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To Schrödinger’s cat

Il n’est pas de destin qui ne se surmonte par le mépris.

— Albert Camus, Le mythe de Sisyphe



But it ain’t about how hard ya hit.

It’s about how hard you can get it and keep moving forward.
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Abstract
This thesis introduces original formalisms to achieve an accurate description of dispersion

interactions within the framework of density functional theory. The presented research focuses

on two specific objectives related to density functional approximations: (1) the development

and implementation of dispersion corrections that dramatically reduce the failures for both

inter- and intramolecular interaction energies and (2) the identification of the key factors at

the origin of the errors in thermochemistry.

Kohn-Sham density functional theory has become the preferred methodology for modeling

the energy and structural properties of large molecules, yet common semilocal and hybrid

approximations are affected by well-known deficiencies as illustrated by both the delocaliza-

tion error and their inability to accurately describe omnipresent long-range (van der Waals)

interactions.

After proposing an improved variant of “classical” atom pairwise dispersion correction, we

formulate an efficient dispersion correction that is dependent upon the electron density.

In contrast to the schemes that are typically applied, these dispersion coefficients reflect

the charge-distribution within a molecule. Additionally, the use of density overlaps allows

for distinguishing of non-bonded regions from bonded atom pairs, which eliminates the

correction at covalent distances. A clear advantage of the proposed dDsC scheme is its

ability to improve the performance of a variety of standard density functionals for both

hydrocarbon reaction energies and typical weak interaction energies simultaneously. The

density dependence also offers advantages for highly polarized and charged systems.

Interaction energies of ground-state charge-transfer complexes and π-dimer radical cations

are illustrative examples for which the delocalization error partially counterbalances the

missing dispersion. We demonstrate, however, that, in practical situations, dispersion en-

ergy corrections are mandatory. Following van der Waals interactions, (long-range) “exact”

exchange has been identified as the second most important ingredient for obtaining robust

results. The versatile methodology devised herein reveals the “true” performance of stan-

dard approximations and promises many fruitful applications from metal-organic catalysis to

organic-electronics.

Keywords: density functional theory, van der Waals interactions, London dispersion, disper-

sion correction, hydrocarbon, charge-transfer complex, charge-carrier
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Résumé
Cette thèse introduit des formulations originales pour obtenir une description précise des

interactions de dispersion dans le cadre de la théorie de la fonctionelle de la densité basée

sur le formalisme Kohn-Sham (KS-DFT). La recherche présentée ici se concentre sur deux

objectifs spécifiques : 1) le développement et l’implémentation de corrections qui réduisent

considérablement les erreurs des fonctionelles de la densité pour les interactions de disper-

sion inter- et intramoléculaires ; 2) l’identification des principales origines des erreurs des

fonctionelles standard.

La DFT s’est imposée comme la méthode de choix pour la modélisation de l’énergie et des

propriétés structurelles de molécules de grande taille. Néanmoins, les approximations semi-

locales et hybrides entraînent des défaillances bien connues, par exemple l’erreur de délocali-

sation et leur incapacité á décrire fidèlement les interactions omniprésentes de longue portée

(van der Waals).

Ayant proposé une version améliorée d’une correction interatomique « classique » pour la

dispersion, nous formulons ensuite une correction efficace qui dépend de la densité. A la

différence de l’approche typiquement utilisée, nos coefficients de dispersion reflètent la dis-

tribution de la charge électronique. De plus, le recouvrement des densités atomique permet

de distinguer les contactes non-liants des liaisons chimiques, éliminant ainsi la correction

dans les distances covalentes. L’avantage incontestable de l’approche proposée, dDsC, réside

dans sa capacité d’améliorer conjointement les énergies de réaction d’hydrocarbures et les

interactions faibles pour une grande sélection de fonctionelles standard. De plus, les systèmes

chargés ou fortement polarisés bénéficient grandement de la dépendance de la densité.

Des complexes de transfert de charge et des cations radicalaires de dimères π sont étudiés en

tant qu’exemples illustratifs de la compensation partielle entre le manque de dispersion et

l‘erreur de délocalisation. Nous démontrons qu’en pratique les corrections de dispersion sont

indispensables. Une fois les interactions de van der Waals prises en compte, l’échange « exact »

(á longue portée) est l’ingrédient le plus important pour obtenir des résultats robustes.

La méthodologie polyvalente présenté ici révèle la « vraie » performance des fonctionelles

standard et laisse entrevoir des applications dans des domaines aussi divers que la catalyse

organométallique et l’électronique organique.

Mots-clés : théorie de fonctionelle de la densité, interactions de van der Waals, dispersion de

London, correction de dispersion, hydrocarbure, complexe de transfert de charge, porteur de

charge.
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1 Introduction

Computational chemistry provides a great deal of information about the properties of mol-

ecules and the mechanism that describe chemical reactions. Moreover, computations also

represent a practical tool both for identifying and validating design principles, leading to

improved drugs, more efficient catalysts and fine-tuned self-assembled nanostructures for

organic electronics. 1–6 A myriad of chemical phenomena involve non-covalent interactions,

which govern a variety of molecular architectures. Typical examples of systems dominated

by dispersion interactions include lipid-bilayers, π-π stacking of DNA base pairs7 and the

arrangement of non-polar amino acid side chains. 8 Similarly, supramolecular chemistry criti-

cally depends on these ubiquitous attractive forces, 9 which are also responsible for condensed

phases of non-polar organic molecules (e.g., liquid and crystalline benzene).

Density functional theory 10 is in principle exact, however, in practical applications only ap-

proximations to the exact, unknown, density functional are available. From the computational

perspective, Kohn-Sham density functional theory 11 is a powerful framework for many aspects

of electronic structure theory. Note that throughout this thesis we will use the acronym DFT

for both, the exact theory and the methodology, where approximations are inevitable. Due

to its excellent ratio of performance to computational cost, DFT has become the preferred

methodology for modeling the energy and structural properties of large molecules containing

more than a handful of atoms.4–6 Alternatively, the more realistic description of chemical

reactions in solution is generally achieved by combining a simplified treatment of the solvent

with a DFT based time evolution of the reactants. 3,12

Unfortunately, approximations to DFT have some serious drawbacks: standard density func-

tionalsi neglect long-range dispersion interactions13–23 and overly stabilize electron delocal-

ized structures (i.e., delocalization error).24–30 These two shortcomings are best illustrated

by the typical underbinding of supramolecular assemblies (neglect of dispersion) 31 and the

overbinding of charge-transfer complexes (overstabilization of electron delocalization).32,33

To make matters more complicated, these two deficiencies are rooted in unrelated approxima-

tions and have opposite signs. Given the ubiquitous nature of weak interactions in chemistry,

i“standard” refers to the most widely used semilocal (hybrid) density functional approximations developed
without special consideration of weak interactions.

1



Chapter 1. Introduction

developing an accurate, yet efficient, a posteriori corrective energy termii yields the main

results of this thesis. The development is complemented by analyzing and understanding the

interplay between the delocalization error and (missing) dispersion interactions in relevant

chemical systems, with the broad goal of devising and identifying efficient methods that are

sufficiently robust to overcome both inadequacies.

The physical origin and description of dispersion interactions is discussed in Chapter 2,

followed by an introduction to density functional theory and the general principles of standard

approximations. Two major shortcomings34 of these approaches are relevant to this thesis

and therefore explained in detail: the delocalization (or self-interaction) error24–29 and the

neglect of dispersion.13–23 The delocalization error leads to spurious fractional charges in

dissociating charged complexes 26 and affects geometries and energetics of hydrocarbons. 35,36

The most promising approach to overcome this failure, i.e., exploiting long-range “exact”

exchange, is presented.28 The primary focus of this work concerns the inability of standard

approximations to accurately describe dispersion interactions. The attractive concept of atom

pairwise dispersion corrections (C6/R6, damped at short internuclear distances, R)37–39 is

introduced and alternative approaches are briefly reviewed.

The field of dispersion corrections to density functionals has evolved considerably in recent

years. Since the beginning of this Ph. D. thesis (end of 2008), a plethora of new schemes have

been published. 40–61 To facilitate the presentation of the work accomplished during this thesis,

one adopts a chronological order.

Reactions involving seemingly simple hydrocarbons were among the first unexpected, seri-

ous failures of standard density functional approximations.62–71 As a result, the last decade

experienced a revived interest in developing fundamentally improved density functionals.

Corminboeuf and coworkers were the first to realize that a dispersion correction has the po-

tential to remove systematic errors associated with alkane thermochemistry. 72 However, their

dispersion correction is specifically tailored to alkanes and tends to overbind intermolecular

complexes such as the benzene dimer. By building more physics into the model, Chapter

3 presents a dispersion correction, dD10, which overcomes the lack of robustness and per-

forms well for both hydrocarbons and intermolecular complexes. dD10 falls in the category of

“classical” dispersion corrections, in the sense that the parameters are fixed for each element

and do not depend on the chemical environment. However, dD10 goes beyond the standard

approximation by improving the description of medium-range nonbonded interactions (e.g.,

1,3 C· · ·C or 1,5 H· · ·H) through higher-order terms (i.e., beyond C6/R6) and relying on the

Tang and Toennies damping function 73 which has a strong physical background. This chapter

is published in the Journal of Chemical Theory and Computation. 74

Building on the success of dD10, Chapter 4 introduces a more general dispersion correction,

which depends on the density of the molecule, while preserving the appealing simplicity

iiAll the developed dispersion corrections are applied post-SCF, i.e., they do not influence the electron density,
but only the energies. See page 2.2.2 for more details.
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of a sum over atom pairs, in contrast to more complex fully nonlocal functionals. The den-

sity dependence is incorporated in the dispersion coefficients (C6, C8 and C10) through the

nonempirical exchange hole dipole moment (XDM) formalism of Becke and Johnson.75–80

In addition, the Tang and Toennies damping function73 is adapted to account for ionic and

covalent bonding regimes. The resulting scheme, called dDXDM, is tested on a broad set of

systems for which dispersion interactions are prevalent. The results presented in this chapter

are also published in Journal of Chemical Theory and Computation. 81

With the previously developed accurate dispersion correction at hand, Chapter 5 aims at

understanding deficiencies in standard density functionals for hydrocarbon chemistry. The

analysis is based on bond separation energies82–84 for alkanes, which are seriously under-

estimated by standard density functionals and therefore highly challenging.69,70,72 These

failures are correlated with errors in the repulsive regime, i.e., with the performance for the

compressed methane dimer.36 Additional information is gathered from typical systems for

intramolecular dispersion in hydrocarbon chemistry, best exemplified by paracyclophanes

or the photo-dimer of anthracene.85 The origin of the error can be traced to a combination

of over-repulsiveness and missing dispersion, in both the medium and long-range. Many

modern methods improve over standard functionals, but are not as successful as the density-

dependent dispersion correction dDXDM, designed to handle hydrocarbon chemistry. The

analysis presented in this chapter is published in the Theoretical Chemistry Accounts. 86

The highly encouraging performance of dDXDM, motivated the elaboration of a simplified

variant of Becke and Johnson’s exchange hole dipole moment (XDM): the XDM formalism is

nonempirical, but associated with an intricate dependence on the electron density and its

derivatives.75–80 As a result, the method has not been widely implemented, and is available

only in Becke’s in-house code as well as in one commercial program.87 Chapter 6 demon-

strates that accurate dispersion coefficients (C6) are obtained with only two semi-empirical

parameters. The scheme is simple to implement, relying only on the electron density and its

first derivative. This development is presented in The Journal of Chemical Physics. 88

Chapter 7 presents the final version of the dispersion correction developed in this thesis:

aiming at improved general thermochemistry with standard density functionals, the simplified

dispersion coefficients are incorporated in a well balanced density-dependent dispersion

correction called dDsC. Due to the carefully designed damping function, the leading C6 term

provides essentially the same accuracy as obtained when higher-order terms are included.

The scheme is validated by extensive benchmarking on diverse reaction energies, including

not only hydrocarbons and weak intermolecular complexes, but also alkali metal and water

clusters. Geometry optimizations of tricky molecules, such as C2Br6 or [2.2]paracyclophane

confirm that dDsC is broadly applicable to “real” chemical situations. The results presented

in this chapter are published in the Journal of Chemical Theory and Computation 89 and the

dDsC correction is available in widely used quantum chemistry codes.

The interplay between two fundamental failures (missing dispersion and delocalization error)

3



Chapter 1. Introduction

of standard DFT approximations is investigated in Chapter 8 using illustrative charge-transfer

complexes. Based on high-level ab initio data, energy decomposition analysis and the effect

of dDsC, it is demonstrated that the failure to describe accurately the binding energy in the

ground state is not only due to the missing long-range exchange as generally assumed, but also

to the neglect of weak interactions. The realization that the charge-transfer interaction itself

accounts only for a minor fraction of the binding energy is key to understanding the impor-

tance of applying a dispersion correction to standard DFT, even for charge-transfer complexes.

The role of the actual charge-transfer is to enable the monomers to approach each other more

closely, rather than to provide binding, which is dominated by dispersion interactions. These

findings are also published in the Journal of Chemical Theory and Computation. 90

Introducing a benchmark database of π-dimer radical cations (e.g., (thiophene)2
·+), Chapter 9

explores the limit of applicability of dispersion corrected standard functionals: in comparison

to charge-transfer complexes, the delocalization error is more pronounced, while dispersion

still plays a significant role. Hence, the description of the interaction energy is tricky even

around the equilibrium distance. The analysis further reveals that achieving the correct

dissociation behavior requires a drastically reduced delocalization error and an accurate

modeling of dispersion interactions. This chapter will be published in the Journal of Chemical

Theory and Computation.

Finally, Chapter 10 concludes this thesis putting emphasis on the crucial role that dispersion

energy corrections play to broaden the applicability of standard methods and understand

their failures. Perspectives on the few remaining limitations of current dispersion corrections

are also presented.

4



2 Theoretical Background

This chapter introduces the theoretical background most relevant to this thesis. The first

section gives a historical overview for the origin of dispersion and summarizes the physical

description of the phenomenon. All the development and analysis presented in the following

chapters are based on Kohn-Sham density functional theory, 10,11 which is introduced in the

second section. Note that post-Hartree-Fock (e.g., Møller-Plesset perturbation 91 and coupled-

cluster theory 92) supermolecular approaches and symmetry adapted perturbation theory 93

(SAPT) computations that serve as benchmark data throughout this work are not discussed.

Density functional approximations suffer from two major drawbacks, i.e., the delocalization

(or self-interaction) error and the neglect of dispersion interactions, which are particularly

relevant to the present context. The origin of the two errors is explained extensively and

perspectives on how to reduce the consequent failures are also presented.

2.1 Dispersion Interactions

Understanding the origin of dispersion interactions relies upon two important related physical

phenomena that were reported in the earlier scientific literature: optical dispersion and van

der Waals’ equation of state.

In the second half of the 17th century, Newton demonstrated that white light passing through

a glass prism gets split into the spectral colors. The underlying frequency dependent prop-

agation of electromagnetic radiation is known as (optical) dispersion. This phenomenon is

successfully explained by a collection of Drude oscillators, i.e., electrons behave as (coupled)

harmonic oscillators. Non-equilibrium positions correspond to induced dipole moments

arising from the interaction with an electric field. The dispersion theory was established

before the advent of quantum mechanics, but adjustments to account for the quantum nature

of electrons were minor. 94

The second piece of classical physics pertinent to dispersion is van der Waals’ equation for
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non-ideal gases 95

(
p + avdWN 2

V 2

)(
V

N
−bvdW

)
= kB T (2.1)

where p is the pressure, N the number of particles in volume V , kB Boltzmann’s constant

and T the absolute temperature. avdW and bvdW are the (empirical) parameters, characteriz-

ing attractive and repulsive forces between the particles, respectively. According to classical

physics, rare-gas atoms should not attract each other, as they do not possess any electrostatic

multipole moments and do not benefit from gravitation, which is completely negligible at the

atomic level. Nevertheless, the rationalization of the properties of rare gases requires a weak

attractive force (avdW > 0).

The physical origin of the weak attractive term in van der Waals’ equation remained a mystery

until the early days of quantum mechanics: London realized that applying perturbation theory

to the interaction between any two atoms gives rise to weak interactions at second order.96

The mathematical description is reminiscent of what could be expected from an interaction

with a “virtual radiation”, i.e., from the interacting (Drude) oscillators of the classical disper-

sion theory. Soon afterwards,97 London introduced the term “dispersion interactions” and

demonstrated that they are responsible for the major contribution to the attractive van der

Waals force.i

Exploiting classical dispersion theory, the phenomenon is easily rationalized as the interaction

between oscillators with frequencies corresponding to optically allowed electronic excita-

tions. 98 In this terminology, dispersion arises from a spontaneous dipole moment (emanating

from zero-point motions of electrons, i.e., non-equilibrium positions of the oscillators) on

one monomer, inducing a dipole moment on the second monomer. For two non-overlapping

atoms or molecules A and B in their ground state, the second order dispersion interaction is

given by

E (2)
disp =−2

3

1

R6

∑
nA ,nB

µ2
nA
µ2

nB

∆EnA +∆EnB

(2.2)

where nA and nB are the (virtual, allowed) excited states of molecule A and B , respectively,

∆EnA and ∆EnB are the corresponding excitation energies and µnA and µnB the associated

transition dipole moments. The three significant characteristics of equation 2.2 are:

• Dispersion interactions between molecules in the excited states are potentially repulsive,

as some terms in the denominator become negative.

• Species featuring low-lying excited states (i.e., colored or charge-transfer complexes)

benefit from strong dispersion interactions due to their smaller contribution in the

denominator.

• Valid for dimers, the “peculiarity of additivity”98 is obtained when eq 2 is generalized

to oligomers in a pairwise manner. Corrections for trimers99,100 are obtained at 3rd

iSome authors like to distinguish London dispersion from van der Waals interaction, considering that vdW
includes all non-covalent interactions, not only London dispersion. Herein, we will use (London) dispersion and
van der Waals interactions interchangeably.

6



2.1. Dispersion Interactions

order perturbation theory and many-body terms have to be considered in general.

Drude oscillators or the somewhat more general coupled plasmon model, 101–105 conve-

niently approximate the many-body terms, which become especially important for very

anisotropic systems, such as two molecular chains. 106

Charge density response functions χ(r,r′; iω), are the main ingredient of the generalized

Casimir Polder formula, 107,108 which describe dispersion as well as equation 2.2

E (2)
disp =

∫ ∞

0
dω

∫ ∫ ∫ ∫
drdr′dsds′χA(r,r′; iω)

1

|r′−s|χB (s,s′; iω)
1

|s′− r| (2.3)

where r and r′ refer to subsystem A, while s and s′ are the space variables in subsystem B . This

formulation is widely used to derive approximations. 109–112

Equation 2.2 depicts the dipole-dipole interaction, whereas equation 2.3 illustrates more

clearly the coupled charge fluctuations. Furthermore, according to the original work of

Casimir and Polder,113 the inclusion of “retardation” effects, i.e., corrections for the finite

speed of light, is more transparent in eq 2.3 than in eq 2.2. Retardation effects, which are

only prevalent on the nanolength scale, modify the 1/R6 asymptotic form into 1/R7. The

pairwise 1/R6 asymptote implies some locality within a system, i.e., the electron fluctuations

are occurring on the length scale of an atom, which is a very good approximation in insulators.

However, when the band gap is close to zero such as in semi-conductors and metals, the

electron fluctuations (induced dipoles) are delocalized over lengths scales much larger than

an atom. Dobson and coworkers,105,114–116 emphasized that these delocalized fluctuations

lead to deviations from the standard 1/R6 form.116,117 Graphitic systems and graphene are

typical examples of organic materials that do not follow the atom pairwise 1/R6 form. 114

The dispersion energy beyond second order is best defined as a special case of the exact ex-

pression for the correlation energy given by the adiabatic connection fluctuation-dissipation

theorem formalism to DFT (see page 11 for some more details).

Note, that all post-HF methods (i.e., MP2 and higher) include automatically energy terms that

are of the form of equation 2.2 or 2.3 and therefore account for long-range dispersion. However,

the accuracy can vary significantly and has motivated correction schemes for MP2. 112,118–121

The static picture, i.e., without invoking fluctuating dipoles/charge densities (see Figure 2.1),

provides an alternative view on the origin of the attractive force arising from dispersion interac-

tions: the correlated motion induces a small deformation of the monomer electron density and

an accumulation of excess density between the nuclei. The attractive force is then explained

in terms of the (classical) electrostatic interaction between the nucleus with its distorted

electron density. 122 The main advantage of the static depiction is that the effect of dispersion

interactions can be visualized in real-space, which is somewhat more intuitive. The evaluation

of the weak dispersion forces according to the Hellmann-Feynman theorem, i.e., based on

the electrostatic interaction, requires an exceptional degree of (numerical) accuracy when

computing electron densities,23,123 which might rationalize the general observation that in

the DFT context, self-consistent treatment of dispersion is not needed for accurate interaction

energies (vide infra). Nevertheless, the visualization of the electron density rearrangement can

7



Chapter 2. Theoretical Background

Figure 2.1: Schematic view on how two atoms without any electrical monopoles interact through dispersion: a) At infinite
separation, there is no interaction and the spherical symmetry is preserved. b) When the electrons interact, they
are correlated and the instantaneous dipole moment in system A induces a dipole moment in system B . c) In the
time independent picture, the correlated motion of electrons leads to a slightly polarized electron density.

serve as a validation of existing approximate schemes or as a source of inspiration for devising

new approximations.

In summary, there exists a weak attractive interaction (i.e., dispersion) between any two

(ground state) atoms or molecules. Accounting for London dispersion requires the description

of the correlated motion of two electrons that is inherently challenging. However, the effort is

worthwhile: understanding and modeling van der Waals interactions is of utmost importance

for describing various phenomena, including π-π stacking and condensed phases of neutral

organic molecules. Not to mention that dispersion allows geckos to crawl up walls, 124 French

fries to be crispy 125 and crime scenes 126,127 to be resolved through fingerprints!

2.2 Density Functional Theory

Electronic structure theory aims at approximating the solution to Schrödinger’s equation for

atoms, molecules and solids as accurately as possible, given the system size and computational

resources.

In the time-independent Schrödinger equation, the wave functionΨ is an eigenfunction of

the Hamiltonian Ĥ , with E being the associated eigenvalue, identified as the energy.

ĤΨ= EΨ (2.4)

Throughout this thesis, the Born-Oppenheimer approximation is applied, i.e., Schrödinger’s

equation is solved for electrons in the (fixed) field of point-charges representing the nuclei,

8



2.2. Density Functional Theory

which corresponds to the following Hamiltonian

Ĥ =−1

2

N∑
i=1

∇2
i −

N∑
i=1

Nat∑
A=1

ZA

|ri − rA|
+

N∑
i=1

N∑
j>i

1

|ri − r j |
(2.5)

where N is the number of electrons, ∇2 is the Laplacian and index A runs over all atoms Nat

with the nuclear charge ZA .

Restricting the maximal complexity of the wave functions to a level that is computationally

manageable leads to the traditional approximate solutions of Schrödinger’s equation such

as Hartree-Fock or multi-configurational self-consistent field (MCSCF). In contrast, density

functional approximations avoid the explicit construction of a wave function and rather

modify the Hamiltonian, making an exact solution computationally tractable. In addition to

the modest computational cost, approximate DFT has two key advantages: (i) The ease of

application to solids and condensed phase in general, i.e., DFT is not only used for atoms and

molecules but also readily applied to surface chemistry and solid state physics. (ii) Excited

states are as readily obtained as ground states. As neither of these features is exploited in this

thesis, they will not be discussed further.

2.2.1 Principles

The main idea of density functional theory is that the complexity of the wave functionΨ(x),

depending on 4N variables (each of the N electrons has 3 spatial and 1 spin coordinate), is

higher than needed for fully describing the system. The appealing ansatz of DFT is to develop

a theory that does not require explicitly the complicated wave function but only the much

simpler electron density

ρ(r) =
∫

· · ·
∫

|Ψ(x1,x2, ...xN)|2d s1dx2 . . .dxN (2.6)

which depends only on 3 variables (x, y and z in real space). If equations depending on

ρ(r) could describe the system equally well as the wave function, one would achieve an

enormous computational speedup. The early days of quantum mechanics already witnessed

the development of density functionals based on the homogeneous electron gas. Thomas 128

and Fermi 129 explored a functional for the kinetic energy in 1927, whereas Dirac’s exchange

functional130 from 1930 is still in use, although often referred to as Slater’s functional.131

Unfortunately, the Thomas-Fermi-Dirac functional is of no value for chemistry: 132 molecules

are not bound!

Modern DFT is based on the Hohenberg-Kohn theorems, 10 which (i) assure that the electron

density determines the ground state of a system completely and (ii) that a variational principle

holds: the energy of the ground state density is the global minimum. Hence, on a formal

level the wave function is not needed. As Levy remembers,133 Bright Wilson trivialized the

Hohenberg-Kohn existence theorem: according to Kato’s cusp condition, 134,135 the cusps of

an electron density determine the charge (identity) of the nuclei. Additionally, the number

9



Chapter 2. Theoretical Background

of electrons is obtained by simple integration. The two pieces together are enough to specify

the molecular Hamiltonian and thus all properties unambiguously, but without leading to

any practical consequences. A more constructive formulation is Levy’s constrained search, 136

bridging the gap between DFT and wave functions.

E0 = min
ρ→N

(
min
Ψ→ρ

〈Ψ|T̂ + V̂ne + V̂ee |Ψ〉
)

(2.7)

where T̂ is the kinetic energy operator, V̂ne the electron-nuclei and V̂ee electron-electron

interactions, respectively. Levy’s formalism opens the possibility to explore properties of the

exact functional and hence goes further than the existence theorems of Hohenberg and Kohn.

One year after the Hohenberg-Kohn theorems, Kohn and Sham introduced a more practical

formalism. 11 In KS-DFT, the electronic energy is expressed in terms of a non-interacting model

system, representing the exact density by a single Slater determinant

E [ρ] = Ts[ρ]+Vne [ρ]+ J [ρ]+Exc [ρ] (2.8)

The kinetic energy of a single Slater determinant, Ts[ρ], is known exactly as an implicit density

functional: the Slater determinant ψ built from the occupied orbitals φi (r) corresponds to the

exact density and minimizes the kinetic energy.

Ts[ρ] = min
ψ→ρ

(
−1

2

N∑
i

∫
φi (r)|∇2|φi (r)dr

)
(2.9)

where N is the number of electrons and ∇2 is the Laplacian. According to the virial theorem, 137

the kinetic energy accounts for half of the potential energy. Therefore, a relatively small error

(e.g., 10%) in the kinetic energy has serious consequences. In fact, the inaccurate treatment

of the kinetic energy as an explicit functional of the electron density (e.g., the Thomas-Fermi

model) entails disastrous results for the energy of molecules and limits the practical usefulness

of Hohenberg-Kohn DFT. Conversely, Ts[ρ] is the main reason for the success of KS-DFT, since

only a small correction term to the kinetic energy needs to be approximated as an explicit

density functional.

Vne [ρ] and J [ρ] are straightforward integrals accounting for the classical electrostatic electron-

nuclei attraction and the electron-electron repulsion, respectively

Vne [ρ] =−
∫
ρ(r)

Nat∑
A=1

ZA

|r− rA|
dr J [ρ] = 1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′ (2.10)

where index A runs over all atoms Nat with the nuclear charge ZA .

The only quantity not known explicitly is the exchange-correlation functional Exc [ρ] which in-

corporates all the intricate many-body physics of the real quantum mechanical (QM) problem

and can be formally re-expressed as

Exc [ρ] = (T [ρ]−Ts[ρ])+ (Vee [ρ]− J [ρ]) (2.11)

10



2.2. Density Functional Theory

where the first term is the correction for the kinetic energy difference between the single

determinant and the true kinetic energy T [ρ]. The second term is the difference between the

QM interelectronic interaction Vee and its classical analogue J .

Hartree-Fock (HF) can be seen as a special case of a DFT functional: correlation is completely

neglected, but exchange is treated “exactly”, i.e., by the formula for a single Slater determinant

E HF
x =−1

2

N∑
i , j

∫ ∫
φ∗

i (r1)φ j (r1)
1

|r1 − r2|
φi (r2)φ∗

j (r2)dr1r2 (2.12)

However, correlation is very important for chemical and physical phenomena and needs to be

taken into account.

The adiabatic connection fluctuation-dissipation theorem approach to DFT provides exact

expressions for the correlation energy 138–140

Ec =−1

2

∫ 1

0
dλ

∫ ∞

0

dω

π
Im

∫
drdr′

1

|r− r′| [χλ(r,r′,ω)−χ0(r,r′,ω)] (2.13)

where the integral over λ is the coupling strength integration of the interelectronic interaction
λ

|r−r′| from a non-interacting (λ = 0) to the fully interacting (λ = 1) system, while keeping

the ground-state density ρ fixed at its true (λ= 1) value. χ0 and χλ are the non-interacting

and λ scaled interacting (frequency ω dependent) density – density response functions to

perturbations to the external potential e−iωtδVext(r) and satisfy

δρ(r, t ) = e−iωt
∫
χλ(r,r′,ω)δVext(r′)dr′ (2.14)

Alternatively, χλ can be defined as

χλ(r,r′,ω) =χ0(r,r′,ω)+
∫

dr1dr2χ0(r,r1,ω)

[
1

|r− r′| + f xc
λ (r,r′,ω)

]
χλ(r2,r′,ω) (2.15)

where the exchange-correlation kernel is given by

f xc
λ (r,r′,ω) = δ2Eλ

xc [ρ]

δρ(r)δρ(r′)
(2.16)

Equation 2.13 is the starting point not only for deriving van der Waals density functionals 141

but also for the random phase approximation (RPA) in the DFT context, where f xc
λ

(r,r′,ω) = 0

is employed. 142 Restricting χ to responses to dipole perturbations, an exact expression for the

dispersion energy is obtained that, in contrast to eq 2.2, includes all many-body effects. 143 Note

that charge – density response functions can also be exploited to define the exact electronic

energy of a system, without invoking any non-interacting reference system or a coupling

strength integration. 144

Since Exc has to be approximated, the success of DFT is driven by the ongoing quest for

improved exchange-correlation functionals. In contrast to wave function based electronic
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structure theory, the complexity of the many-body nature of Coulomb interactions in DFT

is incorporated in the functional itself. In other words, once the universal functional (or a

good approximation for it) is known, the actual computations are done in a one-particle

formalism, which is considerably less demanding than the determination of the correlated

wave function. If this comparable simplicity of DFT has to be sacrificed for an accurate

description of challenging systems, the main advantage of the formalism is lost.

Figure 2.2: Jacob’s ladder of density functional approximations toward chemical accuracy. First rung functionals depend on
the local density, second rung on the density and its gradient, third rung on the kinetic energy density τ, fourth
rung functionals depend non-locally on the occupied orbitals, while the fifth rung introduces dependence on the
unoccupied orbitals.

Common Density Functional Approximations

Density functional approximations Exc are usually formulated as a combination of an ex-

change functional Ex and a correlation functional Ec . This splitting into two components has

many formal advantages (especially since many properties of “exact” exchange are known

from Hartree-Fock), but is also associated with “artificial” difficulties145 and, as a result, has

been partially abandoned lately. 146

The common ingredient for density functionals is the electron density ρ(r) itself, giving

the local (spin) density L(S)DA approximation. LSDA exchange is uniquely defined ana-

lytically, 130,131 whereas several slightly different parameterizations are available for the corre-

lation functional, mostly relying on highly accurate Quantum Monte Carlo simulations, 147 but

also on low- and high-density asymptotic limits.148 SVWN5149 and SPW92150 are the LSDA

functionals used routinely.

In the generalized gradient approximation (GGA), 151 the variations of the electron density are

accounted for by including a dependence on the density gradient ∇ρ(r). There exists a large

diversity of GGA functionals in the literature given that the flexibility of GGAs is too limited to

simultaneously satisfy all constraints relevant for solids and molecules. 152,153 BLYP 154,155 and

PBE 156 are the most widely applied GGA functionals in chemistry and physics.
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Meta-GGA functionals depend also on the kinetic energy density τ(r) =∑N
i |∇ψi (r)|2 which

contains similar information 157 as the Laplacian of the electron density ∇2ρ(r) that is hardly

incorporated. Popular examples of τ(r)-dependent functionals are TPSS158 and M06-L;159

the most important example of a Laplacian dependent functional is the BR89 160 exchange

functional.

GGA and meta-GGA functionals are called semilocal functionals, as they depend on local

information and the infinitesimal close vicinity. Beyond the semilocal approximations, hybrid

(or hyper-)GGA functionals, exemplified by the famous B3LYP functional, 161,162 include a frac-

tion of (nonlocal) Hartree-Fock exchange (eq 2.12). Similarly, double hybrid functionals (e.g.,

B2PLYP163) include a fraction of many-body second order perturbation theory correlation

energy. 163,164

There is no systematic route for improving density functionals except through the costly

coupling of many-body wave function approaches with DFT in “ab initio DFT”.165–167 Nev-

ertheless, the continuous improvement when going from LDA to double hybrid functionals

corresponds to Perdew’s dream, 168 represented by the Jacob’s ladder climbing from the world

of LDA to the heaven of chemical accuracy (Figure 2.2).

2.2.2 Failures

Approximations currently available suffer from three serious short-comings: 34

• The delocalization error24,26–29 causes erroneous dissociation curves of odd electron

bonds (e.g., H2
+) and produces fractionally charged instead of neutral atoms upon

dissociating alkali halides or hydrides. 25,27,169,170

• The attractive long-range London dispersion is missing. 14

• The static correlation error (deviation from a constant energy for fractional spins) af-

fects singlet-triplet gaps and occurs typically in transition metal compounds,171–173

π-conjugated molecules174–176 and stretched covalent bonds. 177–180

The static correlation error is not relevant to the present thesis, and therefore not discussed

further. The following two subsections are devoted to the first two failures, i.e., delocalization

error and neglect of dispersion.

Delocalization or Self-Interaction Error

One electron does not interact with itself. Despite its simplicity, this statement is not as trivial

as it seems in the context of approximate methods. The origin of the problem is the classical

Hartree energy J of eq 2.8: a classical charge density has a non-zero Coulomb energy.

In wave function methods, the Hartree term of a single electron is identically canceled by the

exchange interaction

E HF
x =−1

2

∫ ∫
φ∗(r)φ(r)φ∗(r′)φ(r′)

|r− r′| drdr′ =−J =−1

2

∫ ∫
ρ(r)ρ(r′)
|r− r′| drdr′ (2.17)
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Therefore, Hartree-Fock is exact for all one-electron systems and wave function methods are

one-electron self-interaction free, assuming zero correlation energy for one electron. However,

for density functionals, where exchange and correlation are approximated, self-interaction is a

serious issue. In fact, already in 1934, a long time before the advent of “modern” density func-

tional theory, Fermi and Amaldi proposed an approximation to remove the self-interaction. 181

Slater noted later that molecules such as NaCl dissociate into non-integer charged fragments

as a consequence of self-interaction energy terms; 169 nevertheless he seems not to have real-

ized the unphysical nature of the fractional charges. 25

Self-interaction in modern density functionals is extensively discussed since Perdew and

Zunger’s seminal work. 24 They proposed to remove the self-interaction error orbital by orbital.

Not only is the Perdew-Zunger self-interaction correction (PZ-SIC) computationally intensive,

but the energy is not invariant with respect to orbital localization. Furthermore, PZ-SIC has

an equivocal impact on the results: electron affinities, 24 challenging reaction barriers 182 and

chemical shifts183 are improved, but most thermochemistry benchmarks are dramatically

deteriorated. 184

Assigning a zero energy contribution to one-electron densities avoids self-correlation (e.g.,

LYP, 155 B95 185 and TPSS 158 correlation functionals). However, the exchange has to cancel the

Hartree term exactly and thus is more challenging. So far, only functionals relying on 100% “ex-

act” exchange (MCY2, 186 B05 187 and PTST 188) are free from one electron self-interaction error

(1-SIE) without an explicit SIC. Unfortunately, in many-electron systems, even 1-SIE free func-

tionals behave very similarly to standard approximations. 28,29,189,190 This recurrent deficiency

has been coined many-electron self-interaction error (N-SIE).28,29 The formal condition for

being N-SIE free is not well known. “Delocalization error” is an alternate terminology,30,36

which emphasizes the physical consequence of the problem: electron densities are too delo-

calized, causing the erroneous stabilization of fractionally charged atoms and molecules, 30,36

unbound electrons in certain anions 191,192 and an overstabilization of conjugated geometries

with respect to non-conjugated ones. 35

The most promising approach to reduce delocalization errors is probably the use of long-range

corrected exchange functionals, which treat the long-range electron-electron interaction by

“exact” exchange.28 Savin and coworkers developed the range-separation to rigorously com-

bine DFT ideas with multi-determinantal wave function techniques.193,194 As a byproduct,

the long-range correction (LC) scheme for LDA exchange was obtained. The idea is to split

the electron repulsion operator 1
r12

into two ranges (long and short) with the most common

choice being an Ewald-style partition based on the error function

1

r12
= erfc(µr12)

r12︸ ︷︷ ︸
SR

+ erf(µr12)

r12︸ ︷︷ ︸
LR

(2.18)

where the µ parameter is generally selected empirically and controls the definition of the

two ranges. The physical motivation for the LC scheme is the incorrectly decaying potential

of standard DFT functionals: the xc potential νxc = δExc [ρ]
δρ of semilocal functionals decays

exponentially along with the density, violating the exact -1/r asymptotic form. 195,196 Applying
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the range-separation and introducing HF-exchange for the long-range restores the correct

asymptote.

LC functionals reduce the delocalization error considerably, but the choice of range-separation

parameter remains inconvenient. 197–200 The determination of µ is possible according to first

principles, i.e., µ is tuned to reproduce the vertical ionization energy and electron affinity by

the HOMO and LUMO energies, respectively. This choice leads to a consistent improvement

for excitation energies and other properties.199–203 However, tuning the functional for each

molecule specifically is not only cumbersome, but also precludes the computation of reaction

energies: if the functional changes from reactants to products, the energies are not comparable,

i.e., range-tuning breaks size-consistency. Variants based on local range-separated hybrids 204

are size-consistent, but not broadly explored because of their computational complexity.

In summary, self-interaction errors are nearly omnipresent within approximate density func-

tionals. Even though long-range corrected exchange functionals offer many advantages and

minimize the failures considerably, more development is needed to solve the problem rigor-

ously.

Dispersion Interactions

The ubiquitous nature of dispersion interactions, which are neglected at the semilocal (hybrid)

density functional level, 13,14,19,23,105,116 has stimulated intense research during the last decade.

The literature is too vast for providing a detailed survey on the available methods or on all

the issues resulting from the neglect of van der Waals interactions. The discussion of specific

errors is postponed to the following chapters, as well as all the aspects directly relevant to

the particular dispersion corrections developed within this thesis. This section provides an

overview of the available approaches and emphasizes the scheme diversity.

Long-range dispersion interactions are undeniably missing at the semilocal (hybrid) density

functional level. However, around the equilibrium distance, many intermolecular complexes

are characterized by an appreciable nonbonded density overlap and density functionals can

recover “dispersion like” interactions. The extent to which dispersion is accurately described

depends dramatically on the precise definition of the functional. Wesolowski et al. have

nicely demonstrated that the energy density associated with the high gradient, low electron

density regime determines the accuracy of GGA functionals. 205 First principles information

about the corresponding large reduced density gradient (s = |∇ρ|
2·(3π2)1/3·ρ4/3

) is contradicting:

the enhancement factor (by which Dirac’s exchange is multiplied) is divergent if a GGA is

built to satisfy the correct asymptotic -1/R exchange energy density, the main achievement

of Becke’s 1988 functional.154 However, only modest asymptotic values ensure the global

Lieb-Oxford bound,206,207 which gives a lower limit to the total energy and is an essential

input in nonempirical functionals such as PBE. The conflicting first principles arguments

motivate to seek empirical functionals that exploit maximally the information of nonbonded

densities. The success of the empirical approach was, at first, relatively modest, e.g., X3LYP 208

binds rare gas dimers, but does not describe π-π stacking well. 31 The design of more flexible

15



Chapter 2. Theoretical Background

functionals209,210 and the expansion from GGAs to meta-GGAs211–213 has resulted in the

development of M06-2X,214 one of the most accurate hybrid meta-GGA functional for weak

interactions. Nevertheless, in order to account for long-range dispersion interactions, either

nonlocal correlation functionals or dispersion corrections are mandatory.

Dependence on Virtual Orbitals Dispersion interactions are incorporated in all post-HF

methods. Therefore, borrowing ideas from wave function theory overcomes the limitations

of semilocal approximations. However, in most practical schemes the dependence on the

virtual orbitals is not included self-consistently, i.e., they are done “post-KS”, in analogy to

post-HF methods. Therefore, these methods can be considered energy corrections, rather than

improved exchange-correlation functionals. Nevertheless, self-consistency can be achieved,

e.g., through the optimized effective potential (OEP) approach. 215,216

The simplest variants are double hybrid functionals, which include a percentage of many-body

second order perturbation theory correlation energy. 163,164 Similar to hybrid functionals, 217

double hybrid functionals can be rationalized from first principles.218–220 Depending on the

formulation and the parameters, the percentage is high enough to account for weak long-

range interactions.221–223 However, in most functionals the percentage is rather small (e.g.,

27% MBPT2 in B2PLYP 163) and an additional dispersion correction is recommended. 85,224–226

In analogy with (global) hybrid functionals, long-range corrected correlation functionals

introduce the wave function correlation only at long interelectronic distance, a concept that

has been paired with PT2 227 and more accurate methods, such as CCSD(T). 228 The simplest

approximation to the exact eq 2.13, i.e., setting the exchange-correlation kernel (eq 2.16) to

zero, is the increasingly popular, although computationally expensive, RPA. There are many

formulations of RPA and we refer to ref 142 for a review. It is sufficient to say that the appealing

features are the inclusion of many-body effects, the applicability to the solid state and to zero

band-gap systems, (e.g., metals or strongly correlated materials), for which PT2, included in

double hybrids, diverges.

The major disadvantage of the dependence on virtual orbitals is the computational expense

and the (re-)introduction of the basis set dependence inherent to post-HF methods.229–231

The reduced basis set dependence of standard density functionals is rooted in its very different

description of correlation: in wave function methods, correlation effects are described as

excitations into virtual orbitals whereas in DFT correlation is directly based on the density. The

virtual space, describing the full flexibility of electrons, is much more complex than the (few)

occupied orbitals. For example, the cusp condition (related to the probability of finding two

electrons of opposite spin at the same point in space) is approximately included at the LDA

level, 140,232 but reproducing a cusp with atom centered Gaussian basis sets is a considerable

task. 233,234

van der Waals Density Functionals and Dispersion Corrections The van der Waals density

functionals are fully nonlocal and independent from virtual orbitals. 47,48,53,141 Roughly, these

nonlocal functionals model dispersion based on coupled local oscillators having a frequency
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determined by the local density and its gradient. The coupling responsible for dispersion

interactions is introduced through a double integration. The chosen form ensures the standard

-C6/R6 asymptote, but does not account for more intricate many-body effects. Four main

flavors have been developed: vdW-DF04 141 and vdW-DF10 53 from Langreth’s group, and the

somewhat more heuristic VV09 47 and VV10 48 functionals from Vydrov and van Voorhis. The

double numerical integration is, in general, rather expensive, but reformulations involving

Fourier transforms235 or use of coarse grids236 now make their evaluation routinely feasible.

The local response for dispersion (LRD) formalism of Sato and Nakai 45,46 combines VV09 with

a dramatic simplification: the double numerical integral is avoided by expressing the van

der Waals interaction as an atom pairwise sum, which leads to the general form of typical

dispersion corrections

Edisp =−
Nat∑
i=1

Nat∑
j>i

fd (Ri j )
C i j

6

R6
i j

(2.19)

where Nat is the number of atoms in the system, Ri j is the internuclear distance between

atom i and j and C i j
6 is the associated dispersion coefficient. fd (Ri j ) is a damping function,

accounting for the physical damping arising from to density overlap and removing the un-

physical divergence for zero internuclear distance. The form and role of the damping function

is discussed after the next paragraph that gives an overview on atom pairwise dispersion

corrections.

Atom pairwise dispersion corrections (eq 2.19) have a long history and were developed origi-

nally for Hartree-Fock. 37,237–239 After an hesitant exploration of such corrections in the context

of density functional approximations, 22,240 the breakthrough was stimulated by the improve-

ment of semi-empirical methods241 and the systematic study of weak interactions of hy-

drocarbon dimers by Wu and Yang.38 The most popular dispersion correction to date was

developed by Grimme in 2006,39 providing for the first time a set of parameters for most

elements of the Periodic Table and parameterizations for several popular density functionals.

The acronym DFT-D has been firmly established ever since. Many reparameterizations of

DFT-D are available, most of them concentrating on intermolecular complexes around equi-

librium, few including non-equilibrium geometries explicitly in the training set. In addition to

the training set, the obvious differences between the approaches are related to the damping

function fd (Ri j ) and the dispersion coefficients C6. We refer to these methods as “classical”

dispersion corrections, if the C6 coefficients and van der Waals radii (R0) or other parameters

for the damping function are tabulated a priori. C6 and R0 parameters can be freely fitted,

derived from experimental data or computed for atoms or reference compounds. In Grimme’s

latest dispersion correction (dubbed D3) 42 the C6 coefficients are determined by interpolation

between a fixed number of reference values. Therefore, even though geometry dependent

through fractional coordination numbers, we consider D3 a “classical” dispersion correction.

Beyond the “classical” schemes the choice is more limited. The most prevalent variants of

atom pairwise, density-dependent dispersion corrections are Becke and Johnson’s exchange

hole dipole moment (XDM) formalism, 75–80 Tkatchenko and Scheffler’s vdW-TS method 44 and

17
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Sato and Nakai’s local response for dispersion (LRD). 45,46 XDM requires tabulated free atomic

polarizabilities and vdW-TS relies on free atomic C6 coefficients and vdW-radii. Only LRD

does not depend on any atomic reference data and has, through its VV09 roots,47 probably

the strongest physical background. Our most successful scheme (i.e., dDsC),89 exploits an

XDM formalism and will be detailed in Chapter 7. Note that all density-dependent dispersion

corrections should be implemented self-consistently, i.e., their contribution to the Fock matrix

should be included. However, both the LRD242 and the XDM87 formalism turned out to

influence the SCF solution only to a negligible extent, which is also in line with experiences

for the van der Waals density functionals.243–245 Therefore, all our dispersion corrections

are applied as pure a posteriori energy corrections, i.e., the electron density with/without

dispersion correction is identical.

Most atom pairwise dispersion correction are based on isotropic C6 coefficients. However,

in general dispersion interactions are anisotropic and the anisotropy has a nontrivial influ-

ence on thermodynamic averages. 246 The importance of anisotropy for small intermolecular

complexes has recently been investigated by Krishtal et al.247 However, since no damping

function has been included, the extent to which an (anisotropic) damping function could lead

to sufficient accuracy remains somewhat unclear. On the other hand, the LRD dispersion

correction is anisotropic, but the damping function is isotropic. 45,46

Due to the atom pairwise approximation many-body effects between atomic centers are

completely missing.ii Including many-body effects at the level of dispersion corrections to

density functional approximations is in its infancy. Promising approaches are being actively

developed and tested for molecules and condensed phases mainly by Tkatchenko, Scheffler

and coworkers. 248,249 These many-body effects are expected to become more important with

increasing system size, increased electron delocalization and a closing band gap

Since Yang’s pioneering work,38 the damping function fd (Ri j ) has been a central element

in the development of dispersion corrections. Most damping functions fd (Ri j ) reduce to

zero for Ri j = 0. However, Koide demonstrated that the proper asymptote is a constant: two

hydrogen atoms at zero internuclear distance, i.e., a helium atom, have a dispersion energy of

8.7 mhartree, 250 which is equal to about 20% of the total correlation energy of helium. In the

framework of a dispersion correction to density functionals, the rational behind damping to

zero is rather simple: the correlation functional describes electron correlation in atoms and

covalent bonds. Some functionals, e.g., LYP 155 are explicitly fitted to reproduce the correlation

energy of helium and therefore formally adding a dispersion correction for these situations

is certainly not more justified than letting the correction go to zero. The disadvantage of

fd (0) = 0 is that repulsive gradients are obtained at short internuclear distances, possibly en-

tailing suboptimal performance for geometry optimizations of non-bonded contacts in close

proximity. 43,54 Since the decomposition of correlation in density functionals is not clear-cut,

the damping function is intrinsically empirical in nature. Thus, a flexible damping function

is required to adapt the dispersion correction to a given functional and to minimize double

counting effects as much as possible. Overall, the diversity in the literature reflects rather

personal preferences and experiences than fundamental understanding.

iiNote that current versions of the van der Waals density functionals neglect many-body effects as well. 116
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Figure 2.3: The effect of four different damping functions on the pure -1/R6 dependence of dispersion interactions. For the
Fermi damping function (eq 2.20) the steepness d = 23, Head-Gordon’s function (eq 2.21) is used with a = 6 and
q = 12, Tang and Toennies (eq 2.23) with b = 3.0, while all other parameters are set to unity, except for R0, which
is 2.0 a.u. (note, that Tang and Toennies function does not depend on R0 at all).

The four most widely used damping functions, applied to -1/R6, are compared in Figure 2.3:

1. The Fermi damping has dominated the field38,39,44,251

fF (R) =− 1

1+e−d(R/R0−1)

1

R6 (2.20)

where d determines the steepness of the switching function and R0 is the vdW distance.

2. Head-Gordon’s power law, 252 which has been adopted in the “D3” correction42

fHG(R) =− 1

1+a(R/R0)−q

1

R6 (2.21)

where a and q are positive parameters to adjust the damping function to a given func-

tional. Note that the Fermi damping and the power-law can be combined in one “uni-

versal” damping function that is more flexible than the standard variants. 253

3. The rational damping function of Becke and Johnson79 is given by

fBJ(R) =− 1

R6 +R6
0

(2.22)

fBJ(R) has the unique feature that it goes to a constant for vanishing internuclear dis-

tance, reducing the corresponding gradient to zero. 43,54,58,79

4. Tang and Toennies’ damping function 73 plays a central role in this thesis

fTT(R) =−
(

1−exp(−b ·R)
6∑

k=0

(b ·R)k

k !

)
1

R6 (2.23)

where b is a fitted parameter.
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Dispersion corrected atom centered potentials (DCACP) are a completely different approach

introduced by Röthlisberger and coworkers 254–256 for plane waves and extended to Gaussian

basis sets by DiLabio’s group.55,56,257,258 The central idea is to add an atom centered nonlo-

cal potential that accounts approximately for dispersion effects, just like pseudopotentials

account for core electrons in plane wave codes259,260 or effective core potentials (ECPs) can

include scalar relativistic effects for Gaussian basis sets. 261,262 DCACPs have two main advan-

tages compared to “classical” dispersion corrections: (i) The dispersion correction is system

dependent through the electron density, with ρ(r) being modified by the added potential. (ii)

DCACPs are easy to “implement”: plane wave codes automatically come with support for

pseudopotentials and most Gaussian basis set based codes handle ECPs. The drawback is

twofold: first, the empirical nature of the potentials necessitates careful fitting of parameters

for each element to achieve a reasonably transferable scheme and second the interaction

energy does not necessarily follow the proper (1/R6) asymptote, even though the formalism in

principle supports the correct form. 263

In summary, dispersion interactions can be introduced into the framework of density func-

tional approximations at various computational costs and degree of theoretical sophistications.

For the time being, it is not yet clear which approach has the best performance to cost ratio.

One might argue that the inexpensive “classical” dispersion corrections generally provide

reliable results. However, in highly polarized situations the “classical” scheme is inaccurate:

even Grimme’s latest (system dependent) dispersion correction 42 needs “special adjustments”

for ionic crystals 264 and fluorine seems to be somewhat problematic as well. 265 As illustrated

in the rest of this thesis, we predict a bright future to physically motivated density-dependent

schemes.
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3 Unified Inter- and Intramolecular
Dispersion Correction Formula for
Generalized Gradient Approximation
Density Functional Theory

3.1 Introduction

This chapter proposes a simple and efficient, a posteriori, double-damped attractive weak

interaction energy correction formula for nonempirical generalized gradient approxima-

tions 151,156,266–268 (GGAs) of the Kohn-Sham density functional theory (DFT). 11 GGA function-

als might provide a reasonable description of the weak interactions arising from nonbonded

density overlap but cannot describe the long-range part of the van der Waals (vdW) interaction

that acts between nonoverlapped densities. As proposed earlier,37–39,237–239,269 a properly

constructed damped attractive energy correction summed over all atom pairs in the system

efficiently remedies this deficiency of GGA38,39,269 (and also the hybrid GGA and meta-GGA)

functionals at a negligible computational cost. Such a correction must be convergent with

respect to the internuclear separation, Ri j and must properly follow the ∼R-6 decay of the

dispersion interaction at large Ri j . At shorter internuclear separations the ∼R-8 and ∼R-10

terms might also have non-negligible contribution to the interaction energy. In this chapter,

we further develop the idea of a general interatomic dispersion corrected GGA functional

as suggested by Grimme39,269 and show the benefits of using a double-damping as well as

higher-order dispersion terms for such corrections. In our formulation, the inter- and in-

tramolecular dispersion corrections are treated jointly in a single formula as opposed to two

separate parametrizations (i.e., PBE-inter or PBE-intra) 72,270 containing only ∼R-6 terms.

Inter- and intramolecular van der Waals interactions are responsible for many energetic and

structural phenomena such as the heats of sublimation of hydrocarbons, the crystal packing

of organic molecules, host-guest chemistry, the orientation of molecules on surfaces, the

stacking of nucleic acids in DNA, 7 and protein folding 8 as well as the properties of polar and
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apolar solvents.

It is known that the Hartree-Fock (HF) method cannot describe these weak interactions, arising

from a pure electron correlation effect. High level, expensive treatment of electron correlation

coupled with large basis sets (typically CCSD(T)/aug-cc-pVQZ) are required to evaluate such

interactions accurately.271–274 These methods are computationally very expensive and are

applicable only to benchmark studies of small systems.

GGA, hybrid GGA, and meta-GGA are much less expensive than CCSD(T) and MP2 methods.

Such functionals can at best provide an estimate of the bonding between weakly overlapped

densities but fail to reproduce the long-range part of the vdW interaction, which tends to

−C6/R6 as R →∞. The computed GGA or meta-GGA interaction energy arising from overlap-

ping electron densities decays exponentially,275 which results in a serious underestimation

of the long-range part of the interaction.105,276–279 A typical example is the sandwich and

T-shaped configurations of the benzene dimer, which is dispersion-bound at the CCSD(T)

level274 but essentially unbound in a PBE GGA computation.275 For shorter-range weak in-

teractions characteristic in rare-gas dimers17,18,21,275,280–282 and other noncovalently bound

diatomics,283–287 the performance of GGA,17,18,21,275,283–287 hybrid GGA,280,282 and TPSS or

TPSSh meta-GGA275,281 functionals varies. While the B88 GGA154 exchange functional tends

to underbind (or not bind at all),14,15,275 LSDA seriously overbinds.275,281 In contrast, PBE

and TPSS often give reasonable binding energies.17,18,275,280,281 The partial success of PBE

and TPSS was attributed predominantly to the large gradient behavior (satisfaction of the

Lieb-Oxford bound lower bound on the exchange-correlation energy for all possible electron

densities). 275 In some rare-gas diatomics, however, the PBE, TPSS, and TPSSh density func-

tionals overcorrect the serious overbinding tendency of LSDA 275,281 resulting in too long bond

lengths and reduced binding energies. This deficiency suggests the need for some attractive

shorter-range correction. In other words, a consistent description of the weak attractive inter-

actions by a GGA or meta-GGA requires a full treatment of the long-range behavior 109,141,276

along with an improved treatment of the shorter-range part. These results also show that

including rare gas diatomics (short-range interactions) into the training sets for empirically

fitted density functionals does not guarantee an improvement for larger stacking complexes

(long-range interactions) of chemical or biological interest.

Fully nonlocal functionals 109,141,276 or generalizations of the random phase approximation 105

that capture the long-range correlation effects are more promising and also computation-

ally more demanding for the description of the dispersion effects. Further possibilities are

the following: the optimized potential method within KS perturbation theory,288,289 empiri-

cally calibrating dispersion corrected atom centered potentials, 254,256 or fitting the exchange-

correlation enhancement function (using a large number of empirical parameters) to a data

set that contains weakly bonded compounds. 290 Although the resulting M06-2X hybrid meta-

GGA functional shows good overall performance for treating weak interactions, its highly

fitted nature does not guarantee the correct asymptotic behavior and leads to failures.291

Similarly, the so-called double hybrid functionals163 (which scale roughly as MP2) are only

partially successful and also need a long-range attractive energy correction for a more general

description of weak interactions. 85
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3.2 Computational Methods

An efficient solution to improve the performance of density functionals for weak interactions

is to add a damped attractive atom pairwise dispersion energy correction38,39,269 to the GGA,

hybrid GGA, or meta-GGA energy

Edisp =−
Nat∑
i=2

i−1∑
j=1

d(Ri j ) (3.1)

The summation is over all atom pairs i j in the Nat atomic system, and the d(Ri j ) attractive

function is properly damped at short internuclear separations Ri j . We suggest the following

double-damped formula for d(Ri j )

ddD10 = FF(a,Ri j )
5∑

n=3
f2n(bRi j )

C i j
2n

R2n
i j

(3.2)

where

FF(a,Ri j ) = 1

1+e
−46

(
Ri j

aRvdW
i j

−1

) (3.3)

In eq 3.2, FF(a,Ri j ) is a Fermi damping function38 given in eq 3.3, that is used to switch off

the first damping (i.e., f2n(bRi j )) at short internuclear separation. f2n(bRi j ) are damping

functions specific to a given dispersion coefficient (vide infra), a and b are empirical damping

parameters, and the C i j
2n are the dispersion coefficients.

The steepness factor in eq 3.3 (i.e., 46) was chosen such as to minimize the effect of the Fermi

function on the damping function f2n(bRi j ) at larger internuclear separations by imposing

FF(a,1.1 ·a ·RvdW) ≤ 0.99. RvdW
i j is the vdW distance of the atom pair, and a is the parameter

that scales the vdW radii to improve the flexibility in the parametrization scheme.251 The

summation in eq 3.2 goes up to 5 to include damped C6, C8, and C10 terms leading to the

resulting dD6, dD8, and dD10 formulas (the latter contains all terms up to C10). The f2n

damping functions are used in the following form

f2n(x) = 1−exp(−x)
2n∑

k=0

xk

k !
(3.4)

where x = bRi j , with b being the damping (due to overlapping densities) parameter. 73 These

general damping function terms were proposed by Tang and Toennies73 (TT), and success-

fully used for dispersion interaction of several noble-gas and metal atom pairs. 73,292,293 In the

original TT model, the long-range attractive potential, which is computed from the damped

dispersion series, is added to a short-range purely repulsive Born-Mayer potential with b

being the range parameter. The importance of the C8 and C10 terms is emphasized in ref

79. As standard functionals are able to treat short-range correlation accurately, regions of

strongly overlapping densities do not need to be corrected, which justifies the use of the
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second damping (Fermi) function. The hybridization state dependent 38 C6 dispersion coeffi-

cients are averaged and combined according to the rule proposed by Grimme: 269 C i j
6 = 2

C i
6C j

6

C i
6+C j

6

.

Other atomic coefficients 39 or combination rules 39,294 give similar but slightly less consistent

results after refitting. C8 and C10 coefficients were estimated based on the average C6 disper-

sion coefficients and empirical rules as established in refs 295 and 22: i.e. C8/C6 = 45.9 and

C6C10/C 2
8 = 1.21 (in atomic units). An alternative that is going to be investigated in subsequent

chapters would be to use Becke-Johnson exchange hole dipole model. 75,77,78,80

Bondi’s 296 vdW radii were used and combined according to a “cubic mean” combination rule

put forward by Halgren: 294 RvdW
i j = R3

i ,vdW+R3
j ,vdW

R2
i ,vdW+R2

j ,vdW
.

The motivation for the use of a damped dispersion series along with a Fermi formula such

as in eq 3.2 is the removal of the systematic errors for the treatments of short-range weak

interactions, while preserving good performance for more typical long-range vdW interac-

tions. Recently, several studies pointed to large errors in the description of the nonbonded

intramolecular interaction in alkanes. 68–71,297 Corminboeuf and coworkers 72 showed that the

atom pairwise dispersion correction containing only ∼R-6 terms and optimized for reproduc-

ing intermolecular energies (PBE-inter, vide infra)270 only slightly improve the description

of intramolecular interactions. In contrast, the reparametrized PBE-intra (i.e., parametrized

for intramolecular interactions) performs considerably better for isodesmic (i.e., the number

of formal bond types is conserved) bond separation equation (BSE) reaction energies82,83

of hydrocarbons but seriously overbinds the T-shaped benzene dimer. While the PBE-inter

T-shaped dimer dissociation curve is considerably better than that of the PBE-intra, it has a

much higher curvature than the corresponding CCSD(T) curve (vide infra). The dispersion

energy formula suggested in eq 3.2 should preserve the description of both interactions.

The two empirical parameters, a and b, contained in eq 3.2 are obtained from two prototypes

of reaction energies that are the Pople’s isodesmic bond energy separation reaction of propane

(eq 3.5 with m = 1) and the hydrogenation reaction of [2.2]paracyclophane to p-xylene

CH3(CH2)mCH3 +mCH4 → (m+1)C2H6 (3.5)

Correcting eq 3.5 accounts for the intramolecular (short-range) error. Note that the bond

lengths do not change considerably along reaction 3.5. The reaction is therefore not suited for

determining the value of the parameter a that describes the distance where to switch off the

correction. On the other hand, obtaining an accurate energy for the challenging hydrogenation

reaction of [2.2]paracyclophane to p-xylene (3.6)85,298 necessitates a correct description of

the long-range interactions between the two benzene rings of paracyclophane as well as the

reaction energy for converting a H–H and two C–C bonds into two C–H bonds

(3.6)

The first-principle GGA functionals are very efficient computationally and provide reasonable

results for a wide range of problems (molecular geometry, vibration, reaction energies, lattice

24



3.2. Computational Methods

constants, bulk moduli, cohesive energies, surface energies). Several nonempirical functionals

that use the PBE form were selected for this study. PBE itself 156 is generally used in chemistry

and physics. Its failure to improve the solid lattice constants, bulk moduli, and surface energies

upon LSDA motivated the development of the recent PBEsol first-principles GGA functional 266

that is based on the exact second order gradient expansion of the exchange energy (the PBE

functional is also a first principles GGA functional that satisfies other exact constraints as

second order gradient expansion for correlation and LSDA-like linear density response of a

uniform electron gas). PBEsol gives excellent lattice constants and surface energies but poorer

atomization energies than PBE. An attempt to develop a simple GGA that unites the good

properties of PBE and PBEsol led to the second regularized gradient expansion (RGE2). For

further details the interested readers turn to refs 156, 266 and 268.

Because of the different energy range of the two prototype reactions (2.8 kcal mol-1 for the

propane BSE and -58.5 kcal mol-1 for the hydrogenation of [2.2]paracyclophane), a straight-

forward least-squares minimization of the combined error is not suited. The error criterion

for the hydrogenation reaction was therefore chosen to be 2 kcal mol-1 (“chemical accuracy”).

From all combinations fulfilling this requirement, the one with the lowest error for the propane

BSE was selected. Parameter a is 1.45 for all functionals. b is 0.88, 1.03, and 1.00 for PBEsol,

PBE, and RGE2, respectively.
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Figure 3.1: Dispersion energy correction curve for C· · ·C dispersion interaction vs the C· · ·C distance. Parameters of eq 3.2
are a = 1.45 PBE-dD10: b = 1.03; PBE-dD6: b = 1.34. The broken line gives the C6/R6 contribution to PBE-dD10
(b = 1.03). For PBE-D10 without Fermi damping b = 1.0001.

Figure 3.1 shows the Ri j dependence of the dD10 formula of eq 3.2 using the a and b pa-

rameters obtained for PBE vs C· · ·C internuclear separation. The dD10 correction balances

between the inter- (i.e., long-range) and intra- (short-range) molecular dispersion corrections.

Figure 3.1 also demonstrates that obtaining good BSE energies requires a dispersion energy
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correction up to relatively short 4.5 au internuclear separations. At short distances the dis-

persion energy coming from PBE-inter vanishes and is absolutely ineffective. On the other

hand, PBE-intra is steeper and larger in magnitude as compared to PBE-dD10 resulting in

inaccurate energies for intermolecular interactions. The double-damped dispersion series

with up to C10 terms (i.e dD10) easily resolves this dilemma. For comparison, D10, which is a

dispersion correction free of the Fermi damping function (that “turns off” the correction at

covalent bond distance), is given as well.

The performance of the dD10 energy correction is tested on five test sets. Three of the sets

assess Pople’s isodesmic bond separation equation reactions (BSE, eq 3.5) of saturated hydro-

carbons (chains, rings, and cages in H, R, and C sets, respectively, Figure 3.2). 72 The fourth set

that reflects “intramolecular dispersion interactions in hydrocarbons” (IDHC) 85 contains two

isomerization reactions, two folding reactions of large hydrocarbon chains, the dimerization

of anthracene, and the hydrogenation reaction of [2.2]paracyclophane (Figure 3.3). The fifth

set corresponds to the common benchmark for noncovalent complexes (S22) 299 and includes

the benzene dimers.

Geometries of the H, R, and C sets were optimized at the B3LYP/6-311+G** level using Gaus-

sian 03. 300 Unscaled zero point and thermal corrections to the enthalpy are computed in the

harmonic approximation at the same level. Experimental heats of formation (NIST) 301 at 298

K are used as reference. Geometries and reference values for the IDHC set were taken from

ref 85. Our results are compared to LSDA (SWVN5), 131,149 TPSS, 158 M06-2X, 214 B3LYP,161,162

B97-D,39 B2PLYP,163 and B2PLYP-D.85 Benzene dimers were derived from the equilibrium

structures of ref 274 and the monomers 302 kept frozen. The geometries and reference values

(CCSD(T)/CBS) for the S22 set were obtained from the BEGDB database. 303

Given the size of the molecules in our test sets, the cc-pVTZ basis set was chosen for the single

point energy computations. This basis set contains small exponent functions and gives only a

small artificial binding error for weakly bond complexes. 251 The energy differences between

the cc-pVTZ and the aug-cc-pVTZ basis set computed with the PBE GGA are 0.006 kcal mol-1

(0.4%) for the propane BSE (eq 3.5), 2 kcal mol-1 (2.8%) for the hydrogenation reaction energy

of [2.2]paracyclophane to p-xylene (eq 3.6), and 0.25 kcal mol-1 for the n-octane isomeriza-

tion problem (vide infra). This latter difference is negligible compared to the 7.6 kcal mol-1

error with respect to the experimental energy for octane isomerization. The cc-pVTZ basis

set performs considerably better than the diffuse 6-311+G(2d,2p) basis set used earlier304

for the octane isomerization. The 0.26 kcal mol-1 difference between the PBE/cc-pVTZ and

PBE/aug-cc-pVTZ energies for the anthracene dimer dissociation energy is also negligible

compared to the 23.6 kcal mol-1 error of the PBE (the reaction energy is 14.6 kcal mol-1 with

the cc-pVTZ basis set) against the best experimental estimate (-9 kcal mol-1 in ref 305). Note

that the S22 test set contains several hydrogen bonded complexes for which a larger basis set

is required to reach convergence. 306 For this set, computations at the aug-cc-pVTZ level are

also provided and discussed.

A modified version of deMon-2K 2.3307 was used for all computations with the new disper-

sion correction. B2PLYP computations were performed with Turbomole 5.1.308,309 M06-2X

computations were performed with NWChem 5.1 310,311 using the ’xfine’ grid.
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Figure 3.2: Schematic representation of the 36 saturated hydrocarbons in the H, C, and R sets.

Figure 3.3: The six reactions of the IDHC test set
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Table 3.1: MAD (in kcal mol-1) Comparison for All Functionals Tested

H R C IDHC S22a weighted averagea

B3LYP 9.73 11.60 25.99 16.45 3.20 9.85
TPSS 10.33 11.64 25.67 14.66 3.01 9.75
PBE 7.99 9.59 22.52 12.52 2.24 (2.55) 7.97 (8.08)
RGE2 8.27 8.52 19.14 12.41 2.97 (3.51) 7.75 (7.93)
B2PLYP 6.05 7.02 14.41 9.19 1.41 (1.20)b 5.64 (5.57)
PBEsol 5.16 6.68 15.41 6.10 2.09 (1.89) 5.37 (5.31)
PBEsol-PBE 5.40 6.31 14.20 6.19 2.21 5.29
PBEsol-D6 2.48 3.06 9.06 9.09 3.24 (2.56) 4.02 (3.79)
M06-2X 3.60 6.02 13.45 2.23 0.51 3.78
SVWN5 0.78 3.97 10.21 2.01 2.85 3.14
B97-D 2.06 3.37 7.59 3.48 0.52 (0.36) 2.42 (2.37)
PBE-D10 2.50 2.59 4.84 1.69 1.06 (0.48) 2.14 (1.94)
B2PLYP-D 1.60 2.82 4.66 1.60 1.02 (0.44)b 1.95(1.75)
RGE2-D10 2.78 1.60 2.49 3.30 1.06 (0.90) 1.92 (1.86)
PBEsol-D10 0.42 0.98 2.29 5.76 2.40 (1.72) 1.89 (1.65)
PBEsol-dD10 1.32 1.92 3.21 2.27 1.48 (0.92) 1.76 (1.57)
PBEsol-dD6 1.16 1.76 2.67 2.34 1.43 (0.95) 1.63 (1.47)
RGE2-dD10 2.02 1.21 1.70 2.53 0.97 (0.89) 1.48 (1.45)
PBE-D6 0.31 1.05 2.19 2.94 1.90 (1.17) 1.44 (1.18)
PBE-dD10 1.01 1.33 1.69 1.50 1.16 (0.45) 1.24 (1.00)
PBE-dD6 0.82 1.17 1.58 2.01 0.95 (0.55) 1.12 (0.99)

a Values in parentheses refers to aug-cc-pVTZ computations for the S22 test set.
b The B2PLYP(-D) number in parentheses refer to noncounterpoise corrected energies

taken from ref 85 for an optimized value of s = 0.35.

3.3 Results and Discussion

Figure 3.4 and Table 3.1 summarize the mean absolute deviation (MAD) for the functionals

tested. The proposed dD10 energy correction reduces the errors of PBE drastically (MAD for

chains/cages of 8.0/22.5 and 1.0/1.7 kcal mol-1 for PBE and PBE-dD10, respectively). Only the

dD10 correction reduces the systematic increase in MAD going from chains to rings to cages.

Similar improvements are obtained while correcting PBEsol and RGE2.

Remarkably, for the subtle intramolecular interactions, Perdew’s “Jacobs-ladder”168 is re-

versed! Ascending toward more sophisticated (and expectedly more robust312) functionals

corresponds to a significant increase in error (e.g., MAD over alkane chains increases from

0.8, to 8.0 and 10.3 kcal mol-1 for LSDA, PBE, and TPSS, respectively). PBEsol (constructed

to recover the exact second order gradient expansion for the exchange energy at the sacrifice

of accuracy for atoms313) shows the best uncorrected performance. This is best understood

recalling that PBEsol exchange enhancement function F x(s) does not correct LSDA as much

as the PBE functional for wide range of the reduced gradient, s, and that LSDA performs

well for these reactions. Note also that the combination of the PBEsol exchange with PBE
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Figure 3.4: Mean absolute deviations for bond separation energies over hydrocarbon chains (H set), rings (R set), and cages
(C set); for reaction energies of the test set “intramolecular dispersion in hydrocarbons” (IDHC) and the common
benchmark for noncovalent complexes (S22) using the cc-pVTZ basis set.

correlation gives lower MAD than the PBE functional (Figure 3.4). This result demonstrates

that the origin of the improvement arises from the modified PBEsol exchange.266 RGE2 is

also designed to recover the second order gradient expansion for exchange over a wide range

of s (typically important for correct description of solids), but it is more similar to PBE in

the large density gradient region (important for free atoms) than to PBEsol. While RGE2 is

built to be more satisfying from the point of view of general applicability, it performs only

slightly better than PBE for the reactions tested. However, PBE-dD10 slightly outperforms

RGE2-dD10 and gives the best overall results. Interestingly, the overall performance of the

double hybrid B2PLYP is less satisfactorily unless an attractive dispersion correction is added.

Similarly, the empirical M06-2X meta-GGA results are better than those of all the noncorrected

GGA but still far from the PBE-dD10 for the test sets investigated herein. The relevance of the

double-damping, that is the necessity of switching off the D10 correction at short internuclear

separations (<4.5 au for carbon), is illustrated by the significantly larger total MAD (2.14 kcal

mol-1 vs 1.24 kcal mol-1) obtained with the singly damped D10 correction to PBE (i.e., PBE-D10

in Figure 3.4). The dispersion correction discussed in this chapter works well also in the D6

form as shown by the results obtained with the damped dispersion series including the C6

terms only (Table 3.1). PBE-D6 performs better than PBE-D10 for the alkanes series but has a

significantly larger MAD for both the IDHC and S22 sets (mean error larger by 1.25 and 0.69

kcal mol-1, respectively). While PBE-dD10 is best overall, excellent results are obtained with
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Table 3.2: Computed Relative Enthalpies (ZPE and Thermal Corrected to 298 K, in kcal
mol-1) for Selected Alkanes Isomerization Reactions in the H and R Setsa(97)

H3→H5 H11→H6 H12→H6 R5→R6 MAD

Expb 4.39 4.07 3.28 1.12
B3LYP -0.26 -2.56 -2.62 -1.07 4.84
PBE 0.28 -1.48 -1.74 -0.93 4.18
PBEsol 1.34 -0.04 -0.65 -0.34 3.14
B2PLYP 1.67 0.75 0.09 -0.33 2.67
M06-2X 3.03 2.64 1.58 0.69 1.23
B97-D 3.19 3.23 2.22 0.63 0.90
PBE-dD10 3.26 3.34 2.14 0.54 0.90
B2PLYP-D 3.51 3.52 2.29 0.73 0.70
SVWN5 3.69 3.88 2.63 0.43 0.56

a Note that the computed energies are based on single most stable

conformers and not on the Boltzmann distribution of conformers. For

thoses small selected alkanes, it is reasonable to assume that the other

conformers have a negligible contribution to the experimental result.
b Reference 301.

the simpler PBE-dD6 variant. For the H, R, C and S22 test sets, the performance of PBE-dD6

is marginally better (by 0.1 kcal mol-1 on average) than that of PBE-dD10, but the latter is

better by 0.5 kcal mol-1 for the IDHC test set. Since the dD6 curve mimics the position and the

depth of the minima of the dD10 correction curve, these results demonstrate that the small

difference between the two dispersion corrections in the longer distances does not influence

the results considerably. Another illustrative example of common DFT errorsi is the relative

stability of isomers. As shown in Table 3.2, the errors in the alkane isomerization energies

also suffer dramatically from the systematic GGA error. Apart from LDA and M06-2X, none

of the (uncorrected) density functional gives an acceptable correlation with respect to the

experimental heat of formations.301 In contrast, the three empirically dispersion-corrected

functionals, B97-D, PBE-dD10, and in particular B2PLYP-D, lead to a considerable improve-

ment and describe the more compact structures (e.g., H3, H11, H12) as reasonably more stable

(>2 kcal mol-1) than their linear counterparts (e.g., H5, H6).

The benzene dimers serve as prototypical examples for evaluating the detailed performance

of the dD10 correction on typical intermolecular interactions (Figure 3.5). For the stacked

dimer, the equilibrium distance at the PBE-dD10 level is the same as with the CCSD(T) ref-

erence curve, but the dissociation energy is overestimated (by 0.59 kcal mol-1, 35%). For the

T-shaped dimer, the dD10 correction leads to a considerable improvement as compared to

the intramolecular alternative (i.e., PBE-intra). PBE-dD10 gives a slightly larger dissociation

energy than CCSD(T) (by 0.35 kcal mol-1, 13%) but matches the curvature of the reference

potential better than that of the dispersion correction parametrized for intermolecular in-

i“DFT error” (or “DFT failure”) refers to the errors obtained when applying density functional approximations
instead of the exact density functional.
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Figure 3.5: Stacked (broken lines) and T-shaped (solid lines) benzene dimer interaction energies against the center of mass
distance (COM). CCSD(T) reference curve taken from ref 274, PBE-inter and PBE-intra from ref 72.

teractions (PBE-inter). 72,270 The PBE-inter curve indeed exhibits a sudden repulsive change

below 5 Å (light blue line in Figure 3.5). For the benzene dimers as well as the full S22 set, the

agreement between PBE-dD10 and CCSD(T)/CBS can be considerably improved by using the

larger aug-cc-pVTZ basis set (vide infra).

The results on the full S22 set confirm the good overall performance of dD10 on common

weakly bound complexes. Unlike the DFT-D methods, which use the S22 test set to obtain

parameters for the dispersion correction, 39,85 the S22 test set was not used in the parametriza-

tion of PBE-dD10. With a MAD of 0.45 kcal mol-1 using the aug-cc-pVTZ basis set (Table 3.1),

PBE-dD10 gives binding energies comparable to those obtained with B2PLYP-D/aug-cc-pVTZ

(0.44 kcal mol-1) given in ref 85 and B97-D/aug-cc-pVTZ (0.36 kcal mol-1). Note that coun-

terpoise corrected results for B2PLYP-D can be better (MAD = 0.25 kcal mol-1).85 However,

such counterpoise corrections are not straightforward for intramolecular situations, can be

expensive and have not been applied here.

The general applicability of PBE-dD10 is further illustrated by the assessment of two challeng-

ing reaction energies: the dimerization reaction of anthracene and the isomerization reaction

of n-octane into tetramethylbutane (Figure 3.3). The anthracene dimer is connected by two

covalent C–C bonds resulting from a [4 + 4] cycloaddition reaction. The conversion of C–C π

double bonds into two C–C σ bonds upon dimerization results in considerable change in the
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energetic properties. Similar large energy difference can be observed between protobranched

n-octane and the highly branched tetrametylbutane. PBE-dD10 performs once again nearly

perfectly for both these difficult cases (Figure 3.6), while none of the other functionals are fully

satisfactory. PBE-dD10 also leads to very accurate results for the entire IDHC set (MAD 1.5

kcal mol-1, Figure 3.4) outperforming the other methods tested. For these two reactions and

the IDHC set in general, the singly damped PBE-D10 performs almost as well as PBE-dD10.
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Figure 3.6: Errors associated with the two examples of reaction energies (Eexp − Etheory) the IDHC set: the anthracene
dimerization and the octane isomerization. Details of the right-hand side are given as an inset.

Overall, PBE-dD10 gives the most robust results and the lowest MAD for a series of prototypical

and challenging reaction and binding energies. With a total MAD of only 1.00 kcal mol-1 for

the five sets of Figure 3.4, PBE-dD10 outperforms both uncorrected and corrected functionals.

For the S22 test set, the aug-cc-pVTZ basis set is necessary to obtain converged results. The

smaller cc-pVTZ basis set gives converged energies for the other test sets. The success of

the dispersion correction is attributed to the inclusion of an adequate damping function. In

addition, the necessity of switching off the correction at short internuclear separations (<4.5

au for carbon), is illustrated by a 1 kcal mol-1 higher total MAD (1.94 kcal mol-1) obtained with

the singly damped D10 correction to PBE (Figure 3.4).
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3.4 Conclusions

We have presented a unified empirical dispersion energy correction for first principle GGA

functionals. The Lennard-Jones potential ∼R-6 dependence is augmented with higher-order

correction terms (R-8 and R-10 dependent) through the use of the universal damping function

of Tang and Toennies. 73 For general applicability, a second damping function is employed to

turn off the correction at short distances. Among the three first-principal GGAs tested (PBE,

PBEsol, and RGE2), PBE-dD10 give the most robust results, closely followed by PBE-dD6 and

RGE2-dD10. With only two empirical parameters and one prefactor, PBE-dD10 outperforms

the computationally more demanding B2PLYP-(D) and the most recent functionals such as

M06-2X, which contain more empirical parameters. PBE-dD10 considerably reduces common

errors for a set of 64 illustrative reaction energies, successfully balancing intra- (short-range)

and inter- (long-range) molecular interactions. The dispersion corrections introduced here

do not deteriorate the performance for equilibrium geometries, atomization energies, and

reaction barriers.
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4 A System-Dependent Density-Based
Dispersion Correction

4.1 Introduction

Kohn-Sham density functional theory (DFT) 11 offers a powerful and robust methodology for

investigating electronic structures of many-body systems, providing a practical balance of

accuracy and computational cost unmatched by other methods. Despite this success, the

commonly used semilocal approximations have difficulties in properly describing attractive

dispersion interactions that decay with R-6 at large intermolecular distances. Even in the short

to medium-range, most semilocal density functionals fail to give an accurate description of

weak interactions. 22,240,241

Accurate treatment of weakly interacting systems is crucial, especially in the field of biomole-

cules (stacking of DNA, 7 protein folding 8), host-guest chemistry, surface chemistry, and con-

densed phases of organic molecules. Yet, even seemingly innocuous looking reactions such as

alkane isomerization energies and Pople’s isodesmic bond separation equations (BSEs), 82,83

where formal bond types are preserved, suffer from errors at standard DFT levels. 68–71

SAPT(DFT) 314–316 gives highly accurate interaction energies for two or three interacting closed-

shell subsystems, but the method is not applicable to intramolecular interactions. Around the

equilibrium distance, dispersion corrected atom centered potentials (DCAPs)254–257,317–319

or specifically fitted density functionals164,208,214,278,290,320 have led to satisfactory results.

Nevertheless, both approaches lack the ability to recover the long-range ∼R-6 attractive form.

Conceptually, the simplest remedy is to correct for the missing interaction a posteriori by

adding an attractive energy term summed over all atom pairs in the system. The strategy was

originally proposed to improve Hartree-Fock energies (known as HF-D) 37,237–239 and was later

applied to DFT. 22,38,240,241 With parameters for most elements in the periodic table, Grimme’s

parametrization 39 is the best known DFT-D variant. Since then, there has been considerable

interest in finding an optimal parametrization. 39,42,44,45,49,51,72,74,77,251,253,269,270,321–326 DFT-D

is generally accurate for the treatment of intermolecular interactions, but proper description of

weak intramolecular interactions is trickier. 68,305,327 Specific fitting to a suitable training set 72

decreases the “intramolecular” error, albeit we have recently shown that the two parametriza-

tions can be unified using a physically motivated damping function called dD10. 74
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Our dD10 correction74 is, however, restricted to only a few elements (H, C, N, O) and, like

most DFT-D schemes, employs system-independent dispersion coefficients. The present work

overcomes these limitations by combining the efficiency of a new damping criterion with

the attractiveness of deriving system-dependent dispersion coefficients. Akin to our former

dispersion correction,74 two damping functions are used jointly to treat both intra- and in-

termolecular weak interactions consistently. System-dependent dispersion coefficients are

computed on the basis of the analytical approximation of the Becke and Johnson76–80,187,328

(BJ) exchange hole dipole moment (XDM) formalism. 87,329 Iterative Hirshfeld weights330 are

used to partition the dispersion coefficients among the atoms. 49,331 A genuine and universal

damping criterion based on iterative Hirshfeld weights is introduced for the first time. Our

approach has the additional advantage of easily incorporating higher-order dispersion coeffi-

cients absent in, for instance, the related C6-only scheme of Tkatchenko and Scheffler. 44 With

only two fit parameters, this new dDXDM correction solves difficulties arising from elements

positioned in different chemical environments (i.e., selecting a dispersion coefficient 38,39,269)

and is easily applicable to every element of the periodic table.

The next sections give details on the implementation and computations. The performance

of dDXDM, on test sets featuring both intra- and intermolecular weak interactions, is then

compared with the interaction energies of (un)corrected popular functionals (BP86, 151,154,332

BLYP, 154,155 BHHLYP, 333 B3LYP, 161,162 PBE, 156 and PBE0 217,280) and established DFT-methods

designed to better describe weak interactions (B97-D, 39 B2PLYP-D, 85,163 and M06-2X 214).

4.2 Theory

The basic form of our dispersion correction is the Tang and Toennies (TT) damping function 73

Edisp =−
Nat∑
i=2

i−1∑
j=1

5∑
n=3

f2n(bRi j )
C i j

2n

R2n
i j

(4.1)

where Nat is the number of atoms in the system and b is the TT-damping factor (vide infra).

The dispersion correction is called dDXDM6 if only the first term is retained in the multipole

expansion (n = 3, corresponding to C6) and is called dDXDM otherwise (n = 5, up to C10).

f2n(bRi j ) represents the “universal damping functions” 73 that are specific to each dispersion

coefficient and that serve to attenuate the correction at short internuclear distances to account

for overlapping densities.

f2n(x) = 1−exp(−x)
2n∑

k=0

xk

k !
(4.2)

This coming section describes the procedure employed for the determination of the two

nontrivial arguments of eq 4.1: (i) the dispersion coefficients and (ii) the damping factor b.
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4.2.1 Dispersion Coefficients

Dispersion coefficients are computed according to Becke and Johnson’s XDM76–80,187,328

formalism, as efficiently implemented in Q-Chem by Kong and coworkers. 87,329

The XDM formalism is motivated by the second order perturbation interaction energy 80

E (2) =−
〈V 2

pert〉
∆Eav

(4.3)

where ∆Eav is the average excitation energy, rooted in the “Unsöld” or “closure” approxima-

tion. 334

Expanding Vpert in terms of multipoles, the induced dipole – induced dipole (C i j
6 ) term is

obtained as

C i j
6 = 2

3

〈M 2
1 〉i 〈M 2

1 〉 j

∆Eav
(4.4)

∆Eav is then assumed to be the sum of the individual atoms, i.e., ∆Eav = ∆E i
av +∆E j

av. The

atomic polarizabilities αi in turn define the individual average excitation energies

∆E i
av =

2

3
〈M 2

1 〉iαi (4.5)

which are fully compatible with the second order and multipole expansion applied to the

dispersion coefficients.

Combining eq 4.4 with 4.5, the C i j
6 coefficients between atoms i and j are obtained according

to

C i j
6 = αiα j 〈M 2

1 〉i 〈M 2
1 〉 j

α j 〈M 2
1 〉i +αi 〈M 2

1 〉 j
(4.6)

Along the same lines, higher-order dispersion coefficients (C i j
8 and C i j

10) are obtained

C i j
8 = 3

2

αiα j (〈M 2
1 〉i 〈M 2

2 〉 j +〈M 2
2 〉i 〈M 2

1 〉 j )

α j 〈M 2
1 〉i +αi 〈M 2

1 〉 j

(4.7)

C i j
10 = 2

αiα j (〈M 2
1 〉i 〈M 2

3 〉 j +〈M 2
3 〉i 〈M 2

1 〉 j )

α j 〈M 2
1 〉i +αi 〈M 2

1 〉 j

+ 21

5

αiα j 〈M 2
2 〉i 〈M 2

2 〉 j

α j 〈M 2
1 〉i +αi 〈M 2

1 〉 j

(4.8)

The original idea of Becke and Johnson is that the multipole moments 〈M 2
l 〉 (l = 1,2,3 for

dipoles, quadrupoles, and octupoles, respectively) can be approximated as atomic expectation

values over the dipole dXσ between the positively charged exchange hole and its negatively
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charged reference electron

〈M 2
l 〉i =

∑
σ

∫
wi (r)ρσ(r)[rl

i − (ri −dXσ)l ]2d 3r (4.9)

where ρσ(r) is the σ-spin density and wi (r) represents atomic partitioning weights. The exact

expression for the exchange hole dipole moment dXσ is given by

dXσ(r1) =
[

1

ρσ(r1)

∑
i j
ψiσ(r1)ψ jσ(r1)

∫
r2ψiσ(r2)ψ jσ(r2)d 3r2

]
(4.10)

However, eq 4.10 is both computationally more expensive and turns out to be less accurate

than the XDM computed from the Becke-Roussel (BR) 160 model exchange hole. 326

Becke and Roussel’s model exchange hole is given by a spherically symmetric exponential

function −Ae−ar at a distance b from the reference electron. The three parameters (A, a and b)

are determined nonempirically at each point in space: the second order Taylor expansion of

the spherically averaged exchange hole is required to match between the BR and the exact

exchange hole. Together with the exchange hole normalization, a nonlinear equation is

obtained. The solution of this equation was originally done numerically. However, Kong and

coworkers introduced an analytic function fitting the solution with high accuracy.87,329 In

Chapter 6 we will introduce a simple approximation for b, which directly characterizes the

XDM in the BR model.

4.2.2 Atomic Partitioning Weights

Becke and Johnson76 used classical Hirshfeld weightings 335 in eq 4.9

wi ,HC(r) = ρat
i (r)∑

n ρ
at
n (r)

(4.11)

where ρat
i is the sphericalized free atomic density of atom i , weighted by the superposition

of all ρat
i with all atoms n positioned as in the real molecule. The classical Hirshfeld scheme

depends on the (arbitrary) choice of the atomic reference densities. Molecules with large ionic

character, such as LiF, offer a clear illustration of this dependence. If one uses the typical

superposition of neutral atomic densities (i.e., Li0 and F0), the atomic charges have an absolute

value of 0.57. However, a value of 0.98 is obtained when Li+ and F- densities are considered. 330

This arbitrariness can be overcome by using the iterative version of the Hirshfeld partitioning

procedure, called Hirshfeld-I. 330 In the kth iteration, the weight for atom i is given by

wk
i ,HI(r) = ρk−1

i (r)∑
n ρ

k−1
n (r)

(4.12)

Conveniently, the first iteration can use neutral atomic densities, leading to the classical

Hirshfeld charges. Of course, the electronic populations, Ni = ∫
wi (r)ρ(r)dr, are usually
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fractional numbers, and the corresponding densities are thus computed according to 336

ρk
i = ρNi

i = ρn+x
i = x ·ρn+1

i + (1−x) ·ρn
i (4.13)

where n is the integer part of Ni and x = Ni −n. The partitioning is converged if the electronic

populations do not change significantly between two iterations (the convergence criterion

was set to a root-mean-square deviation of 0.0005 au). Compared to the rest of the dispersion

correction, the iterative scheme is computationally demanding, as integration over the entire

grid is necessary for each iteration.i For this reason, we also report values based on the classical

Hirshfeld partitioning. Note, that all the corrections are applied a posteriori and therefore do

not influence the electron density, but only the total energy.

Finally, the determination of the dispersion coefficients from eqs 4.6-4.8 also depends on

atomic polarizabilities. We herein follow Becke and Johnson’s proposal to exploit the propor-

tionality 337 between polarizability and volume to estimate the effective atom in molecule

(AIM) polarizabilities from tabulated free atomic polarizabilities338

αi = 〈r 3〉i

〈r 3〉i ,free
αi ,free =

∫
r 3wi (r)ρ(r)d 3r∫
r 3ρi ,free(r)d 3r

αi ,free =
Vi ,AIM

Vi ,free
αi ,free (4.14)

4.2.3 The Damping

A key component of dDXDM is the damping factor b. We showed previously74 that the

performance of the TT-damping function is improved by the introduction of a second damping

function to prevent dispersion corrections at covalent distances. In the full TT model, 73 the

attractive potential should give relatively strong contribution at short distances in order to

soften the repulsive Born-Mayer potential. In contrast, a dispersion correction to density

functional approximations necessitates additional damping as density functionals better

describe the region of strong density overlap (short-range). We herein introduce a variable,

damped b, in which the second damping is intrinsically absorbed as an alternative to our

previous model using a Fermi damping function.74 In Tang and Toennies’ seminal work,73

the damping parameter b is also the range parameter of the repulsive Born-Mayer potential

and thus depends on the two interacting atoms. Later, the same authors converted b from a

constant into a function: 339 for an arbitrary repulsive potential V (r)

b(r) =−dlnV (r)

dr
(4.15)

Here, we replace the distance dependence by the following form

b(x) = F (x) ·bi j ,asym (4.16)

iLowering the convergence threshold and using an improved guess would decrease the number of iterations.
The improved guess is expected to be especially efficient for geometry optimization, where partial charges do not
vary a lot between two steps.
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x and F (x) are respectively the damping argument and the function for bi j ,asym, the TT-

damping factor associated with two separated atoms. bi j ,asym is computed according to the

combination rule 293,340

bi j ,asym = 2
bi i ,asym ·b j j ,asym

bi i ,asym +b j j ,asym
(4.17)

The bi i ,asym values are estimated 341,342 by the square root of the atomic ionization energy
p

Ii

taken from the literature. 343 Inspired by the approach of Tkatchenko and coworkers, 44,120 the

atom in molecule character is taken into account through a cubic root scaling of the ratio

between the free atom and the AIM volume. After introduction of the parameter b0, which

determines the strength of the dispersion correction in the medium-range, we arrive at

bi i ,asym = b0 ·
√

2Ii · 3

√
Vi , f r ee

Vi ,AI M
(4.18)

The most robust form for the damping functionii proved to be

F (x) = 1− 2arctan(a0 · x)

π
(4.19)

where the fitted parameter a0 adjusts the short-range behavior.

The last element of the dispersion correction is the damping argument x

x = abs

(
qi j +q j i −

(Zi −Ni ) · (Z j −N j )

ri j

)
Ni +N j

Ni ·N j
(4.20)

where Zi and Ni are the nuclear charge and Hirshfeld population of atom i (vide supra),

respectively. The overlap population344 qi j =
∫

wi (r)w j (r)ρ(r)dr is a covalent bond index,

and the fraction term in the parentheses is an ionic bond index. 345 The multiplicative factor,

(Ni +N j )/(Ni ·N j ), serves to attenuate the damping of bi j ,asym for heavier atoms (containing

more electrons). Note that the damping function has an adequate form (i.e., F (0) = 1 and

F (∞) = 0), given that x is large for close atoms pairs and vanishes with increasing distance ri j .

This is the first example for which the damping of an atom pairwise dispersion correction

depends on Hirshfeld (overlap) populations rather than on “critical” or “van der Waals” radii.

Our approach is, however, similar in spirit to Slipchenko and Gordon’s346 overlap-matrix-

based formula employed within the framework of the effective fragment potential method.

To summarize, the presented dDXDM correction uses electronic structure information to

determine dispersion coefficients and two fitted damping parameters that are the strength of

the TT-damping (b0) and the steepness factor (a0).

iiDifferent functionals, different order of multipole expansion, classical/iterative Hirshfeld partitioning.
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4.3 Determination of the Adjustable Parameters

In line with our former work, 72,74 the chosen fitting procedure ensures a successful treatment

of both weak intra- (short-range) and inter- (long- range) molecular interactions. From a

theoretical perspective, typical weakly bound systems, such as rare gas dimers, seem the

appropriate choice as a training set. However, the description of rare gas dimers by standard

density functionals is not consistent; for instance, PBE overbinds the helium dimer and

underbinds the argon dimer. Such behavior is not easily improved by a dispersion correction

and highlights that inclusion of rare gas dimers into the training set does not necessarily

guarantee a generally improved treatment of weak intra- and intermolecular interactions. 31,299

In contrast, we and others demonstrated that the large errors in the description of alkane

intramolecular interactions (e.g., isomerization energies) are systematic 68,69 and conveniently

reduced by a dispersion correction.72,85,347–349 Our recent work, introducing a flexible TT-

based dispersion energy correction,74 demonstrated that using alkane reaction energies as

a training set results in a highly transferable correction, which outperforms others, even for

systems well outside the range of the training set (e.g., intermolecular complexes).74 Akin to

our former fitting procedure, the two parameters (a0 and b0) are fitted for each functional

as to minimize the mean absolute deviation (MAD) over five reaction energies that are the

Pople’s isodesmic bond energy separation reaction of n-hexane and cyclohexane

CH3(CH2)4CH3 +4CH4 → 5C2H6 (CH2)6 +6CH4 → 6C2H6 (4.21)

the folding energy of C22H46, and the isomerization energy of n-octane and n-undecane to

2,2,3,3-tetramethylbutane and 2,2,3,3,4,4-hexamethylpentane, respectively.

Best fit parameters are determined for dDXDM (i.e., iterative Hirshfeld weights and terms up

to C10), dDXDMc (using classical Hirshfeld weights), dDXDM6 (iterative Hirshfeld weights,

only up to C6), and dDXDM6c (classical Hirshfeld weights and only up to C6). Short form

parenthetic notations that are used in the text refer to the two levels of dispersion correction

with or without the parentheses (e.g., dDXDM6(c) refers to dDXDM6 and dDXDM6c). For

the models including terms up to C10, best fit a0 and b0 correlate well with each other. There

is also a good correlation between each of the fitted parameters and the repulsive character

of the functional,iii as represented by the error in the methane dimer interaction energy.36

In contrast, the C6-based energy corrections show poor (dDXDM6) or even no (dDXDM6c)

correlation between a0 and b0. The missing higher-order dispersion terms in dDXDM6c are

compensated by relatively higher b0 values. 292 The a0 parameters adjust accordingly following

the repulsive character of the functional to prevent a too strong energy correction in the

short-range. These results emphasize the physical relevance of including higher dispersion

terms to achieve a more consistent correction.

iiiA detailed analysis of a correlation of errors for reaction energies with failures in the short-range potential
energy will be reported Chapter 5.
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4.4 Test Sets

The robustness of the dDXDM correction is tested on seven illustrative sets featuring both

intra- and intermolecular weak interactions, as described hereafter.

Three of the sets assess Pople’s isodesmic bond separation equation reactions 82,83 of saturated

hydrocarbons (H, R, and C for chains, rings, and cages, respectively, see Figure 3.2 on page 27).

As in ref 74, B3LYP/6-311+G** geometries and thermal corrections are included, and reference

values are derived from experimental heats of formation. 301

The “intramolecular dispersion interactions in hydrocarbons” (IDHC)85 set contains two

isomerization reactions (n-octane and n-undecane to the fully branched isomer), two folding

reactions of large hydrocarbon chains (C14H30 and C22H46), the dimerization of anthracene,

and the hydrogenation reaction of [2.2]paracyclophane to p-xylene. Geometries and reference

values are taken from ref 85.

The S22299 set validates the performance of the dispersion correction on noncovalent com-

plexes, while the P76 set test probes peptide conformational energies.350 P76 contains 76

conformations of five small peptides having aromatic side chains (FGG, GFA, GGF, WG, and

WGG). For these two sets, geometries and reference values (estimated CCSD(T)/CBS) are

taken from the literature. 303,351

The last test set (EX3) exclusively features weak interactions involving heavy atoms in the

dimers of pnictogen trihalides (NF3, NCl3, PCl3, PBr3, and AsBr3).352 Geometries (counter-

poise corrected df-MP2/aug-cc-pVTZ) were taken from ref 352. Reference values (estimated

CCSD(T)/CBS) were computed at the counterpoise corrected level 353 according to

E(CCSD(T)/CBS) = HF/AVQZ + CCSD-F12b/CBS(AVTZ/AVQZ)

+(T)/CBS(AVDZ/AVTZ) (4.22)

where aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ are abbreviated by AVDZ, AVTZ, and

AVQZ, respectively. These computations were performed with Molpro2009.1354 at the F12

level, 355 with the HF energy containing the CABS single correction and the triples being based

on F12 amplitudes. The g functions are omitted in all aug-cc-pVQZ computations, except

for the heaviest dimer (i.e., (AsBr3)2). The extrapolation functional proposed by Helgaker

and coworkers356,357 (E corr
n = E corr

CBS + AX −3 with X = 2,3, and 4 for AVDZ, AVTZ, and AVQZ,

respectively) is applied a posteriori to the CCSD-F12b and (T) correlation energies. 358 The T1

diagnostic was below 0.02 and the D1 diagnostic 359 around 0.04, except for NCl3, where D1 ≈
0.065 (monomer and dimer) is indicative of a multireference character. The NBr3 dimer was

discarded from the test set due to its D1 ≈ 0.085 and an unreliable basis-set convergence.

The performance of the dDXDM correction was further examined on four potential energy

profiles: (a) the stacked benzene dimer (geometry and reference values taken from refs 274 and

360, respectively), (b) a propane dimer conformation (geometry based on the experimental

geometry 361 and arranged like in ref 362), (c) a benzene-H2S complex (geometry and reference

from ref 360), and (d) a benzene-H2O complex (orientation analogous to the benzene-H2S

conformation, with the same benzene geometry 302 and the experimental water geometry). 361
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For b and c, reference values were computed at the counterpoise corrected level 353

E(CCSD(T)/CBS) = df-MP2/CBS(AVDZ,AVTZ)+∆CCSD(T*)-F12b/AVDZ (4.23)

where∆CCSD(T*)-F12b/AVDZ is the difference between df-MP2-F12 and CCSD(T*)-F12b eval-

uated with the aug-cc-pVDZ basis set, and (T*) stands for the perturbative triple corrections

improved by scaling by the ratio of df-MP2-F12/df-MP2. 121

4.5 Computational Methods

B97-D and B2PLYP-D computations with the cc-pVTZ basis set363–365 were performed with

Turbomole 5.10 308,309 using the resolution of identity (RI-MP2) 366 with matching auxiliary ba-

sis functions 367 to speed up B2PLYP. M06-2X energies were computed with NWChem 5.1 310,311

using the “xfine” grid. All of the other computations were performed with a developmental

version of Q-Chem 3.2. 368 The cc-pVTZ basis set363–365 was used except for the potential en-

ergy curves, for which the larger aug-cc-pVTZ basis set was employed. The energy differences

between cc-pVTZ and the larger aug-cc-pVTZ basis set were found to be negligible compared

to the error of the method against the reference value369 (e.g., the averaged total MAD for

PBE/cc-pVTZ, 4.27 kcal mol-1, differs by only 2%, 0.08 kcal mol-1, from PBE/aug-cc-pVTZ, 4.20

kcal mol-1).

To ensure a consistent treatment between intra- and intermolecular interaction, no basis

set superposition correction was applied (e.g., P76 contains peptide conformations with in-

tramolecular interactions resembling closely those of intermolecular complexes in the S22

test set). XDM-based dispersion corrections were done post-SCF. The iterative Hirshfeld par-

titioning was implemented using sphericalized restricted-open atomic densities computed

on the fly (i.e., functional specific) with a 99/590 Euler-Maclaurin-Lebedev370,371 grid. The

energy profiles were computed with a 99/302 Euler-Maclaurin-Lebedev grid. Otherwise, the

SG1 grid 372 was used.

4.6 Results and Discussion

Figure 4.1 summarizes the mean absolute deviation for established methods tested on the

seven sets described above. The difference between “standard” and “recent” functionals (M06-

2X, B97-D, and B2PLYP-D) is significant for all of the test sets (averaged total MAD 5.0 vs 1.5

kcal mol-1). As noted previously, 74 the performance of the recent functionals on hydrocarbon

reaction energies (H, R, C, and IDHC) is significantly better than that of the standard ones

(MAD of 3.8 and 12.9 kcal mol-1, respectively), although chemical accuracy has yet to be

obtained.

The MADs for the best performing variant of the dispersion correction (-dDXDM i.e., iterative

Hirshfeld weights and terms up to C10) are shown in Figure 4.2a. Note that (un)corrected

B2LYP (0.47 B88 + 0.53 HF + 0.73 LYP, same functional contributions as in B2PLYP163) is not
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Figure 4.1: Performance for commonly used functionals: Mean absolute deviations for binding energies for noncovalent com-
plexes (S22 and EX3); relative conformational energies of five small peptides (P76); and bond separation energies
over hydrocarbon chains (H), rings (R), and cages (C) and for reaction energies of the test set “intramolecular dis-
persion interactions” (IDHC) using the cc-pVTZ basis set.
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(b) Iterative Hirshfeld partitioned dispersion coefficients up to C6
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Figure 4.2: Performance for the iterative Hirshfeld-distributed dispersion coefficients up to C10 (a) and up to C6 (b): Mean ab-
solute deviations for binding energies for noncovalent complexes (S22 and EX3); relative conformational energies
of five small peptides (P76); and bond separation energies over hydrocarbon chains (H), rings (R), and cages (C)
and for reaction energies of the test set “intramolecular dispersion interactions” (IDHC) using the cc-pVTZ basis
set. B2PLYP-D serves as an “internal standard”.
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intended for “real world” applications but provides insight into the good performance of

B2PLYP-D. Overall, dDXDM largely improves the parent functionals, yielding low errors. Over

the seven dispersion corrected functionals tested, the averaged total MAD (TMAD) is 0.9 kcal

mol-1 (min 0.74 (PBE0-dDXDM); max 1.11 (BLYP-dDXDM)), significantly lower than for the

recent M06-2X, B97-D, and B2PLYP-D (1.5 kcal mol-1, min 1.06 (B2PLYP-D)). The dispersion

correction improves the IDHC energies for both PBE and HF (MAD of 12.3 and 22.2 kcal

mol-1, respectively) to a respectable mean absolute deviation of 1.6 kcal mol-1. B2LYP- and

BHHLYP-dDXDM give remarkably low MADs of 0.6 and 0.9 kcal mol-1 (B2PLYP-D gives 1.6

kcal mol-1), while BLYP-dDXDM performs less convincingly (MAD of 3.6 kcal mol-1) for this

set. The robustness and range of applicability of dDXDM combined with various functionals

is further illustrated by the consistent improvement of alkane BSE reaction energies and

weak intermolecular interactions: averaged MADs for the HRC, P76 (relative conformational

energies of small peptides), and S22 (intermolecular weak interactions) sets are 1.4, 0.7, and

0.9 kcal mol-1, respectively, corresponding to roughly 10, 50, and 30% of the deviations of the

uncorrected values (12.9, 1.3, and 3.2 kcal mol-1). The 0.5 kcal mol-1 averaged MAD for the

pure inorganic test set (EX3; vs an uncorrected 3.9 kcal mol-1) is also rewarding.

PBE0-dDXDM is the most accurate combination presented herein (TMAD of 0.74 kcal mol-1)

but dDXDM with the popular B3LYP functional is, as well, very satisfactory (TMAD of 0.82 kcal

mol-1). The best dispersion corrected GGA, PBE-dDXDM, performs nearly as well as PBE0-

dDXDM with a TMAD of 0.84 kcal mol-1. Such a performance is of interest for applications

to large systems (or even bulk materials), where hybrid functionals are computationally

considerably more demanding. Nevertheless, hybrid functionals, which generally outperform

the GGA in many thermochemistry applications, provide the best dDXDM corrected results.

4.6.1 Classical Hirshfeld Partitioning and C6-Only Dispersion Corrections

The reliability of simpler variants of the dispersion correction, i.e., including only terms up to

C6 or using Hirshfeld classical instead of iterative weights, has also been evaluated. The use of

the classical Hirshfeld weights is of practical interest, as it is significantly less computationally

demanding than the iterative version. In the BJ formalism, C8/R-8 and C10/R-10 terms are

relatively inexpensive but have non-negligible contributions to the interaction energy at short

internuclear separations.45,79,292 A comparison with the C6 truncation is thus of theoretical

relevance.

Figure 4.2a (dDXDM) and 4.2b (dDXDM6) reveal that the BSE of alkane cages, the IDHC, and

the EX3 test sets are most affected by the truncation. Whereas the first two sets are character-

ized by a high number of short-range interactions, the effect in the EX3 interaction energies is

more difficult to interpret. Overall, only the combinations of dDXDM6 with PBE, PBE0, and

BHHLYP match the dDXDM results closely.

For the higher-order multipole expansion, classical Hirshfeld weights result in larger errors

than the iterative procedure (Figure 4.3). With an increase in averaged MAD from 0.9 (dDXDM)

to 1.5 kcal mol-1 (dDXDMc), the S22 test set is the most representative of the classical par-

titioning limitation (underestimation of ionic characters).373 As an example, the C6(PBE)
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(b) Classical Hirshfeld partitioned dispersion coefficients up to C6

0

1

2

3

4

5

6

7

PBE-dDXDM6c

BP86-dDXDM6c

PBE0-dDXDM6c

BLYP-dDXDM6c

B3LYP-dDXDM6c

B2LYP-dDXDM6c

BHHLYP-dDXDM6c

HF-dDXDM6c

B2PLYP-D

M
A

D
/(k

ca
lm

ol
-1

)

P76
S22
EX3

H

R
IDHC

C

Figure 4.3: Performance for the classical Hirshfeld distributed dispersion coefficients up to C10 (a) and up to C6 (b): Mean ab-
solute deviations for binding energies for noncovalent complexes (S22 and EX3); relative conformational energies
of five small peptides (P76); and bond separation energies over hydrocarbon chains (H), rings (R), and cages (C)
and for reaction energies of the test set “intramolecular dispersion interactions” (IDHC) using the cc-pVTZ basis.
B2PLYP-D serves as an “internal standard”.

O· · ·O/H· · ·H dispersion coefficients for the water dimer are 12.6/2.5 with classical Hirshfeld

weights, compared to 21.2/0.9 with the iterative procedure. The key difference arises from the

ionic bond index appearing in eq 4.20. The index for the O· · ·O atom pair is 0.014 while using

atomic densities (classical partitioning) and 0.15 after the iterative scheme. This difference

translates into a strong/weak damping when iterative/classical Hirshfeld charges are used.

As DFT approximations correctly account for interaction energy between strongly polarized

fragments (e.g., H bonds), higher iterative Hirshfeld charges (i.e., strong damping, small dis-

persion corrections) are better suited. In contrast, HF that systematically neglects correlations

benefits from the larger dispersion corrections associated with the use of classical Hirshfeld

weights. It is thus not surprising that Hartree-Fock gives its best results when combined with

dDXDMc (TMAD of 1.3 kcal mol-1, MAD(S22) = 1.18 kcal mol-1) and that HF-dDXDM is the

least accurate variant (TMAD of 2.01 kcal mol-1, MAD(S22) = 2.32 kcal mol-1). HF-dDXDMc

could thus be a general alternative to the recent refined HF-D approach, which has been

proven to be successful for intermolecular interactions. 324

46



4.6. Results and Discussion

(a) Stacked benzene dimer

-4

-2

0

2

4

6

3 3.5 4 4.5 5 5.5 6

∆
E

/(k
ca

lm
ol

-1
)

COM Distance/Å

CCSD(T)
B3LYP

PBE
B3LYP-dDXDM6c

PBE-dDXDM6c
B3LYP-dDXDM

PBE-dDXDM
B2PLYP-D

M06-2X

(b) Propane dimer

-4

-2

0

2

4

6

3 3.5 4 4.5 5 5.5 6 6.5

∆
E

/(k
ca

lm
ol

-1
)

COM Distance/Å

CCSD(T)
B3LYP

PBE
B3LYP-dDXDM6c

PBE-dDXDM6c
B3LYP-dDXDM

PBE-dDXDM
B2PLYP-D

B2PLYP-D/def-QZVPP
M06-2X

(c) Benzene· · ·H2O
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(d) Benzene· · ·H2S
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Figure 4.4: Interaction energy (∆E) profiles for the (a) stacked benzene dimer, (b) propane dimer, (c) benzene-H2O complex,
and (d) benzene-H2S complex. CCSD(T) references for a and d are taken from ref 360, while b and d are
computed (see Test Sets). If not stated otherwise, density functional computations were performed with the aug-
cc-pVTZ basis set.

For the reasons given above, the classical Hirshfeld partitioning performs better on the S22

set when terms only up to C6 are included (see Figure 4.3b): excluding higher dispersion

terms attenuates the overcorrections of polar interactions. With TMADs below 1.0 kcal mol-1,

B3LYP-dDXDM6c and BHHLYP-dDXDM6c represent attractive alternatives to avoid the iter-

ative scheme. As for the GGAs, PBE-dDXDM6c and BP86-dDXDMc are the most consistent

over the seven sets tested (TMAD of 1.12 and 1.14 kcal mol-1, respectively). Comparisons of

B2LYP-dDXDM6(c) to B2PLYP-D and B2LYP-dDXDM demonstrate that the C6/R6-dispersion

terms are not sufficient to correct B2LYP errors in the EX3 and IDHC sets. Including either

higher dispersion terms semiempirically as in B2LYP-dDXDM(c) or adding a fraction of PT2

energy to give B2PLYP-D is crucial for these two test sets. Apart from those, B2LYP-dDXDM6(c)

performs similarly to B2PLYP-D, even improving alkane BSE energies. Corrected B2LYP and

B3LYP also tend to perform the same. The similarity relies on the fitting procedure used to

determine the empirical parameters of both, B3LYP and B2PLYP.

4.6.2 Interaction Energy Profiles

Figure 4.4 shows potential energy curves of complexes typically underbound at the (hybrid-)

GGA levels: stacked benzene dimer (a), propane dimer (b), and the benzene complex with wa-
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Figure 4.5: Errors (with respect to estimated CCSD(T)/CBS) in DFT interaction energies for the propane dimer.

ter (c) and hydrogen sulfide (d). The hybrid-meta-GGA M06-2X offers substantial improvement

for the benzene-H2S complex but under- and overbinds the stacked benzene dimer conforma-

tion and the water-benzene complex, respectively. PBE-dDXDM, B3LYP-dDXDM, and, to a

lesser extent, B2PLYP-D overbind all four complexes, while the dDXDM6c correction provides

significantly better results for these weakly bound complexes (vide infra). Since B2PLYP-D suf-

fers greatly from basis set superposition and incompleteness errors, 85,163 both B2PLYP-D/aug-

cc-pVTZ and B2PLYP-D/def-QZVPP energy curves are reported for the propane dimer. As ex-

pected, the accuracy of the energy curve is drastically improved with the large def-QZVPP basis

set.
Table 4.1: MAD (in kcal mol-1) and Mean Absolute

Relative Deviation (MARD) (in percent)
over All 67 Points of Figure 4.4

MAD MARD

B3LYP 2.67 357.2

PBE 1.69 222.0

B3LYP-dDXDM6c 0.45 56.8

PBE-dDXDM6c 0.39 58.6

B3LYP-dDXDM 0.49 54.9

PBE-dDXDM 0.59 69.9

B2PLYP-D 0.47 81.8

M06-2X 0.41 75.2

The MAD and mean absolute relative deviation

over all 67 points associated with the four poten-

tial energy curves are given in Table 4.1. Figure

4.5, on the other hand, displays the error in the

propane dimer interaction energy. With the ex-

ception of PBE-dDXDM, all dispersion corrected

methods have MADs between 0.4 and 0.5 kcal

mol-1. PBE-dDXDM6c is the most accurate com-

bination (MAD 0.39 kcal mol-1). The distinctive

performance of the current dispersion corrections

is further emphasized by the remarkably low error

in both the short (i.e., repulsive wall) and long-

range of Figure 4.5. Overall, the error range spans

between 55% (B3LYP-dDXDM) and 70% (PBE-dDXDM), thereby outperforming M06-2X (75%)

and B2PLYP-D (80%) (Table 4.1).
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4.7 Conclusions

We have presented an improved scheme for computing system-dependent dispersion coef-

ficients and damping parameters for a disperion correction to density functional approxi-

mations. The dispersion coefficients are evaluated exploiting the XDM formalism of Becke

and Johnson76–80,187,328 and are distributed among the atoms according to a(n) (iterative) 330

Hirshfeld335 partitioning. The universal damping function of Tang and Toennies73 is used

with a damping factor depending on Hirshfeld (overlap) populations and charges as well as

on two adjustable parameters. In addition to the fitted parameters and the density-based

information, only free atomic polarizabilities and ionization energies are needed. Hence, the

dDXDM correction is applicable to all elements of the periodic table and is easily combined

with every density functional. This flexibility permits choosing a functional on the basis of its

performance for properties not dominated by weak interactions (e.g., spin states and barrier

heights), while still correcting any failures for weak interaction energies. The analysis of 30

(dispersion corrected) density functionals on 145 systems reveals that dDXDM(6c) largely

reduces the error of the parent functionals for both inter- and intramolecular interactions.

PBE0-dDXDM and PBE-dDXDM are the best performing hybrid-GGA and GGA, respectively,

outperforming M06-2X and B2PLYP-D. The use of B3LYP-dDXDM is recommended as well,

and it gives the second best overall performance.
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5 Overcoming Systematic DFT Errors
for Hydrocarbon Reaction Energies

5.1 Introduction

Kohn-Sham density functional theory (DFT)11 is a powerful framework for many aspects of

electronic structure theory and has become the preferred method for modeling the energy and

structural properties of large molecules. Despite overwhelming popularity, common semilocal

and hybrid density functional approximations are affected by well-known deficiencies. In

addition to the inability of the most popular exchange-correlation functionals to accurately

model long-range (dispersion) interactions in van der Waals complexes,13–22 recent studies

have also noted failures to describe intramolecular energies in seemingly simple hydrocar-

bons. 68,69,71,374

Alkanes represent the simplest examples of organic molecules for which the energetic de-

scription remains challenging for density functional approximations. The accuracy for alkane

energies is generally benchmarked through computed heats of formation62,375–378 or reac-

tion energies.82–84 Disturbing failures have, for instance, been noted for the evaluation of

isodesmic bond separation reactions82–84 of n-alkanes (eq 5.1; Figure 5.1), which are com-

monly used to determine the total sum of the (de)stabilizing interactions within molecules.

In the bond separation equation (BSE) procedure, all bonds between heavy (non-hydrogen)

atoms are split into their simplest (or parent) molecular fragments preserving the heavy atom

bond types. Reactions are balanced by inclusion of the necessary number of simple hydrides

(methane, ammonia, water, etc.). The BSE of propane (eq 5.1) has been used to quantify the

1,3-methyl-methyl stabilizing interaction, 2.83 kcal mol-1, termed protobranching by Schleyer

and coworkers.297 Most functionals systematically underestimate the BSE of propane and

larger alkanes (Figure 5.1). 69,347,349

CH3(CH2)mCH3 +mCH4 → (m+1)C2H6 (5.1)

While the physical origin of the branching stabilization remains uncertain, its roots trace to

both Allen’s379,380 and Pitzer’s381,382 1950s studies of alkane stability, where van der Waals

type (London dispersion98) interactions were invoked to explain the enhanced stability of
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MP2/6-311+G(d,p) zero-point energy corrections. All other computations employed the 6-311+G(d,p) basis set.
Data taken from ref 69.

branched over linear species. For this reason, the poor treatment of nonbonded intramolecu-

lar interactions between 1,3-disposed methyl/methylene groups has been proposed to explain

the failure of standard density functionals. 72,74,81,85,348,349,383,384

Numerous related problems have been reported for the computation of hydrocarbon bond

energies.64–66,385–387 Redfern et al. noted large per bond B3LYP deviations for alkane heats

of formation, which grew with increasing alkane size. 62 Grimme’s analysis of the alkane iso-

merization reactions showed that many density functionals do not reproduce the correct

ordering for heats of formation, preferring n-alkanes over their more highly branched (and

more stable) counterparts.68 Feng et al. first noted considerable underestimation of C–C

bond energies using B3LYP. 64 Later, Check and Gilbert showed increasing errors in C–C bond

energies as the peripheral hydrogen atoms were replaced with methyl groups, resulting in an

error of over 20 kcal mol-1 for cleavage of the central C–C in tetramethylbutane.65 Note that

the cleavage of these C–C bonds necessarily involves changes in the number of 1,3-alkyl-alkyl

(protobranching) interactions, thus, similar shortcomings are observed for bond cleavage

energies as for alkane BSEs.

Organic systems possessing structural features other than C–C and C–H single bonds are also

susceptible to DFT failures. Schreiner and coworkers showed that gradient corrected func-

tionals overstabilize cummulene structures when examining cummulene/acetylene energy

differences in small organic compounds. 63 Different functionals yielded widely varying energy
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differences for sets of hydrocarbon structural isomers (over 40 kcal mol-1 for C12H12). 67 For the

same set of compounds, bond separation reactions give generally smaller errors that increase

with the system size. 70

Over the past decades, the shortcomings of standard semilocal and hybrid density functionals

have motivated developments “beyond” the realm of traditional DFT approximations. These

more sophisticated and/or more accurate formalisms generally aim at (i) improving the treat-

ment of long-range dispersive interactions, which, by construction, is missing in semilocal

density functionals and (ii) reducing the intrinsic self-interaction error,24,181,388 generalized

to “delocalization error” in many electron systems. 28,30,190,389 In this chapter, we discuss the

current state of density functional approximations for describing energies associated with

weak intramolecular interactions present in four test sets featuring hydrocarbons. Our primary

focus is to evaluate the performance of the most recent but not widely used DFT methods

and test their ability to overcome known deficiencies. The latest functionals are often imple-

mented in developmental versions of codes, frequently unavailable to users. A comprehensive

benchmarking of “modern” functionals on the reactions energies of hydrocarbons will not only

enable straightforward comparisons of their performance, but also serve to supplement the

debate regarding the origin of the DFT errors. 68,349,390,391 Our classification and applications

of “modern” density functionals distinguish “pure” from atom pairwise dispersion corrected

density functionals. The “pure” class includes vdW-density functionals (e.g., vdW-DF04141

and VV0947,236), long-range corrected exchange (LC-) functionals (e.g., LC-BLYP,349,392 LC-

PBE,349 LC-ωPBE,393,394 LC-ωPBEh394), and functionals designed specifically to minimize

the delocalization errors (e.g., MCY3).189 For comparisons, this category also includes the

increasingly popular highly parameterized hybrid Minnesota functional, M06-2X.214 The

second class of methods considers Grimme’s B97-D39 and B2PLYP-D,85,163 along with our

recent density-dependent dispersion correction dDXDM, 81 in which an explicit atom pairwise

dispersion correction is added a posteriori.

5.2 Computational Methods

5.2.1 Test Sets

The performance of a series of recent functionals (described below) is compared with tradi-

tional semilocal and hybrid functionals for four test sets representative of the intramolecular

weak interactions in hydrocarbons (Figure 3.2 and 3.3 on page 27). Three of these test sets

assess Pople’s isodesmic bond separation equation reactions82–84 of alkanes (chains, rings

and cages, see Figure 3.2). The geometries and thermal corrections are taken at the B3LYP/6-

311+G** level from ref 74,81 except for R14, which has been updated. Reference values are

derived from experimental heats of formation.301 Whereas the use of these experimental

reference data has been disputed,395 our recent density-dependent dispersion correction

(dDXDM)81 was fit to experimental energy differences, which compared well with compos-

ite approaches. Note that the general trends and analysis discussed in this work, however,
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remain unaffected by the choice of reference values (experimental vs. CCSD(T)/CBS). The

“intramolecular dispersion interactions in hydrocarbons” (IDHC)85 set contains two iso-

merization reactions (n-octane and n-undecane to the fully branched isomer), two folding

reactions of large hydrocarbon chains (C14H30 and C22H46), the dimerization of anthracene,

and the hydrogenation reaction of [2.2]paracyclophane to p-xylene (Figure 3.3). Geometries

and reference values are taken from ref 85. Finally, the geometries and CCSD(T*)-F12a/aug-

cc-pVTZ121,355 reference values for the methane dimer, used as a model system, are taken

from reference 81 and the interaction energy profile completed at the same level using Mol-

pro2009.1.354 SAPT0 computations93 were performed with the aug-cc-pVTZ basis set363 in

Molpro2009.1.

5.2.2 Functionals

The energy data for HF, PBE, 156 PBE0, 217,280 BP86, 151,154,332 BLYP, 154,155 B3LYP, 161,162 B2LYP,

and their dDXDM81 corrected versions as well as M06-2X,214 B2PLYP-D,85,163 and B97-D 39

are taken from ref 81. Data for SVWN5 131,149 are taken from ref 74.

LC-BLYP, 349,392 LC-PBE, 349 LC-ωPBE, 393,394 LC-ωPBEh, 394 HFLYP, HFPBE, S, 131 rPW86, 151,396

B88, 154 PBEx, 156 VV09, 47,236 and vdW-DF04 141 energies are computed with a developmental

version of Q-Chem 3.2.368 HSE06397,398 computations were performed in Gaussian 09,399

while CAMB3LYP, 400 rCAMB3LYP, 189 LC-BLYP(0.33), MCY2, 186 and MCY3 189 were computed

with a version of CADPAC 6.5,401i kindly provided by Aron Cohen. The cc-pVTZ363 basis set

was used for all test sets, but interaction energies for the methane dimer were computed with

the aug-cc-pVTZ basis set.

The specificities of the “modern” functionals listed above are briefly summarized below. M06-

2X214 is a fitted hybrid meta-GGA functional (about 30 parameters), designed to describe

main group elements and weak interactions accurately. B97-D39 is a GGA fitted together

with the dispersion correction in order to minimize the double-counting of DFT correlation

and the empirical dispersion term. The double hybrid B2PLYP-D 85,163 contains 27% MBPT2

correlation energy, 53% “exact” exchange, and an a posteriori dispersion correction. vdW-

DF04 141 and VV09 47,236 are two fully nonlocal vdW-density functionals that are supplemented

by an exchange and a local correlation functional. There is some freedom in the choice of

the exchange component, but functionals that bind van der Waals complexes are obviously

unsuitable (revPBE402 and recently PW86 refits151,396 are popular options). The PW92 150

parameterization is usually chosen for the local correlation.

LC-BLYP, LC-PBE, LC-ωPBE, and LC-ωPBEh are long-range corrected exchange functionals

(labeled LC or LCR): the long-range is described by “exact” exchange and the short-range by

semilocal DFT exchange (eq 5.2). In the range-separation scheme, pioneered by Savin et al. for

combining multi-determinantal methods with DFT approaches, 193,194 the electron repulsion

operator 1
r12

is partitioned into two ranges (long and short) with the most common choice

if functions were omitted in CADPAC computations of the anthracene dimerization and the folding of C22H46
for technical reasons.
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being an Ewald-style partition based on the error function

1

r12
= erfc(µr12)

r12︸ ︷︷ ︸
SR

+ erf(µr12)

r12︸ ︷︷ ︸
LR

(5.2)

where the µ parameter is selected empirically and controls the definition of the two ranges

(for other forms of eq 5.2 see ref 193,403–406). The LC scheme is motivated by the incorrectly

decaying potential of standard DFT functionals (the xc potential of semilocal functionals

decays exponentially along with the density, while the asymptotic form of the exact potential is

-1/r). Applying the range separation and introducing HF exchange for the long-range corrects

this error. The “long-range” is considered especially important in the asymptotic region (i.e.,

surface) of molecules. Given a GGA or hybrid functional, the corresponding LRC functional is

E LRC
xc

= Ec + (1−CHF)E SR
x,GGA +CHFE SR

x,HF +E LR
x,HF (5.3)

The components labeled “LR” and “SR” are evaluated using the long- and short-range Coulomb

potential, respectively, while CHF denotes the coefficient of the HF exchange present in the

original functional (Ex,HF). Hybrid LRC functionals therefore contain some fraction of short-

range HF exchange, but all LRC (CAMB3LYP excluded) functionals contain full HF exchange

in the long-range limit (eq 5.3). The construction of the short-range exchange functional

(E SR
x,GGA) requires an expression for the exchange hole, which is readily available for LDA, but

not immediately accessible for most semilocal GGAs. The LC schemes thus mostly vary by

the construction of the short-range functional. An illustrative example is PBE, for which

four short-range parameterizations exist in the literature ranging from using a pseudo-LDA

exchange hole407 (LC-PBE), applying the range separation to the enhancement factor (sr-

PBE or µ-PBE),408 taking the model PBE exchange hole409 (LC-ωPBE)410 or using a more

general exchange hole393 parameterized to reproduce PBE-results (called LC-ωPBE as well

or LC-ωPBE08 to distinguish the two).313 HSE06,397,398 which has been motivated mainly

for use in solid state computations, is a screened hybrid that is the inverse of a long-range

corrected exchange functional: the short-range is described by “exact” exchange and the long-

range by semilocal DFT exchange, which avoids the computationally expensive full-range

“exact” exchange. CAMB3LYP400 uses a different partitioning than eq 5.3, but can be seen

as an extension of LC-BLYP (similar to the B3LYP extension to BLYP) fitted to atomization

energies, ionization potentials, and total atomic energies, by varying the fraction of global

and long-range “exact” exchange. rCAMB3LYP189 is a re-parameterization of CAMB3LYP

containing about twice the amount of the long-range corrected exchange and aims to improve

the fractional charge behavior of a carbon atom. MCY2 186 was constructed to be one-electron

self-interaction free and to give good thermochemistry and reaction barriers, while MCY3 189

uses long-range corrected exchange components and has been, akin to rCAMB3LYP, fitted to

improve the fractional charge behavior. Finally, LC-S-vdW-DF04 and LC-S-VV09 47 pair the

long-range corrected Slater exchange with the fully nonlocal vdW-density functionals with

(i.e., VV09 47) or without (i.e., vdW-DF04 141) refitting the long-range separation parameter.
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Figure 5.2: Performance for standard functionals: Mean absolute deviations for bond separation energies over hydrocarbon
chains, rings and cages, and for reaction energies of the test set “intramolecular dispersion interactions” (IDHC)
using the cc-pVTZ basis set

Very recently we introduced a dispersion correction81 that combines Becke and Johnson’s

exchange hole dipole moment (XDM) formalism 76–80,187,328 with an extended Tang and Toen-

nies damping function,73 in which the damping parameter depends on atomic (overlap)

populations. For details, we refer to Chapter 4.

5.3 Results and Discussions

5.3.1 General Performance

Simple (closed shell molecules) hydrocarbon reactions such as Pople’s bond separation equa-

tions (BSEs) of linear alkanes (chains), cycloalkanes (rings), or cages (such as adamantane)

show highly characteristic and systematic DFT errors 69 (see Figure 5.2) of the same magnitude

as HF (except for SVWN5). SVWN5 outperforms all the others common density functionals for

alkane reaction energies (vide infra).

With the exception of SVWN5 (LDA), the contrast between “standard” (Figure 5.2) and “mod-

ern” density functionals (Figure 5.3) is striking, with the average mean absolute deviation

(MAD) over the four test sets being 40% lower for the latter (MAD(standard) = 13.3 kcal mol-1,

MAD(modern) = 7.7 kcal mol-1). Two general tendencies emerge from the comparisons be-

tween Figure 5.2 and 5.3: (i) the inclusion of long-range corrected exchange energy terms

improves the general performance, while the incorporation of a fraction of global exchange

does not and (ii) the accurate treatment of weak interactions is essential. The most illustrative

examples are the superior performance of LC-BLYP0.33 (MAD = 5.5 kcal mol-1) and of the

VV09-based functionals, rPW86-VV09 and LC-S-VV09 (MAD of 5.8 and 3.6 kcal mol-1, respec-

tively). On the other hand, the remarkable performance of the hybrid meta-GGA, M06-2X

(MAD = 5.6 kcal mol-1) highlights the valuable success of semiempirical fitting for improving

the performance of standard DFT approximations.

Inconveniently, the approaches that are best for general thermochemistry (i.e., atomization
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Figure 5.3: Performance for “modern” functionals: Mean absolute deviations for bond separation energies over hydrocarbon
chains, rings and cages, and for reaction energies of the test set “intramolecular dispersion interactions” (IDHC)
using the cc-pVTZ basis set

energies and barrier heights) tend to perform worst for the weak intramolecular interactions

discussed herein, and vice versa. For instance, the inclusion of global HF exchange in conjunc-

tion with the long-range exchange correction (i.e., (r)CAMB3LYP and LC-ωPBEh) increases

the MADs for each of our individual sets when compared to the “pure” long-range corrected

exchange functional (e.g., MAD = 9.9 and 9.0 kcal mol-1 for LC-ωPBEh and LC-ωPBE, respec-

tively). These results contrast with other thermochemical properties for which the additional

empirical parameter associated with the fraction of “exact” exchange improves the functional

performance.394,400 Similarly, the LC-BLYP long-range separation parameter optimized for

atomization energies (0.5), 349,411 is significantly less accurate (MAD(0.5) = 7.8 kcal mol-1) than

LC-BLYP0.33 (MAD(0.33) = 5.5 kcal mol-1),392 which has been shown to give considerably

lower delocalization errors,28,189 but poor atomization energies.400 MCY3 (MAD = 6.3 kcal

mol-1), which has been designed to minimize the delocalization error and benefits from the

inclusion of long-range corrected exchange energy terms and from the same parameterization

as rCAMB3LYP189 also performs very well for our test sets, but less satisfactory for general

thermochemistry.189 This performance contrasts with MCY2 (MAD = 15.6 kcal mol-1, full-

range “exact” exchange, one-electron self-interaction free), which has been parameterized

against “general” thermochemistry and gives poor results for weak intramolecular interactions.

Screened hybrid density functionals, which perform similar to PBE0 for thermochemistry, 412

also do not outperform the LC-functionals in the presently studied cases (e.g., MAD HSE06 =

11.0 kcal/mol). The sets tested herein seemingly benefit from a later switching to the long-

range interactions in exchange, but at this stage, no simple rationalization is possible as it

is not unequivocally clear from where the improvement arises. In a recent study, Tsuneda

and coworkers claimed that the lack of long-range interactions in exchange functionals is

the major cause for the underestimation of alkane isodesmic reaction energies,349 but this

on-going question68,349,390,391 will be thoroughly discussed in the next section.
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Figure 5.4: Performance for dispersion corrected functionals: Mean absolute deviations for bond separation energies over hy-
drocarbon chains, rings and cages, and for reaction energies of the test set “intramolecular dispersion interactions”
(IDHC) using the cc-pVTZ basis set. SVWN5, M06-2X, and LC-S-VV09 are shown for comparison with Figure 5.2
and 5.3

A much less debated origin for these DFT errors is the absence of nonlocal correlation effects

to account for long-range intramolecular interactions such as dispersion. 413 This dependency

is demonstrated by the good performance of the vdW-density functionals such as revPBE-

vdW-DF04 and rPW86-VV09 (MAD = 6.8 and 5.8 kcal mol-1, respectively). Combining VV09

with a LC-functional, as suggested in ref 47, further stabilizes the hydrocarbons (MAD = 3.6

kcal mol-1). LC-S-vdW-DF04 performs similarly (MAD = 4.0 kcal mol-1). The relevance of such

combinations has also been demonstrated for rare-gas dimers and other systems. 227,228,414–417

An alternate and computationally cheaper solution to the intramolecular dispersion problem

is to add a damped, atom pairwise energy correction to the standard DFT energy as originally

proposed by Wu and Yang 38 and others. 22,240,241 Our recently introduced system-dependent

dispersion correction (dDXDM), based on Becke and Johnson’s exchange hole dipole moment

formalism, has been shown to reduce both these “intramolecular errors” as well as the errors

on typical (intermolecular) van der Waals complexes. 81 Figure 5.4 illustrates the performance

of dDXDM along with that of the popular B97-D and B2PLYP-D. 39,85 Note that Grimme’s latest

DFT-D3 correction 42 is not considered herein, but its performance on isodesmic reactions for

linear alkane chains has been demonstrated in ref 391. The success of dDXDM is due to a flex-

ible, density-dependent, damping function that adapts well to a given functional (vide infra)

together with accurate, density-dependent dispersion coefficients. To enable comparisons

with Figure 5.3, the best performing “standard” and “modern” functionals (SVWN5, MAD = 3.4

kcal mol-1, M06-2X, MAD = 5.6 kcal mol-1 and LC-S-VV09, MAD = 3.6 kcal mol-1) are included

in Figure 5.4.

The explicitly dispersion corrected functionals outperform the best functionals tested in Figure

5.3, LC-BLYP0.33 and LC-S-VV09. In particular, PBE-dDXDM and PBE0-dDXDM (MAD = 0.8

and 0.9 kcal mol-1, respectively) give the best results with respect to experiment. The dDXDM

correction also lowers the error, which generally increases considerably going from chains, to
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rings, to cages. B2LYP-dDXDM (same functional contributions as in B2PLYP, but without PT2

correlation energy) is not intended for real world applications, but provides insights into the

good performance of B2PLYP-D. dDXDM alone is able to reproduce the combined role of the

PT2 energy and the empirical dispersion correction for the present test sets.

The main outcome resulting from this preliminary investigation of the general performance

of various functionals is (i) accounting for dispersion interactions is indispensable, (ii) the

improved treatment of “medium-range correlation” decreases the errors significantly (e.g.,

M06-2X), and (iii) a long-range corrected exchange improves performance. Whereas (i) can be

efficiently solved by the use of a dispersion correction that offers an attractive alternative to the

computationally more expensive nonlocal vdW functionals, the importance of the exchange is

uncertain.68,349,390,391 In the next section, we analyze the errors for these simple systems in

greater detail to shed greater light on the origin of the DFT failures.

5.3.2 Detailed Analysis of the Functional Performance

Our recent dispersion corrections, which are calibrated on alkane reaction energies, 72,74 aimed

at accounting for “intramolecular errors” efficiently, without deteriorating the long-range

dispersion interactions. Interestingly, our empirical dispersion energy corrections 72,74 show a

minimum between 2.3 and 2.6 Å for the carbon· · ·carbon interaction (see Figure 3.1 on page

25), a distance that corresponds roughly to the 1,3 C· · ·C distance in propane (2.536 Å).361

This distance range is also similar to the compressed methane dimer as originally chosen by

Yang and coworkers190 as a model for probing delocalization errors28,190,389 in Diels-Alder

reaction energies. Comparisons between the errors in our test sets with those of the methane

dimer interactions at the highly repulsive distance of 2.4 Å and at the equilibrium distance 299

is instructive, as a correlation would be indicative of a common source of error.

The correlation of MADs is vastly superior with the error in the repulsive methane interac-

tion (Figure 5.5b) than with the error at the equilibrium distance (Figure 5.5a). The poorer

correlation between the errors in our test sets and the methane interaction at the equilibrium

distance is in line with the strongly varying results given by the density functionals for de-

scribing vdW-interactions.17,205,418 The treatment of long-range dispersion is missing, and

the various performances strongly depend on the high-reduced density gradient s ∝ |∇ρ|
ρ4/3 (low

density, high gradient) behavior of the exchange functional. As demonstrated hereafter, the

situation differs drastically in the repulsive range, which is more adapted to the description of

branching in alkanes and compact hydrocarbons (e.g., anthracene dimer). M06-2X gives small

errors for both the methane interaction and the IDHC test set. The errors are the largest for the

BSE of the alkane cages, which result in a large y-axis intercept for this series. We suggest that

the non-zero intercept is due to the missing long-range dispersion that can, by no means, be

recovered by a local functional (not even by extensive fitting like in M06-2X) and that increases

with system size. Figures 5.7 and 5.6 give valuable insights on the improved performance of

PBE0 when compared to its parent ingredients, HF and PBE, which both overestimate the

repulsion of the compressed methane dimer. PBEx is considerably more repulsive than HF in

the highly repulsive region modeled by the compressed methane dimer (Figure 5.7)!
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Figure 5.5: Correlations of “standard” and “modern” functionals between the methane interaction energy and the mean abso-
lute deviations for, bond separation energies over hydrocarbon chains, rings and cages, and for reaction energies
of the test set “intramolecular dispersion interactions” (IDHC)

60



5.3. Results and Discussions

0

5

10

15

20

25

30

35

-6 -4 -2 0 2 4 6 8 10

M
A

D
/(k

ca
lm

ol
-1

)

(CH4)2 Interaction Energy Error at 2.4 Å/(kcal mol-1)

SVWN5

PBEPBE0 BP86

BLYP
B3LYPBHHLYP

HF

HFPBE

HFLYP

Chains R2 = 0.93
Rings R2 = 0.79

Cages R2 = 0.87
IDHC R2 = 0.97

Figure 5.6: Correlations of “standard” semilocal and hybrid density functionals between the methane interaction energy and
the mean absolute deviations for, bond separation energies over hydrocarbon chains, rings and cages, and for
reaction energies of the test set “intramolecular dispersion interactions” (IDHC)

-1

-0.5

0

0.5

1

1.5

2

2.5

3 3.5 4 4.5 5 5.5

(C
H

4
) 2

In
te

ra
ct

io
n

E
ne

rg
y/

(k
ca

lm
ol

-1
)

C· · ·C Distance/Å

CCSD(T*)-F12a/aug-cc-pVTZ
CCSD(T)/CBS

HF
B88

PBEx
rPW86

S

Figure 5.7: Methane dimer interaction profiles for exchange-
only computations. CCSD(T*)-F12a/aug-cc-pVTZ
serves as a reference for the true interaction en-
ergy. The corresponding CCSD(T)/CBS bench-
mark values are also shown for the region consid-
ered in ref 360

Whereas density functionals do not repro-

duce the repulsive wall of rare-gas dimers,

most studies have focused on the slightly re-

pulsive region, where exchange-only compu-

tations give various trends from too soft (e.g.,

PBEx) to too repulsive (e.g., B88). 17,325,396,418

One thus argues that in the highly repul-

sive range, the improved performance of

PBE0 compared to PBE is due to the smaller

amount of overly repulsive PBE exchange

(75% instead of 100%) in favor of the HF ex-

change. The improvement compared to HF is obviously due to the correlation functional.

In line with Brittain et al.,390 the more accurate interactions given by HF exchange together

with PBE correlation, HFPBE, corroborate this interpretation. This reasoning in terms of

over-repulsive semilocal DFT exchange is, however, only valid for nonbonded interactions

and not for semilocal DFT exchange treatments of covalent bonds. 328 HF supplemented with

semilocal correlation is, of course, not recommended for general purposes. The present inter-

pretation of the overly repulsive nature of standard DFT exchange functionals at compressed

distances are also responsible, potentially, for the “surprising and somewhat alarming” larger

errors recently noticed by Hobza and coworkers419 for noncovalent energy computations

of the compressed S22 geometries when compared to those at equilibrium (0.9 shift when

compared to the equilibrium distance). At the equilibrium, PBE exchange is, on the contrary,

under-repulsive. Thus, the combination of HF exchange with standard semilocal DFT cor-

61



Chapter 5. Overcoming Systematic DFT Errors for Hydrocarbon Reaction Energies

relation worsens the description of vdW-complexes20 (e.g., HFPBE error at the equilibrium

is in between HF and PBE). To a lesser extent, similar trends are observed for the BSE of

the alkane cages and the IDHC test set (i.e., highly branched and compact system), whereas

the alkane chains and rings (less branching, not as compact) remain weakly affected by the

incorporation of global exchange. The improved performance of the LC-functionals for all

our test sets and the compressed methane dimer illustrate, somewhat, that the description of

nonbonded interactions in the increasingly repulsive range benefits more from having full

HF exchange at the surface of the molecule (in the long-range) than from containing some

fraction of HF exchange at all ranges or full HF exchange at the short-range (e.g., screened

hybrid functionals). As demonstrated by Yang and coworkers, the overly repulsive nature of

the functional at compressed distances decreases considerably if the delocalization error is

reduced (e.g., MCY3).

Table 5.1: Interaction Energy Contributions for the Methane Dimer at Equilibrium (C· · ·C Distance =
3.7 Å) and a Repulsive Distance (C· · ·C Distance = 2.4 Å), Computed with SAPT0 Using the
aug-cc-pVTZ Basis Set. CCSD(T*)-F12a/aug-cc-pVTZ is Given as a Reference. All Values
in kcal mol-1

Repulsive methane dimer Equilibrium distance

E (1)
pol -14.11 -0.14

E (1)
exch 45.55 0.53

E (2)
ind -11.17 -0.06

E (2)
ind−exch 9.82 0.06

E (2)
disp -13.14 -0.98

E (2)
disp−exch 2.99 0.07

Eel = E (1)
pol +E (1)

exch 31.44 0.39

E (2)
ind +E (2)

ind - exch -1.35 0.00

E (2)
disp +E (2)

disp - exch -10.15 -0.91

Etot 19.94 -0.52
HF (BSSE corrected) 29.21 0.37
δHF -0.88 -0.02
CCSD(T*)-F12a 21.11 -0.53

Apart from the exchange functional, correlation and especially dispersion play a major role

in these errors, as confirmed by the dramatic improvement obtained when accounting for

dispersion interactions.72,74,81,85,348,349,383 We here distinguish long-range dispersion from

“overlap” dispersion (that is shorter-range dispersion in the region of overlapping density,

partially accounted for by semilocal functionals), both of which accumulate with system size.

The notion of “overlap” dispersion is in line with a recent DFT study of the description of water

hexamer interactions that recover a large part of the dispersion energy, dominated by the

short-range. 420 It is also closely related to Grimme’s “overlap dispersive” interactions. 298 We,

however, regard “overlap” dispersion as a particular case of medium-range correlation68,384

and not as an alternate terminology.42 The importance of dispersion interactions is directly

illustrated by the Hartree-Fock error for the compressed methane dimer (8.1 kcal mol-1).
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Figure 5.8: Correlation between best fit a0 and b0 values for dDXDM against the absolute interaction energy error for the
uncorrected functional of the methane dimer at equilibrium and a compressed distance.

The individual contributions to the energy interaction of the methane dimer are analyzed in

Table 5.1 by symmetry adapted perturbation theory (SAPT0).93 The difference between HF

and SAPT first-order interaction energies plus second order induction (-exchange) is given

by δHF.421,422 The HF error exactly matches the second order dispersion energy. However,

note that SAPT does not distinguish between “long-range” and “overlap” (i.e., shorter-range)

dispersion that are, to a certain extent, captured by the DFT correlation functionals. At the

highly repulsive distance, the correlation functional accounts for some “overlap” dispersion

(due to overlapping density, see HFPBE and HFLYP large improvement when compared to HF

in Figure 5.6), but there are severe shortcomings (over-repulsive) in the exchange functional.

In line with the compressed methane dimer, the IDHC test set and the BSEs of branched

alkanes (cages > rings > chains) follow the same interpretation regarding the origin of the DFT

errors. The error at the equilibrium distance is, however, interpreted in terms of the missing

dispersion that can be compensated by an under-repulsive semilocal DFT exchange (e.g.,

PBE). The good overall performance of SVWN5 for alkane BSEs is easily explained by error

compensation between the short-range (overly attractive) and the missing long-range weak

interactions. It has also been explained in terms of the surface energies153 (LDA inherently

favors compact over extended systems, and thereby correctly describes alkane branching).

Given that the dDXDM correction efficiently reduces the MADs of our test sets, it is reasonable

to expect a correlation between the parameters adjusting the dispersion correction for a given

functional and the error in the methane dimer interaction energies for the parent functional

(see Figure 5.8). dDXDM contains only two fitted parameters: a0, which controls how fast

the correction decays to zero for short interatomic distances and b0, which determines the

strength of the correction at intermediate distances (i.e., in the medium-range).

The physical interpretation of the good correlation for b0 in Figure 5.8b is straightforward: the

higher the b0 value, the stronger the dispersion correction at intermediate distances. At long

ranges, the damping vanishes exponentially and b0 becomes unimportant. At short ranges,

the second damping function, with the steepness a0, dominates: a0 = 0 turns off the additional
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damping and restores the “conventional” Tang and Toennies damping, whereas a0 =∞ turns

off the entire disperson correction. Intermediary, the additional damping responds to b0. A

high b0 value means large dispersion terms at short (even covalent) internuclear distances

that are prevented by increasing a0. For a given density overlap, a high a0 value turns down the

TT-dispersion correction more than a low a0. This behavior justifies the poorer performance

of dDXDM when combined with highly repulsive functionals such as BLYP (or HF) when

compared to softer functionals, such as PBE or even B3LYP. The high b0 values required

for correcting the medium-range increases a0 as well, thereby diminishing the dispersion

correction at distances with considerable density overlap whether the overlap is bonding or

not. dDXDM is, nevertheless, a powerful dispersion correction, as even HF and BLYP are

improved to an extent that they compete with M06-2X. The fact that dDXDM benefits from the

“overlap dispersion” intrinsic to the DFT functional advises against combining the dDXDM

with the dispersionless functional of Pernal et al. 51

5.4 Conclusions

The benchmarking of “modern” density functionals for overcoming common DFT errors in

hydrocarbon reaction energies provides valuable insight into the origin of the errors given by

traditional semilocal and hybrid density functionals. The most illustrative example for these

shortcomings is the large B3LYP energy underestimation (MAD = 14.1 kcal mol-1) over four

test sets of hydrocarbons featuring weak intramolecular interactions. Our comprehensive

analysis demonstrates that for increasingly branched alkanes and most compact hydrocarbons,

the “intramolecular errors” strongly correlate with the error for the compressed methane

dimer interaction energy. At these compressed distances, the shortcomings can be partially

attributed to the general overly repulsive nature of semilocal exchange in the treatment of

nonbonded density overlaps. The significant improvement offered by the long-range corrected

exchange functionals stems from the substitution of the long-range DFT exchange by a less

repulsive “exact” exchange (e.g., LC-BLYP0.33, MAD = 5.5 kcal mol-1). The overly repulsive

nature of the semilocal DFT exchange at compressed distances sharply contrasts with the

various trends (e.g., PBEx under-repulsive to B88 over-repulsive) characteristic of the near

equilibrium region. Our study also emphasizes the essential role played by the correlation

functional for lowering the error of these hydrocarbon reactions. At regions of nonbonded

density overlap, the correlation functionals account for a non-negligible extent of “overlap

dispersion” (Figure 5.6). Improving the treatment of long-range dispersive interactions leads

to enhanced performances, as illustrated by both the impressive results of the nonlocal van der

Waals density functionals (e.g., rPW86-VV09, MAD = 5.8 and LC-S-VV09, MAD = 3.6 kcal mol-1)

and the atom pairwise density-dependent corrected PBE (e.g., PBE-dDXDM, MAD = 0.8 kcal

mol-1). The overall repulsive nature of the functionals for treating these weak intramolecular

interactions also decreases considerably if the delocalization error is reduced (e.g., MCY3,

MAD = 6.3 kcal mol-1) or by developing improved and flexible hybrid meta functional forms

coupled with careful parameter fitting (e.g., M06-2X, MAD = 5.6 kcal mol-1).
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6 A Generalized Gradient
Approximation Exchange Hole Model
for Dispersion Coefficients

6.1 Introduction

The accurate computation of atomic dispersion coefficients is of fundamental importance

in view of the role weak interactions play in many energetic and structural phenomena (e.g.,

stacking of nucleic acid in DNA, proteins folding, adsorption of molecules on surfaces). De-

spite being the most widely used tools for molecular properties computations, standard

semilocal and hybrid density functional approximations are known to neglect long-range dis-

persion interactions. 14 The damped atom pairwise additive London dispersion98 expression

is highly valuable for introducing weak long-range attraction in molecules and soft-matter, at

minimal computational cost. 38,39 A significant shortcoming associated with fixed empirical

coefficients 39 is the lack of dependency on the electronic structure. In contrast, fully nonlocal

(van der Waals) functional formulations47,109,141 contain at most one empirical coefficient,

but suffer from a high computational cost. The derivation of accurate atomic dispersion coef-

ficients dependent on the molecular environment represents an attractive alternative. The

first general approach, devised by Becke and Johnson (BJ),76 uses the exchange hole dipole

moment (XDM) and free atomic polarizabilities to model dispersion coefficients. The method

of Sato et al., 45,46 based on local response theory, eliminates the dependence on free atomic

polarizabilities with a moderate increase in computational demand. The C6-only (excluding

higher terms, such as C8 and C10) scheme of Tkatchenko and Scheffler44 relies on a simple

rescaling (depending on the “size of the atoms in molecules”) of free atomic C6 coefficients

to determine accurate molecular dispersion coefficients. Grimme et al.,42 proposed an ap-

proximation (e.g., no dependence on the molecular charge) in which geometry-dependent

dispersion coefficients are interpolated from tabulated values.

In this study, we introduce a substantial reformulation of the XDM utilized by Becke and

Johnson75,77,78,80 that is rooted in a simple generalized gradient approximation (GGA) ex-

change hole model. In addition, we address the conceptual discrepancy existing between

the multipole-expansion (on the basis of an atom pairwise dispersion correction98) and the
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overlapping atoms in molecules (AIMs) used in practical schemes. 423 Whereas the multipole-

expansion relates to a set of disjoint interacting fragments, commonly used density-dependent

schemes compute atomic dispersion coefficients from partitioning functions involving over-

lapping AIMs (e.g., Hirshfeld 335 or Mayer’s fuzzy atoms 344). This issue was recently discussed

by Angyan, who invoked electron localization domains as optimal partitions of the molecular

space for the multipole-expansion (as opposed to the commonly used atomic domains). 423 A

more pragmatic solution, which consists of assigning each point in space to the atom carrying

the highest weight, is shown herein to yield results competitive with the overlapping approach.

6.2 The Exchange Hole Model

The BJ XDM model relies on the idea that the dipole arising from an exchange hole and its

reference electron is related to the fluctuating dipole moments responsible for dispersion. The

original BJ implementation,75,78 based on the “exact” exchange hole XDM(XX), is generally

both more demanding computationally and less accurate than that based on the Becke and

Roussel exchange hole formulation, 160 i.e., XDM(BR). 326

The BR-exchange hole is a rather simple and formally attractive model represented by a

spherically averaged Slater-type function.160 The two free parameters, the exponent a and

b, the distance from the reference electron, are determined by imposing the condition that

the spherical average of the Taylor expansion of the model exchange hole reproduces that

of the “exact” exchange hole at each reference point up to second order. The second order

term depends on both the Laplacian (∇2ρ) and the local kinetic density (τ=∑
(∇ψ)2) and is

therefore responsible for the largest computational cost of XDM(BR).

Imposing that the exchange hole density at the reference point is exactly the same as the

electron density (exact on-top density value) yields the following constraint on a and b for the

zeroth order Taylor expansion term (applied separately to the α- and β-spin)

b3 = (ab)3e−ab

8πρ
= x3e−x

8πρ
(6.1)

Building a XDM model solely based on the local density and its gradient (i.e., GGA-type)

can considerably reduce the numerical complexity. In the gradient expansion, the exchange

hole is implicitly assumed to be spherically symmetric around the reference electron. For

inhomogeneous densities, however, the true exchange hole is not spherically symmetric

around this point. To overcome this deficiency and provide the possibility of yielding an

exchange hole that is localized far away from the reference electron, Bahmann and Ernzerhof

recently introduced an explicitly asymmetric GGA exchange hole model.424 Their model

offers a smooth interpolation between the spherically symmetric local density approximation

exchange hole and a non-centrosymmetric modified Becke-Roussel exchange hole depending

on the reduced density gradient. The extent of asymmetry is determined by imposing the exact

on-top density value and by ensuring that the Perdew-Burke-Ernzerhof (PBE) exchange-energy

density is recovered. Whereas such an exchange hole, along with other recent GGA exchange
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hole models,393,409,425 is aimed at deriving improved energy functionals, we here propose a

pragmatic GGA-type expression to model the exchange hole dipole moment. For homogenous

densities, the exchange hole has a spherical symmetry and the distance between the center of

the exchange hole and the reference electron, b, has to be zero. Our ansatz makes use of the

simplest possible dependence of x (in eq 6.1) on the reduced density gradient (s = |∇ρ|
2·(3π2)1/3·ρ4/3

which serves as a measure for the inhomogeneity of the electron density) that satisfies this

constraint: x = C · s, where C is a constant. Using the definition of the Wigner-Seitz radius

(rs = 3
√

3
4πρ ) and reorganizing gives

b

rs
= C

61/3
s ·e−

1
3 C ·s (6.2)

Equation 6.2 has the form of a non-normalized convolution of two exponentially decaying

functions ( f (x) =λ2xe−λx is the corresponding normalized distribution function). C controls

the sharpness of the distribution. For enhancing the flexibility of the GGA-exchange hole

dipole moment, the constraint of the exact on-top density is relaxed by introducing two

uncoupled parameters A and B

b

rs
= A · s ·e−B ·s (6.3)

Equation 6.2 is recovered, if A = 3
p

9/2 ≈ 1.65B . Equation 6.3 ensures, however, that the XDM

is zero for the uniform electron gas. Unlike recent modified BR GGA exchange holes, 424,425 the

presented model retains the Slater exponential form.

The two empirical parameters A and B are fitted to reproduce C6-dispersion coefficients of

rare gas homodimers (He, Ne, Ar, and Kr) (ref 426) separated by 20 Å (to avoid any dependence

of the fit on the partitioning method). The resulting parameters (A = 2.018, B = 0.974) are close

to integer values and are thus set to A = 2 and B = 1. The exchange hole dipole moment, b,

depending only on the reduced density and its gradient, is then inserted into BJ’s expressions

(see Equations 4.6-4.8, page 37). Note that the deviation from the anticipated A/B ratio (1.65,

vide supra) supports the view that eq 6.3 models an exchange-correlation rather than of an

exchange hole. 423,427

6.3 Atomic Partitioning

We combine the proposed s-dependent dispersion coefficients (C ) simplification of the BR

model (sC-BR, eq 6.3) with three different partitioning schemes: the iterative Hirshfeld (HI), 330

which is the rigorous extension of the classical scheme (HC)335 based on self-consistently

optimized atomic charges (advantageous for ionic systems, see ref 330 for details); the iterative

Hirshfeld-dominant (HID)428 and the classical Hirshfeld-dominant (HCD) partitioning. In

line with a disjoint description of AIMs, 428 the last two schemes analyze the Hirshfeld weights

at each grid point setting the weight of the “dominant” atom to 1.0, and all others to zero.
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0

500

1000

1500

2000

0 500 1000 1500 2000

C
6
(a

pp
ro

xi
m

at
e)

/a
.u

.

C6(accurate)/a.u.

y=0.96x + 9.27 R2=0.9793
y=0.84x + 23.4 R2=0.9746
y=0.83x + 29.7 R2=0.9725
y=0.83x + 27.4 R2=0.9795

BJ
BR-HI

BR-HC
sC-BR-HI

(b) Non-overlapping Atomic Partitioning

0

500

1000

1500

2000

0 500 1000 1500 2000

C
6
(a

pp
ro

xi
m

at
e)

/a
.u

.

C6(accurate)/a.u.

y=0.93x + 12.6 R2=0.9793
y=0.94x + 20.0 R2=0.9746
y=0.81x + 26.1 R2=0.9725
y=0.82x + 34.6 R2=0.9795

BR-HCD
BR-HID

sC-BR-HCD
sC-BR-HID

Figure 6.1: Approximate C6 dispersion coefficients for 90 molecular complexes correlated to accurate dipole oscillator strength
distribution reference values (taken from ref 76). Three different XDM schemes are tested: (a) the original BJ (=
XX) data (from ref 76), Becke-Roussel along with classical (BR-HC) 77,87,329 or iterative (BR-HI) 81 Hirshfeld
partitioning, and the sC-BR GGA-approximation of eq 6.3. (b) Binary weights based on the classical (HCD) or
iterative Hirshfeld partitioning (HID).

6.4 Results

Table 6.1: Mean Absolute Percentage
Deviations (MA%D) over 90
C6 Dispersion Coefficients.

XDM-scheme MA%D

BJ( = XX) 9.28

BR-HC 10.03

BR-HI 9.23

sC-BR-HI 8.17

BR-HCD 10.71

BR-HID 10.16

sC-BR-HCD 9.19

sC-BR-HID 6.99

The sC-BR-HI, sC-BR-HID, and sC-BR-HCD variants (eq

6.3) are tested on 90 complexes built from He, Ne, Ar, Kr,

H2, N2, O2, Cl2, CO2, CH4, SiH4, SiF4, CCl4, C2H2, C3H8,

SF6, and C6H6 separated by roughly 20 Å. If not other-

wise stated, all computations use PBE156/aug-cc-pVTZ

densities, a 99/590 Euler-Maclaurin-Lebedev370,371 in-

tegration grid, and are carried out in a developmental

version of Q-Chem. 368 The intermolecular dispersion co-

efficients are computed as the sum over intermolecular

atom pairs.

The sC-BR model gives highly accurate C6 dispersion co-

efficients for systems far beyond the training set (Figure

6.1). The linear regression and mean absolute percent-

age errors (Table 6.1) show that the simple GGA approx-

imation matches or improves upon previous models. In

particular, the slope and y-intersect of the linear regres-

sion are closer to the ideal values of 1.0 and 0.0, respectively. The use of disjoint in place of

overlapping Hirshfeld weights (Figure 6.1b) reduces the slope slightly, without deteriorating

the R2 value. The mean absolute percentage deviations, along with the three other accuracy

criteria (slope, y-intercept, R2), illustrate the remarkable performance of sC-BR-HCD, the

most cost-effective combination presented herein. Typical examples for intermolecular C6

dispersion coefficients are given in Table 6.2.

68



6.4. Results

Table 6.2: Typical Examples for Intermolecular C6 Dispersion Coefficients in Atomic
Units Computed with BR-HCD and sC-BR-HCD. Values from Becke and
Johnson (BJ, ref 76) Are Given for Comparison. The Reference Values Are
Taken from the same Publication.

Complex Accurate BJ BR-HCD sC-BR-HCD

CH4-CH4 129.60 115.30 135.52 134.09
CH4-C2H2 162.50 147.50 168.54 167.73
CH4-C6H6 472.10 383.50 444.19 475.57
C2H2-C2H2 204.10 188.70 210.13 210.04
C2H2-C2H4 247.7 225.3 246.22 249.94
C2H2-C3H8 395.60 332.80 386.09 408.77
C2H2-C5H12 622.9 514.6 604.99 653.12
C2H2-C6H6 593.00 491.00 555.11 596.86
C2H2-C6H14 734.7 606.8 713.06 774.32
C2H4-C2H4 300.5 270.1 286.24 294.75
C2H4-C6H6 719.5 592.2 648.71 707.1
C2H6-C2H6 381.8 310.6 364.42 390.98
C2H6-C6H6 810.1 633.8 732.2 814.41
C3H8-C3H8 768.10 589.40 710.79 795.20
C3H8-C6H6 1149.00 875.00 1021.55 1158.77
C4H8-C4H8 1130 951 1024.54 1149.47
C6H6-C6H6 1723.00 1311.00 1476.07 1696.86
CCl4-CH4 512.20 438.90 433.53 474.56
CCl4-C2H2 642.40 561.70 554.47 594.62
CCl4-C3H8 1247.00 998.00 1018.10 1156.57
CCl4-SiH4 828.60 775.40 767.85 832.67
CCl4-CCl4 2024.00 1694.00 1461.58 1694.89
SiH4-CH4 209.40 199.50 234.46 237.82
SiH4-C2H2 264.00 255.40 292.30 297.47
SiH4-C3H8 509.70 455.60 523.13 579.21
SiH4-C6H6 766.50 683.10 780.51 847.48
SiH4-SiH4 343.90 356.10 414.01 427.76
SiF4-CH4 202.30 213.30 234.45 240.37
SiF4-C2H2 251.90 273.00 292.59 302.23
SiF4-C3H8 492.70 485.20 537.56 588.05

The robustness of the presented scheme is further illustrated by the use of C6, C8, and C10

dispersion coefficients within our recent density-dependent dispersion correction 81 (dDXDM,

see Chapter 4 for details), reparameterized to the S22 test set. 299,351

The S22 set validates the excellent performance of the new dispersion coefficients on nonco-

valent complexes. The sC-BR-HCD coefficients lead to the most accurate results (MAD = 0.14,

0.21, and 0.29 kcal mol-1 for BLYP, B3LYP, and PBE, respectively). Other sC-BR variants also

give accurate MADs between 0.26 and 0.36 kcal mol-1. For comparison, the “best” S22 MADs

listed by Grimme et al. 42 are within 0.2-0.25 kcal mol-1 for ωB97X-D, 252 and BLYP-D3.
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6.5 Conclusion

In summary, we have presented a simple GGA-based model for computing density-dependent

dispersion coefficients. The sC-BR-HCD variant yields remarkably accurate results by enabling

the inclusion of the missing dispersion interactions into standard density functionals at low

computational cost, in addition to giving a disjoint description of AIMs. The method, which

relies on both the GGA-information and the Hirshfeld-population analysis, can easily be

implemented in any density functional code in a post-SCF process. The GGA-formalism is

furthermore expected to dramatically simplify self-consistent implementations and benefit

the evaluation of self-consistent forces.
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7 Comprehensive Benchmarking of
a Density-Dependent Dispersion
Correction

7.1 Introduction

Many chemical phenomena are dominated by weak interactions, as exemplified by the highly

ordered structures of biomolecules (stacking of DNA,7 protein folding8) and supramolecu-

lar assemblies,9 crystals arrangements of organic429 and inorganic materials, 430 or catalysis

intermediates (see, e.g., ref 431). Because of the incomparable balance of accuracy and compu-

tational cost, Kohn-Sham density functional theory 11 has emerged as the most widely applied

methodology for investigating electronic structures and geometries of extended molecular

systems. Despite this success, standard semilocal approximations do not properly describe

attractive dispersion interactions that decay with R-6 at large intermolecular distances.14–17

Even at the medium-range, most semilocal density functionals fail to give an accurate descrip-

tion of weak interactions such as those dominating alkane isomerization energies and Pople’s

isodesmic bond separation equations (BSEs). 68–71,82,83

Near the energy minimum, dispersion corrected atom centered potentials (DCAPs) 254–257,319

or carefully fitted density functionals164,208,214,278,290,320 (M06-2X214 is certainly the most

successful functional originating from this approach) give satisfactory results. Neverthe-

less, both approaches lack the ability to recover the correct long-range ∼R-6 attractive form.

The simplest conceptual remedy,22,38,240,269,321 first popularized by Grimme (motivated by

HF-D)37,237–239,432 under the DFT-D acronym,39,42,269 is to correct for the missing interac-

tion energy a posteriori by adding an attractive energy term summed over all of the atom

pairs in the system. The quest for the optimal parametrization is, however, still an active

field of research. 42,44–46,49,51,72,74,81,251–253,270,322–326 Recent DFT-D (e.g., D2 39 and D3 42) gives

an accurate description for intermolecular interactions, but the proper treatment of weak

intramolecular interactions is trickier.42,43,68,305,327 Our group has pioneered the design of

dispersion corrections which give a balanced description of both inter- and intramolecular

weak interactions. 72,74,81,86,433 Our most recent scheme combines dispersion coefficients (C )

computed on the basis of an approximation to Becke and Johnson’s75–80,328 exchange hole-
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dipole moment (XDM) formalism depending on the reduced density gradient (s)88 and a

genuine density-dependent damping factor.81 The resulting density-dependent dispersion

correction, called dDsC, promises substantial advantages over standard DFT computations

for a broad range of applications. Following a careful validation of the dDsC scheme, we

here introduce a few improvements to our original density-dependent damping factor81,88

and provide a comprehensive benchmarking of the density-dependent dispersion correction

scheme. dDsC is tested on 18 diverse test sets featuring both intra- and intermolecular weak in-

teraction energies together with a series of illustrative density functionals, i.e., BP86, 151,154,332

BLYP, 154,155 B3LYP,154,155,161,162 PBE, 156 B97 209 and the long-range corrected exchange func-

tional LC-ωPBELYP.155,313,393,394 Results for other schemes designed to better describe weak

interactions are discussed as well: the local response dispersion (LRD) correction combined

with LC-BOP, 45,46 two fully nonlocal density functionals, VV10 48 and vdW-DF10, 53 the double

hybrid functional B2PLYP-D342,163 and M06-2X. 214 The benchmark is completed by a short

assessment of the dDsC schemes on geometries.

7.2 Theory

The basic form of our dispersion correction is the Tang and Toennies (TT) damping function 73

Edisp =−
Nat∑
i=2

i−1∑
j=1

n=5∑
n=3

f2n(bRi j )
C i j

2n

R2n
i j

(7.1)

where Nat is the number of atoms in the system and b is the TT-damping factor (vide infra).

The dispersion correction is called dDsC if only the first term is retained in the multipole ex-

pansion (n = 3, corresponding to C6), and dDsC10 otherwise (up to n = 5, i.e., up to C10). Note

that the effects of the higher-order terms strongly depend on the type of damping function.

The TT-damping function applied herein “simulates” the missing higher-order dispersion

terms by increasing the damping factor b, 292 as illustrated in Figure 3.1 on page 25.

f2n(bRi j ) are the “universal damping functions”73 that are specific to each dispersion coeffi-

cient and that serve to attenuate the correction at short internuclear distances (to account for

overlapping densities).

f2n(x) = 1−exp(−x)
2n∑

k=0

xk

k !
(7.2)

This section describes the determination of the damping factor b in eq 7.1. The dispersion

coefficients themselves are obtained as described previously in Chapter 688 and rely on a

classical Hirshfeld dominant partitioning of the electron density among the atomic centers.
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Classical Hirshfeld weightings are defined as 335

wi (r) = ρat
i (r)∑

n
ρat

n (r)
(7.3)

where ρat
i is the sphericalized free (neutral) atomic density of atom i , weighted by the super-

position of all ρat
i with all atoms n positioned as in the real molecule. The classical Hirshfeld

dominant partitioning wD
i is obtained by assigning each point exclusively to the atom which

has the highest weight at that particular grid point. Such a partitioning is more appealing

than the classical Hirshfeld populations, as it avoids overlapping atomic regions that conflict

with the multipole expansion that is at the origin of the atom pairwise London dispersion

correction. 423

A key component of dDsC is the damping factor b. We showed previously 74,81 that the per-

formance of the TT-damping function is improved by the introduction of a second damping

function, which prevents the corrections at regions of strong density overlap (i.e., covalent

distances) that are better described by density functionals.86 Akin to our previous work,81

bi j ,asym, the asymptotic value of b, accounts for the short-range effect through a multiplicative

function

b(x) = F (x)bi j ,asym (7.4)

x and F (x) are, respectively, the damping argument and function for bi j ,asym, the TT-damping

factor associated with two separated atoms. bi j ,asym is computed according to the combina-

tion rule 293,340

bi j ,asym = 2
bi i ,asym ·b j j ,asym

bi i ,asym +b j j ,asym
(7.5)

bi i ,asym is generally estimated from the square root of (atomic) ionization energies. 341,342,434–436

However, the ionization energy does not correlate well with the size of an atom that is a deter-

minant characteristic for the damping of a dispersion term. 38,39,44,120 We instead propose to

compute bi i ,asym on the basis of effective atomic polarizabilities. Note that polarizabilities as

a measure of the “size” are extensively used in the closely related context of Thole’s interacting

dipole moments. 437 After introduction of the parameter b0, which dictates the strength of the

dispersion correction in the medium-range, one obtains

bi i ,asym = b0 · 3

√
1

αi
= b0 · 3

√
1

αi ,free
· 3

√
Vi ,free

Vi ,AIM
(7.6)

In the above definition, b0 includes the conversion factor from Å3 to atomic units for αi .

The effective atom in molecule (AIM) polarizabilities are estimated from scaled free atomic

73



Chapter 7. Benchmarking of a Density-Dependent Dispersion Correction

polarizabilities 337,338

αi = 〈r 3〉i

〈r 3〉i ,free
αi ,free =

∫
r 3wD

i (r)ρ(r)d 3r∫
r 3ρi ,free(r)d 3r

αi ,free =
Vi ,AIM

Vi ,free
αi ,free (7.7)

A density cutoff of 0.002 au is applied to improve the consistency of atomic volumes between

atoms at the surface and in the interior of a molecule. 88,438 The bi i ,asym dependency on atomic

polarizabilities (instead of atomic ionization energies) mostly benefits the treatment of highly

polarizable atoms as shown later (e.g., neutral alkali-metal cluster like K8 of the ALK6 test

set). A similar relationship could also be an advantage in force fields specifically designed

to predict crystal structures. In such force fields, atomic polarizabilities have already been

introduced, but bi i ,asym is usually determined from the molecular ionization energy with no

dependency on the specific atom pair. 434–436 Along with the modified bi i ,asym, the secondary

damping function is modified slightly and represented by a (steeper) exponential decay rather

than by the previously used arctan function

F (x) = 2

ea0·x +1
(7.8)

where the fitted parameter a0 adjusts the short-range behavior.

The last element of the correction is the damping argument x

x =
(

2qi j +
abs((Zi −N D

i ) · (Z j −N D
j ))

ri j

)
N D

i +N D
j

N D
i ·N D

j

(7.9)

where Zi and N D
i are the nuclear charge and Hirshfeld dominant population of atom i ,

respectively. 2qi j = qi j + q j i is a covalent bond index344 based on the overlap of classical

Hirshfeld populations qi j =
∫

wi (r)w j (r)ρ(r)dr , and the fractional term in the parentheses

is a distance-dependent ionic bond index345 taken as an absolute value. Classical Hirshfeld

dominant charges in the damping function resolve the inconvenience of classical Hirshfeld

charges that are generally too small.81,373,439 The multiplicative factor,
N D

i +N D
j

N D
i ·N D

j
, serves to

attenuate the damping of bi i ,asym for heavier atoms (containing more electrons). Note that

the damping function F (x) has the adequate form (i.e., F (0) = 1 and F (∞) = 0), given that x is

large when atoms are close to each other and goes to zero with increasing distance ri j .

In the present form, approximated dDsC gradients are available: all derivatives of the (density-

dependent) parameters (the damping parameter b and the dispersion coefficients) are set to

zero, or in other words, kept fixed at their values corresponding to the energy of the geometry

for which the gradient is being computed. The approximation is expected to introduce

only small errors, similar to those engendered by the use of a smaller basis set for geometry

optimization, followed by energy refinement with a larger basis set. Exact gradients are

computationally more expensive (although simpler than those derived for the original Becke-

Roussel exchange hole in ref 87) given that the contributions to the Fock matrix are needed at

each SCF cycle.

To summarize, the presented dDsC correction employs electronic structure information to
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determine dispersion coefficients and two fitted, functional dependent, damping parameters

that are the strength of the TT-damping (b0) and the steepness factor (a0).

7.3 Determination of the Adjustable Parameters

In line with our former work,72,74,81 the chosen fitting procedure ensures a successful treat-

ment of both weak intra- (medium-range) and inter- (long-range) molecular interactions. The

two parameters (a0 and b0) are fitted for each functional so as to minimize the mean absolute

deviation (MAD) over a representative set of 48 reactions, assessing inter- and intramolecular

interactions. In summary, 3-6 entries are taken from the following test sets (vide infra): BSR36,

RSE43, ISO34, NBPRC, WATER27, ACONF, CYCONF, SCONF, HEAVY28, and S22.

Figure 7.1 illustrates the dependence of the MAD over all test sets (vide infra) on the two

fitted parameter a0 and b0. Variations of ∼5% and ∼10% in b0 and a0 respectively lead to

only negligible changes in the MAD. The proximity of the fitted parameters (minimum for 48

reactions) to the minimum for all test sets together (341 reactions) provides further validates

the chosen training set.
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Figure 7.1: Illustratition of the mean absolute deviation of B3LYP-dDsC as a function of a0 and b0. The point labeled in red
corresponds to the minimum according to the training set. The green label corresponds to the minimum over all
test sets combined.
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7.4 Test Sets

Eighteen test sets, corresponding to 341 reaction energies, were selected out of the 30 test

sets from the GMTKN30 (database for general main group thermochemistry, kinetics, and

noncovalent interactions) database225,440 from where the geometries and reference values

were taken. The sets are divided into three categories:

Intramolecular interactions: 5 sets, 85 reactions: ISOL22 (isomerization energies of large or-

ganic molecules), 441 DARC (Diels-Alder reactions energies), 36 BSR36 (bond separation

reactions of alkanes),72,395 IDISP (intramolecular dispersion interactions), 68,85,225 and

AL2X (dimerization energies of AlX3 and AlHX2 compounds, X = F, Cl, Br, and Me). 36

Intermolecular interactions and conformational energies: 7 sets, 108 reactions: S22 (bind-

ing energies of noncovalently bound dimers),299,351,442 ADIM6 (interaction energies

of n-alkane dimers), 42 HEAVY28 (noncovalent interaction energies between heavy ele-

ment hydrides), 42 ACONF (relative energies of alkane conformers), 443 SCONF (relative

energies of sugar conformers),444,445 PCONF (relative energies of PHE-GLY-GLY),446

and CYCONF (relative energies of cysteine conformers). 447

Mixed category of reaction energies: 6 sets, 148 reactions: ALK6 (fragmentation and dissoci-

ation reactions of alkaline metal clusters and alkaline-cation benzene complexes),42

BHPERI (barrier heights of pericyclic reactions), 383,448–450 RSE43 (radical stabilization

energies), 451 NBPRC (oligomerizations and H2 fragmentations of NH3/BH3 systems and

H2 activation reactions with PH3/BH3),444,452 ISO34 (isomerization energies of small

and medium-sized organic molecules),369 and WATER27 (binding energies of water,

H+(H2O)n and OH-(H2O)n clusters). 453

7.5 Computational Methods

BLYP,154,155 BP86,151,154 PBE,156 revPBE,402 B3LYP,154,155,161,162 and PBE0156,280 computa-

tions were performed with a developmental version of ADF.454,455 HF, BHHLYP,333 Becke’s

hybrid B97209 functional (that is to be distinguished from Grimme’s GGA functional B97-

D39), PW6B95, 456 LC-ωPBE313,393,394 (ω = 0.45), LC-ωPBELYP (ω = 0.45), LC-ωPBEB95 185 (ω

= 0.45), VV10 (rPW86 exchange,396 PBE correlation156 + nonlocal term),48 and vdW-DF10

(rPW86 396PW92 150+nonlocal term) 53 were performed in a local version of Q-Chem, 368 while

LC-BOP,154,407,411,457 LC-BOP-LRD,45,46 (exculding multicenter contributions to C6 coeffi-

cients is denoted as LRD[10,0]) and TPSSm 157 and all geometry optimizations were run with a

modified version of GAMESS. 458 Due to SCF convergence problems, computations in GAMESS

use the cc-pVTZ basis set363–365 (augmented with diffuse functions, leading to aug-cc-pVTZ

in order to minimize the BSSE for the WATER27 complexes and all but the benzene-indole

complexes of the S22 test set), except for potassium and the heavier elements for which the

def2-QZVP(-g) basis set was used. All Q-Chem computations were done with the def2-QZVP(-

g)459 basis set except for the clusters involving OH- from the WATER27 test set, for which the
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aug-cc-pVQZ basis set was used. In GAMESS and Q-Chem, the numerical integrations were

performed on a fine 99/590 and 75/302 Euler-Maclaurin-Lebedev grid, respectively, with an

integration threshold of 10-12. In ADF, the QZ4P basis set was used for all systems except for

the OH--containing WATER27 clusters, which were described by the ET-QZ3P-DIFFUSE basis

set. All-electron computations in ADF for the HEAVY27 test set include the ZORA 460 relativistic

corrections. The “dependency” and “addDiffuseFit” keys were applied throughout and the

integration accuracy set to 8. For the sake of clarity, only a selection of the tested functionals

is included in the figures, but all of the statistics are collected in Table 7.1.Geometries and

reference values for the peptide conformational energies (4) and the cyclization reaction (5)

are taken from ref 441 and refs 350 and 303, respectively. The Grubbs catalysts’ (6 and 7)

geometries and zero-point energies are taken from ref 461.

The dDsC corrections are applied post-SCF, using atomic fragments computed on the fly with

the same method and basis set as the molecular computation. All DFT-D342 and M06-2X 214

values are taken from the GMTKN30 Web page. 440

Figure 7.2: Set of illustrative examples of reactions poorly described by standard density functionals (e.g., B3LYP and B97)
and corrected by dDsC. The reference values 291,351,369,441 are computed at the CCSD(T)/CBS level, except for
5, where SCS-MP3/CBS serves as the benchmark, and for 7, experimental values are used. 462 The DFT energies
for 4-7 are computed with the def2-TZVP basis set.
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7.6 Results and Discussion

The performance of dDsC is at first illustrated by Figure 7.2, which collects seven typical reac-

tions for which a dispersion correction is essential. The first two reactions are taken from the

S22 test set 299 and represent general π−π-stacking interactions (adenine-thymine base pair

(1), which is unbound at the B3LYP level) and the phenol dimer (2) that features a combination

of hydrogen-bond and other interactions often present in organic molecules. The isomeriza-

tion reaction of δ-valerolactone (3a) into 2,4-penandione (3b)369 is characteristic of typical

organic isomerization reactions and is also in the training set. The relative conformation

energies of the two FGG tripeptides (4) is another example in which modeling of weak interac-

tions is crucial to identifying the lower-lying conformer.291 The cascade reaction leading to

the formation of the steroid framework 5a from the squalene precursor 5b is a striking case

with an error of almost 50 kcal mol-1 at the B3LYP level. 441 Finally, the experimental 462 energy

difference between the bond dissociation energies of PCy3 from Grubbs’ first (6a) and second

generation (7a) catalysts 463 are qualitatively incorrect at standard density functional levels 464

but well reproduced when improving the treatment of medium-range correlation465 or when

using a dispersion correction. 461

Reaction energies associated with a considerable change in molecular size and shape are chal-

lenging cases for density functional approximations. As discussed previously, 86 the problem

may be associated with over-repulsiveness in the short-range, 36,349 but missing weak interac-

tions in the medium and long-ranges are the largest contributors to the errors. 72,86,374,395,441

By including reactions accounting for weak intramolecular interactions into the training set,

our aim is to (i) obtain additional information regarding the proper form of the damping that

is empirical in nature and (ii) devise a robust scheme that improves both reaction energies

and weak intermolecular interactions that are generally the only focus of empirical dispersion

energy corrections. 38,39,44–46,252

dDsC reduces the MAD of the parent functional for intramolecular interactions (see Figure

7.3) by a factor of 3-6, depending on the functional. The dramatically low (<1.0 kcal mol-1)

MAD(BSR36) results from the highly systematic error in bond separation energies 69,72,86 along

with the relatively large number (i.e., five) of such reactions included in the training set. The

improvements for the intramolecular dispersion in hydrocarbons (IDISP) and the dimeriza-

tions of aluminum species (AL2X) as well as for the isomerizations of large organic molecules

(ISOL22) highlight the high transferability of the density-dependent scheme using the present

parametrization. Long-range corrected exchange functionals, such as LC-ωPBE, are among

the best uncorrected approximations (see Table 7.1). However, the remaining error is less

systematic than that of standard functionals, and their combination with dDsC often leads to

overcorrection. LC-ωPBELYP-dDsC is the most accurate combination, but the variant does

not present significant advantages over standard DFT-dDsC methods. The latter also clearly

outperform the more sophisticated nonlocal van der Waals density functionals. The poorer

performance of vdW-DF10 as compared to VV10 is most likely related to the replacement

of the local PW92 by the PBE correlation in VV10: the PBE correlation functional is known

to capture intramolecular interactions involving weakly interacting densities that overlap
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Table 7.1: Mean Absolute Deviations for All Methods Tested, For All Test Sets (Overall), and the
Three Individual Subcategories, i.e., Intramolecular Interactions (Intra), Intermolecular In-
teractions and Relative Conformational Energies (Inter+Conf), and the Mixed Test Sets
(Mix)a

Overall Intra Inter+Conf Mix

HF 9.05 12.62 3.10 11.34
BLYP 6.85 14.38 2.53 5.67
revPBE 6.26 11.28 2.70 5.97
B3LYP 5.70 12.22 2.20 4.50
TPSSM 4.84 10.47 1.98 3.68
vdW-DF10 4.80 11.13 0.61 4.00
BP86 4.54 9.07 2.14 3.68
B97 4.47 9.56 1.83 3.48
BHHLYP 4.40 9.10 1.77 3.63
HF-dDsC 3.74 (3.57) 5.82 (4.87) 1.25 (1.40) 4.37 (4.41)
LC-ωPBE 3.49 6.24 1.48 3.38
PBE 3.49 7.39 1.39 2.77
LC-ωPBELYP 3.35 6.14 1.26 3.26
VV10 3.34 5.50 0.43 4.22
LC-BOP 3.32 5.36 1.45 3.52
PBE0 3.11 6.55 1.44 2.34
PW6B95 3.01 6.01 0.92 2.81
B3LYP-D3 2.96 6.82 0.28 2.70
LC-ωPBEB95 2.89 4.29 0.78 3.62
LC-BOP-LRD[10,0] 2.56 3.63 0.43 3.51
LC-BOP-LRD 2.56 3.50 0.49 3.54
BLYP-dDsC 2.45 (2.65) 3.71 (4.26) 0.62 (0.63) 3.05 (3.21)
LC-ωPBEB95-dDsC 2.39 (2.39) 4.15 (4.11) 0.66 (0.67) 2.65 (2.66)
LC-ωPBE-dDsC 2.37 (2.37) 4.82 (4.87) 0.43 (0.41) 2.38 (2.37)
PBE-dDsC 2.19 (2.22) 1.94 (1.94) 0.52 (0.57) 3.56 (3.58)
LC-ωPBELYP-dDsC 2.14 (2.04) 2.35 (2.05) 0.71 (0.59) 3.06 (3.08)
revPBE-dDsC 2.12 (1.92) 1.83 (1.89) 0.70 (0.59) 3.32 (2.90)
BP86-dDsC 2.03 (2.01) 2.44 (2.47) 0.81 (0.72) 2.68 (2.69)
TPSSM-dDsC 1.96 (1.96) 2.54 (2.61) 0.65 (0.63) 2.59 (2.56)
B3LYP-dDsC 1.67 (1.86) 2.43 (2.85) 0.48 (0.58) 2.11 (2.23)
BHHLYP-dDsC 1.66 (1.73) 1.76 (1.81) 0.48 (0.53) 2.47 (2.55)
PBE0-dDsC 1.59 (1.66) 1.98 (2.04) 0.42 (0.52) 2.22 (2.28)
M06-2X 1.41 2.94 0.40 1.26
PW6B95-dDsC 1.39 (1.39) 1.70 (1.67) 0.62 (0.66) 1.78 (1.76)
B2PLYP-D3 1.37 3.41 0.16 1.08
B97-dDsC 1.30 (1.32) 1.78 (1.82) 0.48 (0.47) 1.62 (1.65)

a Values in parentheses refer to the dispersion correction including coefficients
up to C10 (dDsC10). All values are in kcal mol-1. Results for B2PLYP-D3 and
M06-2X are taken from refs 440 and 466.
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Figure 7.3: Mean absolute deviations for test sets dominated by intramolecular weak interactions.

reasonably well. 86 The changes in bond types of the AL2X, DARC, and ISOL22 test sets might

be more accurate with the PBE than the PW92 correlation functional as well. LC-BOP-LRD

further lowers the MAD to 3.5 kcal mol-1 in this category. With a MAD of 2.9 and 3.4 kcal

mol-1 over the five “intramolecular” test sets, M06-2X and B2PLYP-D3, respectively, improve

considerably over the standard density functionals (e.g., MAD(B3LYP) = 12.2 kcal mol-1) but

do not achieve the high accuracy of DFT-dDsC, where most functionals are corrected to a

MAD of only about 2 kcal mol-1, with a minimum of 1.7 kcal mol-1 for PW6B95-dDsC.

The improved energies for systems characterized by typical weak intermolecular interactions

are collected in Figure 7.4. Most atom pairwise dispersion corrections and fully nonlocal van

der Waals functionals are designed to improve the treatment of those interactions. Accord-

ingly, the performance of methods such as B2PLYP-D3 is excellent, and VV10, vdW-DF10, and

LC-BOP-LRD give relatively low errors as well. The remarkable performance of M06-2X is, on

the other hand, illustrative of the success of extensive fitting. With an average MAD of 0.6

kcal mol-1 (over 13 density functionals, excluding HF-dDsC), DFT-dDsC also performs well

for diverse types of weak intermolecular interactions and relative conformational energies

(see Table 7.1). The small errors obtained for the S22 test set (assessing pure dispersion to

H-bonding) along with those on the heavy atom hydrides confirm the general accuracy of the

density-dependent dispersion scheme. Alkane dimers (ADIM6) are, however, overcorrected by

dDsC. Our careful analysis suggests that ADIM6 is an exception rather than the result of an

overfitting toward intramolecular interactions dominating the training set. Subtle changes

in nonbonded interactions such as those dictating the relative conformational energies of

alkanes (ACONF) are, for instance, well captured by dDsC, which shows that the strong disper-

sion energy correction needed for improving bond separation equations does not generally

deteriorate longer-range interactions. To a much lesser extent, the D3 level also overcorrects

alkane dimers, even though D3 is parametrized to perform well for these systems (see the

detailed performance of D3 on the GMTKN Web site440). The peculiarity of the ADIM6 test

set is further illustrated by the contrasting trend in the performance of MP2/CBS (MAD =
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Figure 7.4: Mean absolute deviations for test sets featuring intermolecular weak interactions or relative conformational ener-
gies.

0.27 kcal mol-1) and SCS-MP2/CBS (MAD = 1.05 kcal mol-1), which is opposite that of the

S22 test set. 466 The modest performance of dDsC for the Phe-Gly-Gly-peptide conformations

(PCONF) is, to a large extent, influenced by to the choice of “reference” conformer used in the

relative energy computations. Standard functionals indeed identify the second lowest energy

conformer instead of the correct conformation (at the CCSD(T) level) as the lowest energy

one. The MADs are thus lowered by up to 50%, when considering the second lowest lying (0.14

kcal/mol higher according to the CCSD(T) reference values 446) as the “reference compound”!

Several additional interesting features of Figure 7.4 can be better understood by considering

the characteristics of the parent functional. For instance, the accurate treatment of the relative

conformational energies of cysteine (CYCONF) relies on a balanced description between

strong (e.g., OH· · ·N) intramolecular hydrogen bonds (that dominate some of the conformers)

and weaker interactions (e.g., NH· · ·S present in other conformers). The good description of

OH· · ·N and NH· · ·O hydrogen bonds by PBE and BP86 versus their underestimation of weak

interactions bias the relative conformation energies and result in the poorer performance

of PBE(-dDsC) and BP86(-dDsC) for CYCONF than for SCONF. The relative energies of sugar

conformers, which are all dominated by strong hydrogen bonds, are indeed better described

by these levels, 445 which do not benefit from the inclusion of a dispersion correction.

Figure 7.5 collects errors for the “mixed” category, regrouping six test sets, which are not all

dominated by weak interactions but are nevertheless important for typical computational

chemistry applications. The errors in radical stabilization energies (RSE43), isomerization

energies of small molecules (ISO34), and the NBPRC test set, for instance, originate from subtle

inaccuracies in, e.g., bond energies. The inaccurate treatment of barrier heights of pericyclic

reactions (BHPERI) is generally attributed to the self-interaction error,182,467–470 and to the

delocalization error 36 (or the error in the repulsive wall 86) that is also at the origin of the poor

assessment of the related Diels-Alder reaction energies (see DARC in Figure 7.3). For “repul-

sive” functionals such as BLYP or B3LYP, the dispersion correction stabilizes the transition state
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Figure 7.5: Mean absolute deviations over test sets assessing various reaction energies and barrier heights for pericyclic
reactions. For vdW-DF10, the RSE43 set could not be computed since it is not defined for open-shell systems.

and leads to a clear improvement. The barrier heights are, however, overcorrected with more

attractive approximation such as PBE. The unexpected poor performance of LC-ωPBELYP

(LC-ωPBE and LC-ωPBEB95 perform better in this case, with a MAD of about 6.7 kcal mol-1 vs

10.3 kcal mol-1, but even BLYP (MAD= 5.8 kcal mol-1) outperforms the long-range corrected

exchange functionals) results from a strong overestimation of the barrier heights in line with

that of HF (23.2 kcal mol-1 and 10.6 kcal mol-1 with HF-dDsC). The high error for BHPERI

along with the general difficulty of systematically improving the LC-ωPBE functional group by

a dispersion correction (vide supra) reflects the need for a better-devised range-separation

parameter ω. A system dependence 197,199,200 could be a strategy that would, however, cause

size-extensivity problems important for reaction energies. At higher computational costs, the

more balanced description of range-separated local hybrids 204 represents another alternative.

Note that M06-2X, with a MAD of 2.8 kcal mol-1, is also affected by the large amount of “ex-

act” exchange (54%), while B97-dDsC (19% “exact” exchange) performs best for these barrier

heights (MAD = 1.3 mol-1).

ALK6 played an important role in cross-validating the proposed density-dependent dispersion

correction: the three benzene-alkaline cation (Li+, Na+, K+) complexes are dominated by

electrostatic and inductive interactions 471 and are thus well described by standard DFT levels.

Such interactions are, however, problematic for “classical” dispersion corrections, which use

dispersion coefficients and vdW radii corresponding (approximately) to the free (neutral)

atoms, and not to the cations. 42 The other three systems in the test set are the decomposition

of Li8, Na8, and K8, into their respective dimers. In our scheme, these clusters are character-

ized by relatively large dispersion coefficients and are almost as polarizable as free alkaline

atoms. While most functionals underbind these clusters, our genuine damping factor, bi j ,asym,

successfully avoids overcorrection due to its dependence on polarizability.

The overall description of test sets collected in the “mixed” category depends generally more

strongly on the functional itself, than on the accuracy of the dispersion correction. For in-
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Figure 7.6: (a) Performance of DFT-dDsC versus DFT-D3 for seven functionals and the 18 selected test sets from the
GMTKN30 database and (b) B3LYP-dDsC versus B3LYP-D3 with each test set as one point.

stance, the better performance of B2PLYP-D3 as compared to the dDsC corrected variants is

due to B2PLYP, rather than to D3, as clearly illustrated by the comparison of B3LYP-D3 and

B3LYP-dDsC (MADs of 2.7 and 2.1 kcal mol-1, respectively). Similarly, even though the LRD

scheme (independently from the use of multicenter contributions, i.e., LRD[10,0] or LRD)

improves the overall performance on the 18 test sets (3.32 vs 2.56 kcal mol-1), LC-BOP and

LC-BOP-LRD, have almost the same MAD for these “mixed” test sets (3.52 and 3.54 kcal mol-1,

respectively). The relatively large error of PBE-dDsC originates from the overcorrected PBE

energies for WATER27 and BHPERI. A similar overcorrection is at the origin of the relatively

poor performance of VV10 (total MAD of 4.2 kcal mol-1). PBE-dDsC gives lower MAD than

PBE-D3 for two reasons: (i) the ionic term in the damping function (eq 7.9) attenuates the

dispersion correction for the strong and highly polarized hydrogen bonds of WATER27, and

(ii) the polarizability-dependent damping factor prevents the energy overcorrection for the

alkaline metal clusters (ALK6). Overall, B97-dDsC and PW6B95-dDsC achieve MADs below

2.0 kcal mol-1, which illustrate that dDsC leads to improvements for this most challenging

mixed category, albeit less impressive than for inter- and especially intramolecular (weak)

interactions.

Figure 7.6 provides a detailed comparison of the MADs obtained with dDsC and the geometry-

dependent D3 correction for seven functionals (Figure 7.6a) and the individual test sets (Figure

7.6b). DFT-D3 performs better than DFT-dDsC in cases for which the latter has a tendency

to overcorrect (e.g., ADIM6 or BHPERI with PBE) or for which the former scheme uses quasi-

exact dispersion coefficients (HEAVY28). As expected, D3 also performs well for its targeted

interactions (weak interactions between neutral molecules and relative conformational ener-

gies are in the training set42). On the other hand, dDsC adjusts better to a given functional

and provides a more robust performance, when considering both inter- and intramolecular

interactions including challenging reaction energies (e.g., ISOL22, DARC, BSR36, IDISP, and

AL2X).
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Figure 7.7: Geometrical structures of (CH3)2NOSiF3, 475 S8
2+, 474 C2Br6 (first row), 473 RESVAN, 476,477 and [2.2]paracy-

clophane 269 (second row) with key nonbonded distances (in Ångstrom) indicated.

The effect of dispersion corrections on thermochemistry has been thoroughly investigated.

Geometries are usually less sensitive to the level of theory applied, but intramolecular non-

bonded interactions are critical in certain cases. We thus compare the performance of

two (un)corrected functionals, B3LYP and B97, for reproducing the geometry of five chal-

lenging molecules43,472 for which experimental structures are available: C2Br6,473 S8
2+,474

(CH3)2NOSiF3, 475 [2.2]paracyclophane,298 and a bisthieno-fused molecule known under its

CSD entry name RESVAN (see Figure 7.7).472,476–478 B3LYP and B97 are overly repulsive for

these intramolecular nonbonded contacts. The use of dDsC improves the geometries signifi-

cantly, especially for the bisthieno-fused compound (RESVAN), mimicking stacked thiophene

oligomers.

7.7 Conclusions

The final parametrization and refinement of the density-dependent dispersion correction,

dDsC, introducing a simple atomic partitioning, computationally efficient dispersion coeffi-

cients, and advanced damping functions, considerably improves the performance of standard

density functionals for various reaction energies and weakly interacting systems. With a MAD

of 1.3 kcal mol-1 over the 18 test investigated sets, B97-dDsC performs slightly better than

M06-2X and B2PLYP-D3 (MAD = 1.4 kcal mol-1 for both) but at a lower computational cost.

The performance of B97-dDsC is especially impressive for the five intramolecular test sets

(MAD = 1.8 kcal mol-1) for which M06-2X and B2PLYP-D3 are less satisfactory (MAD of 2.9 and

3.4 kcal mol-1, respectively).

The dispersion correction is available for all elements of the periodic table. Due to its ro-

bust performance and general accuracy for various interactions, ranging from hydrocarbon
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reaction energies to heavy-atom hydride weak interaction energies, as well as for geometry

optimization, we anticipate broad application of the dDsC scheme in diverse fields of com-

putational chemistry (e.g., organocatalysis, QM/MM hybrid schemes, prediction of crystal

structures). The density dependence of both the dispersion coefficients and the damping

function has been shown to be especially valuable for modeling oxygen reduction reactions

by organic reducing agents,479 the splitting of water by metallocenes,480 as well as for the

molecular receptors, 481 which all involve charged species.

85





8 Why are the Interaction Energies of
Charge-Transfer Complexes
Challenging for DFT?

8.1 Introduction

Charge-transfer (CT) complexes, as introduced by Mulliken, are species characterized by low-

lying excited states (e.g., benzene· · · I2). 482 Since its introduction, Mulliken’s original term has

been extended beyond its original definition to generally designate donor-acceptor complexes

of either ground or excited states. The ground state of reactive complexes between alkenes

and dihalogens (e.g., C2H4· · ·F2) are illustrative examples of the broader use of the term.483

Currently, charge-transfer complexes span the field of organic electronics (e.g., organic solar

cells or light-emitting diodes), 484,485 making them of considerable interest.

The origin of the binding interaction in ground state charge-transfer complexes is controversial.

Orbital interactions have been commonly invoked to explain the energies associated with CT

complexes. 482 Although the importance of CT has been questioned, 486,487 it is still considered

to be the primary source of binding – perhaps because CT is easily rationalized and visualized

in terms of orbital interactions. The importance of van der Waals (vdW, especially London dis-

persion) forces in providing the correct qualitative descriptions of charge-transfer complexes

has been known for some time488,489 but remains largely overlooked. Alternatively, electro-

static interactions have also been suggested as the dominant forces in the formation of CT

complexes. 490 Such complexes often show a strong dependence on the relative orientation of

the monomers, a characteristic typically associated with orbital interactions. However, Hobza

and coworkers 491 recently found that dispersion forces between nonspherical molecules have

a stronger dependence on the relative orientation than hydrogen-bonded complexes. These

findings question the use of orientation dependence for discriminating between interaction

energy types.

The investigation of the ground state of CT complexes with approximate density functionals

is very challenging. Note that “strong charge-transfer complex” refers herein to complexes

affected by “strong” self-interaction (or the related delocalization) errors with common den-

sity functional approximations (charge-transfer excitation energies are highly problematic
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as well392,400,492–494 but are not discussed herein; similarly, strong multireference electron-

donor acceptor complexes such as TCNQ-TTF-TCNQ in an electric field495 are also not the

focus here). On one hand, “pure” density functionals (local density approximation, LDA,

and generalized gradient approximation, GGA) tend to overestimate the binding energy of

strong charge-transfer complexes,32,33 while on the other hand, semilocal and hybrid func-

tionals are unable to describe long-range dispersion interactions.14–17 The overestimation

of charge-transfer might somehow compensate for the neglect of dispersion energy, but the

error cancellation is subtle: a given functional might be reasonably accurate for one system

but quite wrong for another (e.g., F2 is much more problematic in terms of CT, while I2 is more

problematic in terms of neglected dispersion energy). In addition, error cancellation breaks

down at longer intermolecular distances, as CT should fall off exponentially with distance,

while dispersion decays as R-6. Adding a sufficient amount of “exact” exchange suppresses the

spurious charge transfer, while the dispersion energy can be recovered by explicitly adding

the correct R-6 attractive form. On a more fundamental level, relying on error cancellation

is always dangerous, as it could lead to a wrong qualitative interpretation of the origin of

the binding energy. An intriguing example is the organic CT complex investigated by Bredas

and coworkers, for which standard density functionals were found to transfer more electron

density than MP2, even though the complex is bound less strongly with DFT than with (SCS-

)MP2.496 An alternative study examines the inaccurate treatment of the interaction energy

between a Lewis acid and a bulky transition metal complex. The authors attribute the error of

standard DFT approximations to the missing long-range exchange prior to recommending

higher percentages of “exact” exchange for the description of the dative bond between Pt and

Al. 497 In both cases, M06-2X performs well with respect to CCSD(T). These studies, however,

did not address the apparent contradiction between the actual underbinding and the expected

overbinding by semilocal density functional approximations. In fact, the performance does

not correlate with the percentage of “exact” exchange, which is noted only in passing and

without making a link to the importance of weak interactions. 496 The very good performance

of M06-2X can indeed be attributed to the improved description of weak interactions 214 rather

than to the large amount of nonlocal exchange (vide infra).

In a previous study,86 we demonstrated that the errors of standard density functionals for

relative energies of saturated hydrocarbons are due to a combination of over-repulsiveness in

the short-range and the ubiquitous missing dispersion interactions. Adding a posteriori an

atom pairwise energy correction term to standard density functionals not only conveniently

accounts for weak interactions39,42,81,89 for intermolecular complexes but also dramatically

improves the performance for various reaction and interaction energies involving saturated

hydrocarbons.39,72,89,466 The recently developed density-dependent dispersion correction

dDsC 81,88,89 is pertinent for systems for which density rearrangements (charge transfer, polar-

ization) might influence the interaction energy.

In the present work, the comparison of uncorrelated (HF) and correlated ab initio computa-

tions suggests that the interaction energy of closed-shell neutral charge-transfer complexes is

dominated by weak electron correlation (i.e., vdW interactions) and not by the charge-transfer

interaction energy itself. In line with these realizations, dispersion corrected HF and density
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Figure 8.1: Representations of the five binding modes for the example of NF3· · ·HCN, and the general scheme is shown below.
Color code: white, hydrogen; black, carbon; blue, nitrogen; and green, fluorine. In the general interaction pattern:
Y = F, F, C, and N for ClF, HF, HNC, and HCN, respectively. The red arrows represent the direction of the monomer
molecular dipoles.

functional approximations are shown to describe interaction energies substantially better

than their standard counterparts. Further analysis based on energy decompositions indicates

that the challenge for density functional approximations resides mostly in the description

of the monomers (i.e., the self-interaction errors introduced by semilocal approximations,

which affect the monomer, can lead to dramatic failures in the presence of a second molecule)

and less in the strength of the actual charge-transfer interaction. We further demonstrate

that only specific functionals achieve a consistent binding energy curve for typical vdW and

charge-transfer complexes by providing an adequate description of the monomers, including

a sufficient amount of “exact” exchange (to avoid over-repulsiveness at short and spurious

charge transfers at long intermolecular distances) and accounting for weak interactions.

The performance of various density functionals and the role of CT are evaluated on an illus-

trative series of four small ambidentate molecules (HCN, HNC, HF, and ClF) bound together

with NF3. Five different geometries are considered for each of the small molecules (see Figure

8.1).498 These systems are particularly well suited for our purpose: depending on the orien-

tation and relatively small electronic changes (e.g., HCN vs HNC), the binding energy and

the relative importance of different components is substantially different. The broad range

of interactions characterizing this series of small molecular complexes is representative of

conventional applications involving charge-transfer complexes and thus valuable for gaining

insight into larger related complexes that are typically targeted in chemical applications. In

this respect, the crucial role of dispersion interactions, determined by these small model

compounds, is further established on a typical cofacial organic complex of tetrathiafulvalene-

tetracyanoquinodimethane (TTF-TCNQ). 496
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8.2 Theoretical Background, Methods, and Computational Details

Studies on typical strong CT complexes 32,33 (e.g., C2H4· · ·F2) demonstrate that semilocal DFT

exchange suffers from failures (i.e., overbinding), which can be reduced by increasing the

amount of nonlocal “exact” exchange. In particular, BHHLYP has been recurrently qualified as

the best performing standard functional for geometries, interaction energies, and properties

of charge-transfer complexes in general.33,279,499–501 The need for “exact” exchange is often

rationalized by invoking the wrong asymptotic potential in semilocal density functionals,

which is corrected in global hybrid variants according to the percentage of “exact” exchange.

Since the asymptotic potential is only partially corrected in global hybrid functionals, sys-

tems with a relatively small HOMO-LUMO gap (e.g., NaCl at long interatomic distances27

as well as TTF-TCNQ, vide infra) can still be affected by spurious charge transfer. Alterna-

tively, long-range corrected exchange (LC-) functionals 193,407 possess the correct form in the

asymptotic region. Two particular flavors (ωB97X-D 252 and LC-BOP-LRD 45,46) are tested here.

The asymptotic potential, which is the central quantity improved by the LC-functionals, is

most relevant to better describe charge-transfer at large distances, where overlap effects are

negligible and qualitative (and relative) errors of semilocal functionals are therefore most

pronounced (vide infra). For most systems of chemical interest, however, the charge-transfer

in the ground state vanishes at long intermolecular distances. Thus, we argue that when

standard functionals underbind, instead of overbind, improving the treatment of weak van der

Waals interactions is more critical than increasing the amount of “exact” exchange. Around

equilibrium, the overestimation of CT interaction with semilocal functionals can be “damped”

by admixing a suitable amount of (mainly repulsive) HF exchange, resulting in seemingly

accurate intermolecular distances and interaction energies. Nevertheless, the improvement

originates from labile error cancellation between the (overestimated) CT and missing14–17

dispersion (vide infra).

The importance of charge transfer for interaction energies is generally assessed on the basis of

energy decomposition analysis (EDA). Akin to other useful chemical concepts (e.g., atomic

charge and aromaticity), interaction energy components (e.g., charge-transfer, dispersion) are,

nevertheless, noumena, i.e., unobservables. Thus, they can be quantified by computational

means – but not in a unique manner.i Although conceptually arbitrary, energy decomposition

analysis is a powerful method for a quantitative interpretation, which is not accessible from

total interaction energies. In particular, such analysis provides valuable insight into the “inner

workings” of density functional approximations. Ultimately, EDA may help in further under-

standing functional performance and guide development aimed to go beyond or improve

error cancellation. Perturbation theory can be considered as the most ambitious approach,

as the interaction energy is computed directly, i.e., without any self-consistent treatment of

the dimer.93,502–504 Interaction energies based on natural bond orbitals (NBO) extract the

charge-transfer interaction from the density matrix of the dimer.505 The best known family

of EDAs based on a combination of monomer and dimer computations is related to the en-

iThe molecular Hamiltonian only contains the kinetic energy and the electrostatic attraction (electron–nuclei)
and repulsion (electron–electron, nuclei–nuclei), which are, moreover, connected by the virial theorem.
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Figure 8.2: Relevant Terms Associated with the Double Excitation Classification in LMP2.
Each arrow indicates the excitation of one electron. Dispersion interactions are excitations of one electron
of monomer A into one of its virtual orbitals coupled to a corresponding excitation in monomer B (“induced
dipole· · · induced dipole” interaction). “Ionic” excitations are excitations from monomer B into the virtual space
of monomer A coupled with an excitation of one electron of A into its virtual space (and the ones with A and B
flipped around).

ergy decomposition of Morokuma 506 and to its numerous refinements. 507–510 The separation

between charge-transfer and polarization is generally challenging, as it tends to vanish in

the complete basis set (CBS) limit and is even undefined in the perturbation approach. 487,502

The scheme based on the block localized wave function (BLW) from Mo and coworkers 511,512

provides a well-behaved and insightful energy decomposition analysis including the separa-

tion between polarization and CT. 513,514 Closely related alternatives have advised a real-space

partitioning515 or abandoning the separation altogether.516 The localized orbitals variant

of MP2 (LMP2) represents a special case of an EDA that splits the correlation energy into

dispersion interactions and ionic contributions (see Figure 8.2). 517

With the goal of gaining insight into the origin of the failure of standard density functionals to

describe binding energies, four energy decomposition schemes are applied herein: symmetry

adapted perturbation theory (SAPT); 93 BLW, 513 which distinguishes polarization from charge-

transfer; the scheme of Su and Li, 516 which separates terms arising from the exchange and the

correlation functional; as well as LMP2, which is used to distinguish ionic from dispersion-type

interactions. 517

The following subsections give a qualitative overview of each of these EDA schemes along

with the details of the computational settings. As we do not provide the (mathematical/-

physical) definitions associated with each scheme, the interested reader is referred to original

works and reviews for BLW, 513,518,519 LMOEDA, 516 SAPT, 93 and LMP2. 517,520 Note that NBO, 505

which emphasizes charge-transfer, turned out to be completely inadequate for the complexes

studied herein: first, stronger charge-transfer interactions are found for HF than for LDA, in

disagreement with previous, independent assessments, and second, the charge transfer is too

long-ranged for ClF-A (e.g., 1 kcal mol-1 at a distance of 5 Å, where the interaction energy is

about 0.1 kcal mol-1).

The geometries for the NF3 complexes correspond to minima at the MP2/aug-cc-pVTZ level

and are taken from ref 498. The geometry of TTF-TCNQ was optimized at the B97-dDsC/def2-

TZVP level of theory. Nonequilibrium geometries are constructed from equilibrium structures

by varying the intermolecular distance (i.e., “unrelaxed” potential energy profiles).
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BLW

The BLW formalism 512,513 (also known in Q-Chem as “absolutely localized molecular orbitals”,

ALMO514), which serves to separate the polarization energy from the charge-transfer inter-

action, can be seen as the simplest variant of valence bond theory. The distinction between

polarization and charge-transfer energy is stable with respect to the basis set, provided that

only a few diffuse functions are used: in the CBS limit, the polarization includes all CT terms

already.

With BLW-EDA, the interaction energy is defined as

Eint =∆E BLW
FRZ +∆E BLW

pol +∆E BLW
CT (8.1)

Akin to the other schemes, the interaction energy is computed with respect to the monomers

in the geometry they adopt in the dimer, i.e., excluding the deformation energy. The first

term, ∆E BLW
FRZ , sometimes denoted Heitler-London (HL; especially in the context of BLW at

the HF level 521) or “steric” energy ∆Es , 518 corresponds to the energy difference between the

monomers and the dimer composed of (frozen) monomer densities. In line with Head-Gordon

and coworkers, 514 we refer to this term as the “frozen energy”, ∆E BLW
FRZ . The frozen energy con-

tains both the electrostatic energy and the Pauli repulsion (due to the antisymmetrization

of the product of monomer wave functions). The density-dependent dispersion correction

dDsC89 essentially alters this term.518 The polarization energy ∆E BLW
pol is the difference be-

tween the energy of the “frozen” monomers and the variationally optimized localized state

(i.e., the BLW state). Finally, ∆E BLW
CT accounts for all of the delocalization energy between the

monomers. The delocalization energy is affected by the basis set superposition error and is

therefore BSSE corrected. The sum of polarization and charge transfer is denoted as ∆E BLW
POLCT.

BLW-EDA computations, applying the algorithm of Gianinetti et al.,522 were performed in

a development version of Q-Chem368 using the 6-311+G** basis set and tight convergence

criteria (max DIIS error < 10-8), integral thresholds (10-12), and grid settings (99/590 Euler-

Maclaurin-Lebedev 370,371). The BSSE correction was computed without the dispersion correc-

tion. Identical settings were applied for ωB97X-D computations.

LMOEDA

The EDA scheme of Su and Li 516 is implemented under the acronym LMOEDA in GAMESS 458

(but does not rely on localized molecular orbitals) and decomposes the DFT interaction energy

as follows

Eint =∆E LMO
ele +∆E LMO

ex +∆E LMO
rep +∆E LMO

pol +∆E LMO
disp (8.2)

where “LMO” is used herein to distinguish the energy contributions of the LMOEDA scheme

from those of the other EDAs.

Together, ∆E LMO
ele +∆E LMO

ex +∆E LMO
rep is closely related to ∆E BLW

FRZ but differs in that only the

contributions from the exchange functional are included. The “polarization” energy, ∆E LMO
pol ,
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contains the exchange functional contributions to the energy difference between the dimer

and the (antisymmetrized) product of the monomer wave functions. When compared to BLW-

EDA, ∆E LMO
pol corresponds to ∆E BLW

POLCT minus all contributions associated with the correlation

functional. The contributions rooted in the correlation functional (i.e., the difference in

“correlation energy” between the monomer and the dimer) are collected into ∆E LMO
disp .

LMOEDA computations are performed in GAMESS, 458 using the 6-311+G** basis set and an

ultrafine Euler-MacLaurin370/Lebedev371 integration grid of 99/590 and 150/1202 for the

M06 family of functionals and tight (10-12) integration thresholds. In agreement with earlier

reports,523 the finer integration grid for the M06 family is neede for smooth energy profiles.

Identical settings were adopted for LC-BOP-LRD 45,46 computations.

SAPT

SAPT93 is an ab initio method that computes the interaction energy between molecules

based on perturbation theory. To facilitate the discussion, we divide the various interaction

energy terms into three main classes (frozen energy, polarization/charge-transfer in analogy

to the BLW energy decomposition, and dispersion energy, the most interesting component

at the SAPT level) and two correlation corrections (one for the frozen energy and one for the

polarization/charge-transfer)

E SAPT
int = E SAPT

FRZ +εFRZ +E SAPT
POLCT +εPOLCT +E SAPT

DISP (8.3)

The difference between HF and SAPT first-order interaction (E (10)
elst +E (10)

exch = E SAPT
FRZ ) plus second

order induction(-exchange) (E (20)
ind,resp +E (20)

exch−ind,resp ) energies is given by δHF. 421,422 The con-

sideration of E SAPT
FRZ rather than that of the individual electrostatic and exchange terms seems

preferable to us, given that the exchange accounts for the antisymmetrization of the wave

function, which is neglected when computing the electrostatic energy. We define E SAPT
POLCT as

the sum of the second order induction(-exchange) energy and δHF, the latter being dominated

by corrections to the induction energy. Our notation also emphasizes that polarization and

charge-transfer are not separable within SAPT. The dispersion interaction (E SAPT
DISP ) is given

by the sum of second order dispersion(-exchange) (E (20)
disp +E (20)

disp−exch) and the higher-order

correction terms (E (21)
disp +E (22)

disp). The intramolecular correlation corrections to the first-order

interaction energy (εFRZ) are obtained from the sum of the exchange correction ε(1)
exch(CCSD)

with that for the electrostatics, E (12)
elst,resp +E (13)

elst,resp. Finally, the correction to the induction

energy due to the intramolecular correlation εPOLCT is given by t E (22)
ind +t E (22)

exch−ind.

SAPT computations are performed with SAPT 2008.2, 524 interfaced to GAMESS, 458 using the

dimer centered aug-cc-pVTZ 363 basis set and frozen core orbitals.
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8.2.1 Benchmark Values

Reference binding energies are obtained at the BSSE corrected CCSD(T)-F12b/VTZ-F12 355,525

level of theory in Molpro2010.1, 526 where the df-LMP2 517/VTZ-F12 and BCCD/VTZ-F12 com-

putations are also performed. Note that the basis set will not be indicated further and the

F12b will be dropped for clarity.

The reference interaction energies for the larger TTF-TCNQ complex are computed according

to

∆E(CCSD(T)*) =∆E(HF/AVQZ)+∆E(df-MP2/CBS)+δCCSD(T)/6-31G*(0.25)

The complete basis set extrapolation is carried out with aug-cc-pVTZ and aug-cc-pVQZ (AVTZ

and AVQZ, respectively) according to the Helgaker scheme,356 and the higher-order corre-

lation correction δCCSD(T)/6-31G*(0.25) corresponds to the difference between MP2 and

CCSD(T) in the 6-31G*(0.25) basis set. 527,528 Similarly, MP2.5*, 529 which is computationally

less expensive than CCSD(T)* and therefore applicable to larger systems, refers to MP2/CBS +

0.5(MP3-MP2)/6-31G*(0.25). The asterisk is used to indicate that the composite approach is

used to obtain the CBS estimate.

All computations used the Molpro2010.1 defaults for auxiliary basis sets and technical param-

eters.

8.3 Results and Discussion

The following discussion is divided into five sections aimed at deciphering the physical origin

of the interaction energies in CT complexes and assessing the performance of various density

functional approximations. Robust ab initio and SAPT computations first serve to determine

the nature of the interaction energy for 20 NF3-based complexes and to benchmark DFT

methods. The second section contains a detailed analysis of the interaction energy profiles of

two representative complexes connecting the source of the binding energy to the DFT perfor-

mance. The third section provides further insights into the error cancellation by interpreting

the individual terms derived from the energy decomposition schemes at both the DFT and ab

initio levels. The excellent performance of M06-2X is finally scrutinized prior to validating the

overall conclusions on a prototypical organic charge-transfer complex, TTF-TCNQ.

8.3.1 General Trends

At the CCSD(T) level of theory, arrangement A (Figure 8.1) is the lowest lying minimum for

three out of the four amphiphile molecules (ClF, HF, and HNC) with ClF forming the strongest

complex among the series (see Figure 8.3a). HCN binds NF3 not only the weakest but also

with a different preferred arrangement (i.e., D). Both the most strongly bound complex (i.e.,

ClF-A) and the weakly bound lowest-lying minima (i.e., HCN-D) will be extensively analyzed

throughout this study. Whereas half of the complexes are unbound at the HF level, MP2 is
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Figure 8.3: (a) Total interaction energy for the 20 complexes studied for wave function methods. (b) SAPT energy decomposi-
tion analysis for the complexes.

in a close agreement with CCSD(T) (MAD = 0.08 kcal mol-1), indicating that higher-order

correlations are of minor importance. MP2 has an appreciable error only for the strongest

charge-transfer complex (ClF-A). For these complexes, spin-component scaled MP2 118 gives

a higher MAD (0.24 kcal mol-1) than regular MP2. The SAPT level provides an ab initio

energy decomposition, including some higher-order correlations. The sum of the interaction

components agrees remarkably well with CCSD(T) (MAD = 0.05 kcal mol-1). SAPT identifies

arrangement A as most favorable for charge-transfer (E SAPT
POLCT). According to Figure 8.3b, the

contributions of electron correlation to electrostatics and exchange (εFRZ) are small and the

correction to polarization (εPOLCT) even smaller. Electrostatic interactions (E SAPT
FRZ , mainly

dipole-dipole interactions) are most important in arrangement D, which is in line with the

picture of the two interacting dipoles (see Figure 8.1). The correlation correction εFRZ is,

however, positive, and overall the dipole-dipole interactions are unable to overcome the

Pauli repulsion. The major difference between HF and CCSD(T) is thus related to dispersion,

confirming that HF adequately describes charge transfer. The arrangements for which HF
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Table 8.1: Description of Density Functionals, Their Mean Absolute Deviation (MAD) and Mean Signed Deviation (MSD)
from CCSD(T)-F12b/VTZ-F12 for the 20 NF3 Complexes

type functional name % “exact” exchange MAD (MSD)/(kcal mol-1)

LDA SVWN5 0.0 0.98 (-0.98)
GGA PBE 0.0 0.34 (0.22)

BLYP 0.88 (0.88)
meta-GGA M06-L 0.0 0.29 (0.21)
hybrid-GGA B97 19.43 0.52 (0.52)

B3LYP 20 0.66 (0.66)
PBE0 25 0.38 (0.38)
BHHLYP 50 0.41 (0.41)

hybrid- M06 27 0.43 (0.43)
meta-GGA M06-2X 54 0.16 (0.09)

M06-HF 100 0.38 (0.31)
long-range LC-BOP-LRD depends on 0.13 (-0.09)
corrected ωB97X-D interelectronic distance 0.38 (0.38)

captures some binding (e.g., HF-C or HNC-B) do not correspond to the most strongly bound

complexes at the CCSD(T) level, revealing the dramatic failure of HF in correctly predicting

trends. The failure is due to the dominance of E SAPT
DISP over E SAPT

FRZ + E SAPT
POLCT, even in the case of

the strongest CT complex (i.e., ClF-A).

The mean absolute deviations (MAD) for the DFT approximations are given in Figure 8.4.

The systematic overbinding of LDA is coincidently on the same order of magnitude as the

underbinding at the HF level (MAD of 0.98 kcal mol-1 and 1.05 kcal mol-1, respectively). As can

be seen, the rest of the density functionals perform better than these two extremes, but their

performance does not necessarily correlate with the amount of “exact” exchange admixture

(e.g., the MAD varies more between two GGAs, i.e., BLYP and PBE, than between a GGA and a

hybrid-GGA, i.e., PBE and PBE0, see Table 8.1). In contrast, the density-dependent dispersion

correction88,89 systematically improves all of the methods tested, lowering the MADs to the

range between 0.32 kcal mol-1 (BLYP-dDsC) and 0.07 kcal mol-1 (B97-dDsC). Surprisingly, the

long-range corrected functional ωB97X-D252 does not outperform PBE0 or BHHLYP for the

NF3 complexes. However, LC-BOP-LRD45,46 and the highly parametrized hybrid-meta GGA

functional M06-2X 214 give excellent results (MAD = 0.13 and 0.16 kcal mol-1, respectively).

Dispersion clearly has a major influence on the interaction energies of the studied complexes,

rationalizing the poor performance of both HF and standard density functionals. According

to SAPT, the charge-transfer plays an obvious role for the most strongly bound complex

arrangements (e.g., A).
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Figure 8.4: Mean absolute deviation (MAD) over the 20 complexes studied. Benchmark values are obtained at the CCSD(T)-
F12b/VTZ-F12 level. “dDsC” denotes the use of the dDsC dispersion correction to the corresponding functional.

8.3.2 Relationship between the Nature of Binding Energies and DFT Performance

Interaction energy profiles for the two extreme examples, ClF-A (the most strongly bound

NF3 complex investigated herein) and HCN-D (the minimum energy arrangement for HCN),

provide insights into both the origin of the binding energy and the relative functional perfor-

mance.

The comparison of the rather flat HF profile of ClF-A with the E SAPT
FRZ curve (corresponding

to HF without polarization/CT) indicates that the charge-transfer reduces the molecular re-

pulsion, without actually providing any binding. Hence, for ClF-A, adding a fraction “exact”

exchange does not improve the interaction energy (see B3LYP and BHHLYP as compared

to BLYP). In such a case, the typical overestimation of the binding energy by the semilocal

functionals is only visible when the dispersion interactions are accounted for. Adding a high

amount of “exact” exchange indeed offers a significant improvement for BHHLYP-dDsC as

compared to B3LYP-dDsC and BLYP-dDsC, which overestimate the binding significantly. Thus,

the achievement of an accurate description is highly challenging. Interestingly, the difference

between the performances of three functionals is amplified after the inclusion a dispersion

correction (dDsC and other schemes).ii It is, however, beyond the scope of a posteriori disper-

sion corrections to overcome the underlying inadequacies of typical functionals to account for

charge-transfer. As is well-known, BLYP is more repulsive than BHHLYP for vdW complexes

and needs a stronger correction for dispersion in these systems. In contrast, the pure GGA

functional is too attractive for charge-transfer complexes and thus should be corrected less

in the medium-range. The bottom line is that standard GGA should clearly not be used,

as only more sophisticated and well-balanced functionals, such as B97-dDsC, PBE0-dDsC,

M06-2X, and LC-BOP-LRD, are sufficiently robust to provide a consistent treatment for these

iiThe same amplification is found with D3 and especially with the D3(BJ) dispersion correction
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different types of interactions and deliver a good overall performance. Note that we call “well-

balanced” functionals those that provide a nearly optimal, yet subtle, interplay between (i)

self-interaction error, (ii) over-repulsiveness in the short-range, and (iii) dispersion. ClF-A

is, nevertheless, an example for which any kind of error compensation is very difficult, even

around the equilibrium distance.

In contrast to the strong charge-transfer complex (i.e., ClF· · ·A), HCN· · ·D is bound even at

the Hartree-Fock level, which stresses the importance of dipole-dipole interactions in the

arrangement of this complex (see Figure 8.1). On the other hand, BLYP (which is known to be

repulsive for van der Waals complexes) underbinds HCN-D significantly when compared to

CCSD(T), corroborating that weak interactions play a role as well (see Figure 8.3). While the

few complexes in which CT is most important might be overly stabilized at the standard DFT-

dDsC level (e.g., ClF-A with BLYP-dDsC, Figure 8.5), the dispersion correction is fundamentally

important as it lowers the overall MAD of DFT-dDsC when compared with uncorrected DFT for

all other complexes. M06-2X gives an energy profile in close agreement with that of CCSD(T),

indicating that the monomer density overlap is non-negligible in the probed region and pro-

vides a reasonable description if a suitable parametrization is chosen. The physical reason

for the performance of M06-2X is, however, difficult to assess at this stage due to its complex

functional form (see more details later). In contrast, the influence of dispersion interactions in

B97-dDsC can be evaluated directly. In line with our recent benchmarking over a broad variety

of reaction energies, 89 B97-dDsC shows excellent performance, even in these contrasting and

challenging cases.
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Figure 8.5: Total interaction energy profiles and ESAPT
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8.3.3 The Energy Decomposition

The Frozen Term

The electrostatic attraction (described as the most important interaction in related com-

plexes530) is in most cases dominated by the exchange-repulsion (E SAPT
FRZ = E (10)

elst +E (10)
exch is

thus mostly positive in Figures 8.3b and 8.6). E SAPT
FRZ is therefore of minor importance for

the overall stabilizing interaction energy around the equilibrium. Intramolecular correlation

influences the electrostatics and exchange only to a minor extent (E SAPT
FRZ is very similar to

E SAPT
FRZ + εFRZ). One might expect E SAPT

FRZ to be similar to the DFT frozen-density interaction

energy counterparts, but the latter generally give more attractive profiles. As suggested in ref

518, the dispersion interaction in (dispersion corrected) semilocal DFT approaches is best

assigned to the frozen density (Heitler-London or “steric”) term (see refs 531 and 532 for a

similar discussion addressing hydrogen bonded systems). Surprisingly, LDA is overly attractive

even when compared to the combination of E SAPT
FRZ with the dispersion energy, E SAPT

DISP ! Given

the absence of charge transfer in the frozen term, the explanation for the strong binding at the

LDA level is not trivial. After correcting the asymptotic region of the LDA exchange correlation

potential with the LB94 model 196 (the energy is evaluated with the SPW92 functional), it be-

comes evident that the incorrect form of long-range potential already affects the frozen term

or in other words the density of the superimposed monomers (e.g., ∆E BLW
FRZ =−0.82 and 0.37

kcal mol-1 for LDA and LDA//LB94 respectively at the equilibrium structure for ClF-A). LDA

leads to substantial attractive energy contributions when adding the two monomer densities

together. The fluorine atoms, which carry many electrons in a small volume, are affected

by a large self-interaction error and characterized by a diffuse density. The association of

two excessively diffuse densities, i.e., LDA monomers, is therefore at the origin of the too

attractive LDA energy. The error in the exchange-correlation potential does not only affect

CT interactions but clearly causes qualitatively incorrect behaviors for monomers and their

superposition: the frozen term of most density functionals represents only about 60% of that

of SAPT (E SAPT
FRZ ). In fact, this “lack of repulsiveness” has been overlooked in the literature as it

is partially compensated by the missing dispersion energy in standard density functionals and
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might result in relatively reasonable total interaction energies.iii

The difficulties of standard density functionals for describing the interaction between two

frozen monomer densities are partly due to the imperfect description of the individual

monomer densities (i.e., self-interaction error) along with the approximated energy expres-

sion, which might account for (overlap) dispersion interactions. Thus, we expect weakly

interacting systems characterized by significant self-interaction (halogenated molecules and

dihalogens) to be more problematic than typical vdW complexes for dispersion corrected

density functionals.

The CT Terms

For ClF-A, only about 50% of the full binding energy is lost when CT is excluded (see Figure

8.6). The minimum of E SAPT
FRZ + E SAPT

DISP is rather flat and located at an increased intermolecular

distance compared to CCSD(T). Such a profile indicates that the two monomers approach

more closely due to the charge transfer (already seen in Figure 8.5 for the Hartree-Fock inter-

action energy) with the dispersion energy providing more stability. In contrast, the minimum

for HCN-D is dominated by dispersion.
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Figure 8.7: Charge-transfer terms from BLW ∆EBLW
CT for selected functionals compared to SAPT (ESAPT

POLCT).

According to SAPT, there is less CT in ClF-A than in HF-A (1.5 and 2.0 kcal mol-1, respectively);

however, all density functionals tested herein show the opposite trend (see Figure 8.7). In

other words, the difficulties with treating CT complexes do not exclusively correlate with the

extent of charge transfer, as a stronger CT is not systematically overestimated to a greater

extent. ∆E BLW
CT is higher for ClF-A than for HF-A but respectively over- and underestimated

when compared to the E SAPT
POLCT value. The charge transfer in other ClF arrangements is over-

estimated, while for the other complexes the ∆E BLW
CT compares well to E SAPT

POLCT. Among the

entire series, the description of the ClF complexes is clearly most tricky: the ∆E BLW
CT values are

iiiA related effect occurs with LC-BLYP when a small/modest value of µ ∼0.33 bohr-1 is applied.
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Figure 8.8: Polarization and charge-transfer terms for ClF-A from BLW (left) and ∆ELMO
pol (right), compared among different

functionals and to SAPT (ESAPT
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POLCT +εPOLCT). For BLW, ∆EBLW
CT and ∆EBLW

POLCT are shown; CCSD(T)-
F12b/VTZ-F12 is given to indicate the (total) interaction strength at the chosen (equilibrium) distance.

substantially larger than those of other complexes and that of E SAPT
POLCT (see Figure 8.8). This

ClF peculiarity highlights the importance of the self-interaction errors occurring between

nonbonded halogen atoms that are considerably smaller in the other complexes.

8.3.4 The Particular Case of M06-2X

The charge-transfer term of M06-2X is surprisingly large and much closer to LDA than to

BHHLYP (e.g., Figures 8.7 and 8.8, for ClF-A), even though CT is expected to correlate with the

amount of “exact” exchange (∼50% for BHHLYP and M06-2X but zero for LDA). The LMOEDA

analysis of the M06 functional family delivers a term (i.e., ∆E LMO
pol ) closely related to ∆E BLW

POLCT

(the energy difference between the frozen monomers and the optimized dimer density) but

that depends only on the exchange functional. Unlike ∆E BLW
POLCT, ∆E LMO

pol displays the expected

behavior: LDA exhibits the larger ∆E LMO
pol , which is increasingly reduced at the M06-L, M06-2X,

and M06-HF levels, respectively. Knowing that (i) the “dispersion-like” interactions proper to

M06-2X do not transpire in the frozen energy (see Figure 8.6, the frozen energy for M06-2X

is small compared to E SAPT
FRZ + E SAPT

DISP ) but that (ii) the total interaction energy is reasonably

accurate, the missing interaction energy must be recovered in polarization/charge-transfer

terms. From comparing the BLW and LMOEDA interaction energy components, it follows that

M06-2X compensates the repulsion introduced by “exact” exchange by a correlation functional

that gives rise to terms that resemble charge transfer (errors) in standard density functionals.

Around equilibrium, the depiction of M06-2X is relatively reasonable: ∼40% (and ∼20%) of

E SAPT
DISP for ClF-A (and HCN-D) originates from the ionic termsiv according to LMP2 (see Figure

8.9). While resembling charge transfer,v the ionic contributions should be interpreted as the

“non-dispersive” component of the “mysterious” medium-range correlation.384 The LMP2

decomposition shows that the dispersion energy of SAPT is equivalent to two components (see

also ref 520): one, which is the typical ∼R-6 dependent long-range dispersion, and a shorter

ivThese percentages are about ±10% accurate, as they depend on the basis set and localization procedure.
vThe “true” charge-transfer is associated with single-electron excitations, while the ionic terms correspond to

two-electron excitations and not to the “correlation corrections” for the single-excitations. Evidence for the destinc-
tion between “ionic” and CT is provided by the BCCD reference (which includes all charge-transfer contributions
of a correlated wave function) that gives even less interaction energy compared to HF.
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Figure 8.9: ∆ELMO
disp from LDA compared to ESAPT

DISP and the dispersion contribution in LMP2. CCSD(T)-F12b/VTZ-F12 is given
to indicate the interaction strength.

ranged component that should decay exponentially. The exponential decay could in principle

be recovered by suitably parametrized functionals, which rationalizes the good performance

of M06-2X.

In summary, the treatment of CT by standard density functionals is highly problematic when

two diffuse densities interact (e.g., halogens· · ·halogens, halogens· · ·alkenes). The success

of M06-2X relies on a significant fraction of medium-range correlation that adjusts itself to

the interaction type. On the other hand, properly balanced combinations such as B97-dDsC,

PBE0-dDsC, and LC-BOP-LRD represent a very reliable alternative to high parametrization.

8.3.5 A Prototype Organic Charge-Transfer Complex

As mentioned earlier, the role played by vdW interactions in the stabilization of the prototype

organic charge-transfer complex, TTF-TCNQ, has not yet been discussed (see ref 496). Akin to

the NF3 complexes considered throughout this study and to the terthiophene-TCNQ assembly

(see ref 533), the charge-transfer energy for TTF-TCNQ is surely overestimated by standard

DFT methods, even though the minimum is too shallow. Our present analysis suggests that

standard hybrid density functionals with a dispersion correction would provide the most

reasonable results for interaction energies. Figure 8.11 confirms that the three standard hybrid

density functionals tested (B3LYP, PBE0, and B97) together with dDsC lead to interaction ener-

gies that agree closely with reference values. Long-range and dispersion corrected functionals

(ωB97X-D and LC-BOP-LRD) also perform well for this organic charge-transfer complex.

M06-2X correctly describes the region around the equilibrium, but at longer distances the

interaction energy falls off too quickly, illustrating that the correct long-range physics are miss-

ing. In such cases, the inclusion of a dispersion correction can improve M06-2X as well. 534 In

contrast to the NF3 complexes, SCS-MP2 gives closer agreement with higher-level correlation

methods than standard MP2 for TTF-TCNQ. Note that the apparent overbinding obtained for

M06-2X and ωB97X-D in ref 496 is slightly biased, due to the too small basis set employed in

the reference SCS-MP2 interaction profile.

While interaction energies do not clearly correlate with the fraction of “exact” exchange, the
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overestimation of charge-transfer and related properties (such as dipole moments) increase

monotonically with decreasing the percentage of “exact” exchange (see Figure 8.11a). From the

point of view of interaction energy (Figure 8.10) B3LYP-dDsC and B97-dDsC seem reasonable

choices. In contrast, the analysis of dipole moments (which are not affected by the dispersion

correction in the current implementation) reveals a serious break down of these functionals at

longer (>4.0 Å) distances (Figure 8.11b), a feature which is nearly invisible in the interaction

energy profile. At these larger intermolecular distances, the B3LYP and B97 HOMO-LUMO

gap collapses, resulting in a spurious charge transfer. This unphysical behavior is strongly

dependent on the intermolecular distance and on the planarity of the monomers’ geometry.

The more pronounced orbital overlap at shorter distances or, alternatively, the inclusion of a

larger amount of nonlocal exchange (e.g., PBE0) prevents this unphysical behavior. Interest-

ingly, the limiting amount of “exact” exchange is roughly the same (20%) as that necessary for

a successful geometry optimization of alkynyl radicals. 535 The change of sign in the profile of

the molecular dipole moment (Figure 8.11b) can be rationalized by the gradual decrease of the

charge transfer with increasing intermolecular distance, which goes in the opposite direction

as the sum of the molecular dipole moments that are aligned and amount to ∼-0.6 D in the z

direction (from TCNQ to TTF) at the BCCD/6-31G*(0.25) level.

The challenge for common DFT approximations to describe charge-transfer complexes is con-

nected to both the lack of dispersion interactions resulting in inaccurate binding energies and

the overestimated charge transfer, which, depending on the percentage of “exact” exchange

and the intermolecular distances, can lead to erroneous values for density-based properties

(e.g., dipole moments). Stressing the role of dispersion interactions in CT complexes, of course,

does not imply that electrostatics and/or charge-transfer interactions are unimportant for

the description of binding energy. As mentioned above, dispersion bound complexes show

a strong dependence on the relative orientation.491 This dependence might reflect not only

the loss of contact area but also the enhancement of dispersion through electrostatic and
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charge-transfer interactions, which may allow the monomers to approach one another more

closely in one binding mode as opposed to another. In many cases, dispersion interactions are,

however, responsible for most of the stabilization energy, and the use of noncorrected standard

density functionals is therefore precluded, as they might lead to erroneous conclusions about

the nature of the binding. The inclusion of a posteriori dispersion corrections such as dDsC

represents an inexpensive and broadly applicable method (as compared to LMP2 and SAPT)

to appropriately describe charge-transfer complexes and to provide qualitative insight into

the ubiquitous importance of dispersion interactions.

8.4 Conclusions

The description of charge-transfer complexes is highly challenging for standard density func-

tionals. On the basis of an illustrative series of NF3-based complexes, we have demonstrated

that the stabilization of most CT complexes arises essentially from dispersion interactions,

with relative orientations and intermolecular distances being dictated by electrostatics and

charge-transfer interactions. Despite the illustrative overestimation of the charge-transfer

interactions by common density functionals, the use of a dispersion correction is crucial in

providing an accurate description of interaction energies. Highly parametrized functionals

such as M06-2X also describe such systems well, due to the substantial density overlap in the

intermolecular distances of interest. However, because of the lack of an explicit dispersion

term, individual interaction energy components (e.g., charge-transfer) cannot be easily inter-

preted. Due to the subtle interplay of monomer description, overestimation of charge transfer,

and neglect of dispersion interactions, only certain well balanced dispersion corrected den-

sity functionals provide excellent results; in particular, LC-BOP-LRD and PBE0-dDsC are

confirmed to be broadly applicable. The validity of these observations for rationalizing the

DFT binding energy of “real-world” charge-transfer complexes has been verified on a typical
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cofacial TTF-TCNQ organic complex. Importantly, the description of the density at distances

longer than equilibrium necessitates, even in the ground state, more than 20% of “exact”

exchange to prevent spurious charge transfer, a failure that is not directly noticeable in the

interaction energy profile itself.
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9 Exploring the Limits of DFT for
Interaction Energies of Molecular
Precursors to Organic Electronics

9.1 Introduction

The rapidly growing field of organic electronics is dominated by π-conjugated molecules,

which, because of their attractive properties, represent ideal functional units in molecu-

lar wires, organic solar cells, organic light-emitting diodes, and organic field-effect transis-

tors.484,485,536 Similarly, molecular switches, motors and artificial muscles typically rely on

π-functional frameworks for converting an optical or electrochemical signal into a mechanical

response.537–541 Electronic structure computations provide routes to valuable information

regarding the nature of the intermolecular interactions within molecular precursors to organic

electronics, where neutral dimers model the resting state and charged radical π-dimers repre-

sent typical charge-carriers, i.e., the ultimate functional units.

Kohn-Sham density functional theory 11 (DFT) is the most popular electronic structure method

for describing structures and properties of relatively large systems, including π-functional

molecules and materials. Despite their ability to provide computationally efficient access to

many ground state properties with reasonable accuracy, standard DFT approximations do

not perform well in describing the interaction energies of π-conjugated molecules. The most

obvious failures arise in assembled neutral monomers (e.g., dimers), where van der Waals

interactions contribute substantially to the total binding energy. However, the most used

semilocal (hybrid) functionals are intrinsically unable to accurately describe these nonlocal

dispersion forces. 14–17 Fortunately, the neglected interactions can be conveniently accounted

for by a posteriori atom pairwise dispersion energy corrections.38,39,42,44,45,79,89 Our recently

introduced density-dependent dispersion correction, dDsC, 81,88,89 improves the performance

of standard density functionals dramatically for describing both intermolecular interactions

and reaction energies.86,89 Hybrid functionals, when combined with dDsC, also succeed in

describing the ground state interaction energy of charge-transfer complexes, as illustrated by

the prototypical tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) complex. 90

In this chapter, our primary focus is placed on the investigation of binding energies of π-dimer
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radical cations, e.g., (thiophene)2
·+, which are formally mixed valence dimers. Standard den-

sity functionals fail to properly handle systems with fractional charges: at large intermolecular

distances the delocalization (or self-interaction) error artificially stabilizes one positive charge

delocalized over two molecules in comparison to a situation with one positively charged and

one neutral molecule. 26,28,29,190 Around equilibrium, the errors are smaller, but the description

of mixed valence states remains subtle. Doubly charged π-dimers (e.g., tetracyanoethylene,

(TCNE)2
2-) 542 present yet another issue, that is the static correlation error. 178 In this case, the

dissociation of singlet (TCNE)2
2- is not possible without breaking spin symmetry. Such dimers

are difficult to describe even around equilibrium due to an important degree of multi-reference

character. 543–545 In addition, doubly charged dimers tend to be unstable in gas-phase due to

Coulomb repulsion and are therefore excluded from this study.

Taken together, the failures of standard density functionals for dispersion interactions, mixed-

valence states and multi-reference character, the prospects for investigating π-functional

molecules with standard DFT approximations appears rather discouraging. However, the size

of the materials of practical interest precludes the application of generally robust, highly accu-

rate ab initio methods to compute binding energies (e.g., CASPT2 or multi-reference coupled

cluster). Herein we present a benchmarking study to identify the best available modern func-

tionals that are applicable to reproducing interaction energies of “real world” systems. Since

the typical test sets representative of noncovalent interactions are dominated by bio-related

model compounds, we introduce two benchmark sets of interaction energies: Orel26rad and

Pi29n. Orel26rad features 26 radical cation model compounds for charge-carriers in organic

electronics, while the underrepresentation of neutral sulfur containing heterocycles (e.g., thio-

phene 546) and naphthalene complexes 547,548 in common test sets (e.g., S22 299) prompted the

introduction of an additional set of 29 binding energies of neutral intermolecular complexes

(Pi29n). The new databases allow for a thorough assessment of the capabilities of density

functionals to describe the interaction energies relevant for organic electronic precursors.

9.2 Methods and Computational Details

9.2.1 Construction of the test set

All monomers are optimized at the B3LYP/6-31G* level 154,155,161,162 in Gaussian 09, 399 except

for TTF-TCNQ, which is our previously published equilibrium geometry.90 The optimized

geometries of the neutral and cationic monomers are used to construct the test sets without

further relaxation: the radical dimer cations are built from the geometry of one neutral and

one cationic monomer. Intermolecular distances and relative orientations were either taken

from the literature (thiophene dimers, 546 naphthalene dimers 547 and naphthalene· · ·benzene

complexes 548) or obtained from scans (steps of 0.1 Å) at the counterpoise corrected df-MP2/6-

31G*(0.25) level of theory. In general, the monomer centers are superimposed and only

the intermolecular distance is optimized. Exceptions are the parallel thiophene· · ·benzene

(T-Bz_P), the (anti)-parallel thiophene· · ·pyridine complexes (T-Py_P and T-Py_AP) and the

second anti-parallel thiophene dimer radical cation (T2_AP2·+) for which the relative dis-
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Table 9.1: Abbreviations for Monomers and their Relative Orientation Used to Identify Dimers Included in the Two Test Sets
Orel26rad and Pi29n

F: furan S: slipped
T: thiophene P: parallel
bz: benzene AP: anti-parallel
Py: pyridine X: cross
Pyr: pyrrole T: T-shape (heteroatom down)
bF: bifuran T’: T-shape (heteroatom up)
bT: bithiophene ·+: radical cation
TT: thienothiophene
TTF: tetrathiafulvalene
TCNQ: tetracyanoquinodimethane

placement was optimized as well (see Table 9.1 for the explanations of the abbreviations).

9.2.2 Benchmark Computations

The highest computational level uniformly applicable for all dimers studied herein, is an esti-

mated CCSD(T)/CBS interaction energy, which we denote by CCSD(T)*. The MP2 interaction

energy is extrapolated to the CBS limit exploiting the efficiency of density-fitting (df) 549 and

corrected by the δCCSD(T) term from a much smaller basis set

∆E(CCSD(T)*) =∆E(HF/AVQZ)+∆E(df-MP2/CBS)+δCCSD(T)/6-31G*(0.25) (9.1)

The complete basis set extrapolation is carried out with aug-cc-pVTZ and aug-cc-pVQZ (AVTZ

and AVQZ, respectively) employing the Helgaker scheme 356 and the higher-order correlation

correction δCCSD(T)/6-31G*(0.25) corresponds to the difference between MP2 and CCSD(T)

in the 6-31G*(0.25) basis set, where (0.25) indicates the exponent of the set of d-orbitals added

to the 6-31G basis set for all atoms except hydrogen.527,528 All components are corrected for

the basis set superposition error (BSSE) according to the Boys-Bernardi procedure.353 Ab

initio computations used the Molpro2010.1 526 defaults for auxiliary basis sets and technical

parameters. For df-MP2/6-31G*(0.25) the auxiliary basis set of aug-cc-pVDZ has been applied.

Equation of motion for ionization potentials (EOM-IP) coupled cluster methods are specifically

designed to describe neutral and ionized species at a comparable level of accuracy. In order to

validate the use of single reference CCSD(T)* as a benchmark level, the interaction energy of

the benzene dimer cation was computed with CCSD(T), EOM-IP-CCSD550,551 and EOM-IP-

CCSD(2,3) 552 in the small 6-31G*(0.25) basis set. The results at the three levels do not differ by

more than about 1 kcal mol-1, suggesting good accuracy of CCSD(T) for the radical cations.

Note, that spin-contamination is largely avoided given that open-shell systems are treated in

the RMP2553 and ROHF-UCCSD(T)554,555 framework. A breakdown of the single-reference

treatment was observed for (pyridine)2
·+ complex, which is described as unbound and has
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therefore been dropped from the test set.

9.2.3 Symmetry Adapted Perturbation Theory

Symmetry adapted perturbation theory (SAPT)93 is an ab initio method that decomposes

the interaction energy between molecules based on perturbation theory. At the SAPT0 level,

6 terms contribute to the interaction energy: classical electrostatics E (10)
elst (electron-electron

and nuclei-nuclei repulsion, counterbalanced by electron-nuclei attraction), exchange E (10)
exch

(arising from satisfying the Pauli-exclusion principle), induction E (20)
ind (equivalent to polar-

ization or charge-transfer in other terminologies), exchange-induction E (20)
exch−ind (the cor-

rection for keeping the wave function antisymmetric) and finally dispersion and exchange-

dispersion E (20)
disp +E (20)

disp−exch, accounting for the correlated motion of electrons between the

two monomers.

E SAPT0
int = E (10)

elst +E (10)
exch +E (20)

ind +E (20)
exch−ind +E (20)

disp +E (20)
disp−exch (9.2)

For strongly interacting fragments, the δHF term421,422

δHF =∆E HF −E (10)
elst −E (10)

exch −E (20)
ind −E (20)

exch−ind (9.3)

which is the difference between the (counterpoise corrected) HF interaction energy and the

electrostatics, exchange and (exchange-)induction is often necessary to achieve agreement

with supermolecular approaches. E SAPT0
int +δHF corresponds to Hartree-Fock plus the SAPT0

(exchange-)dispersion and is denoted by HF+Disp herein

E HF+Disp
int =∆E HF +E (20)

disp +E (20)
disp−exch (9.4)

Open-shell SAPT0 556 computations were performed in SAPT 2008, 524 interfaced with Dalton

2.0,557 using the 6-31G*(0.25) basis set.527 Akin to MP2, SAPT0 is known to provide more

accurate results in modest basis sets than at the complete basis set limit for neutral complexes

of π-conjugated systems.558,559 Since MP2/6-31G*(0.25) is accurate for the radical cations

studied herein (vide infra), SAPT0 in the same, small basis set is expected to yield reasonable

results as well. Note that we use SAPT0 with uncoupled response functions (“MP2-like”), as the

coupled induction and dispersion energies do not benefit from the invoked error cancellation.

For example, the dispersion energy is given by

E (20)
disp =−4

∑
i a, j b

|(i A a A| j B bB )|2
εA

a −εA
i +εB

b −εB
j

(9.5)

where i , j and a,b are occupied and unoccupied orbitals, respectively, (i a| j b) is the two-

electron repulsion integral in chemist’s notation and εi is the ith orbital energy, while A and B

labels the two monomers.
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9.2.4 Density Functionals Tested

In addition to the standard generalized gradient approximations (GGA) BLYP and PBE and four

hybrid density functionals (B3LYP,154,155,161,162 B97,209 PBE0217,280 and PW6B95,456 which

contain 20, 19.43, 25 and 28 % “exact” exchange), several “modern” functionals are included in

the benchmark:

The double hybrid B2PLYP163 contains 53% “exact” exchange and 27% MBPT2 correlation

energy, partially accounting for weak interactions. Nevertheless, for general applications a pos-

teriori dispersion corrections have been recommended, denoted by appending -D (=-D2), 85

-D3 42 and -D3(BJ). 43

The long-range corrected (LC) exchange functionals are motivated by the incorrect decay of

the potential of standard DFT functionals (the xc potential of semilocal functionals decays

exponentially along with the density, while the asymptotic form of the exact potential is -1/r).

The too rapid decay is held responsible for the delocalization error, causing the overstabi-

lization of fractionally charged fragments.560 LC functionals lead to the correct asymptotic

potential and have been shown to reduce the delocalization error significantly. 28,189

The long-range correction to exchange is introduced through the range-separation scheme,

pioneered by Savin et al. 193,194 and popularized by Hirao and coworkers. 407 For more details

see section 2.2.2 on page 13. LC-BOP, 392,407 and LC-ωPBE 393,394 (also known as LC-ωPBE08)

are long-range corrected exchange functionals tested herein: the long-range is described by

“exact” exchange and the short-range by semilocal DFT exchange.

M06-2X214 is a flexible, carefully fitted highly empirical hybrid-meta-GGA functional (54%

“exact” exchange and about 30 parameters), designed to describe main group elements and

weak interactions accurately. The more recent Minnesota functional M11 561 follows the same

spirit, but includes 100% long-range and 42.8% short-range “exact” exchange.

Dispersion is a nonlocal phenomenon, absent from standard density functionals.14–17 Ac-

counting for the nonlocal nature is computationally expensive, but reasonably practical

schemes have been developed recently, e.g., the herein tested VV10 functional. 48 Alternatively,

a posteriori atom pairwise dispersion energy corrections have been shown to capture the

essence of the dispersion interaction energies. 38,39,42,44,45,79,81,89 The general formula for such

corrections is given by

Edisp =−
Nat∑
i=2

i−1∑
j=1

fd (Ri j ; i ; j )
C i j

6

R6
i j

(9.6)

where Nat is the number of atoms, C i j
6 the dispersion coefficient between atom i and j and

fd (Ri j ; i ; j ) the damping function, which has to remove the divergence at zero internuclear

distance Ri j . Furthermore, fd adapts the correction to a given functional. In “classical” disper-

sion corrections, the dispersion coefficients are fixed parameters and the damping function

depends on tabulated van der Waals radii.38,39 To improve the accuracy, dependence on the

geometry42 or, even more general, on the electron density have been developed.44,45,79,89

Two density-dependent variants are tested: our recently introduced dispersion correction
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dDsC 81,88,89 and the local response dispersion (LRD) scheme of Sato and Nakai. 45,46 Note that

both density dependent dispersion energy corrections are applied a posteriori, i.e., they do

not influence the electron density.

Combining a LC-functional with a dispersion correction is expected to lead to generally robust

functionals, even though some combinations are known to be problematic.89,90,414 Herein,

we test LC-ωPBE(ω= 0.45 bohr-1) 393,394 together with dDsC and either PBE, LYP 155 or B95 185

correlation, leading to LC-ωPBE-dDsC, LC-ωPBELYP-dDsC and LC-ωPBEB95-dDsC. PBE cor-

relation is the “natural” choice, but LYP and B95 are one-electron self-interaction free and

might therefore offer some further reduction of the delocalization error. Alternatively to dDsC,

LC-ωPBE is combined with Vydrov and Van Voorhis’ fully nonlocal correlation functional,

denoted by LC-VV10.48,562 Similarly, LC-BOP-LRD corrects LC-BOP with the local response

dispersion (LRD) method.45,46 Finally, ωB97X-D combines a highly fitted, long-range cor-

rected exchange functional with a “classical” dispersion correction. 252

In summary, five different variants of LC-functionals that should also account for weak interac-

tions are assessed: an empirical, but specifically adapted exchange and correlation functional

(M11),561 an empirical exchange-correlation functional fitted together with an “classical”

dispersion correction (ωB97X-D) 252 and three different density-dependent dispersion correc-

tions applied to LC-functionals that have not been specifically refitted (dDsC, 89 LRD 45,46 and

VV10 48).

All DFT computations are run in a development version of Q-Chem,368 except LC-BOP-

LRD, 45,46 which is performed in GAMESS. 458 LC-BOP-LRD[10,0] refers to LC-BOP-LRD with-

out the multi-center corrections to the C6 coefficients introduced in ref 46. For benchmarking

purposes, the large def2-QZVP(-g)459 basis set has been applied. For testing a level more

likely to be used in “real life” applications, selected data is also provided with the small 6-31G*

and medium sized 6-311+G** basis sets. The integral threshold was set to 10-12 and a 75/305

Euler-Maclaurin-Lebedev 370,371 grid was used for most computations, but for M06-2X 214 and

M11 561 the finer 99/590 grid was adopted in order to account for their higher dependence on

the integration grid accuracy.523 The nonlocal part of the VV1048 functional and all 6-31G*

computations exploited the efficient SG-1 grid. 372 B2PLYP 163 computations were accelerated

by the resolution of identity with the auxiliary basis set of aug-cc-pVTZ. DFT computations are

not corrected for the BSSE and open-shell systems were treated in the unrestricted formalism.

For several of the radical cation π-dimers identifying the lowest energy SCF solution was

difficult for long-range corrected exchange functionals, even around equilibrium.

9.3 Results and Discussion

9.3.1 The Test Sets

This subsection introduces the test sets and discusses general trends based on the reference

interaction energies (estimated CCSD(T)/CBS).

The Pi29n test set consists of a selection of weakly polar, neutral stacked and T-shaped π-

dimers including 15 sulfur-containing complexes (i.e., thiophene, thienothiophene and bithio-
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Figure 9.1: Pi29n test set with estimated CCSD(T)/CBS interaction energies in kcal mol-1.
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Figure 9.2: Ab inito interaction energies in kcal mol-1 for the Pi29n test set. CCSD(T)* denotes the estimated CCSD(T)/CBS
values serving as the benchmark.
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phene). Pi29n is representative of the “resting state” of organic electronics, not well repre-

sented in other test sets (e.g., PPS5/05456 and S22299). The test set also contains two weak

(thiophene· · ·pyridine) and one strong (TTF-TCNQ) donor-acceptor complexes. Instead of

the typical benzene dimer included in several test sets (e.g., PPS5/05 456 and S22 299), the inter-

actions between unsaturated hydrocarbons are here illustrated by the benzene· · ·naphthalene

and naphthalene dimers. The dimers are illustrated in Figure 9.1 with their abbreviations

explained in Table 9.1. Due to the absence of hydrogen bonds, the interaction energies probed

by Pi29n are dominated by dispersion. Nevertheless, electrostatic (e.g., dipole-dipole) and

charge-transfer (donor-acceptor) interactions modulate the strength of the dispersion interac-

tions by influencing the intermolecular separation (vide infra).

In line with the benzene dimer, the T-shaped thiophene dimer is more favorable (by about

0.4 kcal mol-1) than the sandwich conformation, independently from the alignment of the

molecular dipoles (parallel vs. anti-parallel), which was already noted by Tsuzuki et al. 546 The

interaction energies of the furan dimers follow the same trends, with the exception of F2_T,

which is the least stable orientation, presumably due to the lower polarizability of the oxygen

atom as compared to sulfur. The stacked thiophene· · ·benzene dimer has essentially the same

interaction energy as the anti-parallel stacked thiophene dimer (∼2 kcal mol-1, slightly larger

than the 1.7 kcal mol-1 for stacked benzene dimer 360). The thiophene· · ·pyridine interaction

energy is substantially higher (∼3 kcal mol-1) also when compared to the parallel displaced

benzene dimer (∼2.7 kcal mol-1).360 The increasing interaction energy going from the thio-

phene dimer to thiophene· · ·pyridine can be easily rationalized by the weak donor-acceptor

ability of the electron rich thiophene and the electron poor pyridine. This charge-transfer

interaction reduces the intermolecular distance from ∼4.0 to 3.5 Å and concurrently leads to

an augmentation of the dispersion interactions in the complex similar to TTF-TCNQ. 90

Complexes involving larger monomers such as bifurane, thienothiophene, bithiophene and

naphthalene are bound more strongly due to the increase in dispersion interactions. The

largest interaction energy of 6.5 kcal mol-1 is achieved for the anti-parallel bithiophene dimer

(bT2_AP) and the graphite like naphthalene dimer (Nap2_GR). The less polarizable bifuran

dimers are bound less strongly (4.7 kcal mol-1 for bF2_AP). Alternatively, the T-shaped dimers

are destabilized with respect to parallel displaced geometries when increasing the monomer

size: the two types of benzene dimers are essentially isoenergetic (2.7 kcal mol-1),360 the

parallel displaced benzene· · ·naphthalene is slightly favored over the T-shaped (4.8 vs. 4.3 kcal

mol-1), whereas the energy difference is larger than 1 kcal mol-1 (5.2 vs. 6.5 kcal mol-1) for

naphthalene dimers. The prototypical charge-transfer complex TTF-TCNQ has, by far, the

largest interaction energy (∆E=18.2 kcal mol-1).

This study’s largest emphasis is placed on the radical cationic π-dimers (see Figure 9.4). In

contrast to the neutral Pi29n complexes, the dimer radical cations are not only bound by

dispersion but characterized by significant electrostatic, polarization and charge-resonance

(similar to the charge-transfer in case of the neutral monomers and also sometimes referred

to as “covalent-like”) interactions typical of ion· · ·neutral complexes. The relative orientation

of the two monomers is determinant for the charge-resonance: the better the orbital overlap

of the HOMO/SOMO, the more stabilized is the complex.
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To span a representative range of monomers commonly employed in p-doped organic poly-

mers, we selected a set of homo- and heterodimers of pyrrole, furan and thiophene. The

benzene dimer radical cation represents the most investigated species of its kind 563–569 and is

also included in the test set. The larger bithiophene, bifuran, thienothiophene and TTF mixed

valence dimers provide more realistic models of organic electronics precursors.

Figure 9.3: Comparison of T2_AP·+ in cyan
and AP2·+.

The anti-parallel pyrrole and furan dimer radical cations

(Pyr2_AP·+ and F2_AP·+) are the most strongly bound com-

plexes (about 20 kcal mol-1) of Orel26rad. This strong inter-

action energy is best explained by the optimum monomer

orbital alignment (along the C=C double bonds) that leads

to the bonding SOMOs in the dimer radical cations. The

interaction energies of these “special” dimers (Pyr2_AP·+

and F2_AP·+) are matched closely only by the significantly

larger TTF dimer radical cations (17 and 18 kcal mol-1 for

the cross and parallel orientation, respectively). The anti-

parallel thiophene radical cation dimer (T2_AP·+) is bound by about 14 kcal mol-1, which is

2.5 kcal mol-1 less than the benzene dimer radical cation and significantly less than Pyr2_AP·+

and F2_AP·+. It is worthwhile noting that since sulfur is larger than oxygen, the intermolecular

distance is increased in T2_AP·+ relative to F2_AP·+ (3.2 vs 2.9 Å). The amount of Pauli repulsion

is reduced in the lateral displaced arrangement as the sulfur lies above the “empty” region

between the two hydrogen atoms (T2_AP2·+ in Figure 9.3). In the latter arrangement, the two

thiophene monomers are closer to each other (2.9 Å), resulting in an increase in interaction

energy from 14.2 to 17.6 kcal mol-1 for T2_AP·+ and T2_AP2·+, respectively.

The larger anti-parallel bithiophene radical cation dimers, bT2_AP·+, is bound by only 14

kcal mol-1, as the bonding orbital is delocalized over more atomic centers and, therefore, less

stabilizing. Apparently, the increase in dispersion interactions is slower than the loss in charge-

resonance energy when increasing the monomer size. Thus, for the relatively small dimer

radical cations studied herein, variation in charge-resonance dominates over the change in

dispersion interactions. For larger monomers (e.g., oligothiophenes), however, we expect

that dispersion will eventually become more important for the total interaction energy, with

charge-resonance contribution playing a diminishing role.

The T-shaped radical cation dimers do not benefit from significant orbital overlap (i.e. “cova-

lent” interactions) and thus have smaller interaction energies of ∼9 kcal mol-1. This energy

range is only slightly below that of stacked complexes for which the charge resonance is weak

(11-14 kcal mol-1), either because of the different ionization energies of the two monomers

(e.g., thiophene-pyrrole) or because of the nonbonding SOMO (e.g., the cross conformation of

the pyrrole dimer, Pyr2_X·+). The interaction energy is, however, much weaker (only ∼2 kcal

mol-1), when the heteroatom is pointing away from the second monomer (T’ orientation),

similar to that of the neutral T-shaped complexes, which indicates that the pure electrostatic

interaction (ion· · ·neutral) and charge resonance are of minor importance in T’.
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Figure 9.4: Orel26rad test set with estimated CCSD(T)/CBS interaction energies in kcal mol-1.
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Figure 9.5: Ab inito interaction energies in kcal mol-1 for the Orel26rad test set. CCSD(T)* denotes the estimated
CCSD(T)/CBS values and serves as the benchmark.
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9.3. Results and Discussion

Table 9.2: Performance of Various Methods for the Two Individual Test Sets and The average MAD.
All Energies are in kcal mol-1.

Orel26rad Pi29n average MAD

HF 17.31 7.79 12.29
LC-BOP 9.94 5.31 7.50
LC-ωPBE 9.14 4.92 6.92
LC-ωPBELYP 9.33 4.33 6.69
BLYP 5.67 7.56 6.67
B3LYP 5.91 6.62 6.28
B97 4.79 5.50 5.16
PBE 4.58 4.82 4.70
LC-ωPBEB95 6.06 2.83 4.36
PBE0 3.78 4.87 4.36
PBE-dDsC 7.52 0.51 3.82
VV10 7.86 0.14 3.79
BLYP-dDsC 6.28 1.25 3.63
HF-dDsC 5.16 1.70 3.34
PW6B95 2.93 3.50 3.23
M11 3.36 1.82 2.55
B2PLYP 1.79 3.20 2.54
LC-ωPBE-dDsC 4.26 0.97 2.53
CCSD(T)/6-31G*(0.25) 2.60 2.13 2.35
MP2/CBS 2.68 2.02 2.33
PW6B95-dDsC 4.16 0.60 2.28
B3LYP-dDsC 4.01 0.55 2.19
B97-dDsC 3.94 0.43 2.09
LC-ωPBELYP-dDsC 3.76 0.41 1.99
LC-ωPBEB95-dDsC 3.27 0.59 1.86
PBE0-dDsC 3.40 0.39 1.81
B2PLYP-D3(BJ) 3.26 0.42 1.76
LC-VV10 3.12 0.39 1.68
LC-BOP-LRD[10,0] 3.17 0.21 1.61
LC-BOP-LRD 2.85 0.30 1.51
B2PLYP-D 2.74 0.35 1.48
LC-ωPBEB95-dDsC/6-31G* 1.90 0.92 1.38
B2PLYP-D3 2.61 0.21 1.35
LC-ωPBEB95-dDsC/6-311+G** 1.78 0.82 1.27
M06-2X 1.08 1.25 1.16
ωB97X-D 1.41 0.41 0.88
MP2/6-31G*(0.25) 0.74 0.33 0.52
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9.3.2 Performance of Standard Wave Function Methods

Interaction energies for the two test sets, Pi29n and Orel26rad, are given in Figure 9.2 and

Figure 9.5 at standard ab initio levels (see Table 9.2 for mean absolute deviations, MADs):

MP2 at the complete basis set limit together with MP2 and CCSD(T) in the small basis set,

6-31G*(0.25). With a MAD of 0.3 kcal mol-1 MP2/6-31G*(0.25) clearly outperforms MP2/CBS

and CCSD(T)/6-31G*(0.25) (MADs of 2.0 and 2.1 kcal mol-1, respectively) for the neutral π-

dimers of the Pi29n test set. The relative performance is very similar for the more challenging

Orel26rad test set with a MAD of 0.7 kcal mol-1 for MP2/6-31G*(0.25) compared to MADs

of 2.7 and 2.6 kcal mol-1 for the two much more demanding wave function methods. The

remarkable performance of MP2/6-31G*(0.25) is in line with previous studies reporting the re-

liable accuracy of this cost effective combination 528,570,571 due to error cancellation: MP2/CBS

tends to overestimate interactions between π-conjugated molecules, while smaller basis sets

limit the flexibility of the wave function and therefore lead to less binding. However, such an

error cancellation does not hold for more accurate theories (e.g., CCSD(T)) for which weak

interactions are underestimated in small basis sets.

With an overall MAD of 0.5 kcal mol-1, MP2/6-31G*(0.25) emerges as the most accurate ap-

proximate level of theory discussed herein, outperforming all tested density functionals.

9.3.3 Performance of Density Functional Approximations

Despite the remarkable success of MP2/6-31G*(0.25), the performance of density functional

approximations (see Figure 9.6) is of considerable interest for general applications and for

understanding the limitations of the current approaches.

Simple PBE-dDsC achieves an impressive MAD of only 0.5 kcal mol-1 for Pi29n with many

other dispersion corrected functionals providing an excellent accuracy, as illustrated by the

performance of VV10 (MAD=0.1 kcal mol-1). The success of dispersion corrected functionals

for Pi29n indicates good transferability from the smaller complexes dominating most training

sets for weak interactions (e.g., S22) to the larger and sulfur containing complexes of Pi29n.

In other words, as long as dispersion is accounted for, neutral model complexes of organic

electronics are not problematic. The description of Orel26rad is more delicate. GGA function-

als (BLYP and PBE) are among the worst methods tested (averaged MAD of 6.7 and 4.7 kcal

mol-1) but have a lower MAD for Orel26rad than for Pi29n due to error cancellation between

overestimated charge-delocalization and missing dispersion. Adding a dispersion energy

correction to a GGA functional (i.e, BLYP-dDsC, PBE-dDsC), deteriorates the performance for

Orel26rad of these functionals even further. The fully nonlocal VV10 functional is not better

than PBE-dDsC and is therefore not recommended either.

Standard hybrid density functionals such as B3LYP or PBE0 show a slight improvement over

GGAs (averaged MAD of 6.3 and 4.4 kcal mol-1 for B3LYP and PBE0, respectively). With an

average MAD of 1.8 kcal mol-1, PBE0-dDsC, is the best performing functional among the “sim-

ple” approaches. The other dispersion corrected hybrid functionals perform slightly worse,

with average MADs of about 2.2 kcal mol-1. These results demonstrate that the real benefit of
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Figure 9.6: Performance of density functional approximations for radical cations (Orel26rad) and neutral π-dimers (Pi29n).

including a fraction of “exact” exchange is only visible in combination with a dispersion energy

correction. Alternatively, the highly empirical global hybrid meta-GGA functional M06-2X

achieves an overall MAD of 1.2 kcal mol-1, providing a balanced description of Orel26rad and

Pi29n (MADs of 1.1 and 1.3 kcal mol-1, respectively).

Similar to global hybrids, LC- variants of standard functionals (e.g., LC-ωPBE or LC-BOP) do

not perform well for either Pi29n or Orel26rad (MADs > 7 kcal mol-1), illustrating again the

importance of weak interactions for achieving quantitative agreement with benchmark data.

The modest performance of M11 (MADOrel26rad=3.4 kcal mol-1) indicates that the reduction of

the delocalization error alters the error cancellation at the origin of the successful description

of weak interactions by M06-2X (the global-hybrid predecessor of M11). In other words, long-

range corrected exchange necessitates the explicit treatment of dispersion interactions for

achieving accurate energetics. Orel26rad benefits the most from simultaneously accounting

for weak interaction and reducing the delocalization energy. However, only ωB97X-D (MAD

of 1.4 kcal mol-1) reaches chemical accuracy (2 kcal mol-1). In other words, the addition of a

dispersion correction (dDsC, VV10 or LRD) to a standard LC- functional is not fully satisfac-

tory and a better performance is achieved when fitting empirically the exchange-correlation

functional together with the dispersion correction. LC-BOP-LRD is the best amongst the

less empirical functionals, but the MAD of 2.9 kcal mol-1 indicates that improvement is still

possible.i

iComparing the two LRD variants tested (with and without nonlocal contributions to the C6 coefficients),
suggests that Orel26rad benefits from these nonlocal contributions, which lower the MAD by 0.3 kcal mol-1.
Similarly, LC-VV10, which is fully nonlocal, slightly outperforms the best LC-dDsC variant (LC-ωPBEB95-dDsC), in
which no explicitly nonlocal terms are considered.
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The most popular double hybrid functional, B2PLYP163 has been combined with the three

successively recommended dispersion corrections: D (=D2),85 D3 42 and D3(BJ).43 With a

MAD of 1.8 and 3.2 kcal mol-1 for Orel26rad and Pi29n, respectively, plain B2PLYP satisfies

the chemical accuracy criterion for Orel26rad, but not for the neutral complexes. Adding a

dispersion correction improves the performance for Pi29n significantly (MAD of 0.2-0.4 kcal

mol-1), but the accuracy for the other test set is clearly affected, e.g., the MAD for B2PLYP-D3

is 2.6 kcal mol-1 for Orel26rad.

With average MADs of 1.2 and 0.9 kcal mol-1, the best performing M06-2X and ωB97X-D rival

with the accuracy of MP2/6-31G*(0.25) (MAD=0.6 kcal mol-1). As compared to MP2, M06-2X

has more difficulties describing the dispersion-dominated complexes (MADPi29n=1.3 vs. 0.3

kcal mol-1, for M06-2X and MP2, respectively), whereas Orel26rad is trickier for ωB97X-D

(MAD=1.4 and 0.7 kcal mol-1 for ωB97X-D and MP2, respectively).

To summarize, interaction energies of radical cation π-dimers as illustrated by the Orel26rad

test set are especially challenging: the electronic structure is more complicated than for the

neutral dimers of Pi29n and dispersion interactions are still important. The carefully fitted

M06-2X, which performs very well, exploits the error cancelation between the missing disper-

sion and the delocalization error. Without relying on such delicate error cancellations, only

ωB97X-D adequately describes interaction energies of both neutral and radical cations. The

reduction of the delocalization error in ωB97X-D is, however, associated with the fitting of the

(exchange-correlation) functional augmented by an explicit dispersion correction.

The MAD is a good indicator of the overall accuracy, but capturing trends is sometimes more

relevant than reproducing absolute binding energies. In particular, achieving the correct rela-

tive interactions between a series of complexes is of primary interest for identifying potential

next-generation molecular precursors to organic electronics. The extent to which these trends

are reproduced is analyzed on a subset of Orel26rad given in Figure 9.7. In contrast to Pi29n,

for which the correlation between dispersion corrected functionals and CCSD(T)* is rather

good (not shown), Orel26rad is more problematic. Neither B2PLYP (which neglects ∼50% of

the dispersion) nor dispersion corrected density functionals clearly discriminate between

the two TTF2
·+ complexes and the parallel thiophene cation dimer (T2_P·+). Only B2PLYP-

D3(BJ), which systematically overbinds the series, reproduces the 4.6 kcal mol-1 energy spread

between the parallel TTF (TTF2_P·+) and T2_P·+. The improvement of B2PLYP-D3(BJ) upon

B2PLYP is rationalized by the proper treatment of dispersion interactions dominating the

binding energy of the larger dimers.

The negative slope of PBE indicates that the delocalization error affects smaller systems more

than extended ones: in larger monomers, the charge is more delocalized so that further spread-

ing is not as advantageous. The “artificially” good performance of PBE for the smaller dimers

(due to the larger delocalization error and less missing dispersion) is, therefore, not effective

for the larger systems, which are significantly underbound in the absence of a dispersion

correction.

In line with the MADs discussed above, the reduction of the delocalization error together with

the description of dispersion interactions leads to a dramatic improvement going from PBE to

PBE0-dDsC orωB97X-D. Nevertheless, given that neither HF (the slope of the linear regression
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Figure 9.7: Correlation between DFT and estimated CCSD(T)/CBS interaction energies for a parallel and crossed TTF, bithio-
phene, bifuran dimers from Orel26rad test set.

is zero, not shown) nor pure GGAs (negative slope e.g., PBE) contain the right physics to

stabilize the larger systems more than the smaller ones, their linear combination (i.e., global

hybrids) is not an ideal basis for a dispersion correction. Long-range corrected exchange

together with an explicit treatment of dispersion can provide more reasonable slopes, but

the trends are not necessarily consistent (e.g., ωB97X-D vs. LC-BOP-LRD). B2PLYP performs

somewhat better, because the negative slope of the GGA component is counterbalanced by

the fraction correlation energy from perturbation theory.

Overall, achieving the correct balance between the decrease of charge resonance and the gain

in dispersion interactions in larger dimers is highly challenging. In particular, the approxima-

tions giving the most accurate binding energies (e.g., ωB97X-D and M06-2X) do not accurately

reproduce the relative strength of a series of dimers.

9.3.4 Interaction Energy Profiles

The reproduction of interaction energy profiles certainly represents the most rigorous valida-

tion for identifying robust methods. Non-equilibrium geometries are especially relevant in

the context of molecular dynamics simulations. Interaction energy profiles are computed for

the anti-parallel furan and thiophene dimer radical cations (F2_AP·+ and T2_AP·+), two proto-

typical examples of organic charge-carriers. The comparison of the two profiles is convenient

because despite their similar structures their interaction energy differs by about 6 kcal mol-1.
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Figure 9.8: Interaction energy profiles for the radical cation dimers of furan (solid line) and thiophene (broken lines) at various
levels of theory. SAPT0 is performed in the small 6-31G*(0.25) basis set and HF+Disp refers to the Hartree-
Fock interaction energy augmented by the SAPT0 dispersion energy. The “discontinuous” point of SAPT0 for the
thiophene dimer corresponds to the maximum net stabilization due to induction. It is probably an artifact from
the perturbative treatment (e.g. eq 9.5); note that at this intermolecular distance, electrostatic attraction is still
dominated by exchange repulsion.

The interaction energy profiles are computed based on the respective dimers of the Orel26rad

test set (F2_AP·+ and T2_AP·+), i.e., one monomer corresponds to the optimized neutral and

the other one to the radical cation geometry at the B3LYP/6-31G* level. The asymmetric

nature of the dimers aims at improving the dissociation of the dimers: density functional

approximations are more accurate for integer than for fractional numbers of electrons. Charge-

localization induced by a geometrical bias is expected to disfavor the symmetric solution with

two monomers charged +0.5.

Symmetry adapted perturbation theory,93 allows in principle to identify the origin of the

interaction energies. Unfortunately, SAPT is far less developed for open-shell than for closed-

shell complexes. Therefore, only the simplest variant, SAPT0, is applied herein in which the

monomers are treated at the (RO)HF level and electron correlation is neglected except for the

dispersion energy.

Akin to the equilibrium interaction energies, MP2/6-31G*(0.25) is in excellent agreement with

CCSD(T)/CBS, whereas MP2/CBS overbinds the radical cation dimers of furan and thiophene

(see Figure 9.8). In contrast, SAPT0 accounts for only ∼50% of the CCSD(T)* interaction

energy. More importantly, the difference between furan and thiophene is not reproduced. This

qualitative failure is not surprising, considering that charge-resonance is important in these

dimers and that SAPT is based on one charged and one neutral monomer. Adding the δHF

term to SAPT0, which corresponds to Hartree-Fock supplemented by the SAPT dispersion

energy (HF+Disp), leads to a qualitative improvement. However, the remaining errors of

∼4 kcal mol-1 around equilibrium, indicates that HF+Disp is not in quantitative agreement
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Figure 9.9: Interaction energy profiles for the radical cation dimers of furan (solid line) and thiophene (broken lines) at various
DFT levels compared to estimated CCSD(T)/CBS.

with either CCSD(T)* or MP2/6-31G*(0.25).ii In summary, the SAPT0 analysis confirms the

importance of charge-resonance (i.e., δHF is essential for the qualitative agreement) and

dispersion interactions. However, correlation contributions beyond “simple” monomer-based

dispersion (e.g., induction-dispersion) are expected to be non-negligible for these strongly

interacting monomers: the monomer densities at the basis of the SAPT0 treatment are only a

very rough approximation to the dimer densities.

The overall performance of the DFT approximations is rather poor (Figure 9.9): the qualitative

difference between the furan and thiophene dimer radical cations is adequately reproduced,

but only ωB97X-D provides both accurate binding energies and correct dissociation behavior.

The other LC-functionals perform very similarly to each other and underestimate the interac-

tion energy by about 3 kcal mol-1 (as apparent in their MAD for Orel26rad). The equilibrium

distance is nevertheless accurate to within ±0.1 Å for all the LC- functionals. Finally, the

wrong dissociation behavior of M06-2X contrasts with the low MAD for Orel26rad (1.1 kcal

mol-1). However, the high amount of “exact” exchange in M06-2X reduces the delocalization

error sufficiently to remove the spurious barriers towards dissociation obtained with other

functionals (e.g., furane dimer radical cation with PBE0 and B2PLYP).

iiFor the equilibrium geometry of the neutral anti-parallel thiophene dimer (T2_AP) excellent agreement is
obtained between HF+Disp (∆E = 1.55 kcal mol-1 and MP2/6-31G*(0.25) (∆E = 1.53 kcal mol-1).
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9.3.5 Basis Set Dependence
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Figure 9.10: Correlation between interaction energies in smaller ba-
sis sets (6-31G* and 6-311+G**) and def2-QZVP(-g) val-
ues for the LC-ωPBEB95-dDsC density functional.

Large basis sets are necessary to as-

sess the “true” functional performance

but quadruple zeta basis sets are not

realistic for routine applications. We

here compare the performance of two

standard, economic basis sets with

that of def2-QZVP(-g) using the best

dDsC corrected variant, i.e., the long-

range corrected exchange functional,

LC-ωPBEB95-dDsC (Figure 9.10). The

average MADs over all the interaction

energies are 1.4, 1.3 and 1.9 kcal mol-1

for 6-31G*, 6-311+G** and def2-QZVP(-

g) respectively. The use of the LC-

ωPBEB95-dDsC/6-31G* combination,

in future application, is justified by the

small difference between 6-31G* and 6-

311+G** and by the highly reasonable accuracy of the most cost-efficient variant tested herein.

In fact, the average MAD is lower when using the small basis sets: the underbinding of LC-

ωPBEB95-dDsC is compensated by the basis set superposition error (average MADs of 1.4 and

1.9 kcal mol-1 for 6-31G* and def2-QZVP(-g), respectively).

9.4 Conclusions

The accurate computational description of molecular precursors to organic electronics may

promote our ability to address the most relevant questions in the field. With the aim of as-

sessing the performance of the most accessible electronic structure methods for relevant

interaction energies, we have introduced two test sets composed of neutral and radical dimer

complexes, which best represent the resting (Pi29n) and charge-carrier states (Orel26rad) of

organic functional units. The description of the interaction energies of neutral complexes

(Pi29n) is straightforward, so long as dispersion interactions are properly taken into account:

the best performing combinations are MP2/6-31G*(0.25), B2PLYP-D3, LC-BOP-LRD and VV10,

as well as the less demanding PBE0-dDsC. In contrast, these approaches give results greatly ex-

ceeding chemical accuracy for the Orel26rad test set, with the exception of MP2/6-31G*(0.25),

which clearly outperforms all other tested schemes. Achieving interplay between reducing

charge delocalization and accounting for dispersion interactions in π-dimer radical cations is

highly challenging for density functional approximations. For equilibrium geometries, M06-2X

and ωB97X-D best reproduce the binding energies of the charged radical complexes (MAD of

1.1 and 1.4 kcal mol-1, respectively). The inclusion of long-range corrected exchange requires

explicit treatment of dispersion interactions yet, with the exception of ωB97X-D, the perfor-
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mance of the LC- family of functionals is disappointing due to the systematic underestimation

of the binding energy. The advantage of the long-range corrected exchange is nevertheless

significant, particularly when energy profiles are considered. The correct dissociation behav-

ior of a dimer into one charged and one neutral monomer is achieved only with functionals

possessing the correct form in the asymptotic region. In addition, the underestimation of

interaction energies at the equilibrium distance can be compensated by the basis set superpo-

sition error when using small, more practical basis sets.

Overall, the dilemma between reproducing absolute binding energies, relative energy trends,

and dissociation behavior indicates that MP2/6-31G*(0.25) is the best approximation. When

dealing with “real-world” applications involving larger systems, our findings indicate that the

use of dispersion corrected long-range “exact” exchange functionals together with a small

double-zeta basis set (e.g., LC-ωPBEB95-dDsC/6-31G*) represent the most cost-effective and

promising alternative. The challenging Orel26rad database can function as a valuable test set

to develop or validate improved schemes.
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10 General Conclusions and Outlook

Density functional approximations promise high accuracy at low computational cost for

the description of the electronic structure of extended systems. However, the neglect of

long-range dispersion limits the reliability of standard methods. To extend the scope of

approximations to Kohn-Sham density functional theory, this thesis has introduced original

descriptions of dispersion interactions. These prevalent attractive forces govern myriad of

chemical phenomena such as the π−π stacking in DNA, the existence of condensed phases of

non-polar molecules and the stability of self-assembled materials in organic electronics. The

comprehensive analysis of challenging test cases, including alkane chemistry, charge-transfer

complexes and radical cationic π-dimers, illustrates the importance of dispersion both for

achieving quantitative agreement with highly accurate values and for identifying the key

factors at the origin of the errors of standard functional approximations.

The first objective of this thesis was to achieve good accuracy for inter- and intramolecular

dispersion interactions. The proposed “classical” dD10 correction incorporates higher-order

terms in the multipole-expansion (i.e., C8/R8 and C10/R10) along with the physically motivated

Tang and Toennies damping function that is modified at covalent bond distances to minimize

double counting effects. The combination of nonempirical density functional approximations,

e.g., PBE, with dD10 leads to excellent results simultaneously for difficult reactions involving

hydrocarbons and for typical weak intermolecular complexes.

The subsequent dDXDM correction depends on the density and is applicable to all the ele-

ments of the Periodic Table. The nonempirical dispersion coefficients are computed based on

Becke and Johnson’s exchange hole dipole moment (XDM) formalism. The iterative Hirshfeld

scheme provides an accurate estimate of the (intramolecular) polarization, and achieves a

realistic distribution of the dispersion coefficients among the atoms. Hirshfeld atomic overlaps

and charges serve to identify the overlapping regions in the extended Tang and Toennies damp-

ing function. Density functionals augmented by the dispersion energy correction outperform

standard approaches (e.g., M06-2X) for hydrocarbon chemistry and largely decrease the errors

of the parent functionals for both inter- and intramolecular interactions.

Chapter 6 introduced a semi-empirical GGA-like formalism, which reduces considerably
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the complexity of the exchange hole dipole moment that is used to model the dispersion

coefficients. The developed dispersion correction based on the reformulated XDM requires

less computational effort than the original XDM formalism of Becke and Johnson. We also

propose to replace the spatial partition functions involving overlapping atoms by a set of

disjoint Hirshfeld-dominant atoms to address the conceptual discrepancy between multipole

expansion and the overlapping atoms in molecules used in most schemes.

The final density-dependent dispersion correction, dDsC, arises from the use of the simplified

dispersion coefficients and the disjoint atomic partitioning. Only the leading term (C6) is

sufficient to provide high accuracy, because the flexible, extended Tang and Toennies damping

function mimicks the effect of higher-order dispersion coefficients conveniently by increasing

the value of the empirical parameter that adapts the dispersion correction to the given density

functional approximation. In line with the preceding variants, hydrocarbon chemistry, includ-

ing Diels-Alder reactions, benefits dramatically from the improved treatment of intramolecular

dispersion without deteriorating the description of weak intermolecular interactions. The

robust performance of dDsC is demonstrated through the comprehensive benchmarking of

340 diverse reaction energies featuring illustrative chemical problems ranging from heavy

atom hydride weak interactions to ligand dissociation energies of Grubbs’ first and second

generation catalysts. In addition, optimized geometries of molecules containing nonbonded

contacts in close proximity, e.g., [2.2]-paracyclophane, are in good agreement with experiment.

The success of DFT-dDsC is already demonstrated through its broad applications, which

include the modeling of oxygen reductions by an organic electron donor, the splitting of water

by metallocenes, as well as the design of molecular receptors. Furthermore, we have imple-

mented dDsC in three mainstream quantum chemistry programs, i.e., ADF, GAMESS-US and

Q-Chem and the dispersion correction is therefore available to the computational community.

The devised schemes serve as a primary tool to tackle a second aspect of this thesis that is the

identification of the key factors responsible for errors of standard density functional approxi-

mations. Seemingly simple hydrocarbon reaction energies are representative examples for

which semilocal (hybrid) density functionals fail. These “intramolecular errors” associated

with the increasing branching in alkanes correlate strongly with the error in the interaction

energy of the compressed methane dimer. We demonstrate that the overly repulsive semilocal

DFT exchange is partially responsible for the severe underestimation of branching interactions.

As a result, the substitution of long-range GGA exchange by the less repulsive “exact” exchange

represents a reasonable refinement. Most of the remaining error arises from the missing

long-range dispersion interactions. Carefully designed dispersion corrections overcome both

flaws: they include dispersion interactions in the long-range, while at short distances, the

appropriate damping function reduces the over-repulsiveness of the parent functional. All

our dispersion corrections lead to an impressive improvement for these hydrocarbon reaction

energies.

The last two chapters focus on the interaction energies of charge-transfer (CT) complexes

and radical cationic π-dimers, which are both highly challenging for density functional ap-

proximations. The performance of density functional approximations is governed by the
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interplay between the delocalization error and the neglect of dispersion. We demonstrate that

the physical origin of the stabilization of charge-transfer complexes is dominated by disper-

sion interactions, while the relative orientations and intermolecular distances are dictated

by electrostatics and charge-transfer. Thus, dispersion corrections are crucial for providing

an accurate description of CT-complexes. In addition, a relatively high fraction of “exact”

exchange is necessary to prevent the overestimation of charge transfer and avoid spurious

dissociation into fractionally charged monomers. Indeed, few well-balanced functionals pro-

vide reliable results. Our novel database modeling charge-carrier states of organic electronics

reveals then that the interactions withinπ-dimer radical cations are even more subtle than that

of charge-transfer complexes: the inclusion of long-range “exact” exchange is mandatory to

achieve a qualitatively correct dissociation behavior, yet the treatment of dispersion needs to

be incorporated at all ranges. Unfortunately, long-range corrected exchange functionals tend

to underestimate the interaction energies at the equilibrium distance even after correction for

dispersion. The most valuable and cost-effective option involves the combination of dDsC

with a long-range corrected exchange functional and a small basis set.

In summary, the atom pairwise dispersion corrections developed within this thesis are pow-

erful methods to systematically enhance the performance of standard density functional

approximations and elucidate the source of their failures. In particular, we are confident that

the latest density-dependent scheme, dDsC, which offers a highly robust performance, will

continue to deliver reliable energies and geometries when used to address myriad chemical

questions. Despite this bright perspective, open questions remain:

• How could the “optimal” density functional to pair with the dispersion correction be

designed?

In comparison with standard parameterizations, a specifically devised functional would

have the advantage of exploiting the density information twice: once for the dispersion

correction and once for the improved description of all other exchange and correlation

effects. Such a functional could lead to an improved treatment of transition states, spin

state splittings and other issues related to near-degeneracies that are tricky for standard

approximations. The disadvantage is the lack of a clear-cut physical distinction between

“overlap dispersion”, captured by empirical functionals (e.g., M06-2X) and the strongly

damped regions of the dispersion corrections. Thus, such a method is necessarily

empirical and requires a careful design and fitting procedure to cope with the linear

dependencies in the parameter space.

• Do current formulations capture subtle dispersion energy enhancements in low band-gap

molecular systems?

The second order formula predicts increased dispersion interactions for systems with

low-lying excited states characteristic for delocalized electrons, e.g., charge-transfer

complexes. However, current density-dependent dispersion corrections depend mostly

on local ground state information. It is therefore not obvious how do these schemes

respond to the presence of remarkably low-lying excited states. The analysis is certainly

feasible at large intermolecular distances, yet the most interesting regions are close to
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equilibrium, where complications stem from the approximated density functional, the

empirical form of the damping function and the accuracy of the dispersion coefficients.

• How important are beyond dDsC dispersion effects for general thermochemistry?

Firstly, dDsC provides an isotropic long-range dispersion energy, while anisotropy

should be included in general. However, the short-range anisotropy is assumed to

be more important and might be captured by a combination of the damping function

and the density functional performance. Detailed studies are necessary to clarify these

points. Secondly, since dDsC approximates the second order dispersion energy, it suffers

from the same shortcoming as most other schemes: pairwise additivity, meaning that

many-body effects (including long-range screening interactions) are missing in the

formalism. Many-body effects becomes more important with increasing system size

and might therefore become the accuracy limiting factor for large molecular assemblies

and condensed phases.

• How are the dispersion corrections adapted to (low-lying) excited states?

Compared to ground state molecules, two competing physical effects are expected:

excited states are assumed to have higher polarizabilities than ground states, but at

the same time negative contributions to dispersion are predicted. The importance of

the negative terms is not yet fully established. However, all current density-dependent

dispersion corrections are probably unable to capture the fundamental difference in

the physics of dispersion interactions between ground- and excited states. Furthermore,

not all excited states are equally well described by standard time-dependent DFT. Hence,

for a typical photo-chemical processes one might wonder, which error will dominate:

the intrinsic errors of TD-DFT, the neglect of dispersion or the application of a disper-

sion correction missing the proper physics of excited states? Excited states promise a

fascinating diversity of challenges.

Preconceptions about the “negligibly weak” van der Waals interactions need to be revised:

dispersion is vital for (metal-)organic chemistry and has to be explicitly accounted for within

density functional approximations. The development of post-HF techniques based on local-

ized orbitals or the divide and conquer philosophy is promising for treating large molecular

systems at systematic ab initio levels. However, even efficient post-HF methods are no substi-

tute for density functional approximations: DFT will be applied to even larger systems and,

concomitantly, the dispersion corrections will continue to gain in pertinence.
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Glossary

AIM Atom in a molecule.

B2PLYP Double hybrid density functional with 53% “exact” exchange and 27% MBPT2 corre-

lation163.

B3LYP Becke-3-Parameter-Lee-Yang-Parr correlation161,162 hybrid functional (20% “exact”

exchange).

B97 Becke’s highly empirical hybrid-GGA exchange-correlation functional containing 19.43%

“exact” exchange 209.

B97-D GGA functional by Grimme, 39 fitted together with an empirical dispersion correction.

BHHLYP 50% “exact” exchange, 50% Becke 1988 exchange and Lee-Yang-Parr correlation333

hybrid functional.

BJ Becke and Johnson.

BLW Block localized wave function513,514.

BLYP Becke 1988 exchange 154 and Lee-Yang-Parr correlation155 GGA functional.

BP86 Becke 1988 exchange 154 and Perdew 1986 correlation 151,332 GGA functional.

BSE Bond separation equation 82,83: All bonds between heavy (non-hydrogen) atoms are split

into their simplest molecular fragments preserving the heavy atom bond types. Reac-

tions are balanced by inclusion of the necessary number of simple hydrides (methane,

ammonia, water, etc.).

BSSE Basis set superposition error.

CAMB3LYP Long-range corrected functional including a fraction of “global” exchange, fitted

in the B3LYP spirit400.

CBS Complete basis set limit.

CCSD(T) Coupled cluster including single, double and perturbative triple excitation.
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Glossary

CSD Cambridge structural database.

CT Charge-transfer.

DCACP Dispersion corrected atom centered potentials.

DFT Density functional theory.

DFT-D Density functional theory augmented by an atom pairwise dispersion correction.

DNA Deoxyribonucleic acid.

EDA Energy decomposition analysis.

“exact” exchange Non-local exchange, computed according to the formula used in Hartree-

Fock theory. The exchange is exact for a non-interacting (Kohn-Sham) system.

GGA Generalized gradient approximation.

HC classical Hirshfeld method for atoms in a molecule.

HCD classical Hirshfeld dominant method for atoms in a molecule: The classical Hirshfeld

weights are analyzed at each grid point and the weight of the “dominant” atom is set to

1.00 and all others to zero.

HF the electronic structure method Hartree-Fock or the substance hydrogen fluoride.

HI iterative Hirshfeld method for atoms in a molecule.

HOMO Highest occupied molecular orbital.

HSE06 Screened “exact” exchange functional from Heyd, Scuseria and Ernzerhof397,398; de-

signed for solids.

KS-DFT Kohn-Sham density functional theory 11.

LC Long-range corrected exchange functional.

LC-BLYP Long-range corrected Becke 1988 exchange paired with Lee-Yang-Parr correla-

tion392.

LC-BOP Long-range corrected Becke 1988 exchange paired with Hirao’s one-parameter pro-

gressive correlation functional 154,407,457.

LC-ωPBE Long-range corrected Perdew-Burke-Ernzerhof exchange and correlation based on

a flexible exchange hole model, 393,394 also known als LC-ωPBE08.

LC-ωPBEB95 Long-range corrected Perdew-Burke-Ernzerhof exchange based on a flexible ex-

change hole model, 393,394 paired with Becke’s 1995 meta-GGA correlation functional 185.
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Glossary

LC-ωPBEh Like LC-ωPBE, but 20% of global “exact” exchange is included394.

LC-ωPBELYP Long-range corrected Perdew-Burke-Ernzerhof exchange based on a flexible

exchange hole model, 393,394 paired with Lee-Yang-Parr correlation155.

LDA Local density approximation.

LMP2 MP2 based on localized orbitals.

LRD Local response formalism for dispersion developed by Sato and Nakai 45,46.

LSDA Local spin density approximation.

LUMO Lowest unoccupied molecular orbital.

M06-2X Highly empirical “Minnesota” meta-GGA hybrid functional including 54% “exact”

exchange 214.

MAD Mean absolute deviation.

MARD Mean absolute relative deviation.

MBPT2 Many-body second order perturbation theory.

MCY2 One electron self-interaction free functional from Mori-Sanchez, Cohen and Yang 186.

MCY3 Long-range corrected functional in the spirit of MCY2, but reducing the delocalization

error 189.

MP2 Second order Møller Plesset perturbation theory.

NBO Natural bond orbitals505.

PBE Perdew-Burke-Ernzerhof GGA exchange and correlation functional 156 GGA functional.

PBE0 25% “exact” exchange, Perdew-Burke-Ernzerhof exchange and correlation156,217,280

hybrid functional.

PT2 Second order perturbation theory.

PW6B95 hybrid meta-GGA functional containing 28% “exact” exchange developed by Zhao

and Truhlar 456.

rCAMB3LYP Long-range corrected functional including a fraction of “global” exchange, fitted

to minimize the delocalization error 189.

revPBE revised PBE functional to reproduce Hartree-Fock atomic exchange-energies402.

rPW86 Non-empirical, refitted 396 Perdew 1986 GGA exchange 151.
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Glossary

SAPT Symmetry adapted perturbation theory 93.

SAPT(DFT) Symmetry adapted perturbation theory based on monomers described by DFT,

the acronym DFT-SAPT is also used.

SCS Spin-component scaled (e.g., SCS-MP2) 118.

SIC Self-interaction correction.

SIE Self-interaction error.

SOMO Singly occupied molecular orbital.

SVWN5 Local density approximation with Slater (=Dirac) exchange 130,131 and the Vosko-Wilk-

Nusair parametrization of the correlation energy 149.

TCNQ Tetracyanoquinodimethane.

TPSS Nonempirical meta-GGA exchange-correlation Tao-Perdew-Staroverov-Scuseria func-

tional 158.

TT Tang and Toennies.

TTF Tetrathiafulvalene.

vdW van der Waals or dispersion interactions.

vdW-DF04 Fully non-local van der Waals density functional from Langreth’s group141.

vdW-DF10 Reparametrized version of the vdW-DF04 fully non-local van der Waals density

functional 53.

vdW-TS Tkatchenko-Scheffler van der Waals correction44.

VV09 Fully non-local van der Waals density functional from Vydrov and van Voorhis 47.

VV10 Simplified, fully non-local van der Waals density functional from Vydrov and van

Voorhis 48.

XDM Exchange hole dipole moment, exploited for a dispersion correction by Becke and

Johnson76–80,187,328.
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