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To Schrodinger’s cat

Il n’est pas de destin qui ne se surmonte par le mépris.
— Albert Camus, Le mythe de Sisyphe



But it ain’t about how hard ya hit.
It’s about how hard you can get it and keep moving forward.
— Rocky Balboa
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Abstract

This thesis introduces original formalisms to achieve an accurate description of dispersion
interactions within the framework of density functional theory. The presented research focuses
on two specific objectives related to density functional approximations: (1) the development
and implementation of dispersion corrections that dramatically reduce the failures for both
inter- and intramolecular interaction energies and (2) the identification of the key factors at
the origin of the errors in thermochemistry.

Kohn-Sham density functional theory has become the preferred methodology for modeling
the energy and structural properties of large molecules, yet common semilocal and hybrid
approximations are affected by well-known deficiencies as illustrated by both the delocaliza-
tion error and their inability to accurately describe omnipresent long-range (van der Waals)
interactions.

After proposing an improved variant of “classical” atom pairwise dispersion correction, we
formulate an efficient dispersion correction that is dependent upon the electron density.
In contrast to the schemes that are typically applied, these dispersion coefficients reflect
the charge-distribution within a molecule. Additionally, the use of density overlaps allows
for distinguishing of non-bonded regions from bonded atom pairs, which eliminates the
correction at covalent distances. A clear advantage of the proposed dDsC scheme is its
ability to improve the performance of a variety of standard density functionals for both
hydrocarbon reaction energies and typical weak interaction energies simultaneously. The
density dependence also offers advantages for highly polarized and charged systems.
Interaction energies of ground-state charge-transfer complexes and n#-dimer radical cations
are illustrative examples for which the delocalization error partially counterbalances the
missing dispersion. We demonstrate, however, that, in practical situations, dispersion en-
ergy corrections are mandatory. Following van der Waals interactions, (long-range) “exact”
exchange has been identified as the second most important ingredient for obtaining robust
results. The versatile methodology devised herein reveals the “true” performance of stan-
dard approximations and promises many fruitful applications from metal-organic catalysis to
organic-electronics.

Keywords: density functional theory, van der Waals interactions, London dispersion, disper-
sion correction, hydrocarbon, charge-transfer complex, charge-carrier






Résumé

Cette these introduit des formulations originales pour obtenir une description précise des
interactions de dispersion dans le cadre de la théorie de la fonctionelle de la densité basée
sur le formalisme Kohn-Sham (KS-DFT). La recherche présentée ici se concentre sur deux
objectifs spécifiques : 1) le développement et I'implémentation de corrections qui réduisent
considérablement les erreurs des fonctionelles de la densité pour les interactions de disper-
sion inter- et intramoléculaires; 2) 'identification des principales origines des erreurs des
fonctionelles standard.

La DFT s’est imposée comme la méthode de choix pour la modélisation de I’énergie et des
propriétés structurelles de molécules de grande taille. Néanmoins, les approximations semi-
locales et hybrides entrainent des défaillances bien connues, par exemple I'erreur de délocali-
sation et leur incapacité 4 décrire fidelement les interactions omniprésentes de longue portée
(van der Waals).

Ayant proposé une version améliorée d'une correction interatomique « classique » pour la
dispersion, nous formulons ensuite une correction efficace qui dépend de la densité. A la
différence de 'approche typiquement utilisée, nos coefficients de dispersion refletent la dis-
tribution de la charge électronique. De plus, le recouvrement des densités atomique permet
de distinguer les contactes non-liants des liaisons chimiques, éliminant ainsi la correction
dans les distances covalentes. L'avantage incontestable de I’approche proposée, dDsC, réside
dans sa capacité d’améliorer conjointement les énergies de réaction d’hydrocarbures et les
interactions faibles pour une grande sélection de fonctionelles standard. De plus, les systémes
chargés ou fortement polarisés bénéficient grandement de la dépendance de la densité.

Des complexes de transfert de charge et des cations radicalaires de dimeres 7 sont étudiés en
tant qu’exemples illustratifs de la compensation partielle entre le manque de dispersion et
l‘erreur de délocalisation. Nous démontrons qu’en pratique les corrections de dispersion sont
indispensables. Une fois les interactions de van der Waals prises en compte, I'échange « exact »
(4longue portée) est 'ingrédient le plus important pour obtenir des résultats robustes.

La méthodologie polyvalente présenté ici révéle la « vraie » performance des fonctionelles
standard et laisse entrevoir des applications dans des domaines aussi divers que la catalyse
organométallique et I'électronique organique.

Mots-clés : théorie de fonctionelle de la densité, interactions de van der Waals, dispersion de
London, correction de dispersion, hydrocarbure, complexe de transfert de charge, porteur de
charge.

ix






Contents

Acknowledgements A
Abstract vii
Résumé ix
Table of Contents xi
1 Introduction 1
2 Theoretical Background 5
2.1 DispersionInteractions . . .. .. ... ... ... 5
2.2 Density Functional Theory . ... .. .. ... .. .. .. .. .. ... .. .... 8
2.2.1 Principles . . .. .. .. e 9
222 Failures . . . . . . . . e e e 13

3 Unified Inter- and Intramolecular Dispersion Correction Formula for Generalized
Gradient Approximation Density Functional Theory 21
3.1 Introduction . . . . .. ... ... 21
3.2 ComputationalMethods . . . . .. ... ... .. .. . .. . . e 23
3.3 ResultsandDiscussion . . . . ... .. .. ... ... 28
3.4 Conclusions . . . . . . . i e e e e 33
4 A System-Dependent Density-Based Dispersion Correction 35
4.1 Introduction . . . . . . . . . e e e e 35
4.2 Theory . . . . . . e 36
4.2.1 Dispersion Coefficients . . ... ... ... ... ... ... ......... 37
4.2.2 Atomic PartitioningWeights . . ... ... .. ... ... ... ....... 38
423 TheDamping . ... .. ... . . 39
4.3 Determination of the Adjustable Parameters . . . . . ... ... ... ....... 41
4.4 TestSets . . . . . e 42
4.5 ComputationalMethods . . . . . .. .. ... . ... . .. . . e 43
4.6 ResultsandDiscussion . . . ... ... ... ... .. ... . . 43
4.6.1 Classical Hirshfeld Partitioning and Cg-Only Dispersion Corrections . . 45
4.6.2 Interaction EnergyProfiles . .. ... .. ... . ... ... ... .. 47
4.7 Conclusions . . . . . . . e e e 49



Contents

Xii

Overcoming Systematic DFT Errors for Hydrocarbon Reaction Energies 51
5.1 Introduction . . . . . . . . . . . i e e e e e e 51
5.2 ComputationalMethods . . . . . ... ... ... ... . . ... . .. . 53
52.1 TestSets . . . . . . o e e e e e 53
522 Functionals . .. ... ... .. .. ... e 54
5.3 Resultsand Discussions . . . . ... . ... ... ... 56
5.3.1 General Performance. . . . ... ... ... ... .. ... ... . ... 56
5.3.2 Detailed Analysis of the Functional Performance ... ........... 59
5.4 Conclusions . . . . .. . . . .. e e e e 64

A Generalized Gradient Approximation Exchange Hole Model

for Dispersion Coefficients 65
6.1 Introduction . . . ... ... .. .. ... 65
6.2 TheExchangeHoleModel . . . . ... ... ... .. ... ... ... ... ..... 66
6.3 Atomic Partitioning . . . . . . .. ... L e 67
6.4 Results . . ... .. . .. e 68
6.5 Conclusion . ... ... ... .. ... 70
Comprehensive Benchmarking of a Density-Dependent Dispersion Correction 71
7.1 Introduction . . . ... ... .. e 71
7.2 Theory . . . . . . e 72
7.3 Determination of the Adjustable Parameters . . . . .. ... .. ... ....... 75
74 TestSets . . .. . .. 76
7.5 Computational Methods . . . . .. ... .. ... .. .. .. ... ... 76
7.6 ResultsandDiscussion . . . .. ... .. .. ... .. e, 78
7.7 Conclusions . . . . . ... e 84

Why are the Interaction Energies of Charge-Transfer Complexes

Challenging for DFT? 87
8.1 Introduction . . . . . . . . . . . . i e e e 87
8.2 Theoretical Background, Methods, and Computational Details . . . ... .. .. 90
8.2.1 BenchmarkValues . ........... ... ... . . .. . . ... ... 94
8.3 ResultsandDiscussion . . . . .. ... . ... ... . ... e 94
8.3.1 GeneralTrends . ... ... ... . . . . ... 94
8.3.2 Relationship between the Nature of Binding Energies and DFT Performance 97
8.3.3 The Energy Decomposition . . . ... ... .... ... ........... 99
8.3.4 The Particular Case of M06-2X . . . . . . . .. . ... ..., 101
8.3.5 A Prototype Organic Charge-Transfer Complex . .............. 102
8.4 Conclusions . . . .. . . .. .. .. e 104

Exploring the Limits of DFT for Interaction Energies of Molecular

Precursors to Organic Electronics 107
9.1 Introduction . . . . ... .. . . . e 107
9.2 Methods and Computational Details . . ... .. ... ... ............ 108
9.2.1 Constructionofthetestset . ... ... ... ... ... ........... 108
9.2.2 Benchmark Computations . .......................... 109
9.2.3 Symmetry Adapted PerturbationTheory . .. ... ... ... ....... 110



Contents

9.2.4 Density FunctionalsTested . . ... ..............
9.3 Resultsand Discussion . ... ... .. ... ... ... ...,
9.3.1 TheTestSets. . . . . . ..o i i i i it

9.3.2 Performance of Standard Wave Function Methods
9.3.3 Performance of Density Functional Approximations

9.3.4 Interaction EnergyProfiles .. .................
9.3.5 BasisSetDependence . .....................
9.4 Conclusions . . ... ... ... .. e

10 General Conclusions and Outlook
Bibliography
Glossary

Curriculum Vitae

127

131

153

157

Xiii






|§ Introduction

Computational chemistry provides a great deal of information about the properties of mol-
ecules and the mechanism that describe chemical reactions. Moreover, computations also
represent a practical tool both for identifying and validating design principles, leading to
improved drugs, more efficient catalysts and fine-tuned self-assembled nanostructures for
organic electronics.'™® A myriad of chemical phenomena involve non-covalent interactions,
which govern a variety of molecular architectures. Typical examples of systems dominated
by dispersion interactions include lipid-bilayers, -7 stacking of DNA base pairs’ and the
arrangement of non-polar amino acid side chains.? Similarly, supramolecular chemistry criti-
cally depends on these ubiquitous attractive forces,® which are also responsible for condensed
phases of non-polar organic molecules (e.g., liquid and crystalline benzene).

Density functional theory ! is in principle exact, however, in practical applications only ap-
proximations to the exact, unknown, density functional are available. From the computational
perspective, Kohn-Sham density functional theory!! is a powerful framework for many aspects
of electronic structure theory. Note that throughout this thesis we will use the acronym DFT
for both, the exact theory and the methodology, where approximations are inevitable. Due
to its excellent ratio of performance to computational cost, DFT has become the preferred
methodology for modeling the energy and structural properties of large molecules containing
more than a handful of atoms.*® Alternatively, the more realistic description of chemical
reactions in solution is generally achieved by combining a simplified treatment of the solvent
with a DFT based time evolution of the reactants.>!?

Unfortunately, approximations to DFT have some serious drawbacks: standard density func-

13-23 and overly stabilize electron delocal-

tionals' neglect long-range dispersion interactions
ized structures (i.e., delocalization error).?43° These two shortcomings are best illustrated
by the typical underbinding of supramolecular assemblies (neglect of dispersion)3! and the
overbinding of charge-transfer complexes (overstabilization of electron delocalization). 3233
To make matters more complicated, these two deficiencies are rooted in unrelated approxima-

tions and have opposite signs. Given the ubiquitous nature of weak interactions in chemistry,

l4standard” refers to the most widely used semilocal (hybrid) density functional approximations developed
without special consideration of weak interactions.



Chapter 1. Introduction

developing an accurate, yet efficient, a posteriori corrective energy term' yields the main
results of this thesis. The development is complemented by analyzing and understanding the
interplay between the delocalization error and (missing) dispersion interactions in relevant
chemical systems, with the broad goal of devising and identifying efficient methods that are
sufficiently robust to overcome both inadequacies.

The physical origin and description of dispersion interactions is discussed in Chapter 2,
followed by an introduction to density functional theory and the general principles of standard
approximations. Two major shortcomings3* of these approaches are relevant to this thesis
and therefore explained in detail: the delocalization (or self-interaction) error?*?° and the
neglect of dispersion. 323 The delocalization error leads to spurious fractional charges in
dissociating charged complexes 2% and affects geometries and energetics of hydrocarbons. 336
The most promising approach to overcome this failure, i.e., exploiting long-range “exact”
exchange, is presented.?® The primary focus of this work concerns the inability of standard
approximations to accurately describe dispersion interactions. The attractive concept of atom
pairwise dispersion corrections (Cg/ RS, damped at short internuclear distances, R)3739 i
introduced and alternative approaches are briefly reviewed.

The field of dispersion corrections to density functionals has evolved considerably in recent
years. Since the beginning of this Ph. D. thesis (end of 2008), a plethora of new schemes have
been published. *°-6! To facilitate the presentation of the work accomplished during this thesis,
one adopts a chronological order.

Reactions involving seemingly simple hydrocarbons were among the first unexpected, seri-
ous failures of standard density functional approximations.%2~"! As a result, the last decade
experienced a revived interest in developing fundamentally improved density functionals.
Corminboeuf and coworkers were the first to realize that a dispersion correction has the po-
tential to remove systematic errors associated with alkane thermochemistry. ’> However, their
dispersion correction is specifically tailored to alkanes and tends to overbind intermolecular
complexes such as the benzene dimer. By building more physics into the model, Chapter
3 presents a dispersion correction, dD10, which overcomes the lack of robustness and per-
forms well for both hydrocarbons and intermolecular complexes. dD10 falls in the category of
“classical” dispersion corrections, in the sense that the parameters are fixed for each element
and do not depend on the chemical environment. However, dD10 goes beyond the standard
approximation by improving the description of medium-range nonbonded interactions (e.g.,
1,3 C---C or 1,5 H---H) through higher-order terms (i.e., beyond Cs/R®) and relying on the
Tang and Toennies damping function “® which has a strong physical background. This chapter
is published in the Journal of Chemical Theory and Computation.”

Building on the success of dD10, Chapter 4 introduces a more general dispersion correction,
which depends on the density of the molecule, while preserving the appealing simplicity

liA]) the developed dispersion corrections are applied post-SCE i.e., they do not influence the electron density,
but only the energies. See page 2.2.2 for more details.



of a sum over atom pairs, in contrast to more complex fully nonlocal functionals. The den-
sity dependence is incorporated in the dispersion coefficients (Cg, Cg and C;) through the
nonempirical exchange hole dipole moment (XDM) formalism of Becke and Johnson. ">-80
In addition, the Tang and Toennies damping function”® is adapted to account for ionic and
covalent bonding regimes. The resulting scheme, called dDXDM, is tested on a broad set of
systems for which dispersion interactions are prevalent. The results presented in this chapter
are also published in Journal of Chemical Theory and Computation.®!

With the previously developed accurate dispersion correction at hand, Chapter 5 aims at
understanding deficiencies in standard density functionals for hydrocarbon chemistry. The
analysis is based on bond separation energies®?~%* for alkanes, which are seriously under-
estimated by standard density functionals and therefore highly challenging.5%7%7? These
failures are correlated with errors in the repulsive regime, i.e., with the performance for the
compressed methane dimer. 3¢ Additional information is gathered from typical systems for
intramolecular dispersion in hydrocarbon chemistry, best exemplified by paracyclophanes
or the photo-dimer of anthracene.?® The origin of the error can be traced to a combination
of over-repulsiveness and missing dispersion, in both the medium and long-range. Many
modern methods improve over standard functionals, but are not as successful as the density-
dependent dispersion correction dDXDM, designed to handle hydrocarbon chemistry. The
analysis presented in this chapter is published in the Theoretical Chemistry Accounts.®®

The highly encouraging performance of dDXDM, motivated the elaboration of a simplified
variant of Becke and Johnson’s exchange hole dipole moment (XDM): the XDM formalism is
nonempirical, but associated with an intricate dependence on the electron density and its
derivatives. 58 As a result, the method has not been widely implemented, and is available
only in Becke’s in-house code as well as in one commercial program.3” Chapter 6 demon-
strates that accurate dispersion coefficients (Cg) are obtained with only two semi-empirical
parameters. The scheme is simple to implement, relying only on the electron density and its

first derivative. This development is presented in The Journal of Chemical Physics.5®

Chapter 7 presents the final version of the dispersion correction developed in this thesis:
aiming at improved general thermochemistry with standard density functionals, the simplified
dispersion coefficients are incorporated in a well balanced density-dependent dispersion
correction called dDsC. Due to the carefully designed damping function, the leading Cg term
provides essentially the same accuracy as obtained when higher-order terms are included.
The scheme is validated by extensive benchmarking on diverse reaction energies, including
not only hydrocarbons and weak intermolecular complexes, but also alkali metal and water
clusters. Geometry optimizations of tricky molecules, such as C,Brg or [2.2]paracyclophane
confirm that dDsC is broadly applicable to “real” chemical situations. The results presented
in this chapter are published in the Journal of Chemical Theory and Computation® and the
dDsC correction is available in widely used quantum chemistry codes.

The interplay between two fundamental failures (missing dispersion and delocalization error)
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of standard DFT approximations is investigated in Chapter 8 using illustrative charge-transfer
complexes. Based on high-level ab initio data, energy decomposition analysis and the effect
of dDsC, it is demonstrated that the failure to describe accurately the binding energy in the
ground state is not only due to the missing long-range exchange as generally assumed, but also
to the neglect of weak interactions. The realization that the charge-transfer interaction itself
accounts only for a minor fraction of the binding energy is key to understanding the impor-
tance of applying a dispersion correction to standard DFT, even for charge-transfer complexes.
The role of the actual charge-transfer is to enable the monomers to approach each other more
closely, rather than to provide binding, which is dominated by dispersion interactions. These

findings are also published in the Journal of Chemical Theory and Computation.®°

Introducing a benchmark database of 7-dimer radical cations (e.g., (thiophene), *), Chapter 9
explores the limit of applicability of dispersion corrected standard functionals: in comparison
to charge-transfer complexes, the delocalization error is more pronounced, while dispersion
still plays a significant role. Hence, the description of the interaction energy is tricky even
around the equilibrium distance. The analysis further reveals that achieving the correct
dissociation behavior requires a drastically reduced delocalization error and an accurate
modeling of dispersion interactions. This chapter will be published in the Journal of Chemical
Theory and Computation.

Finally, Chapter 10 concludes this thesis putting emphasis on the crucial role that dispersion
energy corrections play to broaden the applicability of standard methods and understand
their failures. Perspectives on the few remaining limitations of current dispersion corrections
are also presented.



4 Theoretical Background

This chapter introduces the theoretical background most relevant to this thesis. The first
section gives a historical overview for the origin of dispersion and summarizes the physical
description of the phenomenon. All the development and analysis presented in the following

10,11 which is introduced in the

chapters are based on Kohn-Sham density functional theory,
second section. Note that post-Hartree-Fock (e.g., Moller-Plesset perturbation®! and coupled-
cluster theory%?) supermolecular approaches and symmetry adapted perturbation theory®3
(SAPT) computations that serve as benchmark data throughout this work are not discussed.
Density functional approximations suffer from two major drawbacks, i.e., the delocalization
(or self-interaction) error and the neglect of dispersion interactions, which are particularly
relevant to the present context. The origin of the two errors is explained extensively and

perspectives on how to reduce the consequent failures are also presented.

2.1 Dispersion Interactions

Understanding the origin of dispersion interactions relies upon two important related physical
phenomena that were reported in the earlier scientific literature: optical dispersion and van
der Waals’ equation of state.

In the second half of the 17" century, Newton demonstrated that white light passing through
a glass prism gets split into the spectral colors. The underlying frequency dependent prop-
agation of electromagnetic radiation is known as (optical) dispersion. This phenomenon is
successfully explained by a collection of Drude oscillators, i.e., electrons behave as (coupled)
harmonic oscillators. Non-equilibrium positions correspond to induced dipole moments
arising from the interaction with an electric field. The dispersion theory was established
before the advent of quantum mechanics, but adjustments to account for the quantum nature
of electrons were minor. %

The second piece of classical physics pertinent to dispersion is van der Waals’ equation for



Chapter 2. Theoretical Background

non-ideal gases %

aygwN?\(V
(p+—v‘\/Nz )(ﬁ_ de)szT @.1)

where p is the pressure, N the number of particles in volume V, kg Boltzmann’s constant
and T the absolute temperature. ayqw and byqw are the (empirical) parameters, characteriz-
ing attractive and repulsive forces between the particles, respectively. According to classical
physics, rare-gas atoms should not attract each other, as they do not possess any electrostatic
multipole moments and do not benefit from gravitation, which is completely negligible at the
atomic level. Nevertheless, the rationalization of the properties of rare gases requires a weak
attractive force (ayqw > 0).

The physical origin of the weak attractive term in van der Waals’ equation remained a mystery
until the early days of quantum mechanics: London realized that applying perturbation theory
to the interaction between any two atoms gives rise to weak interactions at second order. %
The mathematical description is reminiscent of what could be expected from an interaction
with a “virtual radiation”, i.e., from the interacting (Drude) oscillators of the classical disper-
sion theory. Soon afterwards, 97 London introduced the term “dispersion interactions” and
demonstrated that they are responsible for the major contribution to the attractive van der
Waals force.!

Exploiting classical dispersion theory, the phenomenon is easily rationalized as the interaction
between oscillators with frequencies corresponding to optically allowed electronic excita-
tions. % In this terminology, dispersion arises from a spontaneous dipole moment (emanating
from zero-point motions of electrons, i.e., non-equilibrium positions of the oscillators) on
one monomer, inducing a dipole moment on the second monomer. For two non-overlapping
atoms or molecules A and B in their ground state, the second order dispersion interaction is

given by
2 2
21
isp " 3 R6 ,~ AE,, +AEp,

where 1,4 and np are the (virtual, allowed) excited states of molecule A and B, respectively,
AE;, and AE,, are the corresponding excitation energies and y,, and u,, the associated
transition dipole moments. The three significant characteristics of equation 2.2 are:
¢ Dispersion interactions between molecules in the excited states are potentially repulsive,
as some terms in the denominator become negative.
* Species featuring low-lying excited states (i.e., colored or charge-transfer complexes)
benefit from strong dispersion interactions due to their smaller contribution in the
denominator.

» 98

* Valid for dimers, the “peculiarity of additivity” °® is obtained when eq 2 is generalized

99,100

to oligomers in a pairwise manner. Corrections for trimers are obtained at 3™

iSome authors like to distinguish London dispersion from van der Waals interaction, considering that vdW
includes all non-covalent interactions, not only London dispersion. Herein, we will use (London) dispersion and
van der Waals interactions interchangeably.
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order perturbation theory and many-body terms have to be considered in general.
Drude oscillators or the somewhat more general coupled plasmon model, 1°1-1% conve-

niently approximate the many-body terms, which become especially important for very

anisotropic systems, such as two molecular chains. 106

Charge density response functions y(r,r’;iw), are the main ingredient of the generalized

Casimir Polder formula, 107108

o0 1 1
Eézi;p:fo dw[fffdrdr'dsds'x,q(r,r’;iw) xB(s,8;iw) (2.3)

¥/ —s| |8’ — ]

which describe dispersion as well as equation 2.2

where r and 1’ refer to subsystem A, while s and s’ are the space variables in subsystem B. This
formulation is widely used to derive approximations. 199112

Equation 2.2 depicts the dipole-dipole interaction, whereas equation 2.3 illustrates more
clearly the coupled charge fluctuations. Furthermore, according to the original work of
Casimir and Polder, 113

speed of light, is more transparent in eq 2.3 than in eq 2.2. Retardation effects, which are

the inclusion of “retardation” effects, i.e., corrections for the finite

only prevalent on the nanolength scale, modify the 1/R® asymptotic form into 1/R’. The
pairwise 1/R® asymptote implies some locality within a system, i.e., the electron fluctuations
are occurring on the length scale of an atom, which is a very good approximation in insulators.
However, when the band gap is close to zero such as in semi-conductors and metals, the
electron fluctuations (induced dipoles) are delocalized over lengths scales much larger than

105,114-116

an atom. Dobson and coworkers, emphasized that these delocalized fluctuations

lead to deviations from the standard 1/R® form.!'®!17 Graphitic systems and graphene are
typical examples of organic materials that do not follow the atom pairwise 1/R® form. 114
The dispersion energy beyond second order is best defined as a special case of the exact ex-
pression for the correlation energy given by the adiabatic connection fluctuation-dissipation
theorem formalism to DFT (see page 11 for some more details).

Note, that all post-HF methods (i.e., MP2 and higher) include automatically energy terms that
are of the form of equation 2.2 or 2.3 and therefore account for long-range dispersion. However,
the accuracy can vary significantly and has motivated correction schemes for Mp2, 112:118-121
The static picture, i.e., without invoking fluctuating dipoles/charge densities (see Figure 2.1),
provides an alternative view on the origin of the attractive force arising from dispersion interac-
tions: the correlated motion induces a small deformation of the monomer electron density and
an accumulation of excess density between the nuclei. The attractive force is then explained
in terms of the (classical) electrostatic interaction between the nucleus with its distorted
electron density. 1?2 The main advantage of the static depiction is that the effect of dispersion
interactions can be visualized in real-space, which is somewhat more intuitive. The evaluation
of the weak dispersion forces according to the Hellmann-Feynman theorem, i.e., based on
the electrostatic interaction, requires an exceptional degree of (numerical) accuracy when

computing electron densities, >>123

which might rationalize the general observation that in
the DFT context, self-consistent treatment of dispersion is not needed for accurate interaction

energies (vide infra). Nevertheless, the visualization of the electron density rearrangement can
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a) Non-Interacting — Spherical Symmetry

Rap=%

A B

b) Dynamically Interacting — Instantaneous Dipole-Dipole Interactions

c) Interacting — Deformation of (Static) Electron Density

DE

Figure 2.1: Schematic view on how two atoms without any electrical monopoles interact through dispersion: a) At infinite
separation, there is no interaction and the spherical symmetry is preserved. b) When the electrons interact, they
are correlated and the instantaneous dipole moment in system A induces a dipole moment in system B. c) In the
time independent picture, the correlated motion of electrons leads to a slightly polarized electron density.

fast

5* “Fuctuations
fluctuations

serve as a validation of existing approximate schemes or as a source of inspiration for devising
new approximations.

In summary, there exists a weak attractive interaction (i.e., dispersion) between any two
(ground state) atoms or molecules. Accounting for London dispersion requires the description
of the correlated motion of two electrons that is inherently challenging. However, the effort is
worthwhile: understanding and modeling van der Waals interactions is of utmost importance
for describing various phenomena, including 7-7 stacking and condensed phases of neutral
organic molecules. Not to mention that dispersion allows geckos to crawl up walls, >4 French
fries to be crispy!?® and crime scenes 26127 to be resolved through fingerprints!

2.2 Density Functional Theory

Electronic structure theory aims at approximating the solution to Schrédinger’s equation for
atoms, molecules and solids as accurately as possible, given the system size and computational
resources.

In the time-independent Schrodinger equation, the wave function ¥ is an eigenfunction of
the Hamiltonian H, with E being the associated eigenvalue, identified as the energy.

HY = EY (2.4)

Throughout this thesis, the Born-Oppenheimer approximation is applied, i.e., Schrédinger’s
equation is solved for electrons in the (fixed) field of point-charges representing the nuclei,
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which corresponds to the following Hamiltonian

2
=

N N
! Za +ZZ 1

(2.5)
111 — 14 i=1j>i |1'i—1'j|

. 1Y
H=--Y Vi-
23 1A

where N is the number of electrons, V? is the Laplacian and index A runs over all atoms Ny
with the nuclear charge Z,.

Restricting the maximal complexity of the wave functions to a level that is computationally
manageable leads to the traditional approximate solutions of Schrodinger’s equation such
as Hartree-Fock or multi-configurational self-consistent field (MCSCF). In contrast, density
functional approximations avoid the explicit construction of a wave function and rather
modify the Hamiltonian, making an exact solution computationally tractable. In addition to
the modest computational cost, approximate DFT has two key advantages: (i) The ease of
application to solids and condensed phase in general, i.e., DFT is not only used for atoms and
molecules but also readily applied to surface chemistry and solid state physics. (ii) Excited
states are as readily obtained as ground states. As neither of these features is exploited in this
thesis, they will not be discussed further.

2.2.1 Principles

The main idea of density functional theory is that the complexity of the wave function ¥ (x),
depending on 4N variables (each of the N electrons has 3 spatial and 1 spin coordinate), is
higher than needed for fully describing the system. The appealing ansatz of DFT is to develop
a theory that does not require explicitly the complicated wave function but only the much
simpler electron density

p(r):f---/I‘I’(xl,XZ,...xN)Izdsldxz...de (2.6)

which depends only on 3 variables (x, y and z in real space). If equations depending on
p(r) could describe the system equally well as the wave function, one would achieve an
enormous computational speedup. The early days of quantum mechanics already witnessed

the development of density functionals based on the homogeneous electron gas. Thomas '

and Fermi!%?

explored a functional for the kinetic energy in 1927, whereas Dirac’s exchange
functional 13° from 1930 is still in use, although often referred to as Slater’s functional. 3!
Unfortunately, the Thomas-Fermi-Dirac functional is of no value for chemistry: 132 molecules
are not bound!

Modern DFT is based on the Hohenberg-Kohn theorems, '° which (i) assure that the electron
density determines the ground state of a system completely and (ii) that a variational principle
holds: the energy of the ground state density is the global minimum. Hence, on a formal
level the wave function is not needed. As Levy remembers, '3 Bright Wilson trivialized the

134,135

Hohenberg-Kohn existence theorem: according to Kato’s cusp condition, the cusps of

an electron density determine the charge (identity) of the nuclei. Additionally, the number



Chapter 2. Theoretical Background

of electrons is obtained by simple integration. The two pieces together are enough to specify
the molecular Hamiltonian and thus all properties unambiguously, but without leading to
any practical consequences. A more constructive formulation is Levy’s constrained search, 36

bridging the gap between DFT and wave functions.

Ep=min [min(¥|T + Ve + Voo V) 2.7)
p—N \¥—p

where T is the kinetic energy operator, V,e the electron-nuclei and V,, electron-electron
interactions, respectively. Levy’s formalism opens the possibility to explore properties of the
exact functional and hence goes further than the existence theorems of Hohenberg and Kohn.
One year after the Hohenberg-Kohn theorems, Kohn and Sham introduced a more practical
formalism. !! In KS-DFT, the electronic energy is expressed in terms of a non-interacting model
system, representing the exact density by a single Slater determinant

Elp] = Ts[pl + Vielp]l + JIp] + Exc[p] (2.8)

The kinetic energy of a single Slater determinant, Ts[p], is known exactly as an implicit density
functional: the Slater determinant y built from the occupied orbitals ¢; (r) corresponds to the
exact density and minimizes the kinetic energy.

N
Tslp] = mm(_lz f ¢i(r)|v2|¢i(r)dr) (2.9)
v—p| 2%
where N is the number of electrons and V? is the Laplacian. According to the virial theorem, 37
the kinetic energy accounts for half of the potential energy. Therefore, a relatively small error
(e.g., 10%) in the kinetic energy has serious consequences. In fact, the inaccurate treatment
of the kinetic energy as an explicit functional of the electron density (e.g., the Thomas-Fermi
model) entails disastrous results for the energy of molecules and limits the practical usefulness
of Hohenberg-Kohn DFT. Conversely, Ts[p] is the main reason for the success of KS-DFT, since
only a small correction term to the kinetic energy needs to be approximated as an explicit
density functional.
Vielp] and J[p] are straightforward integrals accounting for the classical electrostatic electron-
nuclei attraction and the electron-electron repulsion, respectively

Za _1[ pmp ()

d = drdr’' 2.10
r o Jlpl=3 r_p] drdr (2.10)

Nag
Vne[ ]=- ()
P i A; lr—r4l

where index A runs over all atoms Ny with the nuclear charge Z,.

The only quantity not known explicitly is the exchange-correlation functional E,.[p] which in-
corporates all the intricate many-body physics of the real quantum mechanical (QM) problem
and can be formally re-expressed as

Exclpl = (Tlp] = Tslp)) + (Veelpl = J1p1) (2.11)

10
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where the first term is the correction for the kinetic energy difference between the single
determinant and the true kinetic energy T'[p]. The second term is the difference between the
QM interelectronic interaction V,, and its classical analogue J.

Hartree-Fock (HF) can be seen as a special case of a DFT functional: correlation is completely
neglected, but exchange is treated “exactly”, i.e., by the formula for a single Slater determinant

EFF = ——Z f f o ()00 <Pz(1‘2)¢> (r2)drirs (2.12)

However, correlation is very important for chemical and physical phenomena and needs to be
taken into account.
The adiabatic connection fluctuation-dissipation theorem approach to DFT provides exact

expressions for the correlation energy !38-140

:——f d)Lf —Imfdrdr

Where the integral over A is the coupling strength integration of the interelectronic interaction

(XA, 0) = xo(r, ¥, w)] (2.13)

frar r, from a non-interacting (1 = 0) to the fully interacting (1 = 1) system, while keeping
the ground-state density p fixed at its true (A = 1) value. yo and y, are the non-interacting
and A scaled interacting (frequency w dependent) density — density response functions to

perturbations to the external potential e~ /“?§ Vey (r) and satisfy
Sp(r, 1) =e 0! / XA, )6 Ve () dr’ (2.14)

Alternatively, y can be defined as

A, ) = yolr,r, w)+fdr1dr2)(0(r r,) | ——+ [0, w) | 1A, v, 0)  (2.15)

where the exchange-correlation kernel is given by

£¢pn o 8°Ex.lp]
fi (r,r,w)—m (2.16)

Equation 2.13 is the starting point not only for deriving van der Waals density functionals 4!

but also for the random phase approximation (RPA) in the DFT context, where f/{“ (r,r,w) =
is employed. 14 Restricting y to responses to dipole perturbations, an exact expression for the
dispersion energy is obtained that, in contrast to eq 2.2, includes all many-body effects. 3 Note
that charge — density response functions can also be exploited to define the exact electronic
energy of a system, without invoking any non-interacting reference system or a coupling
strength integration. 144

Since Ey. has to be approximated, the success of DFT is driven by the ongoing quest for

improved exchange-correlation functionals. In contrast to wave function based electronic

11
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structure theory, the complexity of the many-body nature of Coulomb interactions in DFT
is incorporated in the functional itself. In other words, once the universal functional (or a
good approximation for it) is known, the actual computations are done in a one-particle
formalism, which is considerably less demanding than the determination of the correlated
wave function. If this comparable simplicity of DFT has to be sacrificed for an accurate
description of challenging systems, the main advantage of the formalism is lost.

Chemical

Figure 2.2: Jacob’s ladder of density functional approximations toward chemical accuracy. First rung functionals depend on
the local density, second rung on the density and its gradient, third rung on the kinetic energy density 7, fourth
rung functionals depend non-locally on the occupied orbitals, while the fifth rung introduces dependence on the
unoccupied orbitals.

Common Density Functional Approximations

Density functional approximations E,. are usually formulated as a combination of an ex-
change functional E, and a correlation functional E.. This splitting into two components has
many formal advantages (especially since many properties of “exact” exchange are known
from Hartree-Fock), but is also associated with “artificial” difficulties '*° and, as a result, has
been partially abandoned lately. 46

The common ingredient for density functionals is the electron density p(r) itself, giving
the local (spin) density L(S)DA approximation. LSDA exchange is uniquely defined ana-
lytically, 30131 whereas several slightly different parameterizations are available for the corre-
lation functional, mostly relying on highly accurate Quantum Monte Carlo simulations, 47 but
also on low- and high-density asymptotic limits. !48 SVWN5149 and SPW921%° are the LSDA
functionals used routinely.

In the generalized gradient approximation (GGA), 1! the variations of the electron density are
accounted for by including a dependence on the density gradient Vp(r). There exists a large
diversity of GGA functionals in the literature given that the flexibility of GGAs is too limited to
simultaneously satisfy all constraints relevant for solids and molecules. }52153 BLyp 154155
PBE ! are the most widely applied GGA functionals in chemistry and physics.

and

12
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Meta-GGA functionals depend also on the kinetic energy density 7(r) = Zﬁv |V (1)]? which
contains similar information %7 as the Laplacian of the electron density V?p(r) that is hardly
incorporated. Popular examples of 7(r)-dependent functionals are TPSS'°® and M06-L;'%°
the most important example of a Laplacian dependent functional is the BR89 % exchange
functional.

GGA and meta-GGA functionals are called semilocal functionals, as they depend on local
information and the infinitesimal close vicinity. Beyond the semilocal approximations, hybrid

(or hyper-)GGA functionals, exemplified by the famous B3LYP functional, 161,16

include a frac-
tion of (nonlocal) Hartree-Fock exchange (eq 2.12). Similarly, double hybrid functionals (e.g.,
B2PLYP !63) include a fraction of many-body second order perturbation theory correlation

energy. 163,164

There is no systematic route for improving density functionals except through the costly
coupling of many-body wave function approaches with DFT in “ab initio DFT”.165-167 Nev-
ertheless, the continuous improvement when going from LDA to double hybrid functionals
corresponds to Perdew’s dream, '8 represented by the Jacob’s ladder climbing from the world
of LDA to the heaven of chemical accuracy (Figure 2.2).

2.2.2 Failures

Approximations currently available suffer from three serious short-comings: 34

24,26-29

¢ The delocalization error causes erroneous dissociation curves of odd electron

bonds (e.g., H2*) and produces fractionally charged instead of neutral atoms upon
dissociating alkali halides or hydrides. 227169170

e The attractive long-range London dispersion is missing. '*

* The static correlation error (deviation from a constant energy for fractional spins) af-

fects singlet-triplet gaps and occurs typically in transition metal compounds, }71-173

174-176 177-180

m-conjugated molecules and stretched covalent bonds.

The static correlation error is not relevant to the present thesis, and therefore not discussed
further. The following two subsections are devoted to the first two failures, i.e., delocalization
error and neglect of dispersion.

Delocalization or Self-Interaction Error

One electron does not interact with itself. Despite its simplicity, this statement is not as trivial
as it seems in the context of approximate methods. The origin of the problem is the classical
Hartree energy J of eq 2.8: a classical charge density has a non-zero Coulomb energy.

In wave function methods, the Hartree term of a single electron is identically canceled by the
exchange interaction

EfF:_%ff(p )¢ (r)(/)(r)drdr’:— ffp(l‘)P(l‘) dr’ 2.17)

[r—r'| [r—r'|
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Therefore, Hartree-Fock is exact for all one-electron systems and wave function methods are
one-electron self-interaction free, assuming zero correlation energy for one electron. However,
for density functionals, where exchange and correlation are approximated, self-interaction is a
serious issue. In fact, already in 1934, a long time before the advent of “modern” density func-
tional theory, Fermi and Amaldi proposed an approximation to remove the self-interaction. 18!
Slater noted later that molecules such as NaCl dissociate into non-integer charged fragments

169 evertheless he seems not to have real-

as a consequence of self-interaction energy terms;
ized the unphysical nature of the fractional charges.?®

Self-interaction in modern density functionals is extensively discussed since Perdew and
Zunger’s seminal work.2* They proposed to remove the self-interaction error orbital by orbital.
Not only is the Perdew-Zunger self-interaction correction (PZ-SIC) computationally intensive,
but the energy is not invariant with respect to orbital localization. Furthermore, PZ-SIC has

an equivocal impact on the results: electron affinities,?* challenging reaction barriers '8
183

and

chemical shifts
184

are improved, but most thermochemistry benchmarks are dramatically
deteriorated.
Assigning a zero energy contribution to one-electron densities avoids self-correlation (e.g.,
LYP 195 B95185 and TPSS 158 correlation functionals). However, the exchange has to cancel the
Hartree term exactly and thus is more challenging. So far, only functionals relying on 100% “ex-
act” exchange (MCY2, '8¢ B05 87 and PTST !88) are free from one electron self-interaction error
(1-SIE) without an explicit SIC. Unfortunately, in many-electron systems, even 1-SIE free func-
tionals behave very similarly to standard approximations. 2829189190 Thjs recurrent deficiency
has been coined many-electron self-interaction error (N-SIE). %829 The formal condition for
being N-SIE free is not well known. “Delocalization error” is an alternate terminology, 3%
which emphasizes the physical consequence of the problem: electron densities are too delo-

calized, causing the erroneous stabilization of fractionally charged atoms and molecules, 3036

191,192

unbound electrons in certain anions and an overstabilization of conjugated geometries

with respect to non-conjugated ones. 3>

The most promising approach to reduce delocalization errors is probably the use of long-range
corrected exchange functionals, which treat the long-range electron-electron interaction by
“exact” exchange.?8 Savin and coworkers developed the range-separation to rigorously com-
bine DFT ideas with multi-determinantal wave function techniques. %1% As a byproduct,
the long-range correction (LC) scheme for LDA exchange was obtained. The idea is to split
the electron repulsion operator % into two ranges (long and short) with the most common

choice being an Ewald-style partition based on the error function

1 erfc(urio) N erf(ury2)

(2.18)
Iz 2 2
—— N——
SR LR

where the u parameter is generally selected empirically and controls the definition of the

two ranges. The physical motivation for the LC scheme is the incorrectly decaying potential

of standard DFT functionals: the xc potential v, = 5Eg;[p I of semilocal functionals decays

exponentially along with the density, violating the exact -1/r asymptotic form. 19196 Applying

14
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the range-separation and introducing HF-exchange for the long-range restores the correct
asymptote.

LC functionals reduce the delocalization error considerably, but the choice of range-separation
parameter remains inconvenient. 9290 The determination of y is possible according to first
principles, i.e., ¢ is tuned to reproduce the vertical ionization energy and electron affinity by
the HOMO and LUMO energies, respectively. This choice leads to a consistent improvement
for excitation energies and other properties. 19929 However, tuning the functional for each
molecule specifically is not only cumbersome, but also precludes the computation of reaction
energies: if the functional changes from reactants to products, the energies are not comparable,
i.e., range-tuning breaks size-consistency. Variants based on local range-separated hybrids 2%
are size-consistent, but not broadly explored because of their computational complexity.

In summary, self-interaction errors are nearly omnipresent within approximate density func-
tionals. Even though long-range corrected exchange functionals offer many advantages and
minimize the failures considerably, more development is needed to solve the problem rigor-
ously.

Dispersion Interactions

The ubiquitous nature of dispersion interactions, which are neglected at the semilocal (hybrid)
density functional level, 3141923105116 hag stimulated intense research during the last decade.
The literature is too vast for providing a detailed survey on the available methods or on all
the issues resulting from the neglect of van der Waals interactions. The discussion of specific
errors is postponed to the following chapters, as well as all the aspects directly relevant to
the particular dispersion corrections developed within this thesis. This section provides an
overview of the available approaches and emphasizes the scheme diversity.

Long-range dispersion interactions are undeniably missing at the semilocal (hybrid) density
functional level. However, around the equilibrium distance, many intermolecular complexes
are characterized by an appreciable nonbonded density overlap and density functionals can
recover “dispersion like” interactions. The extent to which dispersion is accurately described
depends dramatically on the precise definition of the functional. Wesolowski et al. have
nicely demonstrated that the energy density associated with the high gradient, low electron

density regime determines the accuracy of GGA functionals.?? First principles information
Vol

2-(37[2)1/3~p4/3

the enhancement factor (by which Dirac’s exchange is multiplied) is divergent if a GGA is

about the corresponding large reduced density gradient (s = ) is contradicting:
built to satisfy the correct asymptotic -1/R exchange energy density, the main achievement
of Becke’s 1988 functional.'® However, only modest asymptotic values ensure the global
Lieb-Oxford bound,?%%2%7 which gives a lower limit to the total energy and is an essential
input in nonempirical functionals such as PBE. The conflicting first principles arguments
motivate to seek empirical functionals that exploit maximally the information of nonbonded
densities. The success of the empirical approach was, at first, relatively modest, e.g., X3LYP 208
binds rare gas dimers, but does not describe -7 stacking well.3! The design of more flexible
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209,210 and the expansion from GGAs to meta-GGAs?!1213 has resulted in the

functionals
development of M06-2X,2!* one of the most accurate hybrid meta-GGA functional for weak
interactions. Nevertheless, in order to account for long-range dispersion interactions, either

nonlocal correlation functionals or dispersion corrections are mandatory.

Dependence on Virtual Orbitals Dispersion interactions are incorporated in all post-HF
methods. Therefore, borrowing ideas from wave function theory overcomes the limitations
of semilocal approximations. However, in most practical schemes the dependence on the
virtual orbitals is not included self-consistently, i.e., they are done “post-KS”, in analogy to
post-HF methods. Therefore, these methods can be considered energy corrections, rather than
improved exchange-correlation functionals. Nevertheless, self-consistency can be achieved,
e.g., through the optimized effective potential (OEP) approach.?1%216

The simplest variants are double hybrid functionals, which include a percentage of many-body
second order perturbation theory correlation energy. 3164 Similar to hybrid functionals, ?!”
double hybrid functionals can be rationalized from first principles.?'8-22° Depending on the
formulation and the parameters, the percentage is high enough to account for weak long-
range interactions.??!~223 However, in most functionals the percentage is rather small (e.g.,
27% MBPT2 in B2PLYP ') and an additional dispersion correction is recommended. 85224226
In analogy with (global) hybrid functionals, long-range corrected correlation functionals
introduce the wave function correlation only at long interelectronic distance, a concept that

2227 and more accurate methods, such as CCSD(T).2%2 The simplest

has been paired with PT
approximation to the exact eq 2.13, i.e., setting the exchange-correlation kernel (eq 2.16) to
zero, is the increasingly popular, although computationally expensive, RPA. There are many
formulations of RPA and we refer to ref 142 for a review. It is sufficient to say that the appealing
features are the inclusion of many-body effects, the applicability to the solid state and to zero
band-gap systems, (e.g., metals or strongly correlated materials), for which PT2, included in
double hybrids, diverges.

The major disadvantage of the dependence on virtual orbitals is the computational expense
and the (re-)introduction of the basis set dependence inherent to post-HF methods, 229-231
The reduced basis set dependence of standard density functionals is rooted in its very different
description of correlation: in wave function methods, correlation effects are described as
excitations into virtual orbitals whereas in DFT correlation is directly based on the density. The
virtual space, describing the full flexibility of electrons, is much more complex than the (few)
occupied orbitals. For example, the cusp condition (related to the probability of finding two
electrons of opposite spin at the same point in space) is approximately included at the LDA
level, 140232 but reproducing a cusp with atom centered Gaussian basis sets is a considerable

task. 233,234

van der Waals Density Functionals and Dispersion Corrections The van der Waals density
functionals are fully nonlocal and independent from virtual orbitals. 4853141 Roughly, these
nonlocal functionals model dispersion based on coupled local oscillators having a frequency
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determined by the local density and its gradient. The coupling responsible for dispersion
interactions is introduced through a double integration. The chosen form ensures the standard
-Cs/R® asymptote, but does not account for more intricate many-body effects. Four main
flavors have been developed: vdW-DF04 !4! and vdW-DF10° from Langreth’s group, and the
somewhat more heuristic VV0947 and VV104® functionals from Vydrov and van Voorhis. The
double numerical integration is, in general, rather expensive, but reformulations involving

Fourier transforms 235 236

or use of coarse grids“>® now make their evaluation routinely feasible.
The local response for dispersion (LRD) formalism of Sato and Nakai*>*® combines VV09 with
a dramatic simplification: the double numerical integral is avoided by expressing the van
der Waals interaction as an atom pairwise sum, which leads to the general form of typical

dispersion corrections

Nat Nat Cé]
Egisp=—)_ ) faRij)—& (2.19)
i=1j>i R};

where Ny is the number of atoms in the system, R;; is the internuclear distance between
atom i and j and Céj is the associated dispersion coefficient. f;(R;;) is a damping function,
accounting for the physical damping arising from to density overlap and removing the un-
physical divergence for zero internuclear distance. The form and role of the damping function
is discussed after the next paragraph that gives an overview on atom pairwise dispersion
corrections.

Atom pairwise dispersion corrections (eq 2.19) have a long history and were developed origi-
nally for Hartree-Fock.37237-239 After an hesitant exploration of such corrections in the context

of density functional approximations, 22240

241

the breakthrough was stimulated by the improve-
ment of semi-empirical methods
drocarbon dimers by Wu and Yang.3® The most popular dispersion correction to date was
developed by Grimme in 2006, providing for the first time a set of parameters for most
elements of the Periodic Table and parameterizations for several popular density functionals.
The acronym DFT-D has been firmly established ever since. Many reparameterizations of
DFT-D are available, most of them concentrating on intermolecular complexes around equi-

and the systematic study of weak interactions of hy-

librium, few including non-equilibrium geometries explicitly in the training set. In addition to
the training set, the obvious differences between the approaches are related to the damping
function f;(R;;) and the dispersion coefficients Cs. We refer to these methods as “classical”
dispersion corrections, if the Cg coefficients and van der Waals radii (Ry) or other parameters
for the damping function are tabulated a priori. Cg and Ry parameters can be freely fitted,
derived from experimental data or computed for atoms or reference compounds. In Grimme’s
latest dispersion correction (dubbed D3)*? the Cg coefficients are determined by interpolation
between a fixed number of reference values. Therefore, even though geometry dependent
through fractional coordination numbers, we consider D3 a “classical” dispersion correction.
Beyond the “classical” schemes the choice is more limited. The most prevalent variants of
atom pairwise, density-dependent dispersion corrections are Becke and Johnson’s exchange
hole dipole moment (XDM) formalism, 75-80 Tkatchenko and Scheffler’s vdW-TS method 4 and
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Sato and Nakai’s local response for dispersion (LRD). %6 XDM requires tabulated free atomic
polarizabilities and vdW-TS relies on free atomic Cg coefficients and vdW-radii. Only LRD
does not depend on any atomic reference data and has, through its VV09 roots, %’ probably
the strongest physical background. Our most successful scheme (i.e., dDsC),89 exploits an
XDM formalism and will be detailed in Chapter 7. Note that all density-dependent dispersion
corrections should be implemented self-consistently, i.e., their contribution to the Fock matrix
should be included. However, both the LRD?* and the XDM?® formalism turned out to
influence the SCF solution only to a negligible extent, which is also in line with experiences
for the van der Waals density functionals.?*3-24% Therefore, all our dispersion corrections
are applied as pure a posteriori energy corrections, i.e., the electron density with/without
dispersion correction is identical.

Most atom pairwise dispersion correction are based on isotropic Cg coefficients. However,
in general dispersion interactions are anisotropic and the anisotropy has a nontrivial influ-
ence on thermodynamic averages.?4® The importance of anisotropy for small intermolecular
complexes has recently been investigated by Krishtal et al.?*” However, since no damping
function has been included, the extent to which an (anisotropic) damping function could lead
to sufficient accuracy remains somewhat unclear. On the other hand, the LRD dispersion
correction is anisotropic, but the damping function is isotropic. >4

Due to the atom pairwise approximation many-body effects between atomic centers are
completely missing.! Including many-body effects at the level of dispersion corrections to
density functional approximations is in its infancy. Promising approaches are being actively
developed and tested for molecules and condensed phases mainly by Tkatchenko, Scheffler
and coworkers. 248249 These many-body effects are expected to become more important with
increasing system size, increased electron delocalization and a closing band gap

Since Yang’s pioneering work,3® the damping function f;(R; j) has been a central element
in the development of dispersion corrections. Most damping functions f;(R;;) reduce to
zero for R;j = 0. However, Koide demonstrated that the proper asymptote is a constant: two
hydrogen atoms at zero internuclear distance, i.e., a helium atom, have a dispersion energy of
8.7 mhartree, 2°° which is equal to about 20% of the total correlation energy of helium. In the
framework of a dispersion correction to density functionals, the rational behind damping to
zero is rather simple: the correlation functional describes electron correlation in atoms and
covalent bonds. Some functionals, e.g., LYP %% are explicitly fitted to reproduce the correlation
energy of helium and therefore formally adding a dispersion correction for these situations
is certainly not more justified than letting the correction go to zero. The disadvantage of
fa(0) =0 is that repulsive gradients are obtained at short internuclear distances, possibly en-
tailing suboptimal performance for geometry optimizations of non-bonded contacts in close
proximity. *>° Since the decomposition of correlation in density functionals is not clear-cut,
the damping function is intrinsically empirical in nature. Thus, a flexible damping function
is required to adapt the dispersion correction to a given functional and to minimize double
counting effects as much as possible. Overall, the diversity in the literature reflects rather
personal preferences and experiences than fundamental understanding.

iiNote that current versions of the van der Waals density functionals neglect many-body effects as well. 116
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Figure 2.3: The effect of four different damping functions on the pure -1/R® dependence of dispersion interactions. For the
Fermi damping function (eq 2.20) the steepness d =23, Head-Gordon’s function (eq 2.21) is used with a =6 and
q =12, Tang and Toennies (eq 2.23) with b = 3.0, while all other parameters are set to unity, except for Rg, which
is 2.0 a.u. (note, that Tang and Toennies function does not depend on Ry at all).

The four most widely used damping functions, applied to -1/R®, are compared in Figure 2.3:

1. The Fermi damping has dominated the field 383944251

1 1
fr(R) =- N (2.20)

+ e~ d(RIR-1) RE

where d determines the steepness of the switching function and Ry is the vdW distance.

2. Head-Gordon’s power law,?%? which has been adopted in the “D3” correction*?

1 1

. —— 2.21
1+ a(R/Ry)~9 RS (2.21)

fuc(R) =—

where a and g are positive parameters to adjust the damping function to a given func-
tional. Note that the Fermi damping and the power-law can be combined in one “uni-
versal” damping function that is more flexible than the standard variants. 53

3. The rational damping function of Becke and Johnson? is given by

1
R)=———7—— 2.22
fe(R) R+ RS (2.22)

fB1(R) has the unique feature that it goes to a constant for vanishing internuclear dis-

tance, reducing the corresponding gradient to zero. 43545879

4. Tang and Toennies’ damping function”® plays a central role in this thesis

6 (b-R*) 1
Jrr(R) =— 1—exp(—b~R)Z( U (2.23)
k=0

k! RS

where b is a fitted parameter.
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Chapter 2. Theoretical Background

Dispersion corrected atom centered potentials (DCACP) are a completely different approach
introduced by Réthlisberger and coworkers?34-2% for plane waves and extended to Gaussian
basis sets by DiLabio’s group.5>56:257:258 The central idea is to add an atom centered nonlo-
cal potential that accounts approximately for dispersion effects, just like pseudopotentials
account for core electrons in plane wave codes?59:260 o1 effective core potentials (ECPs) can
include scalar relativistic effects for Gaussian basis sets. 261262 DCACPs have two main advan-
tages compared to “classical” dispersion corrections: (i) The dispersion correction is system
dependent through the electron density, with p(r) being modified by the added potential. (ii)
DCACPs are easy to “implement”: plane wave codes automatically come with support for
pseudopotentials and most Gaussian basis set based codes handle ECPs. The drawback is
twofold: first, the empirical nature of the potentials necessitates careful fitting of parameters
for each element to achieve a reasonably transferable scheme and second the interaction
energy does not necessarily follow the proper (1/R%) asymptote, even though the formalism in

principle supports the correct form.?%3

In summary, dispersion interactions can be introduced into the framework of density func-
tional approximations at various computational costs and degree of theoretical sophistications.
For the time being, it is not yet clear which approach has the best performance to cost ratio.
One might argue that the inexpensive “classical” dispersion corrections generally provide
reliable results. However, in highly polarized situations the “classical” scheme is inaccurate:
even Grimme's latest (system dependent) dispersion correction? needs “special adjustments”
for ionic crystals?%* and fluorine seems to be somewhat problematic as well. 2% As illustrated
in the rest of this thesis, we predict a bright future to physically motivated density-dependent
schemes.
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k] Unified Inter- and Intramolecular

Dispersion Correction Formula for
Generalized Gradient Approximation
Density Functional Theory

3.1 Introduction

This chapter proposes a simple and efficient, a posteriori, double-damped attractive weak
interaction energy correction formula for nonempirical generalized gradient approxima-
tions 1°1,156,266-268 (GGAs) of the Kohn-Sham density functional theory (DFT). 11 GGA function-
als might provide a reasonable description of the weak interactions arising from nonbonded
density overlap but cannot describe the long-range part of the van der Waals (vdW) interaction

37-39,237-239,269 a properly

that acts between nonoverlapped densities. As proposed earlier,
constructed damped attractive energy correction summed over all atom pairs in the system
efficiently remedies this deficiency of GGA 3839259 (and also the hybrid GGA and meta-GGA)
functionals at a negligible computational cost. Such a correction must be convergent with
respect to the internuclear separation, R;; and must properly follow the ~R8 decay of the
dispersion interaction at large R;;. At shorter internuclear separations the ~R® and ~R10
terms might also have non-negligible contribution to the interaction energy. In this chapter,
we further develop the idea of a general interatomic dispersion corrected GGA functional

39.269 and show the benefits of using a double-damping as well as

as suggested by Grimme
higher-order dispersion terms for such corrections. In our formulation, the inter- and in-
tramolecular dispersion corrections are treated jointly in a single formula as opposed to two
separate parametrizations (i.e., PBE-inter or PBE-intra) “22"? containing only ~R® terms.

Inter- and intramolecular van der Waals interactions are responsible for many energetic and
structural phenomena such as the heats of sublimation of hydrocarbons, the crystal packing
of organic molecules, host-guest chemistry, the orientation of molecules on surfaces, the

stacking of nucleic acids in DNA,” and protein folding® as well as the properties of polar and
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Chapter 3. A Unified Inter- and Intramolecular Dispersion Correction for GGAs

apolar solvents.

It is known that the Hartree-Fock (HF) method cannot describe these weak interactions, arising
from a pure electron correlation effect. High level, expensive treatment of electron correlation
coupled with large basis sets (typically CCSD(T)/aug-cc-pVQZ) are required to evaluate such
interactions accurately.?’1-2”* These methods are computationally very expensive and are
applicable only to benchmark studies of small systems.

GGA, hybrid GGA, and meta-GGA are much less expensive than CCSD(T) and MP2 methods.
Such functionals can at best provide an estimate of the bonding between weakly overlapped
densities but fail to reproduce the long-range part of the vdW interaction, which tends to
—Cg/R® as R — oco. The computed GGA or meta-GGA interaction energy arising from overlap-

275 which results in a serious underestimation

ping electron densities decays exponentially,
of the long-range part of the interaction. 0276279 A typical example is the sandwich and
T-shaped configurations of the benzene dimer, which is dispersion-bound at the CCSD(T)
level>”* but essentially unbound in a PBE GGA computation.?”® For shorter-range weak in-
teractions characteristic in rare-gas dimers 17/18:21,275.280-282 4 dq gther noncovalently bound
diatomics, 283287 the performance of GGA, 17,18,21,275,283-287 hybrid GGA, 280,282 9nd TPSS or
TPSSh meta-GGA2">?8! functionals varies. While the B88 GGA !> exchange functional tends
to underbind (or not bind at all), '*1>275 LSDA seriously overbinds.?”>?8! In contrast, PBE
and TPSS often give reasonable binding energies. !718275280.281 The partial success of PBE
and TPSS was attributed predominantly to the large gradient behavior (satisfaction of the
Lieb-Oxford bound lower bound on the exchange-correlation energy for all possible electron
densities). 2’ In some rare-gas diatomics, however, the PBE, TPSS, and TPSSh density func-
tionals overcorrect the serious overbinding tendency of LSDA?7>28! resulting in too long bond
lengths and reduced binding energies. This deficiency suggests the need for some attractive
shorter-range correction. In other words, a consistent description of the weak attractive inter-
actions by a GGA or meta-GGA requires a full treatment of the long-range behavior 10%141,276
along with an improved treatment of the shorter-range part. These results also show that
including rare gas diatomics (short-range interactions) into the training sets for empirically
fitted density functionals does not guarantee an improvement for larger stacking complexes

(long-range interactions) of chemical or biological interest.

109,141,276 05

Fully nonlocal functionals or generalizations of the random phase approximation !

that capture the long-range correlation effects are more promising and also computation-

ally more demanding for the description of the dispersion effects. Further possibilities are

the following: the optimized potential method within KS perturbation theory, 288289

254,256

empiri-
cally calibrating dispersion corrected atom centered potentials, or fitting the exchange-
correlation enhancement function (using a large number of empirical parameters) to a data
set that contains weakly bonded compounds.?%° Although the resulting M06-2X hybrid meta-
GGA functional shows good overall performance for treating weak interactions, its highly
fitted nature does not guarantee the correct asymptotic behavior and leads to failures.?%!
Similarly, the so-called double hybrid functionals % (which scale roughly as MP2) are only
partially successful and also need a long-range attractive energy correction for a more general

description of weak interactions.
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3.2. Computational Methods

3.2 Computational Methods

An efficient solution to improve the performance of density functionals for weak interactions
is to add a damped attractive atom pairwise dispersion energy correction 3839259 to the GGA,
hybrid GGA, or meta-GGA energy

Ny i—1
Egisp=—_, > d(R;}) 3.1)

i=2j=1

The summation is over all atom pairs i j in the Ny atomic system, and the d(Ri j) attractive
function is properly damped at short internuclear separations R; ;. We suggest the following
double-damped formula for d(Ri j)

ij

5 C
dap1o = Fe(a,Rij) ) fon(DR;j)—o2 3.2)
n=3 Rl]
where
1
Fr(a,R;ij) = (3.3)

46| i
arvdW
l1+e i

In eq 3.2, Fr(a, R;;) is a Fermi damping function38 given in eq 3.3, that is used to switch off
the first damping (i.e., f2,(bR;;)) at short internuclear separation. f,,(bR;;) are damping
functions specific to a given dispersion coefficient (vide infra), a and b are empirical damping
parameters, and the ng are the dispersion coefficients.
The steepness factor in eq 3.3 (i.e., 46) was chosen such as to minimize the effect of the Fermi
function on the damping function f2,(bR;;) at larger internuclear separations by imposing
Fr(a,1.1-a-R"W) < 0.99. R;’;lw is the vdW distance of the atom pair, and a is the parameter
that scales the vdW radii to improve the flexibility in the parametrization scheme.?! The
summation in eq 3.2 goes up to 5 to include damped Cg, Cg, and C;g terms leading to the
resulting dD6, dD8, and dD10 formulas (the latter contains all terms up to Cjp). The f>,
damping functions are used in the following form
2n xk
fon(x) = 1-exp(-x) kgo o (3.4)

where x = bR; j, with b being the damping (due to overlapping densities) parameter. 3 These
general damping function terms were proposed by Tang and Toennies ’® (TT), and success-
fully used for dispersion interaction of several noble-gas and metal atom pairs. 73292293 In the
original TT model, the long-range attractive potential, which is computed from the damped
dispersion series, is added to a short-range purely repulsive Born-Mayer potential with b
being the range parameter. The importance of the Cg and C; terms is emphasized in ref
79. As standard functionals are able to treat short-range correlation accurately, regions of
strongly overlapping densities do not need to be corrected, which justifies the use of the
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second damping (Fermi) function. The hybridization state dependent3® Cg dispersion coeffi-
cicl

ci+cl”
give similar but slightly less consistent

cients are averaged and combined according to the rule proposed by Grimme: 26 Céj =2

Other atomic coefficients3? or combination rules3%294

results after refitting. Cg and C, coefficients were estimated based on the average Cg disper-
sion coefficients and empirical rules as established in refs 295 and 22: i.e. Cg/Cg =45.9 and

CsCro/ Cg =1.21 (in atomic units). An alternative that is going to be investigated in subsequent

chapters would be to use Becke-Johnson exchange hole dipole model. ”> 777880

Bondi's?%® vdW radii were used and combined according to a “cubic mean” combination rule
3 3
294 pvdW _ Rivaw ™ Rj vaw
i1 - p2 2 .
1 Ry caw ™ R vaw
The motivation for the use of a damped dispersion series along with a Fermi formula such

put forward by Halgren:

as in eq 3.2 is the removal of the systematic errors for the treatments of short-range weak
interactions, while preserving good performance for more typical long-range vdW interac-
tions. Recently, several studies pointed to large errors in the description of the nonbonded
intramolecular interaction in alkanes. %®-"12%7 Corminboeuf and coworkers "2 showed that the
atom pairwise dispersion correction containing only ~R® terms and optimized for reproduc-

ing intermolecular energies (PBE-inter, vide infra) >’

only slightly improve the description
of intramolecular interactions. In contrast, the reparametrized PBE-intra (i.e., parametrized
for intramolecular interactions) performs considerably better for isodesmic (i.e., the number
of formal bond types is conserved) bond separation equation (BSE) reaction energies>%3
of hydrocarbons but seriously overbinds the T-shaped benzene dimer. While the PBE-inter
T-shaped dimer dissociation curve is considerably better than that of the PBE-intra, it has a
much higher curvature than the corresponding CCSD(T) curve (vide infra). The dispersion
energy formula suggested in eq 3.2 should preserve the description of both interactions.

The two empirical parameters, a and b, contained in eq 3.2 are obtained from two prototypes
of reaction energies that are the Pople’s isodesmic bond energy separation reaction of propane

(eq 3.5 with m = 1) and the hydrogenation reaction of [2.2]paracyclophane to p-xylene
CH3(CH2);CH3 + mCH4 — (m +1)CaHg (3.5)

Correcting eq 3.5 accounts for the intramolecular (short-range) error. Note that the bond
lengths do not change considerably along reaction 3.5. The reaction is therefore not suited for
determining the value of the parameter a that describes the distance where to switch off the
correction. On the other hand, obtaining an accurate energy for the challenging hydrogenation
reaction of [2.2]paracyclophane to p-xylene (3.6) 3>2% necessitates a correct description of
the long-range interactions between the two benzene rings of paracyclophane as well as the
reaction energy for converting a H-H and two C-C bonds into two C-H bonds

Vs

The first-principle GGA functionals are very efficient computationally and provide reasonable

o H,

=0

(3.6)

results for a wide range of problems (molecular geometry, vibration, reaction energies, lattice
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3.2. Computational Methods

constants, bulk moduli, cohesive energies, surface energies). Several nonempirical functionals
that use the PBE form were selected for this study. PBE itself!%® is generally used in chemistry
and physics. Its failure to improve the solid lattice constants, bulk moduli, and surface energies
upon LSDA motivated the development of the recent PBEsol first-principles GGA functional 266
that is based on the exact second order gradient expansion of the exchange energy (the PBE
functional is also a first principles GGA functional that satisfies other exact constraints as
second order gradient expansion for correlation and LSDA-like linear density response of a
uniform electron gas). PBEsol gives excellent lattice constants and surface energies but poorer
atomization energies than PBE. An attempt to develop a simple GGA that unites the good
properties of PBE and PBEsol led to the second regularized gradient expansion (RGE2). For
further details the interested readers turn to refs 156, 266 and 268.

Because of the different energy range of the two prototype reactions (2.8 kcal mol™! for the
propane BSE and -58.5 kcal mol™! for the hydrogenation of [2.2]paracyclophane), a straight-
forward least-squares minimization of the combined error is not suited. The error criterion
for the hydrogenation reaction was therefore chosen to be 2 kcal mol™! (“chemical accuracy”).
From all combinations fulfilling this requirement, the one with the lowest error for the propane
BSE was selected. Parameter a is 1.45 for all functionals. b is 0.88, 1.03, and 1.00 for PBEsol,
PBE, and RGE2, respectively.
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Figure 3.1: Dispersion energy correction curve for C---C dispersion interaction vs the C---C distance. Parameters of eq 3.2
are a =1.45 PBE-dD10: b =1.03; PBE-dD6: b = 1.34. The broken line gives the CG/F{6 contribution to PBE-dD10
(b =1.03). For PBE-D10 without Fermi damping b = 1.0001.

Figure 3.1 shows the R;; dependence of the dD10 formula of eq 3.2 using the a and b pa-
rameters obtained for PBE vs C. - - C internuclear separation. The dD10 correction balances
between the inter- (i.e., long-range) and intra- (short-range) molecular dispersion corrections.
Figure 3.1 also demonstrates that obtaining good BSE energies requires a dispersion energy
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correction up to relatively short 4.5 au internuclear separations. At short distances the dis-
persion energy coming from PBE-inter vanishes and is absolutely ineffective. On the other
hand, PBE-intra is steeper and larger in magnitude as compared to PBE-dD10 resulting in
inaccurate energies for intermolecular interactions. The double-damped dispersion series
with up to Cjp terms (i.e dD10) easily resolves this dilemma. For comparison, D10, which is a
dispersion correction free of the Fermi damping function (that “turns off” the correction at
covalent bond distance), is given as well.

The performance of the dD10 energy correction is tested on five test sets. Three of the sets
assess Pople’s isodesmic bond separation equation reactions (BSE, eq 3.5) of saturated hydro-
carbons (chains, rings, and cages in H, R, and C sets, respectively, Figure 3.2). "> The fourth set
that reflects “intramolecular dispersion interactions in hydrocarbons” (IDHC) ® contains two
isomerization reactions, two folding reactions of large hydrocarbon chains, the dimerization
of anthracene, and the hydrogenation reaction of [2.2]paracyclophane (Figure 3.3). The fifth
set corresponds to the common benchmark for noncovalent complexes (522) 299 and includes
the benzene dimers.

Geometries of the H, R, and C sets were optimized at the B3LYP/6-311+G** level using Gaus-
sian 03.3%° Unscaled zero point and thermal corrections to the enthalpy are computed in the
harmonic approximation at the same level. Experimental heats of formation (NIST)3°! at 298
K are used as reference. Geometries and reference values for the IDHC set were taken from
ref 85. Our results are compared to LSDA (SWVNS5), 131149 TpSS 158 Mo6-2X,214 B3LYP, 161,162
B97-D,3 B2PLYP, 162 and B2PLYP-D. % Benzene dimers were derived from the equilibrium
structures of ref 274 and the monomers 3% kept frozen. The geometries and reference values
(CCSD(T)/CBS) for the S22 set were obtained from the BEGDB database. 3%

Given the size of the molecules in our test sets, the cc-pVTZ basis set was chosen for the single
point energy computations. This basis set contains small exponent functions and gives only a
small artificial binding error for weakly bond complexes.?°! The energy differences between
the cc-pVTZ and the aug-cc-pVTZ basis set computed with the PBE GGA are 0.006 kcal mol™*
(0.4%) for the propane BSE (eq 3.5), 2 kcal mol™! (2.8%) for the hydrogenation reaction energy
of [2.2]paracyclophane to p-xylene (eq 3.6), and 0.25 kcal mol™! for the n-octane isomeriza-
tion problem (vide infra). This latter difference is negligible compared to the 7.6 kcal mol!
error with respect to the experimental energy for octane isomerization. The cc-pVTZ basis
set performs considerably better than the diffuse 6-311+G(2d,2p) basis set used earlier3%*
for the octane isomerization. The 0.26 kcal mol™! difference between the PBE/cc-pVTZ and
PBE/aug-cc-pVTZ energies for the anthracene dimer dissociation energy is also negligible
compared to the 23.6 kcal mol ! error of the PBE (the reaction energy is 14.6 kcal mol ! with
the cc-pVTZ basis set) against the best experimental estimate (-9 kcal mol™! in ref 305). Note
that the S22 test set contains several hydrogen bonded complexes for which a larger basis set
is required to reach convergence.3°® For this set, computations at the aug-cc-pVTZ level are
also provided and discussed.

A modified version of deMon-2K 2.33%7 was used for all computations with the new disper-
sion correction. B2PLYP computations were performed with Turbomole 5.1.3%8309 M06-2X

1310,311

computations were performed with NWChem 5. using the "xfine’ grid.
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Figure 3.2: Schematic representation of the 36 saturated hydrocarbons in the H, C, and R sets.
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Figure 3.3: The six reactions of the IDHC test set
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Table 3.1: MAD (in kcal mol") Comparison for All Functionals Tested

H R C IDHC S22? weighted average?®
B3LYP 9.73 11.60 25.99 16.45 3.20 9.85
TPSS 10.33 11.64 25.67 14.66 3.01 9.75
PBE 7.99 9.59 2252 12,52 2.24(2.55) 7.97(8.08)
RGE2 8.27 8.52 19.14 1241 2.97(3.51) 7.75(7.93)
B2PLYP 6.05 7.02 14.41 9.19 1.41(1.20)® 5.64 (5.57)
PBEsol 5.16 6.68 15.41 6.10 2.09(1.89) 5.37(5.31)
PBEsol-PBE 5.40 6.31 14.20 6.19 2.21 5.29
PBEsol-D6 2.48 3.06 9.06 9.09 3.24 (2.56) 4.02(3.79)
MO06-2X 3.60 6.02 13.45 223 051 3.78
SVWN5 0.78 3.97 10.21 201 2.85 3.14
B97-D 206 3.37 7.59 3.48 0.52(0.36) 2.42(2.37)
PBE-D10 2.50 2.59 4.84 1.69 1.06(0.48) 2.14(1.94)
B2PLYP-D 1.60 2.82 4.66 1.60 1.02(0.44)° 1.95(1.75)
RGE2-D10 2.78 1.60 2.49 3.30 1.06(0.90) 1.92(1.86)

PBEsol-D10 042 098 2.29 5.76 2.40(1.72) 1.89(1.65)
PBEsol-dD10  1.32 1.92  3.21 2.27 1.48(0.92) 1.76(1.57)
PBEsol-dD6 1.16 1.76  2.67 234 1.43(0.95) 1.63(1.47)
RGE2-dD10 2.02 1.21 1.70 2,53 0.97(0.89) 1.48(1.45)

PBE-D6 0.31 1.05 2.19 294 190(1.17) 1.44(1.18)
PBE-dD10 1.01 1.33 1.69 1.50 1.16(0.45) 1.24(1.00)
PBE-dD6 0.82 1.17 1.58 2.01 0.95(0.55) 1.12(0.99)

4 Values in parentheses refers to aug-cc-pVTZ computations for the S22 test set.
b The B2PLYP(-D) number in parentheses refer to noncounterpoise corrected energies
taken from ref 85 for an optimized value of s = 0.35.

3.3 Results and Discussion

Figure 3.4 and Table 3.1 summarize the mean absolute deviation (MAD) for the functionals
tested. The proposed dD10 energy correction reduces the errors of PBE drastically (MAD for
chains/cages of 8.0/22.5 and 1.0/1.7 kcal mol™! for PBE and PBE-dD10, respectively). Only the
dD10 correction reduces the systematic increase in MAD going from chains to rings to cages.
Similar improvements are obtained while correcting PBEsol and RGE2.

Remarkably, for the subtle intramolecular interactions, Perdew’s “Jacobs-ladder” 8 is re-
versed! Ascending toward more sophisticated (and expectedly more robust3!?) functionals
corresponds to a significant increase in error (e.g., MAD over alkane chains increases from
0.8, to 8.0 and 10.3 kcal mol™! for LSDA, PBE, and TPSS, respectively). PBEsol (constructed
to recover the exact second order gradient expansion for the exchange energy at the sacrifice
of accuracy for atoms313) shows the best uncorrected performance. This is best understood
recalling that PBEsol exchange enhancement function Fx(s) does not correct LSDA as much
as the PBE functional for wide range of the reduced gradient, s, and that LSDA performs
well for these reactions. Note also that the combination of the PBEsol exchange with PBE
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Figure 3.4: Mean absolute deviations for bond separation energies over hydrocarbon chains (H set), rings (R set), and cages
(C set); for reaction energies of the test set “intramolecular dispersion in hydrocarbons” (IDHC) and the common
benchmark for noncovalent complexes (S22) using the cc-pVTZ basis set.

correlation gives lower MAD than the PBE functional (Figure 3.4). This result demonstrates
that the origin of the improvement arises from the modified PBEsol exchange.?%® RGE2 is
also designed to recover the second order gradient expansion for exchange over a wide range
of s (typically important for correct description of solids), but it is more similar to PBE in
the large density gradient region (important for free atoms) than to PBEsol. While RGE2 is
built to be more satisfying from the point of view of general applicability, it performs only
slightly better than PBE for the reactions tested. However, PBE-dD10 slightly outperforms
RGE2-dD10 and gives the best overall results. Interestingly, the overall performance of the
double hybrid B2PLYP is less satisfactorily unless an attractive dispersion correction is added.
Similarly, the empirical M06-2X meta-GGA results are better than those of all the noncorrected
GGA but still far from the PBE-dD10 for the test sets investigated herein. The relevance of the
double-damping, that is the necessity of switching off the D10 correction at short internuclear
separations (<4.5 au for carbon), is illustrated by the significantly larger total MAD (2.14 kcal
mol™ vs 1.24 kcal mol™}) obtained with the singly damped D10 correction to PBE (i.e., PBE-D10
in Figure 3.4). The dispersion correction discussed in this chapter works well also in the D6
form as shown by the results obtained with the damped dispersion series including the Cg
terms only (Table 3.1). PBE-D6 performs better than PBE-D10 for the alkanes series but has a
significantly larger MAD for both the IDHC and S22 sets (mean error larger by 1.25 and 0.69
kcal mol!, respectively). While PBE-dD10 is best overall, excellent results are obtained with
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Table 3.2: Computed Relative Enthalpies (ZPE and Thermal Corrected to 298 K, in kcal
mol'1) for Selected Alkanes Isomerization Reactions in the H and R Sets?(97)

H3—H5 HI11-H6 HI2—H6 R5—R6 MAD

ExpP 4.39 4.07 3.28 1.12

B3LYP -0.26 -2.56 262 -1.07  4.84
PBE 0.28 -1.48 -1.74  -093  4.18
PBEsol 1.34 -0.04 -0.65  -0.34 3.14
B2PLYP 1.67 0.75 009  -033 267
M06-2X 3.03 2.64 1.58 0.69 1.23
B97-D 3.19 3.23 2.22 0.63  0.90
PBE-dD10 3.26 3.34 2.14 0.54  0.90
B2PLYP-D 3.51 3.52 2.29 0.73  0.70
SVWN5 3.69 3.88 2.63 0.43  0.56

4 Note that the computed energies are based on single most stable
conformers and not on the Boltzmann distribution of conformers. For
thoses small selected alkanes, it is reasonable to assume that the other
conformers have a negligible contribution to the experimental result.

b Reference 301.

the simpler PBE-dD6 variant. For the H, R, C and S22 test sets, the performance of PBE-dD6
is marginally better (by 0.1 kcal mol’! on average) than that of PBE-dD10, but the latter is
better by 0.5 kcal mol™! for the IDHC test set. Since the dD6 curve mimics the position and the
depth of the minima of the dD10 correction curve, these results demonstrate that the small
difference between the two dispersion corrections in the longer distances does not influence
the results considerably. Another illustrative example of common DFT errors! is the relative
stability of isomers. As shown in Table 3.2, the errors in the alkane isomerization energies
also suffer dramatically from the systematic GGA error. Apart from LDA and M06-2X, none
of the (uncorrected) density functional gives an acceptable correlation with respect to the
experimental heat of formations.3°! In contrast, the three empirically dispersion-corrected
functionals, B97-D, PBE-dD10, and in particular B2PLYP-D, lead to a considerable improve-
ment and describe the more compact structures (e.g., H3, H11, H12) as reasonably more stable
(>2 kcal mol!) than their linear counterparts (e.g., H5, H6).

The benzene dimers serve as prototypical examples for evaluating the detailed performance
of the dD10 correction on typical intermolecular interactions (Figure 3.5). For the stacked
dimer, the equilibrium distance at the PBE-dD10 level is the same as with the CCSD(T) ref-
erence curve, but the dissociation energy is overestimated (by 0.59 kcal mol!, 35%). For the
T-shaped dimer, the dD10 correction leads to a considerable improvement as compared to
the intramolecular alternative (i.e., PBE-intra). PBE-dD10 gives a slightly larger dissociation
energy than CCSD(T) (by 0.35 kcal mol’!, 13%) but matches the curvature of the reference
potential better than that of the dispersion correction parametrized for intermolecular in-

1«DFT error” (or “DFT failure”) refers to the errors obtained when applying density functional approximations
instead of the exact density functional.
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Figure 3.5: Stacked (broken lines) and T-shaped (solid lines) benzene dimer interaction energies against the center of mass
distance (COM). CCSD(T) reference curve taken from ref 274, PBE-inter and PBE-intra from ref 72.

teractions (PBE-inter). %270 The PBE-inter curve indeed exhibits a sudden repulsive change
below 5 A (light blue line in Figure 3.5). For the benzene dimers as well as the full S22 set, the
agreement between PBE-dD10 and CCSD(T)/CBS can be considerably improved by using the
larger aug-cc-pVTZ basis set (vide infra).

The results on the full S22 set confirm the good overall performance of dD10 on common
weakly bound complexes. Unlike the DFT-D methods, which use the S22 test set to obtain
parameters for the dispersion correction, 3%%% the S22 test set was not used in the parametriza-
tion of PBE-dD10. With a MAD of 0.45 kcal mol . using the aug-cc-pVTZ basis set (Table 3.1),
PBE-dD10 gives binding energies comparable to those obtained with B2PLYP-D/aug-cc-pVTZ
(0.44 kcal mol'!) given in ref 85 and B97-D/aug-cc-pVTZ (0.36 kcal mol!). Note that coun-
terpoise corrected results for B2PLYP-D can be better (MAD = 0.25 kcal mol1).% However,
such counterpoise corrections are not straightforward for intramolecular situations, can be
expensive and have not been applied here.

The general applicability of PBE-dD10 is further illustrated by the assessment of two challeng-
ing reaction energies: the dimerization reaction of anthracene and the isomerization reaction
of n-octane into tetramethylbutane (Figure 3.3). The anthracene dimer is connected by two
covalent C-C bonds resulting from a [4 + 4] cycloaddition reaction. The conversion of C-C
double bonds into two C-C o bonds upon dimerization results in considerable change in the
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energetic properties. Similar large energy difference can be observed between protobranched
n-octane and the highly branched tetrametylbutane. PBE-dD10 performs once again nearly
perfectly for both these difficult cases (Figure 3.6), while none of the other functionals are fully
satisfactory. PBE-dD10 also leads to very accurate results for the entire IDHC set (MAD 1.5
kcal mol™, Figure 3.4) outperforming the other methods tested. For these two reactions and
the IDHC set in general, the singly damped PBE-D10 performs almost as well as PBE-dD10.
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Figure 3.6: Errors associated with the two examples of reaction energies (Eexp —Etheory) the IDHC set: the anthracene
dimerization and the octane isomerization. Details of the right-hand side are given as an inset.

Overall, PBE-dD10 gives the most robust results and the lowest MAD for a series of prototypical
and challenging reaction and binding energies. With a total MAD of only 1.00 kcal mol ™! for
the five sets of Figure 3.4, PBE-dD10 outperforms both uncorrected and corrected functionals.
For the S22 test set, the aug-cc-pVTZ basis set is necessary to obtain converged results. The
smaller cc-pVTZ basis set gives converged energies for the other test sets. The success of
the dispersion correction is attributed to the inclusion of an adequate damping function. In
addition, the necessity of switching off the correction at short internuclear separations (<4.5
au for carbon), is illustrated by a 1 kcal mol™! higher total MAD (1.94 kcal mol!) obtained with
the singly damped D10 correction to PBE (Figure 3.4).
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3.4 Conclusions

We have presented a unified empirical dispersion energy correction for first principle GGA
functionals. The Lennard-Jones potential ~R® dependence is augmented with higher-order
correction terms (R and R"!° dependent) through the use of the universal damping function
of Tang and Toennies. ”® For general applicability, a second damping function is employed to
turn off the correction at short distances. Among the three first-principal GGAs tested (PBE,
PBEsol, and RGE2), PBE-dD10 give the most robust results, closely followed by PBE-dD6 and
RGE2-dD10. With only two empirical parameters and one prefactor, PBE-dD10 outperforms
the computationally more demanding B2PLYP- (D) and the most recent functionals such as
M06-2X, which contain more empirical parameters. PBE-dD10 considerably reduces common
errors for a set of 64 illustrative reaction energies, successfully balancing intra- (short-range)
and inter- (long-range) molecular interactions. The dispersion corrections introduced here
do not deteriorate the performance for equilibrium geometries, atomization energies, and
reaction barriers.
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A System-Dependent Density-Based
Dispersion Correction

4.1 Introduction

Kohn-Sham density functional theory (DFT)!! offers a powerful and robust methodology for
investigating electronic structures of many-body systems, providing a practical balance of
accuracy and computational cost unmatched by other methods. Despite this success, the
commonly used semilocal approximations have difficulties in properly describing attractive
dispersion interactions that decay with R® at large intermolecular distances. Even in the short
to medium-range, most semilocal density functionals fail to give an accurate description of
weak interactions, 22:240:241

Accurate treatment of weakly interacting systems is crucial, especially in the field of biomole-
cules (stacking of DNA,” protein folding?®), host-guest chemistry, surface chemistry, and con-
densed phases of organic molecules. Yet, even seemingly innocuous looking reactions such as

alkane isomerization energies and Pople’s isodesmic bond separation equations (BSEs), 8283

where formal bond types are preserved, suffer from errors at standard DFT levels. %871

SAPT(DFT)314-316 gives highly accurate interaction energies for two or three interacting closed-
shell subsystems, but the method is not applicable to intramolecular interactions. Around the
equilibrium distance, dispersion corrected atom centered potentials (DCAPs) 254-257,317-319
or specifically fitted density functionals64208:214.278,290,320 haye Jed to satisfactory results.
Nevertheless, both approaches lack the ability to recover the long-range ~R® attractive form.
Conceptually, the simplest remedy is to correct for the missing interaction a posteriori by
adding an attractive energy term summed over all atom pairs in the system. The strategy was
originally proposed to improve Hartree-Fock energies (known as HF-D) 372377239 and was later
applied to DFT.?2:38:240.241 wijth parameters for most elements in the periodic table, Grimme’s
parametrization 39 is the best known DFT-D variant. Since then, there has been considerable
interest in finding an optimal parametrization, 3942444549,51,72,74,77,251,253,269,270,321-326 )ET.)
is generally accurate for the treatment of intermolecular interactions, but proper description of
weak intramolecular interactions is trickier. %8:305327 Specific fitting to a suitable training set 2
decreases the “intramolecular” error, albeit we have recently shown that the two parametriza-

tions can be unified using a physically motivated damping function called dD10.74
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Our dD10 correction’* is, however, restricted to only a few elements (H, C, N, O) and, like
most DFT-D schemes, employs system-independent dispersion coefficients. The present work
overcomes these limitations by combining the efficiency of a new damping criterion with
the attractiveness of deriving system-dependent dispersion coefficients. Akin to our former
dispersion correction, ” two damping functions are used jointly to treat both intra- and in-
termolecular weak interactions consistently. System-dependent dispersion coefficients are
computed on the basis of the analytical approximation of the Becke and Johnson "6-80,187,328
(B]) exchange hole dipole moment (XDM) formalism. 87,329 [terative Hirshfeld weights 330 are
used to partition the dispersion coefficients among the atoms.*%33! A genuine and universal
damping criterion based on iterative Hirshfeld weights is introduced for the first time. Our
approach has the additional advantage of easily incorporating higher-order dispersion coeffi-
cients absent in, for instance, the related Cg-only scheme of Tkatchenko and Scheffler.** With
only two fit parameters, this new dDXDM correction solves difficulties arising from elements
positioned in different chemical environments (i.e., selecting a dispersion coefficient3839.269)
and is easily applicable to every element of the periodic table.

The next sections give details on the implementation and computations. The performance
of dDXDM, on test sets featuring both intra- and intermolecular weak interactions, is then
compared with the interaction energies of (un)corrected popular functionals (BP86, 151154332
BLYB, 1°415% BHHLYP 333 B3LYP, 161162 PBE, 156 and PBE0?!"%8) and established DFT-methods

designed to better describe weak interactions (B97-D,3? B2PLYP-D,8>163 and M06-2X214).

4.2 Theory

The basic form of our dispersion correction is the Tang and Toennies (TT) damping function 3

Ny i=1 5 Céj
Eqisp = — Z Z Z on(bRij)TZ 4.1)
i=2 j=1n=3 Ry

where Ny is the number of atoms in the system and b is the TT-damping factor (vide infra).
The dispersion correction is called dDXDMBS if only the first term is retained in the multipole
expansion (n = 3, corresponding to Cg) and is called dDXDM otherwise (n = 5, up to Cyg).

f2n(bR;j) represents the “universal damping functions” &

that are specific to each dispersion
coefficient and that serve to attenuate the correction at short internuclear distances to account

for overlapping densities.

xk

2n
fon(x) =1—-exp(—x) kZ:o o 4.2)

This coming section describes the procedure employed for the determination of the two
nontrivial arguments of eq 4.1: (i) the dispersion coefficients and (ii) the damping factor b.
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4.2.1 Dispersion Coefficients

Dispersion coefficients are computed according to Becke and Johnson’s XDM 76-80,187,328

formalism, as efficiently implemented in Q-Chem by Kong and coworkers.87:329

The XDM formalism is motivated by the second order perturbation interaction energy°

(Vgert)
E®=- % 4.3)
av
where AE,y is the average excitation energy, rooted in the “Unséld” or “closure” approxima-
tion. 334

Expanding Vpert in terms of multipoles, the induced dipole - induced dipole (Céj ) term is
obtained as

ij_ 2 M MD;

4.4
6 3  AE,. (4.4)

AE,y is then assumed to be the sum of the individual atoms, i.e., AE,y = AEZ;V + AEZW. The
atomic polarizabilities «; in turn define the individual average excitation energies

AE! _2 M?ya; 4
av_§< 10i; (4.5)

which are fully compatible with the second order and multipole expansion applied to the
dispersion coefficients.

Combining eq 4.4 with 4.5, the Cé] coefficients between atoms i and j are obtained according
to

ij aiaj<M%>i<Mf>j

= (4.6)
O ap (M) +ai(MD);
Along the same lines, higher-order dispersion coefficients (Céj and C{g) are obtained
i §a,-a,-(<Mf>i<M§>j +(M3) (M7) ) wn
8 72 aj (M), + (M), '
y aiaj((M7) (M5) ; + (M) (M) ) 21 @i (M) (M3)
Cp=2 + (4.8)

aj (M), +ai(Mp) | 5 aj(Mp); +ai(M);

The original idea of Becke and Johnson is that the multipole moments (Mlz) (I=1,2,3 for
dipoles, quadrupoles, and octupoles, respectively) can be approximated as atomic expectation
values over the dipole dx, between the positively charged exchange hole and its negatively
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charged reference electron
(Mpyi=3 f w; (1) pe M[r - (t; — dxe) 12 d’r (4.9)
o

where p4 (r) is the o-spin density and w; (r) represents atomic partitioning weights. The exact
expression for the exchange hole dipole moment dx, is given by

1
— Z Vi)Y s (ry) f rZWiU(TZ)WjU(TZ)der (4.10)

dxo(ry) =
Xo(r) Po(r1) ij

However, eq 4.10 is both computationally more expensive and turns out to be less accurate
than the XDM computed from the Becke-Roussel (BR) '®° model exchange hole. 326

Becke and Roussel’s model exchange hole is given by a spherically symmetric exponential
function — Ae™%" at a distance b from the reference electron. The three parameters (A, a and b)
are determined nonempirically at each point in space: the second order Taylor expansion of
the spherically averaged exchange hole is required to match between the BR and the exact
exchange hole. Together with the exchange hole normalization, a nonlinear equation is
obtained. The solution of this equation was originally done numerically. However, Kong and
coworkers introduced an analytic function fitting the solution with high accuracy.®"3?° In
Chapter 6 we will introduce a simple approximation for b, which directly characterizes the
XDM in the BR model.

4.2.2 Atomic Partitioning Weights
Becke and Johnson ’® used classical Hirshfeld weightings33° in eq 4.9

w;nHc(r) = —p?t(r) (4.11)
i,HC = Zn p%t(r) .

where p?t is the sphericalized free atomic density of atom i, weighted by the superposition
ofall p?‘ with all atoms 7 positioned as in the real molecule. The classical Hirshfeld scheme
depends on the (arbitrary) choice of the atomic reference densities. Molecules with large ionic
character, such as LiF, offer a clear illustration of this dependence. If one uses the typical
superposition of neutral atomic densities (i.e., Li and F°), the atomic charges have an absolute
value of 0.57. However, a value of 0.98 is obtained when Li* and F~ densities are considered. 33
This arbitrariness can be overcome by using the iterative version of the Hirshfeld partitioning

procedure, called Hirshfeld-1.3% In the k™" iteration, the weight for atom i is given by

pF

k
Wi (1) = s o

(4.12)

Conveniently, the first iteration can use neutral atomic densities, leading to the classical
Hirshfeld charges. Of course, the electronic populations, N; = [ w;(r)p(r)dr, are usually
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fractional numbers, and the corresponding densities are thus computed according to336

pf=p§vf =p =x- oM+ (1-x)-p! (4.13)
where 7 is the integer part of N; and x = N; — n. The partitioning is converged if the electronic
populations do not change significantly between two iterations (the convergence criterion
was set to a root-mean-square deviation of 0.0005 au). Compared to the rest of the dispersion
correction, the iterative scheme is computationally demanding, as integration over the entire
grid is necessary for each iteration.! For this reason, we also report values based on the classical
Hirshfeld partitioning. Note, that all the corrections are applied a posteriori and therefore do
not influence the electron density, but only the total energy.

Finally, the determination of the dispersion coefficients from eqs 4.6-4.8 also depends on
atomic polarizabilities. We herein follow Becke and Johnson’s proposal to exploit the propor-
tionality33” between polarizability and volume to estimate the effective atom in molecule

(AIM) polarizabilities from tabulated free atomic polarizabilities338

(r*)i P wimp@dir _ Viamv

= i,free = Qi free = =5 & free (4.14)
<r3>i,free f rgpi,free(r)dsr Vi,free

o

4.2.3 The Damping

A key component of dDXDM is the damping factor b. We showed previously’* that the
performance of the TT-damping function is improved by the introduction of a second damping
function to prevent dispersion corrections at covalent distances. In the full TT model, 3 the
attractive potential should give relatively strong contribution at short distances in order to
soften the repulsive Born-Mayer potential. In contrast, a dispersion correction to density
functional approximations necessitates additional damping as density functionals better
describe the region of strong density overlap (short-range). We herein introduce a variable,
damped b, in which the second damping is intrinsically absorbed as an alternative to our
previous model using a Fermi damping function.’ In Tang and Toennies’ seminal work, "
the damping parameter b is also the range parameter of the repulsive Born-Mayer potential
and thus depends on the two interacting atoms. Later, the same authors converted b from a
constant into a function: 33 for an arbitrary repulsive potential V (r)
dlnV(r)

b(l‘) = —T (415)

Here, we replace the distance dependence by the following form

b(x) = F(x) - bj j asym (4.16)

iLowering the convergence threshold and using an improved guess would decrease the number of iterations.
The improved guess is expected to be especially efficient for geometry optimization, where partial charges do not
vary a lot between two steps.
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x and F(x) are respectively the damping argument and the function for b;j asym, the TT-

damping factor associated with two separated atoms. b; j asym is computed according to the

combination rule 293340

bii asym * bjj

,asym " Vjj,asym

Di  asvm = 2 (4.17)
! bii,asym + bjj,asym

The bjj,asym values are estimated 34!*#? by the square root of the atomic ionization energy v/T;
taken from the literature. 33 Inspired by the approach of Tkatchenko and coworkers, #4120 the
atom in molecule character is taken into account through a cubic root scaling of the ratio
between the free atom and the AIM volume. After introduction of the parameter by, which
determines the strength of the dispersion correction in the medium-range, we arrive at

V.
bii,asym =Dby- v 2I;- ¥ % (4.18)
i,AIM

The most robust form for the damping function proved to be

2arctan(ag - x)
F(x) = l—f (4.19)

where the fitted parameter ay adjusts the short-range behavior.
The last element of the dispersion correction is the damping argument x
(Z; —N,')'(Zj —Nj) Nj +Nj

x=abs|q;ii+qgji— 4.20
qgij +4qji i Ni N, ( )

where Z; and N; are the nuclear charge and Hirshfeld population of atom i (vide supra),
3 gij = [ wi®w;®)p(x)dr is a covalent bond index,
and the fraction term in the parentheses is an ionic bond index.3*® The multiplicative factor,

respectively. The overlap population

(N; + N;j)/(N; - Nj), serves to attenuate the damping of b; j asym for heavier atoms (containing
more electrons). Note that the damping function has an adequate form (i.e., F(0) = 1 and
F(o0) =0), given that x is large for close atoms pairs and vanishes with increasing distance r;;.
This is the first example for which the damping of an atom pairwise dispersion correction
depends on Hirshfeld (overlap) populations rather than on “critical” or “van der Waals” radii.

346

Our approach is, however, similar in spirit to Slipchenko and Gordon’s>*® overlap-matrix-

based formula employed within the framework of the effective fragment potential method.

To summarize, the presented dDXDM correction uses electronic structure information to
determine dispersion coefficients and two fitted damping parameters that are the strength of
the TT-damping (by) and the steepness factor (ag).

iipjfferent functionals, different order of multipole expansion, classical/iterative Hirshfeld partitioning.
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4.3 Determination of the Adjustable Parameters

In line with our former work, ‘%74 the chosen fitting procedure ensures a successful treatment
of both weak intra- (short-range) and inter- (long- range) molecular interactions. From a
theoretical perspective, typical weakly bound systems, such as rare gas dimers, seem the
appropriate choice as a training set. However, the description of rare gas dimers by standard
density functionals is not consistent; for instance, PBE overbinds the helium dimer and
underbinds the argon dimer. Such behavior is not easily improved by a dispersion correction
and highlights that inclusion of rare gas dimers into the training set does not necessarily
guarantee a generally improved treatment of weak intra- and intermolecular interactions. 3129
In contrast, we and others demonstrated that the large errors in the description of alkane

intramolecular interactions (e.g., isomerization energies) are systematic 68,69

72,85,347

and conveniently
reduced by a dispersion correction. =349 Our recent work, introducing a flexible TT-
based dispersion energy correction, ’* demonstrated that using alkane reaction energies as
a training set results in a highly transferable correction, which outperforms others, even for
systems well outside the range of the training set (e.g., intermolecular complexes). 4 Akin to
our former fitting procedure, the two parameters (ay and by) are fitted for each functional
as to minimize the mean absolute deviation (MAD) over five reaction energies that are the

Pople’s isodesmic bond energy separation reaction of n-hexane and cyclohexane
CH3(CHy)4CH3 +4CH4 — 5CyHg (CHy)g + 6CH4 — 6CoHg (4.21)

the folding energy of Cp2Hyg, and the isomerization energy of n-octane and n-undecane to
2,2,3,3-tetramethylbutane and 2,2,3,3,4,4-hexamethylpentane, respectively.

Best fit parameters are determined for dDXDM (i.e., iterative Hirshfeld weights and terms up
to Cyp), dDXDMc (using classical Hirshfeld weights), dDXDMBS6 (iterative Hirshfeld weights,
only up to Cg), and dDXDM6c (classical Hirshfeld weights and only up to Cg). Short form
parenthetic notations that are used in the text refer to the two levels of dispersion correction
with or without the parentheses (e.g., dADXDMG6(c) refers to dDXDM6 and dDXDM6c). For
the models including terms up to Cyg, best fit ay and by correlate well with each other. There
is also a good correlation between each of the fitted parameters and the repulsive character
of the functional, ! as represented by the error in the methane dimer interaction energy. 36
In contrast, the Cg-based energy corrections show poor (dDXDMS6) or even no (dDXDM6c)
correlation between ag and by. The missing higher-order dispersion terms in dDXDM6c are
compensated by relatively higher by values.?%? The ay parameters adjust accordingly following
the repulsive character of the functional to prevent a too strong energy correction in the
short-range. These results emphasize the physical relevance of including higher dispersion
terms to achieve a more consistent correction.

fiip detailed analysis of a correlation of errors for reaction energies with failures in the short-range potential
energy will be reported Chapter 5.
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4.4 Test Sets

The robustness of the dDXDM correction is tested on seven illustrative sets featuring both
intra- and intermolecular weak interactions, as described hereafter.

Three of the sets assess Pople’s isodesmic bond separation equation reactions
hydrocarbons (H, R, and C for chains, rings, and cages, respectively, see Figure 3.2 on page 27).

82,83 of saturated

Asinref 74, B3LYP/6-311+G** geometries and thermal corrections are included, and reference
values are derived from experimental heats of formation. 3!

The “intramolecular dispersion interactions in hydrocarbons” (IDHC) 85 get contains two
isomerization reactions (n-octane and n-undecane to the fully branched isomer), two folding
reactions of large hydrocarbon chains (C;4Hsg and Cy2Hyg), the dimerization of anthracene,
and the hydrogenation reaction of [2.2]paracyclophane to p-xylene. Geometries and reference
values are taken from ref 85.

The S222% set validates the performance of the dispersion correction on noncovalent com-
plexes, while the P76 set test probes peptide conformational energies.3%° P76 contains 76
conformations of five small peptides having aromatic side chains (FGG, GFA, GGE WG, and
WGQG). For these two sets, geometries and reference values (estimated CCSD(T)/CBS) are
taken from the literature, 303351

The last test set (EX3) exclusively features weak interactions involving heavy atoms in the
dimers of pnictogen trihalides (NF3, NCl3, PCl, PBrs, and AsBrs3).3%? Geometries (counter-

poise corrected df-MP2/aug-cc-pVTZ) were taken from ref 352. Reference values (estimated

CCSD(T)/CBS) were computed at the counterpoise corrected level>>® according to
E(CCSD(T)/CBS) = HF/AVQZ + CCSD-F12b/CBS(AVTZ/AVQZ)
+(T)/CBS(AVDZ/AVTZ) (4.22)

where aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ are abbreviated by AVDZ, AVTZ, and

AVQZ, respectively. These computations were performed with Molpro2009.13%* at the F12

1, 355

leve with the HF energy containing the CABS single correction and the triples being based

on F12 amplitudes. The g functions are omitted in all aug-cc-pVQZ computations, except
for the heaviest dimer (i.e., (AsBrs),). The extrapolation functional proposed by Helgaker

and coworkers3°%3%7 (™ = ESO + AX ™3 with X = 2,3, and 4 for AVDZ, AVTZ, and AVQZ,

respectively) is applied a posteriorito the CCSD-F12b and (T) correlation energies.3>® The T1

diagnostic was below 0.02 and the D1 diagnostic3>°

around 0.04, except for NCls3, where D1 =
0.065 (monomer and dimer) is indicative of a multireference character. The NBrs dimer was

discarded from the test set due to its D1 = 0.085 and an unreliable basis-set convergence.

The performance of the dDXDM correction was further examined on four potential energy
profiles: (a) the stacked benzene dimer (geometry and reference values taken from refs 274 and

360, respectively), (b) a propane dimer conformation (geometry based on the experimental

361

geometry~°" and arranged like in ref 362), (c) a benzene-H,S complex (geometry and reference

from ref 360), and (d) a benzene-H,O complex (orientation analogous to the benzene-H»S

302

conformation, with the same benzene geometry3°? and the experimental water geometry).36!

42



4.5. Computational Methods

For b and c, reference values were computed at the counterpoise corrected level 33
E(CCSD(T)/CBS) = df-MP2/CBS(AVDZ,AVTZ)+ACCSD(T*)-F12b/AVDZ (4.23)

where ACCSD(T*)-F12b/AVDZ is the difference between df-MP2-F12 and CCSD(T*)-F12b eval-
uated with the aug-cc-pVDZ basis set, and (T*) stands for the perturbative triple corrections
improved by scaling by the ratio of df-MP2-F12/df-MP2. 12!

4.5 Computational Methods

B97-D and B2PLYP-D computations with the cc-pVTZ basis set363-3% were performed with
Turbomole 5.103%309 ysing the resolution of identity (RI-MP2) 36 with matching auxiliary ba-
sis functions3%7 to speed up B2PLYP. M06-2X energies were computed with NWChem 5.1310:311
using the “xfine” grid. All of the other computations were performed with a developmental
version of Q-Chem 3.2.3%8 The cc-pVTZ basis set3%3-35% was used except for the potential en-
ergy curves, for which the larger aug-cc-pVTZ basis set was employed. The energy differences
between cc-pVTZ and the larger aug-cc-pVTZ basis set were found to be negligible compared
to the error of the method against the reference value3% (e.g., the averaged total MAD for
PBE/cc-pVTZ, 4.27 kcal mol !, differs by only 2%, 0.08 kcal mol ™!, from PBE/aug-cc-pVTZ, 4.20
kcal mol1).

To ensure a consistent treatment between intra- and intermolecular interaction, no basis
set superposition correction was applied (e.g., P76 contains peptide conformations with in-
tramolecular interactions resembling closely those of intermolecular complexes in the S22
test set). XDM-based dispersion corrections were done post-SCE The iterative Hirshfeld par-
titioning was implemented using sphericalized restricted-open atomic densities computed
on the fly (i.e., functional specific) with a 99/590 Euler-Maclaurin-Lebedev3"%37! grid. The
energy profiles were computed with a 99/302 Euler-Maclaurin-Lebedev grid. Otherwise, the
SG1 grid 3" was used.

4.6 Results and Discussion

Figure 4.1 summarizes the mean absolute deviation for established methods tested on the
seven sets described above. The difference between “standard” and “recent” functionals (M06-
2X, B97-D, and B2PLYP-D) is significant for all of the test sets (averaged total MAD 5.0 vs 1.5
kcal mol™!). As noted previously, " the performance of the recent functionals on hydrocarbon
reaction energies (H, R, C, and IDHC) is significantly better than that of the standard ones
(MAD of 3.8 and 12.9 kcal mol!, respectively), although chemical accuracy has yet to be
obtained.

The MADs for the best performing variant of the dispersion correction (-dDXDM i.e., iterative
Hirshfeld weights and terms up to Cjp) are shown in Figure 4.2a. Note that (un)corrected
B2LYP (0.47 B88 + 0.53 HF + 0.73 LYP, same functional contributions as in B2PLYP ') is not
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