertheless, the scaling law of the corona withstanding capabilities proposed by Scharfman
was verified by comparing the results obtained in our simulations with the measurements performed by the
author, showing especially a satisfactory agreement with the predictions obtained with Woo’s model.

Finally, it is worthwhile to mention the future possibility of analyzing the corona discharge for structures
with dielectrics using the FEM to solve the corona equation. Although the corona discharge has not been studied
here for structures with dielectrics, it may be interesting to analyze devices like the parallel-plate waveguide
with a dielectric slab placed on one of the conductors. This study may result important for design purposes if
the corona withstanding capabilities of such a device enhances its functioning, increasing its working power
without the risk of corona breakdown. To the best of our knowledge this case has not been studied in literature
because the diffusion problem within a dielectric for the corona discharge still remains an open problem for
microwave frequencies. Perhaps in the future the physics of the problem can be described and solved applying
the numerical technique shown in this chapter.

The convergence analysis will be recalled when designing microwave devices of circular or coaxial geom-
etry as it is the case for the new coaxial connector presented in Chapter 7. The implemented FEM tool will also
be used for the optimization of the corona breakdown withstanding capabilities of the new connector studying
the different ionization models.
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7.1 Motivation

Microwave coaxial connectors are essential in the radio spectrum, since they are often used to connect two
units such as the antenna to a transmission line, a receiver or a transmitter. The mechanical stability, the
excellent electromagnetic shielding and the good thermal handling capabilities, make coaxial connectors the
best candidates for connecting different microwave devices within the payload of satellites for high power
applications. On the other hand, printed circuit technology is omnipresent in the RF front-ends of modern
communication systems. Their small size and low weight make them very attractive for space applications. In
the recent years, printed circuits have therefore also conquered the space market. A common way to feed these
circuits is the use of coaxial cables and coaxial connectors. With the advent of Solid State Power Amplifiers
(SSPAs), printed circuits became also attractive for the output stages of high-power transmitters on board of
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satellites. Formerly, this task was reserved to much heavier Traveling Wave Tubes Amplifiers (TWTAs), and
therefore, standard waveguide technology had to be used in this part of the system.

Coaxial cable connectors, often called RF connectors, are in widespread use. Wherever radio frequency
or RF connections need to be made there is the possibility of using coaxial connectors. Where signals reach
frequencies above a few million Hertz, these coaxial connectors need to be used. The need for their use arises
because it is necessary to transfer radio frequency energy from one place to another using a transmission line.
The most convenient and hence, the most commonly used form of transmission line, is the coaxial cable, which
consists of two concentric conductors, the inner and the outer conductors, being the latter often called screen.
Between these two conductors there is an insulating dielectric. There is a variety of connectors that are used for
RF applications. Impedance, frequency range, power handling, physical size and a number of other parameters,
including cost, will determine the best type for a given application.

7.1.1 Coaxial connector parameters

To properly select a coaxial connector one must firstly know the frequency of operation, characteristic impedance,
insertion loss and power handling capability. Other considerations are the application, environmental consid-
erations, mechanical dimensions and durability, finish and cost. The impedance of coaxial connectors is very
important to prevent VSWR mismatches. All RF coaxial connectors are designed to have low VSWR (typically
1.1:1 or better) and very low insertion loss (<0.05 typical and 0.1 dB maximum) over a large bandwidth with a
minimum of variations. Power handling is a function of the diameter of the dielectric, the thermal properties of
the dielectric material used internally, and the size of the center pin. As with transmission lines, the higher the
frequency, the higher the VSWR mismatch and insertion loss and the lower the power handling capability of
the connector. Before selecting a connector, it is important to know the application and whether it will be used
once or inserted numerous times, or whether it is going to be used outside and need to be weatherproof. The
mechanical dimensions are also important and are a function of the connector series. The finish and plating are
also important. Most connectors use some form of nickel plating, but some of the more expensive types are
silver or gold plated. Finally, connector interfaces may be threaded, bayonet, snap-on or push-on. Furthermore,
the optimum connector is not always possible so tradeoffs are often necessary.

7.1.2 Coaxial connector series

Coaxial connectors are usually referred to by series designations. Fortunately, although there are thousands of
different coaxial connectors on the market, there are only about a dozen or so groupings or series designations.
Each has its own important characteristics, and the most popular RF coaxial connector series are N, BNC, TNC,
SMA, SMB, SMC, UHF and 7-16 DIN.

7.1.2.1 N-TYPE

The N-type connector is a high performance RF coaxial connector used in many RF applications. This coaxial
connector was designed by Paul Neill of Bell Laboratories, and it gained its name from the first letter of his
surname. This RF connector has a threaded coupling interface to ensure that it mates correctly. It is available
in either 50 Ohm or 75 Ohm versions. These two versions have subtle mechanical differences which do not
allow the two types to mate. The connector is able to withstand relatively high powers compared to the BNC or
TNC connectors. The standard versions are specified for operation up to 11 GHz, although precision versions
are available for operation up to 18 GHz. The N-type coaxial connector is used for many radio frequency
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applications including broadcast and communications equipment, since its power handling capability is good
enough as to be used for medium power transmitters, however it is also used for many receivers and general RF
applications.

7.1.2.2 BNC

The BNC coax connector is widely used in applications being used on most oscilloscopes and many other
laboratory instruments. The BNC connector is also largely used when RF connections need to be made. The
BNC connector has a bayonet fixing to prevent accidental disconnection while being easy to disconnect when
necessary. This RF connector was developed in the late 1940s and it gains its name from a combination of
the fact that it has a bayonet fixing and from the names of the designers, the letters BNC standing for Bayonet
Neill Concelman. In fact the BNC connector is essentially a miniature version of the C connector which was
a bayonet version of the N-type connector. Electrically the BNC coax cable connector is designed to present a
constant impedance and it is most common in its 50 Ohm version, although 75 Ohm ones can be also obtained.
It is recommended for operation at frequencies up to 4 GHz, and it can be used up to 10 GHz provided the
special top quality versions specified to that frequency.

7.1.2.3 TNC

The TNC connector is very similar to the BNC connector. The main difference is that it has a screw fitting
instead of the bayonet one. The TNC connector was developed originally to overcome problems during vibra-
tion. As the bayonet fixing moved slightly there were small changes to the resistance of the connections and
this introduced noise. To solve the problem a screw fixing was used and the TNC coax cable connector gains
its name from the words Threaded Neill Concelman. Like the BNC connector, the TNC connector has constant
impedance, and in view of the threaded connection, its frequency limit can be extended. Most TNC connectors
are specified to 11 GHz, and some may be able to operate to 18 GHz.

7.1.2.4 SMA

This sub-miniature RF coaxial cable connector takes its name from the words Sub-Miniature A connector. It
finds many applications for providing connectivity for RF assemblies within equipments. It is often used for
providing RF connectivity between boards, and many microwave components including filters, attenuators,
mixers and oscillators use SMA connectors. The connectors have a threaded outer coupling interface that
has a hexagonal shape, allowing it to be tightened with a spanner. Special torque spanners are available to
enable them to be tightened to the correct tightness, allowing a good connection to be made without over-
tightening them. The SMA connector was originally designed in the 1960s for use with 141 semi-rigid coax
cable. Here the center of the coaxial cable forms the center pin for the connection, removing the necessity for a
transition between the coaxial center conductor and a special connector center pin. However, its use extended
to other flexible cables and connectors with center pins were introduced. SMA connectors are regularly used
for frequencies well into the microwave region, and some versions may be used at frequencies up to 26.5 GHz.
For flexible cables, the frequency limit is normally determined by the cable and not by the connector.
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7.1.2.5 SMB

The SMB connector derives its name as it is termed a Sub-Miniature B connector. It was developed as a
result of the need for a connector that was able to connect and disconnect swiftly. It does not require nuts to be
tightened when two connectors are mated. Instead the connectors are brought together and they snap fit together.
Additionally, the connector utilizes an inner contact and overlapping dielectric insulator structures to ensure a
good connectivity and a constant impedance. SMB coaxial connectors perform well under moderate vibration
only and the 50 Ohm versions are often specified to 4 GHz. 75 Ohm versions of the SMB coaxial connector
are also available, but they are often not specified for the same frequencies, often only up to 2 GHz. SMB
coaxial connectors are not as widely used as their SMA counterparts. They are used for inter-board or assembly
connections within equipment, although they are not widely used for purchased microwave assemblies in view
of their inferior performance.

7.1.2.6 SMC

A third SM type connector is not surprisingly the Sub Miniature C or SMC coaxial cable connector. It is
similar to the SMB connector, but it uses a threaded coupling interface rather than the snap-on connection. This
provides a far superior interface for the connection and as a result, SMC coaxial cable connectors are normally
specified to operate at frequencies up to 10 GHz. SMC coaxial cable connectors provide a good combination
of small size and good performance. They may also be used in environments where vibration is anticipated. In
view of their performance they find applications in microwave equipment, although they are normally not used
for military applications where SMA connectors tend to be preferred.

7.1.2.7 UHF

The UHF connector, also sometimes known as the Amphenol coaxial connector was designed in the 1930s by
a designer of the Amphenol company for use in the radio industry. These coaxial connectors have a threaded
coupling, and this prevents them from being removed accidentally. It also enables them to be tightened suffi-
ciently to ensure a good low resistance connection to be made between the two halves. The drawback of the
UHF is that it has a non-constant impedance, what limits their use to frequencies of up to 300 MHz. However,
despite this disadvantage, UHF connectors are cheap and suitable for many applications, provided that the fre-
quencies do not rise. In view of their non-constant impedance, these connectors are now rarely used for many
professional applications, being generally limited to Citizen’s Band (CB), amateur radio and some video and
public address systems.

7.1.2.8 7-16 DIN

7-16 DIN connectors were only recently developed in Europe. Hence the part number represents the size in
millimetres and DIN specifications. This connector series was primarily designed for high power applications
where low intermodulation is important, such as locations where multiple high power transmitters and antennas
are placed (like cellular poles). It is much more expensive than most other connector types.

7.1.3 Space applications

Concerning power handling, when power levels exceed 10 W in space applications one is forced to use the
heavy and bulky TNC connectors. Thus, TNC connectors are usually utilized in payloads for space applications,
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substituting the much lighter Sub-miniature-A (SMA) connectors, when the RF power is above a few Watts.
SMA connectors are only used in low level power applications. However, in the middle power range, there
is no suitable connector with the right balance between power handling, mass and size. In this case, the RF
designer has to make a conservative decision by using TNC connectors instead of SMA to handle the power
delivered by the amplifiers. The larger size of the TNC connectors implies an unnecessary over-sizing of other
components, which, together with the higher mass of the TNC connector, results in a relatively high mass of
the equipment and RF harness. The existence of a lighter connector with, at least, the same power withstanding
capability as the one of TNC connectors would decrease significantly the monetary and environmental cost of
many space missions ensuring the functioning of the microwave devices onboard satellites.

For this, the design of a new coaxial connector was developed within the framework of the ESA project:
“High power SMA connectors” AO/1-5363/07/NL/GLC, where EPFL, Technische Universität Darmstadt (TUD)
and the company Huber+Suhner collaborated together to optimize the mechanical, as well as the thermody-
namic and the electromagnetic properties of a new coaxial connector. The project was aimed at the develop-
ment of a new family of high power SMA connectors for space use capable to withstand power levels up to
50W CW to match the levels delivered by the new generation of SSPAs on board of future telecommunication
payloads. The envisioned frequencies were within the L-, C- and Ku- bands, and the connector had to be able
to handle, at least, 50W CW and 200W at 2% duty cycle to cover multi-carrier effects.

The activity was also intended to realize a connector with a mass reduction of around 40% compared to
the standard TNC connector with an overall size equivalent to the standard SMA. The plan was targeted to
any space mission and particularly to GEO mobile missions due to the large amount of these connectors used
in their payloads. The new SMA-like connector is named Power Sub-miniature (PSM), which was designed
manufactured and tested successfully according to the requested specifications established in the Statement
of Work (SoW) along the project. The requested high power features of the connector are summarized in
Table 7.1, though security margins are always applied for space applications. Thus, the corona and multipactor
breakdown tests under continuous wave signals will be made applying an input power 3 dB above the values
specified in the SoW, and a security margin of +6 dB will be applied when testing the multipactor withstanding
capabilities of the PSM for pulsed signals.

In this chapter the concept and design of the newly developed high power PSM connector will be presented,
experimental tests shown and comparison with other available space grade connectors will be done. The PSM
connector has the size and the mass of the standard SMA connector but in terms of power handling comes close
to or even exceeds the performance of TNC connectors, as it will be shown later. To achieve the ambitious goals
of the project, first suitable theories of corona discharge, multipactor and thermal heating in coaxial structures
had to be established or adapted from known similar problems. Second, the power limiting effects in SMA
connectors like the internal air gap and all the thermal issues had to be identified and eliminated by appropriate
changes of the connector design. Third, suitable materials for the individual parts and the manufacturing process
of the new high power PSM connectors must be analyzed and selected.

In order to show the design guidelines followed during the project to end up with the PSM, let us firstly
study the standard SMA connector. In Fig. 7.1 the cross-section of a mated standard SMA connector is shown
with its main dimensions. The dark parts of the plot represent the metal, usually copper, and the white zones
the dielectric, usually PTFE (Polytetrafluoroethylene or Teflon) or FEP (Fluorinated Ethylene Propylene). The
red rectangle encloses the gap between the inner and the outer conductors produced by the unavoidable me-
chanical tolerances in the male-female interface. The inherent manufacturing process makes the appearance
of gaps where the electrons coming from the outer space can enter into and, driven by the microwave field,
collide with the walls of the devices releasing secondary electrons (see Section 2.2). It is therefore crucial for
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Table 7.1: High power requirements specified at the SoW

Type Band f (GHz) Operating power (W)

Corona (CW)

L-band 1 40
C-band 4 30

Ku-band 10 30

Multipactor (CW)

L-band 1 50
C-band 4 50

Ku-band 10 50

Multipactor (Pulsed, 2% duty cycle)

L-band 1 200
C-band 4 180

Ku-band 10 120

space applications a good coating on the metallic parts of the connectors, not only to increase the electrical
conductivity, but to reduce the secondary emission as well.

It is an experimental fact that the electron secondary emission of rough surfaces is smaller than the one of
flat surfaces [Vaughan 1989]. As the secondary electrons are emitted in all directions, they can be easily reab-
sorbed by the metal when the surface is rough, since they have more probabilities to collide against the peaks of
the rough surface at low energies, binding to the metal lattice again. Nevertheless, it is also known that the elec-
trical conductivity is low when the surface is not well polished. Thus, in space technology the non-negligible
electron secondary emission is a trade-off to an acceptable electrical conductivity. Few tenths of microns gold
or silver layer are usually enough to increase the first cross-over point of the electrodes (see Section 2.2) and
exhibit an acceptable electrical conductivity within the Gigahertz frequency-bands, as presented above.

7.2 Guidelines

In order to design a coaxial connector with better high power withstanding capabilities than the standard SMA,
let us study the multipactor and corona breakdown power thresholds for this connector to see the improvement
that might be done. To do so we are going to analyze the multipactor and corona breakdown separately and
follow the guidelines proposed in the ESA documentation [ECSS 2000, ECSS 2003].

7.2.1 Multipactor guidelines

As it was shown in Section 2.6 the multipactor susceptibility chart exhibits a minimum breakdown voltage
around fd = 0.6 GHzmm when the initial velocity of the electrons is v0 = 1 eV or around fd = 1 GHzmm

when v0 = 5 eV (see Fig. 2.15). Since the initial velocity distribution of the secondary electrons shows a
small thermal spread around its maximum, typically located around 3 eV, we can consider that the multipactor
breakdown voltage threshold of a parallel-plate waveguide is placed between those values of the frequency-gap
product.

The same can be concluded for the coaxial electrodes according to the similarity principle [Woo 1967],
which shows that the boundaries of the multipactor susceptibility chart modify their position for other ge-
ometries than the parallel-plates, but exhibiting the same features. Therefore, as it has been experimentally
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Figure 7.1: Cross-section of a standard SMA connector. Courtesy of H+S AG
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confirmed, the multipactor susceptibility chart of the coaxial waveguide presents a minimum breakdown volt-
age threshold around similar values of the frequency-gap product (see Fig. 7.2). In this plot the measured
multipactor breakdown voltage extracted from [Woo 1968] is shown for different coaxial cable aspect ratio.
The minimum of the multipactor chart lies around the above-mentioned values of the frequency-gap product
for all the cases.

Therefore, it is clear that, in order to increase the multipactor breakdown power threshold of the coaxial
connector, the height of the gap between inner and outer conductor must change so that the fd product moves
away from the minimum of the multipactor chart. The gap height can thus be either increased or reduced
to ensure that the fd product lies far from 1 GHzmm. The augmentation of the gap height is the approach
followed by the TNC concept, but it implies a dramatic increase of the connector size and weight, so it is
discarded for the purposes of the project. Another possibility is the choice of the right dimensions such that the
gap distance is small enough so that the frequency-gap product for the highest working frequency lies far on
the left from the values for which the multipactor chart predicts the minimum breakdown voltage threshold.

This concept was identified as a staircase approach, which made the main gap between the inner and outer
conductors evolve as sketched in Fig. 7.3. The figure shows the part of the coaxial connector equivalent to the
top half of the SMA presented in Fig. 7.1. The dotted region represents the dielectric and the dashed areas
the inner and outer electrodes of the coaxial connector. The advantage of this approach is twofold: on the one
hand the tiny space between the dielectrics within the oblique gap makes the resonance between the motion
of the electron and the microwave signal difficult at low voltages (see Section 2.2); on the other hand, the gap
is bounded by PTFE, and the first cross-over point of this material is usually higher than the one of Silver
or Gold. At the same time, the conclusions that have been reached in Chapter 2 concerning the analysis of
the parallel-plate are feasible to be applied for the oblique gap since the electric field is quite uniform in this
region. Therefore, as the value of the frequency-gap product lies on the left of the minimum multipactor chart,
this approach guarantees a higher multipactor breakdown voltage threshold than for the standard SMA.

7.2.2 Corona guidelines

Regarding the gas discharge or corona breakdown, the guidelines followed to enhance the corona withstanding
capabilities of the coaxial connector are:

• Avoiding sharp edges or peaks within the connector, which could lead to very intense electric fields and,
subsequently, to dramatically high ionization rates.

• Trying to decrease the maximum electric field as much as possible by reducing the dimensions of
the inner conductor, making its value compatible with the rest of the requirements of the connector
(impedance).

• Reducing the volume of the gaps as much as possible to increase the diffusion loss and the corona
breakdown power threshold.

The first point defines the need of good electrical contact between all the parts of the connector to avoid
internal mismatches and the presence of stationary waves which could locally enhance the electric field strength,
reducing the corona breakdown power threshold. On the other hand, the presence of sharp corners must be
prevented so that the surface charge density does not induce too intense electric fields. Another way to decrease
the maximum electric field within a coaxial structure is enlarging the diameter of the inner conductor, what
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Figure 7.2: Experimental multipactor susceptibility chart for coaxial geometries. Extracted from
[Woo 1968].
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Figure 7.3: Sketch of the staircase approach concept till arriving to the oblique gap.

decreases the maximum electric field of the coaxial connector [Marcuvitz 1951]. Nevertheless, in order to keep
the impedance of the connector when increasing the inner conductor, the diameter of the outer electrode must
also be increased, what implies that the cut-off frequency of the higher mode decreases, limiting the maximum
working frequency of the coaxial connector. Therefore, again the dimensions of the inner and outer electrodes
were chosen to balance the maximum field strength, and subsequently, the ohmic losses, against the maximum
working frequency of the coaxial connector, which should be,at least, the same as the one of the standard SMA.

The third guideline is intended to increase the diffusion loss since the diffusion current increases as the
volume decreases. Indeed, let us imagine a gas filling the space between two flat electrodes of a parallel-plate
waveguide. As it was described in Section 6.2, the electron population at the electrodes is null, therefore, if the
space between the plates is smaller, the gradient of the electron density must be larger to satisfy the boundary
conditions, with the subsequent increase of the diffusion current (see (6.12)). As the diffusion loss becomes
more important, the electric field must become more intense to induce a higher ionization rate that compensates
the diffusion and produces the gas breakdown [Brown 1951].

7.2.3 Outgassing and venting

The outgassing is a natural effect that occurs when the environmental pressure diminishes, enabling the gases or
any possible contaminant attached to the surface of any material to escape to the environment. The outgassing
can be enhanced by a local temperature rise, increasing the local pressure and the risk of corona breakdown.
If a good venting of the on-board satellite microwave device is not guaranteed, corona breakdown may appear,
whose power threshold is always lower than the one of the high-vacuum multipactor breakdown, [Woode 1989],
for which the device has been designed to work correctly.

Therefore, besides the proposed approach for the gap in the male-female interface, the standard [ECSS 2003]
describes that a crucial point in the design of components for space applications is a good venting to ensure that
the pressure within the device falls below 1.5 · 10−3 Pa before RF power is applied under orbit conditions. It
has been observed experimentally that the fulfillment of this requirement discards the possibility of the corona
onset [Woode 1989].

Therefore, like every microwave device used for space applications, the gaps produced in the manufac-
turing process of the coaxial connector must be adequately connected to the outer space environment through
venting holes to ensure that there is no remaining gas within the components which might trigger a low power
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Figure 7.4: Sketch of the final design of the PSM connector. Courtesy of H+S AG.

corona breakdown, much more harmful than the multipactor discharge. The venting holes are usually placed
on the nut of the connector at the male-female interface and at the cable entries. In order to avoid any elec-
tromagnetic interference with other devices on the satellite payload through the venting holes, the diameter of
the latter must be small enough so that no coupling of the electromagnetic energy to the other components is
guaranteed. On the other hand, it is known that the smaller the hole diameter, the smaller the venting conduc-
tance [ECSS 2003], what makes slower the gas evacuation of the possible outgassing contaminants. Again, the
design of the PSM implied the choice of a venting hole diameter which resulted in the compromise between
high pumping conductance and low electromagnetic radiation.

7.3 PSM design

The cross section of the final design of the PSM connector together with the cable-entry interface is outlined
in Fig. 7.4, where the oblique gap can be observed in the plug-jack connection. In order to reduce the weight
of the connector the inner conductor is hollow, and the venting channels have been designed to evacuate the
residual gas through the venting holes at the nut of the PSM. The design has been made in such a way that the
expansion due to a possible increase of temperature closes the gaps produced in the cable entry. This makes
the connector mechanically more stable and reduces the risk of the appearance of gaps that could induce either
corona or multipactor breakdown.

The reduction of the mass of the PSM with respect to the standard TNC is around 50%, the PSM exhibiting
better high power capabilities concerning corona and multipactor discharges.
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Table 7.2: Predicted multipactor breakdown power threshold of the PSM obtained with MEST for CW signals.

f (GHz) Breakdown power (W)
1 477
4 477

10 3351

7.4 High power analysis

Following the guidelines proposed in Chapter 5 of [ECSS 2003], firstly, the calculation of the electric field
within the gaps of the coaxial connector was done. The electromagnetic fields of the proposed design were
calculated with HFSS. Once the electric field within the gaps of the coaxial structure was calculated, the line
integral of the electric field along the gap was defined as the gap voltage, analogously to the voltage of a parallel-
plate waveguide. Regarding the corona discharge, the electric field found by HFSS across the geometry defined
by the gaps of the structure has been exported to the in-house FEM-2D code and the breakdown power threshold
calculated. The azimuthal symmetry of the connector has been used to reduce the simulation size, considering
only one quarter of the PSM.

7.4.1 Multipactor analysis

The predicted multipactor breakdown voltage of the gap was calculated inserting the length of the gap and
the corresponding frequency in the software Multipactor Electron Simulation Tool (MEST) [de Lara 2006].
MEST is a software that calculates the motion of the electron within a parallel-plate waveguide and simulates
the electron population growth by using the SEY model presented in [Furman 2003]. Regarding the SEY
properties, as MEST can only simulate homogeneous boundaries, the gaps, whose bottom and top side were
made of different materials, were analyzed considering the material with the lowest first cross-over point (see
Section 2.2). This approach was followed in order to avoid the over-estimation of the breakdown threshold
and optimize the design of the connector. Once the multipactor breakdown voltage was found, the breakdown
power was calculated taking into account that the gap voltage found by HFSS corresponds to 1 W rms input
power. Thus, the predicted multipactor breakdown power threshold was calculated with the formula:

PB =

(
VMEST

VHFSS

)2

. (7.1)

This procedure was done for each gap formed within the connector structure, calculating the gap voltage
and the multipactor power threshold. The gap that exhibited the lowest multipactor breakdown power defined
the most critical gap and the multipactor breakdown power threshold of the whole structure.

The results are summarized in Table 7.2, where the multipactor threshold was found for the gaps existing
in the cable-entry. This shows that the multipactor power threshold of the male-female part of the connector
is higher than for the cable-connector interface. Indeed, the multipactor withstanding capabilities of the cable-
entry limited the maximum working power of the PSM connector.
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Table 7.3: Predicted minimum (critical) corona breakdown threshold of the PSM for CW signals.

f (GHz)
Minimum breakdown power (W)
Woo Lupan Mayhan

1 112 19 12
4 238 110 72

10 512 347 231

7.4.2 Corona analysis

Regarding the study of the corona withstanding capabilities of the PSM, once the electric field along the struc-
ture of the connector was found with HFSS, the FEM-2D code imported the values of the electric field. By
finding the minimum input power that results in the solution of the eigenvalue problem (6.16) for each pressure,
the Paschen curve was found. The simulations were done taking advantage of the azimuthal symmetry only
meshing one quarter of the connector. The convergence analysis of the solution of the corona equation with
the 2D FEM code for Woo’s ionization model is shown in Fig. 7.5, where the last step corresponds to 7422
triangles, before reaching the memory limit of the computer. The convergence study was done by calculating
the relative distance between the minimum corona breakdown threshold of the Paschen curve obtained with
different number of triangles as demonstrated in Section 6.5.2.1. As it has been remarked in that section, the
convergence followed basically the same behavior regardless the ionization rate model, thus the fact that the
convergence has been reached for Woo’s model guarantees that the same applies for the rest of the models.

The corona equation was solved with the 2D FEM code for each ionization model using 7422 elements.
As it was observed in Section 6.3.4 for any microwave device, Mayhan’s model predicted values of the corona
breakdown power threshold for the PSM much lower than the rest of the ionization models. Taking into consid-
eration the three ionization models presented in Section 6.3 for design purposes, the Paschen curves obtained
with the models predicting the highest and the lowest corona breakdown power threshold have been plotted.
The results are shown in Fig. 7.6 for each frequency specified in the SoW, where the space enclosed by the
difference between both curves has been marked with different colors for each frequency.

The predicted values of the minimum corona breakdown power threshold of the Paschen curve (critical
corona threshold) obtained with each model presented in Section 6.3 for the three working frequencies are
shown in Table 7.3. According to this, the predicted critical corona threshold of the PSM ranges from 12 W to
112 W at 1 GHz. The predicted critical corona threshold at higher frequencies lies above the requirements of
the project (40W according to Table 7.1) in the worst case, since Mayhan’s model predicts a corona breakdown
power of 72 W at 4 GHz and a much higher threshold at 11 GHz. This constitutes an input power above the
requirements of the project (see Table 7.1), thus the lowest frequency fixes the limiting input power without the
risk of corona discharge to occur.

7.5 Test results

The low power results are extracted from the assessment report of the PSM [Mattes 2011] and the high power
test results are extracted from the final report of the test campaign of the PSM done in the ESA-VSC consortium
in Valencia (Spain) [Esteve 2011].
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Figure 7.5: Convergence study of the Paschen curve of the PSM connector found by calculating the
average of the corona breakdown threshold obtained with the three ionization rate models presented
in Chapter 6.
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Figure 7.6: Paschen curve of the PSM connector obtained with Woo’s and Mayhan’s ionization rate
models presented in Chapter 6 for three frequencies. The results of Woo’s and Mayhan’s models
predict the highest and the lowest values of the corona breakdown power threshold, respectively.
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7.5.1 Low power performance

The measurement of the S-parameters of the new connector have been done for a 1 m long cable connected
to the PSM and are shown in Fig. 7.7, where the measurements of the reflection coefficient, (S11), have been
made with a gating in such a way that only the region from the beginning of the PSM to a few centimeters
inside the cable contributed to the result. The red curve in Fig. 7.7b shows the transmission coefficient, (S21),
of the 1 m long cable connected to the PSM and the blue curve the one of the connector together with the cable.
The fact that both curves lie very close to each other indicates that the main contribution to the non-negligible
values of the transmission coefficient comes from the ohmic losses produced in the cable. The results show the
good performance of the PSM within the whole bandwidth, from 1 GHz to 18 GHz, the reflection coefficient
lying below -20 dB within the complete frequency range.

7.5.2 High power performance

The experimental tests concerning the high power withstanding capabilities of the PSM were carried out at
the joint ESA-VSC high power RF laboratory in Valencia (Spain). The detection systems used to assess the
occurrence of multipactor and/or corona discharges are described in [ECSS 2003] and can be enumerated as
follows:

• Forward/Reverse power nulling.

• Third harmonic monitoring.

• Electron avalanche detector (electron probe).

• Optical detection.

The breakdown according to [Esteve 2011] was supposed to have taken place when the discharge was
found by more than one method. This is the standard approach followed to avoid that anomalous responses of
low intensity, provoked by other phenomena like thermal issues, could create confusion. This occurs because,
as it was commented in Chapter 5, there is not a univocal and commonly accepted criterion yet to assess
experimentally the multipactor breakdown onset.

7.5.3 Multipactor tests

The multipactor tests were done for the three above-mentioned working frequencies described in the SoW of
the project for CW and pulsed signals. The pulsed signal consisted of a rectangular waveform with a pulse
repetition frequency (p.r.f.) of 1 kHz at 2% duty cycle (d.c.). The results of the multipactor tests carried out
on the PSM are shown in the Tables 7.4 and 7.5 where the temperature has also been recorded to check the
performance of the connector under thermal stress. It is known that the higher the frequency the bigger the
ohmic losses and, therefore, the higher the expected temperature within the connector. As the high temperature
can melt the welding points at the cable entry, the temperature is continuously tracked to check the good contact
between the cable and the connector.

The multipactor tests were done increasing the input power step by step if no discharge was detected till
the maximum power of the amplifiers was reached. Due to some technical issues in the workbench at 10 GHz,
the test frequency chosen for the Ku-band was 11 GHz. The maximum power provided by the amplifiers at
disposal at the ESA-VSC lab facilities was 1500 W at the L-band and 1200 W at the C- and Ku-bands.
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(a) Return loss of the PSM.

(b) Insertion loss of the PSM.

Figure 7.7: Experimental S-parameters of the PSM connector.
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It is worth to mention that the multipactor tests done at 438 MHz and 1 GHz for the pulsed signal were
limited by the maximum power that the amplifiers could provide. This means that the high power performance
of the PSM connector is better than what the experimental setup could detect. That is the PSM is able to with-
stand similar power levels as the TNC for pulsed signals at the P- and L-bands without the risk of multipactor
occurence. The same can be said about the results obtained at 4 GHz, where the maximum input power was
1200 W.

f (GHz) T (◦C) Max. power applied (W) Result

1 – 100 No breakdown detected
4 20 100 No breakdown detected
4 40 100 No breakdown detected

11 60 100 No breakdown detected

Table 7.4: Results of multipactor tests for the PSM with the CW signal.

f (GHz) T (◦C) Max. power applied (W) Result

0.438 – 1500 No breakdown detected
1 – 1500 No breakdown detected
4 20 1200 No breakdown detected
4 40 1200 No breakdown detected

11 60 1000 Breakdown detected

Table 7.5: Results of multipactor tests for the PSM with the modulated signal (2% d.c.)

In order to check the robustness of the PSM, the S-parameters before and after the multipactor test with the
CW signal at 11 GHz are shown in Fig. 7.8. The results show that no appreciable change in the S-parameters
was produced in the PSM connector after being subject to 100 W during around 10 minutes with an environ-
mental temperature of 60◦C.

7.5.4 Corona tests

Due to the high cost of the working hour and the big amount of hours required to obtain experimentally the
Paschen curve of the PSM, it was decided during the project to fix the input power (3dB higher than the one
specified in the SoW as security margin) and check whether the PSM could withstand that power without break-
down detection. The results are summarized in Fig. 7.9, where the black bars show the predicted critical corona
breakdown power threshold obtained with Woo’s model and the white bars the one obtained with Mayhan’s
model. The gray bars show the input power fixed during the corona tests during which the pressure was swept
from 10−5 mBar to the atmospheric pressure. There was no discharge detection in any corona test, what shows
that the PSM could withstand more than 80 W at 1 GHz and more than 60 W at 4 and 11 GHz, which are the
values represented by the gray bars in Fig. 7.9.
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(a) S-parameters of the PSM before the Ku-band multipactor test.

(b) S-parameters of the PSM after the Ku-band multipactor test.

Figure 7.8: Experimental S-parameters of the PSM connector during the Ku-band multipactor test
performed to 100 W CW during 10 minutes. The frequency ranges from 10 GHz to 12 GHz.
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Figure 7.9: Results of the corona test. The gray bars represent the input power fixed during the exper-
imental tests and the black and white bars represent the critical corona breakdown power threshold
predicted by Woo’s and Mayhan’s models, respectively.
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7.6 Discrepancies

The results of the multipactor tests exhibited some discrepancies with the predictions (cf. Tables 7.2, 7.4
and Fig. 7.5). The reasons that could explain these discrepancies are the following:

• The predictions of the multipactor threshold were obtained assuming that the electric field within the gaps
of the connector was uniform, like the one of an infinite parallel-plate waveguide. Neither the coaxial
geometry profile nor the fringing field effects at the edges of the gaps were taken into account in the
simulations. Both effects are supposed to increase, in general, the breakdown threshold with respect to
the parallel-plate geometry.

• The simulations of the multipactor threshold were done assuming a homogeneous boundary, i.e., a single
material, since no simulation tool for non-homogeneous gaps was available at the time of the project. In
order not to overestimate the multipactor threshold the material with the lowest first cross-over point was
utilized in the design process.

• It has been observed experimentally the dependence of the SEY parameters on the temperature, like the
decrease of the maximum SEY or the change in the value of the first cross-over point [Woode 1989,
Hilleret 2003, Kobayashi 2003, Stacey 2009]. Nevertheless, this temperature dependency has not been
taken into account during the design process, that is, in the simulations, since there is no model available
to evaluate it.

• Changes of the structure of the PTFE due to the thermal expansions decreasing the gap widths or even
closing them completely plus the uncertainty in the dimensions due to the mechanical tolerances.

The effect of taking into account the coaxial electric field profile within the gaps is not expected to con-
tribute much to the explanation that justifies the discrepancies of more than 3 dB between simulations and
measurements, because the gaps are quite small and the deviation from the uniform field is negligible.

On the other hand, as the critical gap of the PSM was made of gold and Teflon, and the first cross-over point
of the SEY curve of PTFE is higher than the one of gold, the experimental multipactor threshold is expected
to be higher than the one obtained in the simulations with gold. The simulations using Teflon predicted a
multipactor threshold at 1 and 4 GHz around 1300 W, what results in a noticeable increase of the breakdown
power threshold.

Nevertheless, the temperature rise due to the ohmic losses in the cable is expected to contribute the most
to explain the differences between the experimental and the predicted multipactor threshold. As it has been
commented before, the multipactor tests were run at 40◦C and 60◦C at 4 and 11 GHz, respectively, what
implies an expansion of the dielectric within the PSM that closes some gaps, as it was decided during the
design process. This could have made that the critical gaps for which the simulations predicted a multipactor
threshold of 477W were closed and the multipactor threshold of the PSM must be associated to another gap.
The multipactor threshold predicted for any other gap was higher, thus this could explain why the experimental
multipactor threshold at 4 and 11 GHz was higher than the ones obtained in the simulations.

On the other hand, as it has been observed experimentally, a big heating induces a decrease of the first
cross-over point and a change in the SEY parameters of the materials that entails a reduction of the multipactor
threshold predicted at 11 GHz. The measured breakdown power at 60◦C was 1000 W at that frequency (see
Table 7.5) instead of the predicted 3351 W at 10 GHz. The ohmic losses at that frequency are so important that
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a local increase of the temperature could entail a gas discharge by the appearance of outgassing contaminants
and the subsequent pressure rise [Woode 1989].

Concerning the corona tests, the results show that Woo’s and Mayhan’s models predict both values of the
critical corona breakdown threshold above the fixed input power, except at 1 GHz, where Mayhan’s model
predicted a corona discharge at 12 W. The measurements showed that there was no corona discharge for 80 W
at 1 GHz CW, what is a challenge for such a small connector. On the other hand, the PSM did not show any
sign of corona breakdown for 60 W at 4 and 11 GHz, exhibiting a very good high power performance.

7.7 Summary

The measured high power characteristics of the PSM cable assemblies are excellent. The design in terms of
high power transmission is close to the physical limit of the chosen small geometry of connector and cable.
The measurements showed a very good performance regarding multipactor capabilities in P-band (438MHz)
as well as in L-band (1124 MHz), being able to withstand at least up to 1500 Watts input power, for a pulsed
signal of 2% duty-cycle, without showing any trace of multipactor discharge. This implies an improvement of
50% compared to other powerful connectors such as TNC. Concerning corona breakdown, the PSM was able
to withstand more than 80 Watts without showing any sign of glowing or noticeably discharge, what constitutes
a challenge for coaxial connectors at these input powers.

As it has already been pointed out, the origin of the discrepancies between simulations and measurements
may be due to the limitation of the simulation tools and to the temperature rise provoked in the cable, what
induces an important thermal stress on the connector at high frequencies and powers. On the other hand,
the appearance of mechanical tolerances may noticeably modify the predicted multipactor breakdown power
threshold by a small change on the assumed size of the gap. The thermal expansion due to the temperature rise
may also increase the dimensions of some gaps and modify the multipactor breakdown power threshold of the
connector. Indeed, the experiments showed that the only power limitation of the PSM lies in the temperature
stress that the cable, and consequently the connector, can withstand.

The success in the design of the PSM according to the requirements specified in Table 7.1 is depicted in
Fig. 7.10 where the validation of the high power tests have been represented by a green case. Note that the
maximum power that the PSM can withstand exceeds by far the specifications requested in the SoW of the
project at low frequencies. The maximum input power that the connector can withstand at high frequencies is
determined by the high temperatures reached due to the ohmic losses. Compared to the SMA connector the
PSM is able to withstand much higher input powers exhibiting no corona and multipactor breakdown but at
power levels comparable to the working limits of the TNC connector with lower mass.
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Figure 7.10: Summary of the results obtained during the high power tests applied on the PSM
connector.





CHAPTER 8

Outlook and future work

The development of a rigorous multipactor criterion is essential to avoid high cost test campaigns for the design
of microwave components for space applications. The results obtained in this thesis can help in the future
success of this task. The development of an analytical model to predict the maximum surface charge density in
the multipactor steady-state, together with the study of the radiated power spectrum of a multipactor discharge
within a parallel-plate intend to bring new insights towards the development of such a criterion. Nevertheless,
the analysis of this discharge should be extended to other waveguides and more realistic scenarios.

For instance, the study of multipactor saturation considering more than one electron sheet could serve to
model the thermal spread of the secondary electrons resulting in a distribution of their initial velocity, moving
beyond Sombrin’s model. The influence of the magnetic field on the levels of the saturation charge for a
parallel-plate waveguide can also be analyzed, as well as the presence of a DC field as it occurs for parallel-
plate waveguides with dielectrics can be taken into consideration.

On the other hand, the saturation analysis must be extended to more realistic scenarios like rectangular
waveguides with a large width-to-height ratio, where the parallel-plate approximation could help to estimate
the surface charge density in the multipactor steady-state by finding the analytical motion of the electron cloud.

The analysis of multipactor saturation for a coaxial waveguide can also be studied under Sombrin’s model,
representing the electron cloud by a cylindrical sheet of charge concentric to the inner conductor of the wave-
guide. The analytical motion of the electron sheet at very high frequencies and large coaxial cable aspect ratio
has been developed by [Udiljak 2007], and the study of the saturation under the same conditions may bring new
analytical formulas to predict the surface charge density of saturation for coaxial waveguides. The analysis of
more than one electron sheet to model the thermal spread of the secondary electron for coaxial geometries can
also be studied in this case.

Therefore, the equations of motion of the electrons taking into account space charge effects, and considering
more than one electron sheet for rectangular and coaxial waveguides must be developed. By knowing the
equations of motion of the electron cloud, the radiated power spectrum of a multipactor discharge following
the same approach as in this thesis can be extended to these devices.

On the other hand, the study of saturation has been developed for the true secondary electrons, but the
influence of the backscattered and the reflected electrons on the saturation must be considered as well in order
to extend the analysis of multipactor steady-state to a more realistic scenario.

The theoretical radiated power spectrum extended to rectangular and coaxial geometries taking into account
the space charge effect must be compared with the experimental measurements in a test campaign to be vali-
dated. This will be useful to find or, in any case, to get closer to an unambiguous multipactor onset assessment
criterion.

Furthermore, the study of the radiated power spectrum for more general geometries, as it occurs in particle
accelerators, request the development of numerical techniques to find the motion of the electron cloud produced
within the particle beam pipe. The Fourier transform of the multipactor current produced can be calculated to
find the radiated power spectrum of a multipactor discharge. The analysis of both the power spectrum and the
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influence of an external field on the dynamics of the electron cloud can be used to reduce or even suppress the
electron cloud build-up in particle accelerators, like in the LHC.

Concerning corona breakdown, a more rigorous analysis of the ionization rate models must be done includ-
ing the development of a more general model, able to predict the values of the corona breakdown threshold
lying closer to the measurements. This new and more general ionization model should be able to predict ac-
curately the ionization rate for bigger values of the effective electric field-to-pressure ratio than shown for the
models described in this thesis.

Concerning the PSM connector, it must pass the space qualification campaign to validate its functioning
within the harsh space weather. The proposition of a space mission with the PSM to validate its performance
by testing simple properties, like, for instance, the response of the S-parameters in the real space weather, has
been outlined within the framework of the Space Center at EPFL.



APPENDIX A

Returning limit analysis

A.1 Returning limit equation

Neglecting for the moment the restriction (2.22) for the acceleration, we can use the equations of motion and
the definitions of variables vω and Vω to rewrite the system of equations (2.22) as follows:

{
Vω(φR − αR) + cosφR − cosαR + (φR − αR) sinαR = 0

Vω + sinαR − sinφR = 0

}
(A.1a)

(A.1b)

Eq. (A.1b) shows that it is impossible to find the requested solution to the system of equations for Vω > 2,
since the quantity |sinαR − sinφR| can be 2 at the most. Furthermore, the velocity of the electron cannot
be lower than zero for values of Vω larger than 2, therefore, we can conclude that the electron never impacts
against the initial plate when Vω > 2.

Besides the positive acceleration at impact time, we will impose the condition φR − αR > 0 in order to
guarantee that the launch phase precedes the impact phase, ensuring a physically meaningful solution. As the
acceleration is proportional to − cosφR (see (2.1)) the first condition, (A.1a), implies that the phase of the RF
field when reaching the birth plate, φR, must lie between π/2 and 3π/2 to guarantee that the acceleration is
positive.

Isolating Vω in (A.1b) as Vω = sinφR − sinαR and substituting it into (A.1a) we can rewrite (A.1a) as
follows:

(φR − αR) sinφR + cosφR − cosαR = 0.

We define Ψ ≡ φR − αR and rewrite the system of equations as follows

{
ΨsinφR + cosφR − cosαR = 0

Vω + sinαR = sinφR.

}
(A.2a)

(A.2b)

Using (A.2b) in (A.2a) we can write

Ψ(Vω + sinαR)±
√

1− (sinαR + Vω)
2 − cosαR = 0, (A.3)

where the sign of the square root provides the sign to the cosine of the impact phase. Therefore, as it has been
discussed above, the sign must be negative. Hence, the physically meaningful solution leads us to write Ψ as a
function of αR in the following form:

Ψ(αR) =
cosαR +

√
1− (sinαR + Vω)

2

(sinαR + Vω)
. (A.4)
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The impact phase can be expressed as φR = Ψ(αR) + αR, and we can substitute (A.4) into (A.2b) to find αR

as the solution of the following equation:

Vω + sinαR = sin
(
Ψ(αR) + αR

)
(A.5)

what results in the equation

Vω + sinαR − sin




αR +

cosαR +
√

1− (sinαR + Vω)
2

sinαR + Vω





= 0. (A.6)

The launch phase provoking the returning to the initial plate with zero velocity is given by the solution
of (A.6), however, this equation has an infinite amount of roots as long as Vω < 1, with the peculiarity that
the distance between roots decreases as sinαR → −Vω . This is easy to understand if we remark that a small
change in the value of the denominator of the argument of the sine function in the last term of the LHS of
(A.6) induces a big change as the denominator tends to zero. It must be remarked that in case that Vω 6= 0, the
accumulation of the roots is produced around two values of αR, corresponding to both branches of the arcsine
function, otherwise all the roots gather around αR = 0.

The physical meaning of the infinite amount of roots comes from the fact that the solution of (A.1) defines
all the phases for which the electron reaches the bottom plate with zero velocity ignoring the possibility that
the theoretical trajectory of the electron may imply a previous impact against the initial plate (see Fig. A.1).
Only the first launch phase, α(1)

R , provides the requested solution, since only for this launch phase the electron
impacts against the initial plate with zero velocity for the first time after being launched. The other solutions
for the initial phase lead to impacts against the initial plate with zero velocity after colliding with the initial
plate previously, what it is not of our interest.

In order to find the roots of (A.6) let us firstly study the case for Vω = 0 for the sake of clarity.

A.1.1 Zero initial velocity

For zero initial velocity the variable Vω is also null and the solution of the returning limit becomes quite simple,
in this case the function Ψ(αR) is written as

Ψ(αR) =
cosαR + | cosαR|

sinαR
(A.7)

1. For αR ∈
[
π
2 ,

3π
2

]
the solution of (A.6) is the trivial one: ΨR = 0 → φR = αR, since cosαR =

−| cosαR| within this interval.
2. For αR ∈

[−π
2 , π2

]
the returning limit is found by solving

sinαR − sin

{
αR +

2

tanαR

}
= 0. (A.8)

Taking into account the condition (2.22c) at the impact time and (2.1), it can be concluded that the impact phase
must lie within the second branch of the arcsine function. As the argument of the sine function of the second
term of the LHS of (A.8) corresponds to φR, the solution of (A.8) can be written as follows

(2k + 1)
π

2
− α

(k)
R − cotα

(k)
R = 0. (A.9)

The maximum value of α(k)
R as solution of (A.9) within the defined range is found for k = 0 with α

(0)
R = π

2 ,

what implies ΨR = 0 → φ
(0)
R = α

(0)
R .
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Figure A.1: Example of returning for several solutions of (A.6) for fd = 1 GHz ·mm, v0 = 1 eV

and VRF = 212 V. The values of the launch phases are α
(1)
R = 1.048 rad, α(2)

R = 0.117 rad and

α
(3)
R = 0.0281 rad.
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A.1.2 Non-zero initial velocity

For non-zero initial velocities Vω > 0 holds, and the solution of the returning limit is more difficult to deal
with. First of all, we have to delimit the root search to the domain where the physically meaningful roots are
located and this has not been found yet. The condition of positive acceleration at the moment of impact against
the initial plate has already been applied in the choice of the branch of φR, but the conditions to guarantee
Ψ(αR) > 0 have still to be studied. Nevertheless, the conditions that guarantee the solution of ΨR to be
real-valued must be analyzed first, and this is described by the conditions:

• If αR ∈
[−π

2 , π2
]
→ αR < arcsin(1− Vω)

• If αR ∈
[
π
2 ,

3π
2

]
→ αR > π − arcsin(1− Vω)

In order to ensure that the impact phase is bigger than the launch phase we have to study (A.6) for different
cases:

1) If (sinαR + Vω) > 0, the following must be satisfied

cosαR +

√
1− (sinαR + Vω)

2 > 0. (A.10)

1a) If αR ∈
[−π

2 , π2
]

this implies that cosαR > 0, therefore, (A.10) is always satisfied as long as the launch
phase is bounded by the condition

αR > − arcsin Vω. (A.11)

1b) If αR ∈
[
π
2 ,

3π
2

]
this implies that cosαR < 0 and, therefore, it must hold

−| cosαR|+
√

1− (sinαR + Vω)
2 > 0

equivalent to

αR > π + arcsin

(
Vω

2

)
(A.12)

as long as

αR < π + arcsin Vω. (A.13)

2) If (sinαR + Vω) < 0, the following must be satisfied:

cosαR +

√
1− (sinαR + Vω)

2 < 0. (A.14)

2a) If αR ∈
[−π

2 , π2
]

this implies that cosαR > 0, therefore, (A.14) can never be satisifed.

2b) If αR ∈
[
π
2 ,

3π
2

]
this implies that cosαR < 0 and, therefore, it must hold

−| cosαR|+
√

1− (sinαR + Vω)
2 < 0
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equivalent to

αR < π + arcsin

(
Vω

2

)
.

Nevertheless, this condition is contradictory with the initial hypothesis of

π + arcsinVω < αR <
3π

2
.

Thus, no solution can be found for (sinαR + Vω) < 0.
After this analysis we can define the boundaries of the domain of the launch phase that provokes the return

of the electron to the initial plate as function of the variable Vω . The conditions (A.12) and (A.13) define the
domain of validity for the second branch of αR, but only one of the boundaries for the first branch has been
limited by (A.11). The second limit for the first branch comes from the condition that the argument of the
square root function in (A.10) must be positive, imposing that αR < arcsin(1− Vω). The boundaries are thus,
defined by: 




arcsin(1− Vω) >αR > − arcsinVω

π + arcsinVω >αR > π + arcsin

(
Vω

2

)




(A.15)

(A.16)

All these conditions together provide the plot shown in Fig. A.2 where the domain of validity to find the
returning launch phase is represented in gray.

The solution of (A.6) can be calculated taking into account that sinαR + Vω = sinφR, and as φR must be
located within the second branch of the arcsine function, (A.6) can be rewritten as

(2k + 1)π − arcsin (sinαR + Vω) = αR +
cosαR +

√
1− (sinαR + Vω)

2

(sinαR + Vω)
. (A.17)

The first branch solution for αR is calculated by finding the root of (A.17) for k = 0 within the interval
defined by the first branch of the arcsine function. Analogously the second branch solution is evaluated by
finding the root of the same equation for k = 1. It can be shown that there is a maximum value of Vω above
which the value of αR predicted by the solution of (A.17) at any branch is not real-valued.

We can write Vω as function of αR and φR from (A.17) as follows:

Vω =
cosαR − (φR − αR) sinαR + | cosφR|

φR − αR
. (A.18)

The plot of Vω as function of αR for different values of φR is depicted in Fig. A.3 together with the domain
of definition of the solution analyzed before. The maximum value of Vω for which the solution is real-valued is
found numerically around Vω ≈ 1.26. Therefore, we should add another limitation to the value of Vω in order
to guarantee the existence of the returning limit, more restrictive than the first one defined in the beginning of
the appendix:

The electron never impacts against the initial plate when v0meωd
eVRF

' 1.26.
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Figure A.2: Domain of validity for the returning limit condition.
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Figure A.3: Search of the maximum value of Vω for which (A.17) presents a real-valued solution.





APPENDIX B

Input power of a monopole antenna

The relation between the current amplitude of a current generator feeding an infinitely thin monopole antenna
placed on a grounded perfect electric conductor is found by calculating the impedance of the antenna. The
current distribution of the monopole antenna above a grounded metal is the same as the one of a dipole antenna,
which reads [Balanis 1997b]

I(x′ = 0, y′ = 0, z′) =





I0 sin

[
k

(
l

2
− z′

)]
ẑ, (0 ≤ z′ ≤ l/2)

I0 sin

[
k

(
l

2
+ z′

)]
ẑ, (−l/2 ≤ z′ ≤ 0),

(B.1a)

(B.1b)

where the geometry of the problem can be seen in Fig. 6.28a.
The input power of the antenna fed by the current generator is

Pin =
1

2
Re [Z] |I0|2, (B.2)

where Z is the impedance of the antenna seen from the generator. Thus, we must find the real part of the
impedance of the infinitely thin monopole antenna, which is not analytical, and depends on the frequency and
the height of the rod. The real part of the impedance of the antenna seen from the generator can be expressed
as [Balanis 1997a]

Rin =
Rr(kl)

sin2
(
kl/2

) , (B.3)

where Rr is a function of the wavenumber times the length of the equivalent dipole (twice the height of the
monopole). This function is expressed as

Rr(kl) =
η

2π

{
C+ ln(kl)− Ci(kl) +

1

2
sin(kl)

[
Si(2kl) − 2Si(kl)

]

+
1

2
cos(kl)

[
C+ ln

(
kl/2

)
+ Ci(2kl) − 2Ci(kl)

]}
(B.4)

where C ≈ 0.5772 is the Euler-Mascheroni constant. The functions Ci(x) and Si(x) are the cosine and sine
integral functions, respectively, defined as follows:

Ci(x) =

∫ x

∞

cos y

y
dy

Si(x) =

∫ x

0

sin y

y
dy.
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Table B.1: Reference values of the cosine and sine integral functions.

x Ci(x) Si(x)

3.0 0.11963 1.84865
3.1 0.08699 1.85166
6.0 -0.06806 1.42469
6.1 -0.05198 1.42087

Table B.2: Interpolated values of the cosine and sine integral functions.

x Ci(x) Si(x)

3.016 0.1144 1.849
6.032 -0.0629 1.4235

Taking into account that kl = 2πfl/c, and in the case that we are studying, f = 240 MHz, l = 0.48λ

and λ ≈ 1.25 m, the value of the limits of integration are x1 ≡ kl ≈ 3.016 and x2 ≡ 2kl ≈ 6.032. The
evaluation of the cosine and sine integral functions for the requested values of x has been done by interpolating
linearly between the closest points extracted from [Balanis 1997c] and shown in Table B.1. The resulting values
of the functions found by interpolation are shown in Table B.2.

Therefore, substituting the values of all the parameters requested in Eqs. B.3 and B.4 for the considered
monopole antenna, the input power can be expressed as

Pin ≈ 32.47|I0|2. (B.6)



APPENDIX C

Equations of motion of multipactor with

space charge effects

In this appendix the equation of motion of the electron cloud, modeled like an infinitely thin sheet of charge,
is going to be found within a parallel-plate waveguide driven by the microwave field of the fundamental mode,
TEM-mode. By using the electric field within the space between the plates, Etotal, given by (5.3), the Lorentz
force applied on a single electron of the sheet, neglecting the magnetic field, FT = −eEtotal, can be calculated
as follows:

FT =

{
−eVRF

d
cosωt+

e2σ
(
z′(t)/d− 1/2

)

ǫ0

}
ẑ. (C.1)

Therefore, the acceleration that the electron is subject to can be expressed as

d2z′(t)

dt2
=

−eVRF

med
cosωt+

e2σ
(
z′(t)/d− 1/2

)

meǫ0
, (C.2)

which can be rewritten as follows:

d2z′(t)

dt2
= a cosωt+ bz′(t) + c, (C.3)

where the following quantities have been defined





a =
−eVRF

med

b =
e2σ

meǫ0d

c =
−e2σ

2meǫ0
.

(C.4a)

(C.4b)

(C.4c)

In order to find the general solution of the differential equation we split the solution into the homogeneous
and the particular parts: 




d2z′h(t)

dt2
− bz′h(t) = 0

d2z′p(t)

dt2
− bz′p(t) = a cosωt+ c

(C.5a)

(C.5b)

such that the position of the electron is given by z′(t) = z′h(t) + z′p(t).
In order to find the homogeneous solution, the Ansatz z′h(t) = Aeλt +Be−λt is proposed and inserted into

(C.5a), resulting in
λ2 − b = 0 → λ = ±

√
b. (C.6)
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Therefore, the homogeneous solution is given by

z′h(t) = Ae
√
bt +Be−

√
bt. (C.7)

Analogously, the particular solution is found by proposing the Ansatz z′p(t) = C cosωt+D. Inserting the
proposed solution into (C.5b) we obtain

−Cω2 cosωt− b (C cosωt+D) = a cosωt+ c. (C.8)

In order to find the coefficients of the particular solution we can set the same number of equations as linearly
independent functions exist in the equation above. This leads to a system of equations whose solution reads





C = − a

b+ ω2

D = −c

b
.

(C.9a)

(C.9b)

Therefore, the particular solution can be expressed as

z′p(t) = −
(

a

b+ ω2
cosωt+

c

b

)
. (C.10)

Bringing together (C.7) and (C.10) we obtain the position of a single electron belonging to the sheet of
charge moving within the space between the plates as follows:

z′(t) =
(
Ae

√
bt +Be−

√
bt
)
−
(
a cosωt

b+ ω2
+

c

b

)
. (C.11)

In order to find the coefficients A and B the initial conditions must be applied, thus we need to calculate
the velocity of the electron, ż′(t), which can be written

ż′(t) =
√
b
(
Ae

√
bt −Be−

√
bt
)
+

a sinωt

b+ ω2
. (C.12)

Let us assume that the electron leaves the plate placed at z′0 with velocity v0 at the instant t1. Thus, the
coefficients will be found from the following system of equations:





(
Ae

√
bt1 +Be−

√
bt1
)
−
(
a cosωt1
b+ ω2

+
c

b

)
= z′0

√
b
(
Ae

√
bt1 −Be−

√
bt1
)
+

a sinωt1
b+ ω2

= v0.

(C.13a)

(C.13b)

If we multiply (C.13a) by
√
b and we add it to (C.13b) we obtain the coefficient A:

A =

{
z′0 +

v0√
b
+

(
a cosωt1
b+ ω2

+
c

b

)
− a sinωt1√

b
(
b+ ω2

)
}

e−
√
bt1

2
. (C.14)

If we multiply (C.13a) by
√
b and we subtract (C.13b) the coefficient B is found:

B =

{
z′0 −

v0√
b
+

(
a cosωt1
b+ ω2

+
c

b

)
+

a sinωt1√
b
(
b+ ω2

)
}

e
√
bt1

2
. (C.15)
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If we substitute the coefficients A and B of (C.14) and (C.15), respectively, into (C.11) we obtain:

z′(t) =

(
z′0 +

a cosωt1
b+ ω2

+
c

b

)
cosh

[√
b(t− t1)

]
+

+

(
v0 −

a sinωt1
b+ ω2

) sinh
[√

b(t− t1)
]

√
b

−
(
a cosωt

b+ ω2
+

c

b

)
. (C.16)

Analogously, we can rewrite (C.12) as:

ż′(t) =

(
v0 −

a sinωt1
b+ ω2

)
cosh

[√
b(t− t1)

]
+

+
√
b

(
z′0 +

a cosωt1
b+ ω2

+
c

b

)
sinh

[√
b(t− t1)

]
+

a sinωt

b+ ω2
. (C.17)

By inserting the coefficients provided by (C.4) into (C.16) and (C.17), it is easy to arrive to the equations
of motion expressed by (5.4) and (5.5).
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