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Abstract
The development of atomic force microscopy (AFM) has enabled a major breakthrough in

the study of individual biological objects, such as nucleic acids, proteins and protein com-

plexes. More recently the use of AFM to investigate eukaryotic cells has been explored. In

one approach, the AFM probe can be used as a needle that delivers material into a single

living cell while the AFM microscope controls precisely the interactions between the probe

and the biological sample. The work presented here was dedicated to the development of

a microinjection system for single cells based on atomic force microscopy. Demonstration

experiments of liquid delivery into cells were also performed in order to characterize the

system, its potential and its limits. As the injection of liquid into a cell requires the insertion of

the tip into a cell, a detailed study of AFM probe-cell interactions was carried out.

In the introduction microinjection into adherent cells, its applications and limitations are

described. The main limitation of this method is lack of control over the cell penetration.

Since atomic force microscope (AFM) offers this possibility, a novel microinjection tool for

liquid delivery into single adherent cells based on the AFM is proposed in this work.

A case study examines the specifications of an AFM-based microinjection system, such as

control of delivered volume and control of AFM-probe cell interactions. Given the specifica-

tions, a detail design of the system is proposed with an AFM probe with microfluidic channels

(NADIS) as a core component.

In next two chapters, the fabrication and characterization of the system is presented including

the flow of liquids through the NADIS probes. Some limitations of the system are discussed

together with possible approaches to improvement.

Further, an in depth analysis of cell indentation is undertaken. Aspects such as determination

of tip insertion and factors influencing the probability of cell membrane penetration by

an AFM tip are discussed. Cell membrane rupture with an AFM probe is described with a

simple mechanical model. Biophysical analysis of the tip insertion is presented followed by

development of a five parameter analysis of force-separation curves. In addition the effect of

tip penetration on cell viability is addressed.

Finally, the AFM-based microinjection system is used to deliver liquids into individual adher-

ent cells. Microinjection into the cytoplasm, but not into the nucleus is demonstrated. The

experiments study possible system leakage, clogging of the tip opening with cell residues and

injection parameters. Finally the probe-cell interactions during the injections are analysed.

Keywords: microinjection, atomic force microscopy, Nanoscale Dispensing Probes, adherent

cells
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Résumé
Le développement de la microscopie à force atomique (AFM pour atomic force microscope) a

permis une avancée majeure dans l’étude d’entités biologiques individuelles, telles que les

acides nucléiques ou les protéines et leurs complexes. Plus récemment, des études ont exploré

l’aptitude des techniques AFM à analyser des cellules eucaryotes. Dans une des approches, la

sonde de l’AFM est utilisée comme aiguille permettant de délivrer une substance à l’intérieur

d’une cellule individuelle vivante, l’interaction entre la sonde et la cellule étant contrôlée de

manière précise par l’AFM.

Le travail présenté ici est consacré au développement d’un système de micro-injection pour

des cellules individuelles, basé sur le principe de l’AFM. Des expériences démontrant la

libération de substances à l’intérieur de cellules ont été réalisées dans le but de caractériser

le système, ainsi que son potentiel et ses limites. L’injection intracellulaire nécessitant une

pénétration de la sonde AFM dans la cellule, une étude approfondie de l’interaction sonde-

cellule a été effectuée.

L’introduction décrit la méthode de la microinjection dans des cellules, les applications et les

limites. La limitation principale de cette méthode est l’absence de contrôle sur la pénétration

de la cellule. Puisque la microscopie à force atomique (AFM) offre cette possibilité elle a été

proposée comme alternative. Pour cela un nouvel outil de microinjection pour la libération de

substances à l’intérieur de cellules individuelles basé sur l’AFM est développé dans le cadre de

cette thèse.

Une étude de cas examine les spécifications d’un système de micro-injection basé sur un

AFM, telles que le contrôle du volume délivré et le contrôle de l’interaction sonde-cellule.

Une conception détaillée d’un système tenant compte des spécifications est présentée, dont

la composante principale est une sonde AFM pourvue de canaux microfluidiques (sonde

NADIS). Les deux chapitres suivants décrivent la fabrication et la caractérisation du système, y

compris du flux de liquide passant par la sonde NADIS. Quelques limitations du système sont

discutées conjointement avec les améliorations possibles.

Ensuite, une analyse approfondie de l’indentation cellulaire est entreprise. Des aspects tels

que la détermination de l’insertion de la sonde et des facteurs influençant la probabilité d’une

pénétration de la membrane cellulaire sont discutés. La rupture de la membrane cellulaire par

la sonde AFM est décrite à l’aide d’un modèle mécanique simple. Une analyse biophysique

de l’insertion de la pointe est présentée, ainsi qu’une analyse des courbes force-séparation

à l’aide de cinq paramètres. De plus, l’effet de la pénétration de la sonde sur la viabilité des

cellules est abordé.
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Finalement, le système de micro-injection basé sur un AFM est utilisé pour libérer des sub-

stances dans des cellules adhérentes individuelles. La micro-injection dans le cytoplasme,

mais non pas dans le noyau, est démontrée. Les expériences analysent les fuites possibles

dans le système, l’obstruction de l’ouverture située à la pointe de la sonde par des résidus

cellulaires et les paramètres de micro-injection. Finalement, les interactions sonde-cellule

durant la micro-injection sont analysées.

Mots-clés : microinjection, microscopie à force atomique, Nanoscale Dispensing Probes, celles

adhérentes
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1 Introduction

1.1 Microinjection into single adherent cells

Microinjection is a method in which a fine tipped needle is inserted inside a cell to deliver a

clearly defined amount of a substance. The substance is injected into the desired sub-cellular,

cellular, or intercellular compartment upon a pressure pulse. Once the substance is injected

the needle is removed from the cell. The movement of the needle during the entire process is

controlled by micromanipulators and visually observed with a specialized microscope. The

substance can be delivered into suspended and adherent cells. The suspended cells grow

loosely in the medium. To inject liquid into a single suspended cell, the cell has to be held by a

capillary on one side so the needle can penetrate the cell and inject the substance into it from

the other side (Figure 1.1 a)). The adherent cells grow on the bottom of a culture dish. The

microinjection needle is penetrating a single adherent cell from above to deliver the substance

(Figure 1.1 b)).

Figure 1.1: Microinjection a) into a suspended cell (source: cctrdev.uams.edu) and b) into an
adherent cell (source: www.visiualphotos.com)

1.2 Components of a microinjection system

Every microinjection system consists of a standard set of components [1, 2]: a micropipette

needle used to penetrate the cell and deliver the substances into it; a micromanipulator used
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Chapter 1. Introduction

for precise positioning of the micropipette needle; an inverted microscope equipped with

phase-contrast for visualization of target cells and coordination of positioning and a vibration

isolation tabletop to decrease vibrations of the fine tipped needle. The micropipette needles

are fabricated from glass capillary tubing with micropipette pullers. The most common

material of glass capillary tubing is borosilicate glass due its excellent strength1. A fabricated

micropipette needle consists of four parts: the tip, the shank, the shoulder, and the shaft. The

shape of the needle and size of its opening depends on the pulling parameters. Standard inner

diameter of a needle opening varies from 0.2µm to 0.5µm. It is more common for a standard

user to fabricate its own needles than to buy it. Therefore on the market numerous types of

micropipette pullers are available, for example David Kopf Instruments, MicroData Instrument

or Energy Beam Sciences. There are also direct producers of micropipette needles, for example

Eppendorf. Figure 1.2 shows examples of Eppendorf micropipette needles. Figure 1.2a) shows

the entire micropipette needle held by a microloader, Figure 1.2b) shows a SEM image of the

needle tip of the type Femtotip® and creffig:1-2c) shows a SEM image of the needle tip of the

type Femtotip® II.

Figure 1.2: a)image of an Eppendorf micropipette needle held by a microloader; SEM images
of needle tips: b) the Femtotip®, and c) the Femtotip® II.

The micromanipulator controls the movement of the micropipette needle in 3 ways: horizon-

tal (x- and y-axis), vertical (z-axis) and tilt angle (t). For microinjection of adherent cells the

micropipette needle is held at an angle of 30°-60° to the microscope stage for cell penetra-

tion. There are standard micromanipulators available on the market produced by Eppendorf,

Narishige, Leiz, etc., and there are also research groups which have developed their own mi-

cromanipulators, like the MANiPEN [3, 4] and “Steady Hand” micromanipulator [5]. Figure 1.3

shows the MANiPEN micromanipulator.

Another crucial element is the microinjector. The microinjector is used to apply a pressure

pulse to the micropipette needle for substance ejection from its tip. There is a wide range

of analog and digital pressure microinjectors, where the ejected substance volume depends

on pressure, time, fluid viscosity and size of the tip opening. The microinjectors can deliver

volumes smaller than 10 nanoliters. There exist also positive–displacement and syringe–type

injectors on the market. However, their precision allows only to deliver volumes larger than

tens of nanoliters due to the thermal expansion of their components.

The inverted microscope is required to visualize the cells and coordinate the cell-needle posi-

tioning. The inverted microscope arrangement provides enough space for the micromanipu-
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1.3. Applications

Figure 1.3: MANiPEN micromanipulator [3].

lator with the micropipette needle. Since the cells are optically transparent, the microscope

has to be equipped with phase contrast, or differential interface contrast (DIC). The micro-

scope can be additionally equipped with a mercury lamp to combine the microinjection with

fluorescent observations. Figure 1.4 shows an example of a microinjection system.

The vibration isolation tabletop is required to assure vibration-free conditions during the

microinjection. The tabletops are commercially available products.

1.3 Applications

Microinjection into single adherent cells plays an important role in research field like drug

discovery [6–9] toxicology [10–13] and biology [14–17]. In drug discovery microinjection is

used to study and produce recombinant human and animal cell lines. In toxicology injection

of foreign substances (nanoparticles [10] or molecules [11–13]) into cells is used to study

toxicity mechanisms. In biology the microinjection is used to study human cancer cells [18–

20], transport between nucleus and cytoplasm [21], to deliver RNA [22–25], proteins, peptides

and cDNAs [26]. Microinjection is also used for stem cell biology[17, 27, 28]. In most of these

research fields microinjection into adherent cells dominates comparing with the injection

into suspended cells.

1.4 Limitations of the microinjection systems for adherent cells

The microinjection technique allows to target specific cells in order to deliver any type of

material. However, this technique has two main disadvantages. It has been reported that the
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Chapter 1. Introduction

Figure 1.4: A microinjection system for injection into adherent cells: the Olympus micro-
scope with Eppendorf InjectMan NI 2 micromanipulator and FemtoJet microinjetor. (source:
www.biocompare.com)

success penetration rate of a cell with a micropipette needle can be as high as 100% [14, 29,

30], however the efficiency of successful substance delivery rate is not higher than 50%[4]. As

an explanation two main reasons were given: clogging of the needle tip and lack of control

of the needle-cell interactions. Since an atomic force microscope (AFM) allows to precisely

control the interactions between a cell and an AFM probe it has been proposed to develop

novel techniques for the delivery of substances into single adherent cells.

1.5 AFM-based delivery systems into single adherent cells

The development of atomic force microscopy (AFM) has been a major breakthrough in the

study of single biological objects, such as DNA [31, 32], bacteria [33, 34] and, in particular,

eukaryotic cells [35–37]. The main components of the AFM are a microfabricated probe with a

thin cantilever and a sharp tip on its end, a piezoelectric scanner and a system to measure the

interactions between the tip and the sample. The interactions are measured via deflection of

the cantilever due to attractive or repulsive forces acting on the tip. The cantilever deflection

is monitored by reflection of a laser beam from the cantilever to the photodiode. Figure 1.5

shows a basic schematic of an AFM microscope, placed on an inverted microscope with an

adherent cell as a sample.

When an AFM tip is brought into contact with a cell membrane, it can be scanned across the

cell surface to investigate the topography and structure of the cell [38, 39], or it can be pressed

into the cell, deforming it, and revealing the mechanical properties of the cell [40]. Pressing on

the cell with a high force can result in a cell penetration [41, 42].
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1.5. AFM-based delivery systems into single adherent cells

Figure 1.5: Schematic of a typical AFM set up for cell biology. (source: Roduit, C. "AFM figures"
2010, www.freesbi.ch, Creative Commons Attribution)

The possibility of controlled cell penetration being offered by the AFM has invited researchers

to explore this technique as a tool to delivery substances. The AFM also offers possibility of

more precise positioning of the tip in x-, y- and z–axis than the micromanipulator used in

standard microinjection systems. Also since the cell penetration with the AFM tip can be

better controlled less cell damage is expected to occur. Figure 1.6 shows comparison between

the micropipette needle and a standard AFM probe. Figure 1.6a) shows the penetration of a

primary neuronal cells using a micropipette needle [2], and Figure 1.6b) shows the penetration

of an HEK293 cell membrane using a standard AFM probe.

Figure 1.6: Optical images of a) a micropipette needle penetrating primary neuronal cells 2;
and b) a standard AFM probe penetrating HEK293 cell.

When in December 2003 the research group of professor Atsushi Ikai has shown than an AFM

tip can be inserted into a living cell to extract mRNA [43] it became clear that the AFM tip can
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be used as a tool for operations on single living adherent cells. One year later the group of

professor Jun Miyake has demonstrated first molecular delivery system using an AFM [44].

From then, many research groups have shown successful delivery of molecules into single

living cell [38, 45–49].

1.6 Delivery of biomolecules with AFM probes

The molecular delivery system using AFM developed by the group of professor Miyake [44]

consisted of a standard AFM microscope and a nanoneedle fabricated by the group. The

nanoneedle was a standard AFM probe with a pyramidal tip etched to a shape of a fine

long column (Figure 1.7a)). The AFM probe was further chemically treated to immobilize

fluorescent biomolecules on the surface of the nanonnedle. The nanoneedle was used to

penetrate single human cells. Confocal analysis of the cells has shown fluorescent signals,

which proofed the successfully delivery of the biomolecules.

Figure 1.7: a) shows an SEM image of a nanonnedle; b) confocal image showing a nanoneedle
(emitting green fluorescence) inserted inside a cell nucleus (the cell is emitting red fluores-
cence).

Further the same group has shown that the nanoneedle can penetrate not only the cell but also

its nucleus50 (Figure 1.7b)) and demonstrated highly efficient DNA delivery in human cells

[45, 50]. Recently, the nanoneedle was used to monitor drug effects in a single breast cancer

cell [51]. The nanoneedle was covered with an adsorbed responsive vector and delivered into

the cell. The responsiveness of the cell was evaluated using lipofection.

Cuerrier et al. [49] have demonstrated delivery of molecules into single human cells using

AFM probes decorated with plasmid DNA encoding for the fluorescent protein EGFP. This

result is interesting as it is demonstrating cell transfection using standard AFM probes with

pyramidal tips. Later on delivery of biomolecules into cells with standard AFM probes was

demonstrated by Ikai [38].

Delivery into single cells using AFM microscope was also demonstrated using a carbon nan-

otube attached to an AFM tip. The carbon nanotube was functionalized with quantum dots

and inserted into a human cell line [52].
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1.7. AFM probes with microfluidic systems

Several groups began to work on AFM systems allowing to deliver not only molecules, but also

liquids inside the cells [46, 47, 53]. Delivery of liquids into single cells is technologically more

challenging than delivery of ‘dry’ molecules that are attached to the AFM tip chemically or by

adhesion forces. Liquids, however, cannot be attach to the tip and require more sophisticated

carriers. In order to deliver liquids into cells AFM probes with integrated microfluidic systems

are being developed.

1.7 AFM probes with microfluidic systems

To deliver liquids inside single living cells attached to a culture dish and filled with culture

cell medium AFM probes have to have embedded microfluidic system. Such a system has to

have a built in reservoir and channels connected to the tip. In the literature, probes have been

already demonstrated: NanoFountain Probe [48, 53], NADIS Probe [47, 54, 55], and Bioprobe

[46].

The NanoFountain Probe is a probe with microfluidic channels and a “high volcano-like

dispensing tip integrated at the free end of the cantilever, which has an annular aperture

around a core AFM tip” [56]. The tip aperture is connected to the microchannels. Figure 1.8a)

shows a schematic drawing of the NanoFountain Pen and Figure 1.8b) shows a SEM image of

the tip.

Figure 1.8: a) shows a schematic of a NanoFountain Probe; b) shows a an SEM image of
the dispensing tip; c) shows schematic of nanodiamonds delivery into a single cell with the
NanoFountain Probe.

The NanoFountain Probe was used to demonstrate delivery of functionalized nanodiamonds

into single cells [53]. Figure 1.8c) shows a schematic drawing of the delivery. The sharp tip is

used to penetrate the cell membrane and to guide the nanoparticles into the cell.

The NADIS Probes, where NADIS stands for Nanoscale Dispensing, are AFM probes with

microfluidic channels connected to a tip. The tip has an aperture next to its apex for liquid

delivery. The sharp apex is used to penetrate the cell membrane and to insert the tip inside the

cell. Injection of liquid into single cells was demonstrated with these probes [47]. The injection

was obtained via hydrostatic pressure. Figure 1.9 shows SEM images of the NADIS probe.

Figure 1.9a) shows an image of the cantilever with a tip, Figure 1.9b) shows cross-section image

of the cantilever to shows the fluidic channels, Figure 1.9c) shows an AFM tip with an opening

for liquid delivery (side view), and Figure 1.9d) shows a detailed top view of the tip apex and

the tip opening positioned next to the apex.
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Figure 1.9: SEM images of a) NADIS cantilever with a tip; b) cross-section of the cantilever
with the microfluidic channels; c) a NADIS tip with an opening positioned next to the tip apex;
d) top detailed view on the tip apex and the opening.

The Bioprobe is an AFM probe with microfluidic channels connected to a pyramidal tip

with embedded hollow needle. It was reported in 2011 as a tool for operations on single

living cells, however up to now only penetrations of a cell membrane with the probe were

demonstrated [46]. Figure 1.10 a)–c) show schematics of the probe design and its fabrication

process. Figure 1.10 d) shows a SEM image of the fabricated tip with a sharp needle.

Figure 1.10: a)–c) show schematic of the probe design and its fabrication process, d) shows an
SEM image of the fabricated tip with embedded needle with a detail view on the tip [46].

Although liquid delivery into cells with most of these probes has been demonstrated, none of

these technologies are ready yet to challenge the position of standard microinjection using

micropipette needles. The AFM probes with integrated microfluidics are the core component

for liquid delivery into single cells. However, in order to control not only the cell penetration,

but also liquid delivery into cells, further development is required.

8
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1.8 Thesis objectives

The main objective of this thesis is to develop an AFM-based microinjection system for liquid

delivery into single adherent cells. The development will be based on the NADIS probe with

integrated microfluidic channels and a hollow tip.

In order to deliver liquid into a cell via the AFM tip, it is crucial to understand the complex

tip–cell interactions. These interactions will be studied via ‘force spectroscopy’.

Also the invasiveness of the tip insertion will be studied to verify possible cell damage. Finally,

the AFM–based microinjection system will be used to demonstrate intracellular injection.
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2 Materials and methods

In this chapter materials and experimental methods are detailed.

2.1 Fabrication of the apertures

Fabrication of the tip apertures in NADIS probes was performed using focused ion beam

milling (FIB).

FIB was used in a wide range of applications such as imaging [57] and deposition [58] but

its main application is localized milling of material with high precision [59, 60]. To create

apertures in the AFM tips, precise control of the volume of the material being removed at

precise location was required; hence the FIB milling was the method of choice.

The FIB milling was carried out with an FEI Nova 600 NanoLab - DualBeam system. The

DualBeam system consists of electron and gallium ion beams. The electron beam plays the

role of the SEM and allows image sampling with ultra-high resolution. The DualBeam system

allows one to operate the two beams at the same time. When the sample is being milled with

the ion beam, the process can be observed in real time with the SEM. The process takes place

in a high-vacuum environment. The critical point of making the system work correctly is to

set the sample to the eucentric point. The eucentric point is where the coincidence of the

beams with the stage tilt axis occurs. At this point, the place of interest on the sample remains

in focus and very little image displacement occurs, independently of how the sample is tilted

or rotated. To position the place of interest at the eucentric point, the working distance of

the electron beam (the eucentric height) has to be found. The milling process is the most

efficient when the ion beam is perpendicular to the place of interest-the angle of the incidence

θ = 0ř (the angle of the incidence is the angle between the surface normal of the AFM chip and

the ion beam). In this configuration the system with the sample is ready to work. Figure 2.1

illustrates the configuration for the NADIS chip inside the FIB system. The tip apex was placed

in the eucentric point. Figure 2.1 b) shows a micrograph of the tip seen with the ion beam and

Figure 2.1 c) shows a micrograph of the tip seen at the same time with the electron beam.
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Figure 2.1: Configuration of the system and the sample, the tip apex was placed in eucentric
point and the sample was tilted to 52° where the ion beam is perpendicular to the AFM tip a).
Micrographs on the right show how the tip in this configuration is seen by b) the ion beam
and c) the electron beam.

2.1.1 Interaction of the ion beam with the matter (specifications)

When the Ga+ ion beam hits the sample surface the interaction of the ions with the matter

can be chemical and physical in nature. The physical interactions are the result of a kinetic

momentum transfer of incident ions to a target substrate leading to a sputtering deposition. A

large momentum transfer triggers a collision cascade resulting in a removal of atoms situated

close to the surface. The kinetic energy transfer causes photon emission, which is responsible

for heating effects, and releases electrons. These secondary electrons are the ones used for

imaging. In addition to material removal side effects such as implantation, swelling and

re-deposition of sputtered material also occurs.

Important process parameters are ion energy, current and voltage, beam diameter, angle

of incidence and dwell time. In general the ion energy lies in the range from 10 to 100 keV

where sputtering takes place. A large removal rate can be obtained using a large current with,

consequently, a large beam diameter. Smaller beam diameters are used for imaging and larger

apertures are used for faster milling. Recommended current values for milling submicron

holes are 30 or 50 pA [61] and the acceleration voltage is 30 kV [61]. During the milling of the

sample the beam moves from one beam pixel to another. The distance between the beam

pixels is called the beam overlap. In order to ensure a uniform exposure of the milled area to

the ions, the beam overlap is usually set to 50 %. The dwell time is the time the beam spends

on a single pixel of the milled pattern. In the context of re-deposition the dwell time is a

crucial parameter for advanced structure quality. Longer dwell times lead to a deeper milling
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but at the same time cause larger re-deposition, thus its value depends on the compromise

between these two effects. A dwell time of 500 ns has been chosen to mill the tip apertures,

since shorter dwell time does not improve the quality and the FIB system becomes unstable at

dwell times shorter than approximately 200 ns. The angle of the incidence (θ) has an influence

on a sputtering yield of the ion beam and roughly increases with 1/cos(θ) [62]. Milling of the

tip apertures occurred always at 0°.

2.2 Development of parylene C mask for KOH etching

2.2.1 Substrates

To study adhesion properties of parylene C, the following substrates were used: 4 inch silicon

wafers (Silitronix France), silicon wafers with 250 nm thermally grown silicon dioxide and

silicon wafers coated with silicon dioxide and additional LPCVD deposited 100 nm nitride.

After the cleaning process 1 wafer per substrate type was diced to 1 cm×1 cm samples.

For testing parylene C mask on 3D structures Pyrex wafers with microfluidic channels were an-

odically bonded to structured silicon wafers with inlets. The microfluidic channels were 10µm

and 20µm wide and 1.2µm high. The length of the channels varied from 1.1µm to 1.6µm. The

inlets were etched through the entire thickness of the silicon wafer by KOH etching.

2.2.2 Substrate cleaning 1

The wafers were immersed 10 minutes in a solution of H2SO4 (96 %, 120 ◦C) followed by 1

minute in a BHF solution (1:7, 23 ◦C) and 10 minutes in a H NO3 solution 70 %, 116 ◦C). Finally

the samples were rinsed in DI water and dried in spin rinse dryer (SRD).

2.2.3 Chemical adhesion promotion

To promote adhesion of parylene C to the substrates -methacryl-oxy-propyl-trimethoxy-silane,

also known as the Silquest A-174® silane (ABCR GmbH&Co, Germany) was used. Silane

deposition was studied in liquid and gas phase. The samples silanized in the liquid phase

were left for 5 min in a solution of silane A-174 and water (ratio 1:10 ml). For the gas phase

silanization, the samples were placed in a custom made parallel plate vacuum chamber and

pumped down to a base pressure of 8×10−3 mbar . The surface activation was done using air

plasma (0.3 mbar, 50 watts during 15 minutes). The chamber was then returned to the base

pressure before closing the pump valve and introducing the silane A-174 up to a pressure of

2×10−2 mbar. Finally, the silane was left to condense on the samples for 60 minutes. Static

and dynamic contact angle measurements were used to optimize the deposition parameters.

The contact angle of water was measured at (100±8)° for the gas silanization and (115±6)°

1The substrate cleaning was done by group of Dr Philippe Niedermann at CSEM SA (Switzerland)

13



Chapter 2. Materials and methods

for the liquid phase silanization on all substrates. The cleaning procedure consisting of a

sonication for 10 min in hexane and rinsing with Milli®–Q water had no effect on the contact

angle.

2.2.4 Parylene deposition 2

The Parylene deposition took place in a COMELEC model 1010 deposition chamber using

the conventional LPCVD process. 10 grams of dichloro[2.2]-paracyclophane dimer (Galxyl

C purchased from Galentis Srl, Italy) yielded layers of 5 microns (±10%) of Parylene C on the

samples. It was verified and confirmed on dummy samples using a Dektak profilometer.

2.3 Thermal treatment

Samples dedicated to test influence of thermal treatment on parylene adhesion were placed

in an oven, under a nitrogen atmosphere at atmospheric pressure. The oven was heated

10 ◦C min−1 from room temperature up to 350 ◦C. This temperature was kept for 2h before

cooling down the oven at a rate of 5 ◦C min−1 down to room temperature.

2.3.1 Potassium Hydroxide (KOH) Exposure 3

The samples were immersed in a 40 % solution of KOH (Potassium hydroxide) at 60 ◦C for 5 or

25 hours. The etching rate was approximately 16µm h−1 on a 110 orientated Si wafer.

2.3.2 Scratch test

The adhesion of the Parylene layers was assessed using a scratch test equipment REVETEST®

from CSM Instruments S.A (Switzerland), controlled by the proprietary Scratch software. The

measurement principle consists in a stylus with a diamond tip of spherical shape and diameter

of 200µm that is put in contact with a surface. An increasing load is applied on the stylus as

it is dragged across the sample. The instrument measures the acoustic signal made by the

stylus scratching the layer. A layer breaking is characterized by a large noise that indicates

the rupture load. A visual inspection kit enables to check the accuracy of the information

recorded by the acoustic signal and it enables to visualize the shape of the imprint left by the

stylus. Even though this kind of instrument is normally used to characterize the adhesion of

hard thin films on a softer substrate, it enabled to compare the adhesion of the treated and

non-treated Parylene layer on our samples. Prior to the measurements, the samples were fixed

with in a substrate holder with acrylate glue. The measurement length was set to 5 mm with

a load of 30 N cm−1. The measurements were recorded using the proprietary software and 3

2The parylene deposition, thermal treatment and scratch test were done by group of Prof. Herber Keppner at
HE-ARC (Switzerland)

3The KOH exposure was done by Dr Fabio Jutzi and Dr Dara Bayat from EPFL (Switzerland)
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pictures (start of the imprint, rapture point and end point) were taken for each sample.

2.3.3 XRD measurements 4

The XRD measurements were used to understand the influence of carried different treatment

conditions on crystalline properties of the parylene. The X-Ray Diffraction data were measured

in reflection mode on a X’pert pro PAN’alytical diffractometer (MRD) using CuKα radiation.

The data was collected first in the ω/2θ mode and secondly in the range 2θ(ω= 1° range of 5°

to 40° (step size 0.02°, 1s/step). The crystallite size were calculated using the Scherrer equation

and the contribution of the peak width from the instrument was taken into account (Si sample

was used).

2.3.4 The AFM imaging

The AFM measurements were performed in tapping mode on a 3100 Dimension microscope

(Digital Instruments, Santa Barbara, CA). Silicon tips (Tap 150-AL-G from Budget Sensors, USA)

with a radius less than 10 nm, spring constant of 5 N m−1 and resonance frequency of 150 kHz

were used. The samples were cleaned with N2 nitrogen gun directly before the measurements.

2.4 Instrumentation

2.4.1 Atomic force microscope (AFM)

The AFM based microinjection system was built based on a Nanowizard® II BioAFM (JPK

Instruments, Germany) mounted on an Axiovert 200 inverted optical microscope (Carl Zeiss,

Germany). Figure 2.2 shows pictures of the setup. Additionally a CellHesion® module (JPK

Instruments, Germany) was used to expend the travel range of the AFM microscope in the z-

axis to 100µm. The module has a precise sample lift mechanism integrated into the AFM stage.

To the setup a fully compatible Petri dish heater was used (PetriDish Heater, JPK Instruments,

Germany) to maintain the cells at the temperature of 37 ◦C.

2.4.2 Pressure generator

To apply pressure pulses into the NADIS probes PM 8000 Programable 8-Channel Pressure

Injector (MicroData Instrument, Inc., USA) was used. It is a standard device used in microin-

jection.

4The XRD measurements were done by group of Dr Antonia Neels, CSEM SA (Switzerland)
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Figure 2.2: Picture of a) the setup: the Nanowizard® II BioAFM and Cell Hesion® module
mounted on the Axiovert 200 inverted optical microscope; b) the stand alone Nanowizard® II
BioAFM and Cell Hesion® module; c) the PetriDish heater.

2.4.3 Flow measurements system

To experimentally determine the hydraulic resistance of the AFM-based microinjection system

a measurement system was designed, where for a given applied pressure ∆P the flow of liquid

Q through the NADIS probe was assessed. The system consisted of an optically transparent

glass tube connected at one end to the pressure generator and on the other hand to the NADIS

probe. Knowing that the flow of liquid being ejected through the opening in the NADIS probe

is the same as the liquid flow in the glass tube, the flow through the tube was measured.

Knowing that for a given applied pressure ∆P , the liquid in the tube of a known radius a has

been displaced for a length ∆L in the time ∆t , the liquid flow through the opening in the

NADIS probe was calculated as:

Q = πa2∆L

∆t
(2.1)

where, πa2∆L is a volume of liquid ejected through the opening in the NADIS probe.
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Figure 2.3: Optical images of a tube filled with liquid (marked as black) taken at a) time t1
and b) time t2 for a given applied pressure. The liquid displacement ∆L over time ∆t was
measured with a reference grid.

2.5 Substrates for biological experiments

For biological experiments three types of substrates were used: Petri Dish made of polystyrene

(35mm), glass coated with fibronectin and glass patterned with PLL–g-PEG/fibronectin. The

last two types were commercially available CYTOOchip™samples (CYTOO SA, France). The

CYTOOchip™is a 2µm×2µm 170µm thick gridded coverslip with micropattern arrays and

a large area homogeneously covered with fibronectin. The micropattern of the fibronectin

had a disc shape of a diameter of 45µm; the pitch between the discs was 130µm. The entire

surrounding surface was PLL-g-PEG, a surface chemistry which discourages cell spreading.

A single CYTOOchipTM was divided into 4 samples. Samples containing homogeneously cov-

ered with fibronectin area were used as glass coated with fibronectin substrates and samples
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containing the micropattern arrays were used as glass patterned with PLL–g-PEG/fibronectin

substrates.

2.6 Cell culture 5

The human osteosarcoma cell line (SaOs-2) was obtained from American Type Culture Collec-

tion (Manassas, VA, USA) and maintained in culture in McCoy’s 5A medium supplemented

with 10% heat-inactivated standardized foetal bovine serum (Biochrom AG, Germany)), 1%

L-glutamine and 50 mL−1 of penicillin, 50µg mL−1 of streptomycin at 37 ◦C in humidified 5%

CO2 atmosphere.

2.6.1 Cell seeding on Petri dish substrates

A cell suspension of 105 SaOs-2 cells was seeded on Petri dishes and cultured for 24 hours

on complete medium. Experiments with the samples were performed in regular medium

supplemented with 25 mmol HEPES.

2.6.2 Cell seeding on CYTOOchip™

The CYTOOchip™was attached the to the bottom of the petri dish. 120,000 cells were added

to the top of the CYTOOchip™and left to settle under the laminar flow hood for 10 minutes

before transferring to a 37 ◦C incubator for 40 minutes. The CYTOOchip™was then rinsed

with PBS three times to remove any unattached cells and then left in the incubator for 3 hours

before using.

A 25mM EDTA in cell culture media solution was used for experiments with EDTA.

2.6.3 Cell staining

Cells have been fixed with 4% formaldehyde after 3 hours of culture. Then incubated in PBS-

glycine 0.1 M to permeabilize the cell membrane, and in blocking buffer to block nonspecific

sites. Alexa Fluor 488 Phalloidin (Molecular probes) was used to label F-actin while DAPI

(4’,6-diamidino-2-phenylindole) was used to label the cell nuclei.

2.6.4 Confocal analysis

All confocal measurements were done with Leica Confocal Microscope (Leica Microsystems,

Germany). Measurements of cell height, nucleus height and nucleus–membrane distances

were done as follows: from the top of the cell we take a stack of images in z–direction, step

5The cell culture was prepared by Ms. Marta Giazzon, Ms. Nadège Matthey and Mr. Sher Ahmed from CSEM
SA (Switzerland)
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500 nm. The entire cell thickness has been calculated on the basis of the number of sections

necessary to image completely the cell. The distance sub-membrane nucleus has been calcu-

lated by analysing the number of sections with actin before to have the nucleus appearing.

The nucleus height was calculated making the sum of the sections where DAPI signal was

present.

2.6.5 Cell death analysis

To measure cell survival rate a LIVE/DEAD kit (Sigma Alrdrich) was used. The LIVE/DEAD kit

contained two components. The first component is Calcein-AM. This is a highly lipophilic and

cell membrane permeable. Although CAM is not a fluorescent molecule, when it enters viable

cells it emits a strong green fluorescent signal. The second component is propidium iodide.

This is a nuclear stain which cannot pass through viable cell membranes. It passed through

the dead cell’s membranes and intercalates with the DNA in the nucleus to emit a strong red

fluorescence. After applying the kit to the cells, the cells were viewed by confocal microscopy.

2.6.6 Cell fixation

Cell fixation was used to investigate cells spread on substrates coated with Parylene. Samples

were rinsed with PBS. The cell fixation was done in a solution of 2.5% glutaraldehyde in 0.2

M cacodylate buffer, pH 7.4, overnight. Afterwards, the cells were dehydrated in a series of

ethanol/water mixtures: 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, ethanol (5 min

each), followed by air drying. Once the samples were ready, the substrates were coated with

20 nm Au layer and investigated with a XL-30 ESEM (Royal Philips, Netherlands) scanning

electron microscope.

2.7 AFM probes

For the force spectroscopy experiments two types of AFM probes were used. The first type was

commercially available silicon probes (Tap150–G, Budget Sensors, Bulgaria) with a pyramidal

tip shape and tip radius of approximately 10 nm. The probes were 125µm long with a nominal

spring constant of 5 N m−1. Before every experiment each cantilever was calibrated using

cantilever–on–cantilever method. The final working spring constant of cantilevers was in the

range of 3 N m−1 to 7 N m−1.

The second type of probe was fabricated and developed at CSEM SA, Switzerland Nanoscale

Dispensing (NADIS) probes. The NADIS probes contain a microfluidic system and are a core

component of the AFM-based microinjection system. Chapter 4 is dedicated to its design and

microfabrication process and Chapter 5 describes its characterization.

19



Chapter 2. Materials and methods

2.8 Data processing and statistical analysis

2.8.1 Analysis of force-distance curves

Data analysis was carried out using Image Processing software (JPK Instruments, Germany).

For every single cell 1 force distance–curve was obtained. The force–distance curves were

first transformed into force vs. tip–sample separation curves and analysed in terms of the

indentation depth (D), the penetration depth (D1), the penetration force (F 1), the force drop

(F d) and the membrane slip (d). The mean of these values together with the sample standard

deviation was then taken to be characteristic of each condition.

2.8.2 Statistical analysis

The obtained data was analysed with the Microsoft Excel with Data Analysis Tool. Two types of

statistical analysis were used: ANOVA and T–test. The ANOVA (Single Factor) test was used to

compare four population means (populations of cells spread on glass coated with fibronectin

and cells spread on glass patterned with PLL-g-PEG/fibronectin, with and without EDTA). The

Sheffé test was further used to find which of the samples means are different. For any other

statistical analysis two–sample T-test was used.

For all statistical tests, a p < 0.05 was considered significant.
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3.1 Introduction: Delivery of liquids into a living body

In order to inject a liquid into a living organism, the outer membrane must have an opening

through which the liquid can enter the organism. For this reason, it is necessary to puncture

a hole in the membrane while minimizing the damage inflicted on the organism such that

the desired amount of liquid which can be tolerated by the organism can be transferred.

Liquid delivery by this manner requires a specific tool in which several parameters must be

considered (Figure 3.1):

1. The size of the tool must be appropriate for the
size of the organism.

2. Interactions between the tool and the organism
must be controlled during formation of the open-
ing, delivery of liquid and post-delivery to mini-
mize invasiveness.

3. The tool must control the amount of delivered liq-
uid within the range determined by the organism

Figure 3.1: Schematic of liquid delivery into a living organism.

Our ecosystem consists of trillions of soft living organisms. The most common are cells.

Manipulation and understanding of their functionality requires the development of a wide

variety of experimental methods. Delivery of liquids is one such method; however, developing

a tool for the delivery of liquids into all types of cells is very challenging. There is a large variety

of different cell types (Figure 3.2) which can be divided into two subdomains: prokaryotic

and eukaryotic cells. Each of these is further divided into subcategories and those are again

divided into smaller and smaller groups. This case study investigates a tool to deliver liquids

into animal cells, in particular mammalian cells, a group that belongs to a category of animal

cells in the eukaryotic domain.
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Figure 3.2: Diversity of cell types.

3.2 Design of a liquid delivery system into single mammalian cells

Most mammalian cells are adherent cells, cultured typically at a temperature of 37°C in a gas

mixture of 5% carbon dioxide (CO2) and 95% air. The size of a single cell depends on several

parameters and varies from tens to hundreds of micrometers [63]. The height does not usually

exceed 10 micrometers [64]. Delivery of liquids into adherent cells demands a tool that is

smaller than a single cell, can be accurately positioned above it and precisely controlled in

order to insert the tool into the cell [65]. A tool that matches these criteria already exists and

is well known. It is a probe attached to a chip mounted on an AFM microscope. The probe

consists of a cantilever with a sharp tip. This tool has been already used to investigate cell

properties and to deliver molecules to cells (outlined previously in Chapter 1). However, a

standard AFM cantilever with a tip cannot accommodate liquid in order to inject it inside the

cell. For this reason, a new type of AFM probe must be considered; the type that has a fluidic

system enclosed inside the cantilever and the tip, all connected to the body of the chip – a

Nanoscale Dispensing (NADIS) probe. Figure 3.3 presents a schematic of the NADIS concept.

Inside the AFM cantilever, there is a channel connected to a hollow tip. The tip has an opening

next to the tip apex through which the liquid can be transferred to the cell. Control of the

interaction between the tip and the cell are measured by the AFM microscope by means of

attractive and repulsive forces between the tip and the cell [42].
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Figure 3.3: Schematic of an AFM based system for liquid delivery into adherent cell. The
system consists of an AFM probe with integrated fluidic channel. The probe uses its sharp tip
to penetrate the cell membrane. An external system is precisely monitoring the interaction
forces between the tip and the cell to assure low invasiveness of the penetration step. Once
the tip is inserted into the cell the liquid is delivered through the opening located next to the
tip apex. The amount of delivered liquid is controlled by external controller.

The NADIS concept fulfils the first two criteria introduced at the beginning of this chapter: the

size of the tool and the interaction control between the tool and the cell. However, the last

criterion, precise control of the delivered quantity of liquid, must still be considered.

3.2.1 Amount of liquid delivered into a single cell

To solve the problem of the precise quantity control it is first necessary to ask the question:

what quantity of liquid can be delivered to a single cell?

In theory it is possible to calculate the amount if the size of the cell is known. However, the cell

is an elastic [35] living body that will respond to the delivered volume of liquid. Thus, there are

two main parameters that need to be taken into consideration: variation in the cell volume,

and variation in viscoelastic properties of the cell. Within the same cell type it is impossible to

find two identical single cells in terms of volume and morphology. The volume of adherent

cells is calculated as follows. The cells are detached from the surface causing them to take

on a spherical form. By measuring the diameters of the cells in this state, the volume can be

calculated based on the formula for the volume of a sphere. The diameter of mammalian cells

varies from 10 to 20 µm [2], resulting in a volume variation between 500 to 4000 femtoliters.

This shows that the amount of volume supported by the cell can vary up to 8 times.

Cells viscoelastic properties vary as much as their volume. Their viscoelastic properties allow

the cell to deform and change shape. Delivery of liquid in to a cell can cause cell deformation.

This deformation will depend on the quantity of injected liquid. It is very difficult to predict

how much the cell can be deformed without causing damage or even death. In addition, the

viscosity of the cell cytoplasm and organelles can impede the delivery of the liquid [66]. This

impediment will vary from one cell to another and will influence the quantity of liquid that
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can be delivered to each cell.

Taking into account these parameters, it is correct to assume that the delivered volume should

be in the range of femtoliters. However, it is very difficult to theoretically determine this

quantitative range. For this reason, it would be preferable if the amount of delivered volume

could be determined experimentally.

There is very little information in the literature concerning the measurement of liquid volume

delivered to a single cell. Minashek et al. [66] investigated the volume range used during

standard microinjection, by injecting a fluorescent TRITC-labeled bovine serum albumin

(TRITC-BSA) into adherent 3T3 mammalian cells (obtained from Swiss mouse embryo tissue).

After the injections, the fluorescent intensities of the cells were measured with scanning fluo-

rometry. Reported results showed extremely high variations in the delivered liquid quantities

to single cells. The liquid amount varied from 1 to 10% of the cell volume.

For the purpose of this thesis, this result was assumed to be true for all types of adherent

mammalian cell. This assumption combined with theoretical calculations of the cell volume

allows one to calculate the amount of liquid that can be delivered into a cell (Table 3.1 ). The

amount varies from 5 to 400 femto liters.

Table 3.1: Calculations of liquid amount that can be delivered into a single cell. Calculations
are based on the results presented by Minashek et al.

Cell diameter [µm] Cell volume [fL] Maximal volume of liquid that can be delivered
1% of cell volume [fL] 10% of cell volume [fL]

10 500 5 50
20 4000 40 400

Knowing what range of volumes is required and permits an investigation of how to deliver said

amounts.

3.2.2 Control of liquid delivery

Delivery of a defined volume into a cell can be performed by controlling the flow of the liquid

through the fluidic channel enclosed inside the AFM probe. There are two main methods that

can be used to generate a flow inside the channel: application of a pressure differential and

application of an external electric field. In the first case, an external pressure is applied to the

channel creating a pressure gradient. This pressure gradient causes movement of the liquid

through pressure driven flow. In the second case, an electric field is applied to the channel

causing movement of the ionized liquid through electroosmotic flow.

However, the electroosmotic flow is limited to polar liquids and is sensitive to contamination

of channel surface [67], ionic strength and pH [68]. In addition, fabrication of the AFM probes

with fluidic channels and integrated electrodes is technologically more challenging than
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simply fabricating probes with channels and connecting them to a pressure generator. Based

on these factors, pressure driven flow was chosen.

The final concept of the cell injection system is based on an AFM probe with a microfluidic

channel connected to a pressure generator, where interaction forces between the tip and the

cell are controlled by the AFM microscope. When the tip is inserted into the cell, the generator

applies a pressure and the liquid is injected. The injected volume is controlled by the value of

the applied pressure and the time of the injection (the time of the pressure pulse). Based on

this concept, a detailed design of the system and its specifications can be established.

3.3 Detailed design of the AFM – based microinjection system

A detailed design must take all experimental aspects of the AFM-based liquid delivery system

into consideration:

1. the AFM tip must access the cell from the top;

2. the AFM tip must be mounted on an AFM holder that will be placed inside the AFM

microscope;

3. the fluidic channel inside the AFM probe must be connected to the pressure pulse

generator via the AFM holder;

4. the cell must be kept in a cell medium in a controlled atmosphere (temperature and

pH); and

5. finding the cell and placing the AFM probe above it can be done only with a phase

contrast optical microscope.

Based on these aspects, a detailed design of the system is presented. Figure 3.4 illustrates a

schematic of the system.

The AFM probe with the AFM holder is mounted on the AFM microscope. The inlet of the

probe channel is connected to an outlet of the holder channel. The holder channel is further

connected to the pressure generator via elastic tubing. The probe with its holder is placed

inside the Petri dish. The Petri dish is a standard dish made of optically transparent material.

The adherent cells are located inside on the bottom surface. The cells are kept in a liquid

medium in a controlled temperature. This is done by placing the Petri dish inside a heated

support. The cells and the probe are visualized with the inverted phase contrast microscope

through the opening in the Petri dish heater.

With this system, delivery of the liquid into the cell can be performed as follows. The probe is

placed above the target cell and the AFM microscope is used to insert the tip (with precision)

inside the cell in force spectroscopy mode. When penetration of the cell is detected via the
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Figure 3.4: Schematic of an AFM–based microinjection system. The system consists of an
AFM probe with closed fluidic channel. The fluidic channel is connected via the AFM holder
to a pressure pulse generator. The AFM holder with the probe is mounted inside the AFM
microscope. The microscope is placed on top of the Petri Dish holder. The Petri Dish contains
cell medium and adherent cells. The AFM probe and part of the holder are immersed in
the medium. The Petri Dish holder contains a heater that keeps the Petri Dish at required
temperature. The cells are observed from the bottom with optical phase contrast microscope
through an opening in the Petri Dish heater.

force distance curve, the pressure generator applies a pulse and the liquid is ejected through

the aperture in the tip and into the cell. After the liquid is injected, the probe is retracted from

the cell to its initial position.

Once the detailed design of the system is completed, it is necessary to investigate fabrication

of specific elements. The main elements of the system are:

1. the AFM microscope;

2. the AFM holder with fluidic channels;

3. the AFM probe with fluidic channels – NADIS probe;

4. the pressure pulse generator;

5. the Petri dish heater; and

6. the inverted phase contrast microscope.

Fabrication of an AFM holder with fluidic channels as well as the NADIS probe with an

embedded fluidic system require technological development whereas the rest of the elements

are commercially available products. An AFM microscope for cell biology with integrated

inverted optical microscope and Petri dish heater has existed on the market for more than 10
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years [67]. The pressure pulse generator, known as a microinjector is used for liquid injection

into cells using glass capillaries (outlined previously in Chapter 1). Taking into consideration

these products, fabrication of the AFM-based injection system needs to be focused on the

AFM probe with fluidic channel and the compatible AFM holder. In order to fabricate these

elements, it is necessary to define the specifications of the system.

3.4 Specifications of the system

The AFM probe containing fluidic channels will have the main influence on the system

specifications.

3.4.1 Characteristics of the AFM probe

There are two main parameters that determine the properties of the AFM probe: the cantilever

stiffness and its resonance frequency. The stiffness of a cantilever is defined by the spring

constant. Assuming that the cantilever beam has a rectangular cross-section, the spring

constant ck can be calculated as follows:

ck = 4E I

L3 (3.1)

where E is the Young’s modulus, I is the moment of inertia and L the cantilever length. For

a probe with fluidic channel, the moment of inertia will be different than a standard probe

(Figure 3.5). Assuming that the channel has rectangular cross-section, the spring constant can

be calculated according to Equation (3.2).

Figure 3.5: Schematic of rectangular cross–sectional view of a) standard probe and b) probe
with integrated channel.

ck = 4E I

L3 ≡ EW H 3

3L3 (3.2) ck = 4E I

L3 ≡ E

3L3 HW 3 −hw3 (3.3)

where E is the Young’s modulus, W and H are the width and the height of the cantilever, and w

and h are the width and the height of the channel. Based on this equation, the spring constant

strongly depends on cantilever length and the relation between the widths and heights of the
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cantilever and the channel.

It has been shown that cell indentations with an AFM probe should be performed with a

very flexible cantilever (preferably in the range of 10−2 N m−1). Thus, geometrical parameters

of a cantilever should be adapted to fulfill this requirement. Standard flexible cantilevers

have a length in the range of several hundreds of micrometers, the width varies from 10 to 40

micrometers and the height can be as small as 600 nm. The same range of values for length and

width can be adopted when designing cantilevers containing fluidic channels. The cantilever

height, however, has to be larger due to the presence of the channel. The cantilever height will

depend on the channel height and thickness of the cantilever wall. As the height of the channel

will have the most influence on the flow of liquid through the cantilever, it is preferable to

keep it relatively large. Thus, the channel height and the cantilever height must be adjusted

to provide a compromise between cantilever stiffness and liquid flow through the channel.

Figure 3.6 shows an example of the spring constant dependency on cantilever length L when

the width W and wall thickness ∆/2 are constant and the cantilever height H is changing.

Figure 3.6: Spring constant dependency on the length of a cantilever with defined width and
wall thickness ∆/2 for three cantilever heights (and three channel heights consequently).

It can be seen that for the same cantilever length the cantilever stiffness increases when the

cantilever height increases (the height of the channel increases).

Once the geometrical values of the cantilever are chosen, it is necessary to determine the in-

fluence of the size of the channel embedded in the cantilever on its spring constant. Figure 3.7

shows dependency of the cantilever spring constant on its wall thickness.

In order to obtain soft cantilevers with rectangular channels, the following requirements
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Figure 3.7: Spring constant dependency on the length for a cantilever with defined width
and height. The height and width of the channel embedded inside the cantilever changes
accordingly to the thickness of the cantilever wall defined as ∆/2 parameter.

should be fulfilled: the cantilever should be long, have a small height and its walls should be

thin. However, the longer the cantilever and the smaller its height, the higher is the hydraulic

resistance of the cantilever channel. Equation (3.4) shows the influence of the cantilever

length L, height h and width w of its channel, and wall thickness ∆ on the cantilever stiffness,

and Equation (3.5) shows the influence of the cantilever length L, and height h and width w of

the cantilever channel on its hydraulic resistance Rhydr ec .

1

k
∼ L

w∆h3 (3.4) Rhydr ec ∼
Lh3

w
(3.5)

Therefore, in the final design of the AFM probe, a compromise must be found between the

cantilever stiffness and hydraulic resistance of the cantilever channel.

3.4.2 Characteristics of the pressure driven flow in the system

Pressure driven flow through a channel with an arbitrary cross-section is described by the

Hagen–Poiseuille law, where the flow changes linearly with the pressure drop:

Q = 1

Rhyd
∆p (3.6)
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where Q is the flow, Rhyd is a proportionality factor known as hydraulic resistance and ∆p is

the pressure drop. The hydraulic resistance depends on the geometrical parameters of the

channel and viscosity of the flowing liquid.

The investigated AFM-based fluidic system consists of a flexible tubing connected via the

channel of the AFM holder to the fluidics of the AFM probe. The fluidic channel inside the

probe is further connected to an opening in the tip. Knowing that the cross-section of the

channel is rectangular and assuming that the flexible tubing and the AFM holder channels

have circular cross-sections, the hydraulic resistance for each fluidic element can be calculated

as follows [69] (the presence of fluidic connectors and the tip is neglected):

Rhydci r =
8

π
ηL

1

a4 (3.7) Rhydr ec =
1

h3w
· 12ηL

1−0.63h/w
(3.8)

where, η is the liquid viscosity, L, h and w or a are channel length, height and width or the

radius respectively.

The hydraulic resistance of the entire fluidic system is defined by the sum of hydraulic resis-

tance of the individual elements [70]:

Rhyd =∑
i

Rhydi (3.9)

Figure 3.8 presents schematic of the simplified fluidic system. Simple models can be used

with this approach to determine values for the geometrical parameters of the fluidic system

based on calculated values of the hydraulic resistance.

Figure 3.8: Schematics of a simplified fluidic system of the AFM–based microinjection system.
On the left is the detailed view of the cantilever channel connected to the tip opening.

The geometrical values of the system are discussed in Table 3.2.

Based on the given description, the hydraulic resistance of the system can be calculated as a

function of liquid viscosity Rh(η) Table 3.3. The result shows that the hydraulic resistance of

the system is entirely dominated by the AFM probe, thus the hydraulic resistance of the other
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Table 3.2: Size description of the fluidic components.

Fluidic component Description

Flexible tube As the tube connects the AFM holder with the external pressure
generator, the length of the tube will be in range from 50 to 100
centimeters, and the tube radius will be in range of 100 to 200
micrometers.

AFM holder channel The channel size will depend on the size of the holder; the length
will be in millimeters range (5 to 10), while the channel radius
will be in range of 50 to 100 micrometers.

AFM probe channel The channel length will depend on the length of the can-
tilever and the length of the channel enclosed in the AFM
chip, thus the total channel length will be in millimeters range
(1 mm to 2 mm. The width will be in range of few tens of mi-
crometers (10µm to 20µm), the height smaller than few mi-
crometers (2µm to 4µm).

Tip opening The opening radius will be in tens to hundreds of nanome-
ters (50 to 150 nm), due to the volume that has to be deliv-
ered into cells. The thickness of the tip wall will be in range of
100 nm to 200 nm.

elements can be neglected.

Table 3.3: Calculated range of values of the hydraulic resistance for each fluidic component
and the entire system, given the minimum and maximum size of the system.

System
elements

Flexible Tube Holder chan-
nel

Probe chan-
nel

Tip opening Complete
system

L: 50-100cm L: 5-10mm L: 1-2mm L: 100-200nm
R: 100-200µm R: 50-100µm R: 50-100µm R: 50-150nm

Hydraulic
resistance
Rs(η) [1/m3]

η·(1015−1016) η·(1014−1015) η·(1019−1020) η·(1021−1022) η·(1021−1022)

The calculated hydraulic resistance is expressed as a function of viscosity of the liquid that

will be injected into the cells. The injected liquids have to be isotonic (have the same osmotic

pressure as the cell) to prevent the cell from bursting. Examples of such liquids are: any cell

medium, phosphate buffered saline (PBS) or Hank’s Balanced Salt Solution (HBSS). These

liquids are aqueous solutions containing salt constituents, hence it can be assumed that their

viscosity is similar to the viscosity of water [71] (η= 6.92×10−4 Pa s at 37 ◦C[70]). Taking into

consideration the liquid viscosity, the total hydraulic resistance of the system will be in the
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range of:

Rhyd tot ∼ 1018 Pa s

m3 −1019 Pa s

m3 (3.10)

for the minimum and maximum size of the system, respectively. Knowing these values, further

analysis of the system parameters is possible. For example, the time required to completely

fill the system with liquid, the flow of liquid as a function of applied pressure and finally, the

volume precision that can be ejected from the tip opening.

3.4.3 Control of volume injected to single cell

In the Section 3.2.1, the range of volumes that can be delivered into single cell was calculated

to be from 5 fL to 400 fL. Assuming that that the flow of liquid in the system is constant in time

and depends linearly on the applied pressure, the length of a pressure pulse for cell injection

can be calculated (Table 3.4).

Table 3.4: Values of the pressure pulses applied to the fluidic system for cell injection.

Applied pressure
∆p [Pa]

Flow
Q [m3 s−1]

Ejected volume

V [m3]
Length of the pressure

pulse t =V /Q [s]

101 10−16 10−18 10−2

102 10−15 10−18 10−3

Based on these results, the specifications of the pressure generator can be defined. The

generator must be able to produce short pressure pulses on the order of milliseconds and the

minimum operating pressure must be in the Pascal range.

3.5 Summary

Design of the AFM-based microinjection system is based on a concept of injecting liquid to

cells using an AFM probe with integrated fluidic system – the NADIS probe. The probe has

an enclosed fluidic channel connected on one side to a reservoir in the AFM chip, and on

the other side to a hollow tip with an aperture. Delivery of liquids through the tip aperture is

controlled by the pressure generator, and the tip – cell interactions are controlled by the AFM

– microscope. Conceptually, only the NADIS probe and the AFM probe holder with fluidic

channels require development whereas the rest of the components are commercially available.

The system is designed in a way to control the volume of the injected liquid via the injection

parameters (height of the applied pressure and length of the pressure pulse). To estimate

hydraulic resistance of the system a simple model was designed based on the assumptions that

the flow of liquid in the system is a steady-state flow described by the Poiseuille law. Based on

the estimated values of the hydraulic resistance, theoretical values of the injection parameters
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were proposed.

The conceptual description of the AFM based microinjection system presented here is an

introduction to a detailed design and fabrication of the NADIS probe and the AFM probe

holder and is used as a guide when choosing elements that are commercially available.
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4 Design and fabrication of the NADIS
probes for a microinjection system

Creating an AFM – based microinjection system starts with the fabrication of the NADIS

probes. Originally, the NADIS probes were developed for controlled deposition of droplets

on substrates using capillary forces. Initially, the probe had simply a hollow pyramidal tip

with an aperture at the tip apex. Later on, a more sophisticated design with a fluidic system

embedded inside the probe was developed – the closed NADIS probes. These probes gave

a solid foundation to create the AFM–based microinjection system. However, the design of

the chip was not suitable for connection to the external fluidics components of the system.

Additionally, the design of the probes made it difficult to obtain a controlled liquid delivery.

The scope of this thesis was to modify the design of the closed NADIS probes, improve their

fabrication process flow and fabricate tip apertures in a way that enabled the tip to penetrate

the cell membrane. The first part of this chapter will give a detailed description of the design

and the fabrication of the closed NADIS probes. Based on this, the second part of the chapter

will give a comparative description introducing the modifications to the design and fabrication

process. In addition to this, a new process step was developed and this will be detailed here.

The improved fabrication process was done on the wafer scale by the experts at CSEM SA. At

the end of the process the wafers were characterized in the scope of this work. To complete

the fabrication of the NADIS probes the tip apertures were fabricated. This fabrication step is

an important part of this work and thus a large part of this chapter will detail this step. In the

final sections, the difficulties and the limitations of the fabrication method will be described

in general.

4.1 Introduction

4.1.1 Closed NADIS probes

The closed NADIS probes were developed at CSEM SA. A microfluidic system was embedded

inside the chip holder and the cantilever. The chip had an inlet called a ‘reservoir’ connected

to the fluidic channels. The fluidic channels protruded from the chip enclosed inside the

cantilever. The free end of the cantilever had a tip connected to the channel. A small aperture
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was located at the tip apex for liquid deposition (Figure 4.1). Two types of microfluidic system

were designed. The type I design contained one fluidic channel connected to an inlet reservoir

on one side and the tip on the other (Figure 4.2a)). The type II design had two fluidic channels,

each connected on one end to its own reservoir and on the other end to a common tip

(Figure 4.2b)).

Figure 4.1: a) Schematic of the NADIS probe. The fluidic system inside the probe is filled with
liquid. The free end of the cantilever has a hollow pyramidal tip with a nanometer-scaled
aperture at the tip apex. b) Liquid transfer occurs when the tip is brought in contact with a
substrate. Due to the capillary forces liquid is transferred from the tip aperture to the surface.

Figure 4.2: Schematic of a) the Type I design, the fluidic system has one inlet reservoir with a
channel connected to the tip with an aperture. b) The Type II design has two reservoirs and
two fluidic channels connected to the tip.

4.1.2 Fabrication Process

The process flow was designed based on the pre-fabrication of two (100) silicon wafers (Wafer 1

and Wafer 2) and further fabrication of the two wafers bonded together in a thermal fusion

bonding process. Figure 4.3 shows the fabrication flow–chart of the principle process steps.

Pre – structuring of Wafer 1:

1a) First, the wafer is thermally oxidized to form silicon dioxide (SiO2). Next, the top side

of the wafer is coated with patterned photoresist. The wafer is then etched by reactive ion

etching (RIE) to remove the unprotected SiO2. After which the wafer is etched with potassium

hydroxide (KOH) and a pyramid is formed in the areas where the SiO2 was removed. In the

next step the wafer is etched in buffered hydrofluoric acid solution (BHF) to remove the rest of

the SiO2. Finally, the wafer is thermally oxidized to create uniformly thick SiO2 film.

1b) First, a low –stress LPCVD silicon nitride (Six Ny ) is deposited. Next, the top side of the

wafer is coated with patterned resist and etched by RIE to remove the unprotected Six Ny layer.
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Figure 4.3: Graphical representation of the main steps of pre-structuring Wafer 1 and Wafer 2
and final processing of the sandwiched wafers.

In this way the silcon nitride probe tip is fabricated.

1c) The bottom side of the wafer is coated with resist, patterned and etched by RIE to remove

unprotected Six Ny layer. Next, the wafer is etched in BHF to remove the rest of the SiO2.

1d) Final step of the pre- structuring of the wafer starts from coating the top side of the wafer

with a resist and etching fluidic channels. Once, the channels are etched by RIE the wafer is

ready to be bonded with Wafer 2.

Pre-structuring of Wafer 2:

2a) First, the wafer is thermally oxidized to form SiO2 and a low–stress LPCVD Six Ny is

deposited. In the next step, the top side of the wafer is coated with patterned resist and etched

by RIE. Then the wafer is etched in BHF solution to remove the remainder of the SiO2 layer.

Finally, the wafer is exposed to KOH and is etched through to form the future reservoirs.

Thermal fusion bonding and further structuring:

a) The Wafer 1 and 2 are cleaned and prepared for the bonding process. The top side of Wafer

1 is brought in contact with bottom side of Wafer 2 and thermal fusion bonded. The wafer
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sandwich is further thermally oxidized to obtain 1.2 microns of silicon dioxide.

b) The top side of the wafer sandwich is coated with patterned resist and etched by RIE to

remove the unprotected SiO2.

c) In the last process step the sandwich is etched by KOH solution in order to remove the

unprotected silicon and create chips with free standing cantilevers. After the etching step the

wafers is rinsed and dried.

4.1.3 Design of the NADIS probes

The geometry of the NADIS probes was determined by the geometry of the fluidic system and

by the constraints of the process flow. For reason of compatibility the AFM chip was designed

to be similar to commercially available chips. The chips had a rectangular geometry with

a width (W) of 1400µm, length (L) of 3800µm and height (H) of 450µm. A single chip has 4

reservoirs and 2 or 4 probes. Figure 4.4 shows schematic drawings of the chips including the

geometrical parameters. Around each chip a thin rim (V-groove) was designed to ease the

removal of the chip from the wafer. The Type A chip with only 2 probes had one probe on each

side (Figure 4.4a)), the Type B chip with 4 probes had two probes per side (Figure 4.4b)).

Figure 4.4: Schematic of a) Type A chip with marked geometrical parameters. The values are
as follows: W = 1400µm; L = 3800µm; a = 64µm; b = 582µm; c = 278µm; d = 298µm. Around
the chip is a thin rim called the V–groove. It was designed (dotted line) to easily remove the
chip from the wafer. The chip has one cantilever on each side. Each cantilever has two fluidic
channels connected to their own reservoirs. b) The Type B chip has two cantilevers per side.
On one side one of the cantilevers has two channels connected to two reservoirs. One of the
two reservoirs is shared with the second cantilever with a single channel. On the other side of
the chip there are two cantilevers, each having two fluidic channels connected to the same
pair of reservoirs.
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4.1.3.1 Design of the AFM probe and fluidic channels

An AFM probe consisted of a cantilever and a tip. The design of the cantilever is extremely

important as it defines the stiffness of the probe. The NADIS cantilevers had fluidic channels

embedded inside their beams. Figure 4.5a) presents a single beam cantilever and Figure 4.5b)-

d) show a double beam cantilever with two fluidic channels, each embedded inside one of the

beams.

Figure 4.5: Schematic of a single beam cantilever a); parallel double beam cantilever b);
oblique parallel beam cantilever c) and V–shape cantilever d). Figure e) shows cross-sectional
view of the cantilever beam with fluidic channel. Figure f) presents cross–sectional view of the
cantilever connected to the reservoir.

Four probe types were designed, one type of the single beam straight cantilever (Figure 4.5a)),

and three types of the two beam cantilever: the parallel cantilever (Figure 4.5b)), the oblique

parallel cantilever (Figure 4.5c)) and the V–shape cantilever (Figure 4.5d)).

Figure 4.5e) shows a cross-sectional view of a single beam. The width (w1) and the height (h1)

of the beam were determined by the width (w2) and the height (h2) of the fluidic channel and

the thickness of silicon oxide created by thermal oxidation. The width was controlled by the

etching mask while the height was determined by the etch time in step 1d). The free length of

the cantilever (Figure 4.5f)) was defined as the sum of: A - the distance from the free end of

the cantilever to the apex of the tip; B - the designed length, which is the distance from the

apex to the V–groove; C - the distance from the V–groove to the fixed end of the cantilever. The

distances A and B were determined by the design of the photolithographic masks, whereas

the distance C depended on the etching time (etching done in the microfabrication step c)).

Three cantilever free lengths were investigated: short, medium and long. Table 4.1 contains

the values of the free length for each of the three types.

Table 4.1: Values of the free length of the cantilevers.

Cantilever length Length of the distances Free length of the
A [µm] B [µm] C [µm] cantilever [µm]

short 15 50 50-100 115-215
medium 15 300 50-100 365-465
long 15 500 50-100 565-765
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4.1.4 Fabrication Results

Figure 4.6 presents optical micrographs of the fabricated probes. The short cantilevers (single

straight probe and the double straight probe) had a released free length in the range from

120µm to 250µm. The medium and long cantilevers (the parallel oblique and the V-shaped)

had a released free length in the range from 350µm to 450µm and 500µm to 700µm respec-

tively.

Figure 4.6: Optical micrographs of a single beam a); parallel double beam b) oblique double
beam c) and V–shape d) cantilever.

The size of the tip, a square based pyramid, was approximately 11µm. The radius of the tip apex

varied from 25 nm to 50 nm. Two main problems were encountered during the fabrication

process: breakage of the cantilevers and contamination of the fluidic channels.

Breakage of the cantilevers occurred during the drying process, when part of the liquid was

trapped between the free standing cantilevers and the surface of the wafer. Cantilevers longer

than 300µm were bent towards the wafer due to the capillary forces. The bending effect

resulted in the cantilever deflection of about 50µm and caused the probe to snap. Comparison

between the double beam oblique and the V–shaped cantilevers showed that the first type is

less prone to breakage.

The contamination of the fluidic channels occurred during the last processing step, when

the wafer sandwich was exposed to the KOH etch bath. During this step the KOH could

enter inside the fluidic channels and stay inside. After the KOH etch the wafer sandwich was

immersed in 5 % hydrochloric acid (HCl) to neutralize the KOH residues. During this step the

HCl also entered the fluidic channels and reacted with KOH to create potassium chloride (KCl).

In the last step the sandwich was rinsed in water to remove the residues. However, the rinsing

was ineffective. After drying, some of the fluidic channels were blocked with KCl salt and could

not be used. Figure 4.7a) presents an optical micrograph of a cantilever with single channel

without residues. Figure 4.7b) shows a double beam cantilever with one channel blocked by

the KCl salt. This cantilever could not be used for liquid deposition.
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Figure 4.7: Optical micrograph of double beam cantilever with a) clean channel; b) one
channel contaminated with KCl residues (marked with arrows).

4.1.5 Metallization of the AFM probes

Metallization of the AFM probes was required for two reasons: firstly, for the detection sys-

tem of the AFM microscope and secondly for the fabrication of the tip aperture. The AFM

microscope used in the experiments measures the deflection of the cantilever by detecting the

reflection of an IR laser from the cantilever. However, the closed NADIS probes are made of

silicon dioxide which is transparent for infrared light [72]. For this reason, they need to have to

have a reflective coating.

The fabrication of the tip aperture is done with focused, gallium (Ga+) ion beam (FIB) milling.

Since the NADIS probe is made of nonconductive materials (silicon dioxide cantilever and

a silicon nitride tip) charging effects occur during milling: during the interaction of the ion

beam with the substrate a large number of electrons leaves the sample surface and a net

positive charge builds up. This charge causes movement of the sample during the milling

process. A conductive, metal coating of the probes prevents charging effects.

The probes were coated with thermally evaporated gold, which gives excellent (98 % to 99 %)

reflectivity throughout the infrared [73]. A thin layer of chromium was used as an intermediate

layer. The thickness of chromium was approximately 11 nm and that of gold 45 nm to 50 nm.

The probes were coated from the front side (where the tip is) for milling and from the back

to enhance reflectivity. Unfortunately, the gold was rapidly removed by FIB imaging being

necessary to adjust the ion beam and tip position for milling. To avoid these effects the AFM

tips were protected with an additional sputtered carbon layer.

4.1.6 Fabrication of the tip aperture

The complete fabrication of the NADIS probe ends when the tip has an aperture. Figure 4.8

shows schematic drawing of the NADIS probe with aperture. The aperture was located at the

tip apex to use the capillary forces to transfer the liquid from the tip.

Fabrication of the aperture was performed on a single chip level using focused ion beam

milling. The FIB milling was carried out with an FEI Nova 600 NanoLab-DualBeam system. A

single AFM chip was removed from a wafer, metalized and placed on a holder (Figure 4.9a)).

AFM chips were fixed with conductive tape so the tip pointed upwards. The holder was
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Figure 4.8: a) A cross sectional view of the NADIS probe with an aperture located at the tip
apex. The deposition of the molecules occurs via the aperture. The top view b) and the side
view c) of the NADIS tip with an opening.

mounted on the FIB stage and tilted to 52° so that the ion beam was perpendicular to the base

of the tip. In this configuration apertures were milled from the top of the pyramid. Two types

of apertures were fabricated: a square one (Figure 4.9b) and c)), with a size of 1µm×1µm and

circular one (Figure 4.9d) and e)) with a diameter from 100 nm to 500 nm.

Figure 4.9: a) Schematic of the FIB holder fabricated to mill NADIS apertures. SEM micro-
graphs of the square shape aperture, b) view from the top and c) the side. SEM micrographs of
the circular shape aperture, d) view from the top and e) the side.

4.1.7 Summary

The fabrication process of the closed NADIS probes consisted of two main steps: microfab-

rication on a wafer scale of the silicon AFM chip with a silicon oxide cantilever and silicon

nitride tip, and fabrication of tip apertures on a single chip level using FIB techniques. Two

main problems were encountered during the fabrication process – breakage of the cantilevers

and contamination of the fluidic channels with KCl.

4.2 Design and fabrication of NADIS probes for the cell microinjec-

tion system

The closed NADIS probes with integrated microfluidic channels gave a solid foundation on

which to develop NADIS probes for microinjection. This part of the chapter concerns the

work that was done in the scope of the thesis and describes the modifications and innovations

introduced to the design and fabrication of the NADIS probes. Modifications to the chip and

42



4.2. Design and fabrication of NADIS probes for the cell microinjection system

cantilever design, the process flow and the tip aperture were carried out in order to:

• facilitate connection to an external fluidic system;

• reduce breaking and blocking of the cantilevers during fabrication;

• facilitate cell penetration and injection by the AFM tip

4.2.1 Design of the AFM chip

Several modifications were made to the design of the closed NADIS chips. In order to create a

good watertight connection between the NADIS chip and the AFM holder, a chip with a large

contact area was designed. This was done by increasing the size of the chip and reducing the

number of reservoirs from 4 to 2. The on-chip fluidics system was also simplified by reducing

the number of cantilevers per chip to a maximum of two. In previous designs two fluidic

channels, each belonging to a different probe, were connected to the same reservoir. This

meant that a pressure pulse on one reservoir would result in ejection of liquid from both

cantilevers. In the new design each probe had its own reservoir. Two different types of chips

were designed. The type A chip had two single beam cantilevers (Figure 4.10a)) and the type B

(Figure 4.10c)) had one double beam cantilever. Figure 4.10 shows schematic drawings of the

resulting NADIS chip with their geometrical parameters.

The design of the AFM probes was based on the previous NADIS design and the results of its

fabrication process. The results revealed that the oblique shape of the cantilevers is easier

to release. In the present design three types of probes were proposed: single beam straight

cantilever (Figure 4.11a)), single beam oblique cantilever (Figure 4.11b)) and double beam

oblique cantilever (Figure 4.11c)).

Figure 4.11d) shows a cross-section of the cantilever beam. As in the previous design the width

(w1) and the height (h1) of the beam were determined by the width (w2) and the height (h2) of

the fluidic channel and the thickness of the SiO2 layer. The width was controlled by the etch

mask and the height was determined by the etch time of the entire wafer and was uniform

for all the designs. Table 4.2 contains the height and width values for the different cantilever

designs.

Table 4.2: The widths and heights of channels and beam depending on the design

Type of the probe width of the width of the height of the height of the
channel w2 probe w1 channel h2 channel h1

[µm] [µm] [µm] [µm]

Single beam straight 18.2 20.6 1.4 3.8
Single beam oblique 18.2 20.6 1.4 3.8
Double beam oblique 8.2 10.6 1.4 3.8
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Figure 4.10: Schematics of a) the Type A chip with marked geometrical parameters. The
values of the parameters are as follows: W = 2300µm; L = 3800µm; a = 709µm; b = 582µm;
c = 718µm. Around the chip a thin rim called the V-groove was designed (dotted line) to easily
remove the chip from the wafer. The chip has one cantilever on each side. Each cantilever
has a single fluidic channel connected to its own reservoir. Figure b) shows a cross–section of
the type A probe. The type B chip c) has one double beam cantilever. The cantilever has two
channels, each connected to independent reservoirs.

The free length of the cantilever (Figure 4.11e)) was defined according to the previous design

as the sum of: A - the distance from the free end of the cantilever to the apex of the tip; B - the

designed length, which is the distance from the apex to the V–groove; C - the distance from

the V–groove to the fixed end of the cantilever (C ). The distances A and B were determined by

the design of the photolithographic masks, whereas distance C depended on the etch time of

the KOH release step.

The free length of the cantilever was determined by the desired spring constant. The desired

value of the spring constant was calculated to be in the range between 0.3 N m−1 to 3 N m−1,

due the height of the cantilever channel. To fabricate probes with a low spring constant

values (below 1 N m−1 the free length of the cantilevers has to be in the range of a few hun-

dreds of micrometres. However, fabrication results for the closed NADIS probes showed

that cantilevers longer than 300µm are difficult to obtain. Given this limitation three types

of the free length were proposed: short (from 115µm to 215µm; k = 14.8N m−1 to 2.1N m−1

respectively), medium (from 215µm to 315µm; k = 2.1N m−1 to 0.66N m−1) and long (from

365µm to 465µm; k = 0.42N m−1 to 0.2N m−1). Table 4.3 contains details of the free length

parameters for each type.
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Figure 4.11: Schematic of a) the single beam straight cantilever; b) the single beam oblique
cantilever; c) double beam oblique cantilever. Figure d) shows a cross-sectional view of the
cantilever beam with fluidic channel. Figure e) presents the cross–section of the cantilever
connected to the reservoir.

Table 4.3: Detailed summary of the free length for different cantilever design

Type of the probe Type A [µm] B [µm] C [µm]

Single beam straight short 15 50 50-150
Single beam oblique medium 15 150 50-150
Single beam oblique long 15 300 50-150
Double beam oblique medium 15 150 50-150

4.2.2 Modification of the process flow

The microfabrication process was adapted from the fabrication of the closed NADIS probes.

Two modifications were introduced to the process. The first modification concerned the

drying of the wafers after the final KOH etching step. The standard drying was replaced with

a critical point drying step. This step was out of the scope of this thesis and therefore will

not be described here in detail. The modification was introduced to eliminate the breakage

of the cantilevers with a free length longer than 300µm. The breakage problem arose from

the capillary forces between the cantilevers released in KOH and remaining liquid on the

wafer. The issue was overcome by keeping the devices constantly in the liquid and using the

supercritical point drying technique: after release in KOH the wafers were quickly transferred

to the water bath which was then gradually replaced by ethanol; once in ethanol the wafer

were placed in supercritical drying machines for a controlled liquid removal. High pressure

and sufficiently high temperature of supercritical point dryers allow devices to bypass the

liquid-gas boundary i.e. to go from liquid phase to gas phase through so called supercritical

fluid where capillary forces are not so strong. The second modification was dedicated to solve

the problem of blockage of the cantilevers due to KCl residues inside fluidic channels. To solve

the problem of KCl residues two methods were developed in parallel: an extensive rinsing

of the wafer under vacuum after the final release step (not in the scope of this thesis) and a

3D parylene mask to prevent entry of the etch liquid into the fluidics channels during the

KOH processes. The second method was developed in the frame of the thesis and will be
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described in detail in the next section. Even though both process worked well, for the final

microfabrication process the extensive rinsing method was chosen as it involved less change

to the process flow.

4.2.3 3D parylene mask for KOH etching of NADIS probes

Poly-(p-xylylene) polymers, also known as Parylenes have been used in microfabrication

processes as a sacrificial layer or mask [74]. To solve the problem of KCl residues in the

fabrication process, experiments were conducted to develop a protective coating against KOH

using Parylene C. The goal was to develop a mask that can prevent the KOH from entering into

the fluidic channels of the probes, and after the etching step can be easily removed. This would

involve additional steps in the microfabrication process. Figure 4.12 shows the process–flow

chart with the additional steps.

Figure 4.12: Graphical representation of the main steps of pre-structuring Wafer 1 and Wafer 2
and final processing of the sandwiched wafers.

The pre – structuring of Wafer 1 and Wafer 2 did not require any modifications.
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Thermal fusion bonding and further structuring of the wafer sandwich (wafer 1+2):

a) The Wafer 1 and 2 are cleaned and prepared for the bonding process. The top side of Wafer

1 is brought in contact with bottom side of Wafer 2 and thermal fusion bonded. The wafer

sandwich is then thermally oxidized.

b) The top side of the wafer sandwich is coated with resist, patterned and etched by RIE to

remove the unprotected SiO2. The bottom part is coated with Parylene C to close the channel

inlets.

c) The sandwich is etched by KOH solution to remove the unprotected silicon and create chips

with free standing cantilevers.

d) The Parylene C is removed by RIE and thermal treatment from the wafer and capillaries.

The concept of using Parylene C mask had one major shortcoming: Parylene C adheres poorly

to surfaces and delaminates when exposed to liquid environments [74–78]. Many attempts

have been made to improve its adhesion [75, 77–82] however none of them seemed sufficient

to prevent delamination.

In order to use the Parylene C as a KOH mask in the NADIS microfabrication process it was

first necessary to improve the polymer adhesion to silicon, silicon nitride and silicon dioxide

substrates. Methods to improve Parylene C adhesion to these substrates were studied to

develop a technique that provides the best adhesion between the parylene and the substrates.

During the wet etching step, wafers with NADIS probes are immersed in a KOH bath for

25h. In the first 20h the wafers are kept in chucks to protect the backside of the wafers from

etching and at the same time from KOH filling the fluidic channels of the probes. The last 5h

is continued without the chuck, resulting in KCl residues in the fluidic channels. In order to

make the 3D parylene mask successful, the polymer has to well adhere to the wafers during

the KOH etch step for a minimum of 5h.

4.2.3.1 Parylene adhesion study 1

For the present study, the use of a silane as an adhesion promoter was investigated separately

and in combination with a thermal treatment (recrystallization) of Parylene C layer on native

silicon wafers, and on silicon wafers coated with silicon dioxide and silicon nitride films.

Table 4.4 shows a summary of tested conditions.

Adhesion promotion of parylene C with pre–silanization was tested with 3-methacryl-oxy-

propyl-trimethoxy-silane, also known as Silquest A-174®. Its molecules form a covalent bond

with hydroxyl groups on the silicon-based surface on one side and with the paraxylylene

radicals on the other side. The pre–silanization was a vacuum deposition process preceded

1“Optimizing Parylene – C for MEMS processes.” Jérôme Charmet, Joanna Bitterli, Olha Sereda, Martha Liley,
Philippe Renaud, Herbert Keppner; submitted to JMEMS.
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Table 4.4: Parylene C adhesion study: summary of tested conditions.

Tested conditions

1 no adhesion promotion – a reference method
2 Pre–silanization of substrates to promote parylene C adhesion
3 Post–thermal treatment (recrystallization) of parylene C deposited on the substrates
4 Combination of pre–silanization of substrates and recrystallization of parylene film

by surface activation of the substrates with air plasma. Post–thermal treatment of parylene

C films was done in an oven at 350°C for 2h , under a nitrogen atmosphere at atmospheric

pressure.

The samples were further exposed to 5 and 25h of KOH to test the adhesion properties of

parylene. Exposed to KOH samples together with control samples were further characterize

with following methods: optical characterization, XRD measurements, AFM characterization

and scratch test.

Parylene on wafers prepared according to condition 1 (no adhesion promotion) and 2 (pre

– silanization only) has completely delaminated from the substrates. The samples treated

according to condition 3 (recrystallization) were stable after 5 hours in KOH irrespective of the

substrate, but the samples exposed to KOH for 25h were dependent on the substrate material.

The silicon dioxide sample showed minor delamination (up to 3 mm) in a few areas around

the rim, while a more widespread delamination could be observed on the silicon sample. The

layer on the silicon nitride was completely delaminated. The samples treated according to

condition 4, combining both the silanization and the thermal treatment, have shown an overall

improvement for the 25 hours exposure for both the silicon and silicon dioxide substrates.

In the latter case, no delamination was observed. This observation can be explained by the

fact that there is a higher density of Si-OH surface bonds on that surface and hence a higher

density of silane molecules. This seems to be confirmed as the layer on the silicon nitride

substrate once again was completely delaminated.

The XRD measurements 2 were used to understand the influence of the different treatment

conditions (see Table 4.4) on crystalline properties of the parylene.

It is well known that the parylene polymer phase consists of crystalline and amorphous

domains (in semi-crystalline polymers) [83]. XRD diffraction patterns of the parylene films

show a broad peak at about 13.8° (d-spacing= 6.41 Å) in 2θ for both condition 1 (non-treated)

and condition 2 (pre-silanization). This peak corresponds to the (020) diffraction plane of

the monoclinic unit cell with dimensions: a = 5.96Å, b = 12.69Å, c = 6.66Å, β = 135.2°[84].

The typical crystallite sizes, calculated using the Scherrer equation, were 8 nm for generic

Parylene grown on each substrate and did not change with the silanization (condition 2). After

annealing (condition 4) the (020) reflection shifts to 14.09° in 2θ resulting in a larger crystallites

2Work performed by Dr. Olha Sereda from the XRD group, CSEM, Switzerland.
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with smaller inter-planar d-spacing (6.28 Å) yielding a smaller full width half max (FWHM). The

crystallite size increased to 40 nm, 47 nm and 45 nm for the silicon, silicon oxide and silicon

nitride substrates respectively. The thermal treatment outcomes with more pronounced

amorphous part (Figure 4.13) as expected when heating Parylene C above its melting point,

regardless of the cooling rate [83]. The samples treated according to condition 4 and immersed

in KOH for 5 hours, show a neat diffractogramm with the complete disappearance of the

amorphous part. It is indeed known that a solvent can swell the Parylene layer and increase

the mobility of polymer chains which, as a consequence, can lead to a higher cristallinity of

the Parylene.

Figure 4.13: Diffraction patterns (under 2ω/θ geometry) of Parylene films on a silicon nitride
substrate for condition 1 (black curve), condition 2 (red curve), condition 4 (green curve) and
condition 4 after 5 hours in KOH (blue curve).

The above evidences show that KOH swells the recrystallized Parylene layer and changes its

morphology. One expects such swelling to be even more pronounced on a non-recrystallized,

less dense, Parylene layer. This swelling could induce additional stress at the interface which

probably plays a role in the delamination of the layer. The recrystallization evidences pointed

by the XRD were also investigated with optical and AFM microscopes. Figure 4.14 shows

optical and AFM micrographs of Parylene layer before and after thermal treatment. The

non-treated Parylene film has a smooth surface with a roughness of approximately 10nm

(measured on a 10µm×10µm area). The recrystallization induces changes in morphology of

the Parylene. The treated polymer films consist of large domains that can be easily detected

with optical microscope. Size of a domain varies from 20µm to 500µm. Detailed imaging

of a single domain with an AFM shows fiber like structures. The length of the fibers varies

from 200 to more than 1000nm. The diameter of the fibers varies from 30 nm to 40 nm. AFM
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measurements of the Parylene films after exposure to 5h KOH showed no change in the

morphology of the Parylene surface. However exposure to the 25h KOH had influence on

the thickness of the fibers. The fiber diameter decreases to less than 30 nm. Those results

corroborate the XRD measurements.

Figure 4.14: Images showing non treated (condition 1) and recrystallized (condition 3) Parylene
layers on the left (images a, c and e) and right column (images b, d and f) respectively. Images
a) and b) show an optical image. Images c) and d) are AFM images on a 100µm×100µm scan
area and images e) and f) are AFM images on a 1µm×1µm scan area. The images reveal that
the recrystallization changes the morphology of the polymer. The AFM images reveal a fiber
like structure that cluster into domains whose size vary between 20µm to 500µm (AFM and
optical microscopy).

The scratch tests3 were used to compare the adhesion of our layers. Figure 4.15 shows the

average rupture load values for each sample. The rupture load corresponds to the load at the

time of the film rupture (when the acoustic signal reaches an abrupt peak). The scratch tests

were used to compare the adhesion of our layers. As mentioned in Section 2.3.2, those values

should not be regarded as absolute as the scratch test method is designed for measuring the

adhesion of a hard coating on a softer substrate. They give however comparative information

between the different samples and conditions. The rupture load values are comparable

on each substrate for identical conditions. However, one can clearly see that the thermal

3Work was done by group of Prof Herbert Keppner, HE–ARC, Switzerland
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treatment (condition 3 and 4) leads to a higher rupture load of the Parylene layer on all

substrates. It seems also that the KOH treatment, be it 5 or 25 hours, do not change the rupture

load significantly.

Figure 4.15: Graphs showing the rupture load for samples treated according to conditions 1-4
and on samples treated according to condition 4 after 5 or 25 hours KOH exposure. The height
of the bar represents the average value of the rupture load and the error bars represent the
maximum and minimum values measured (taken on 3 or 4 samples).

The images of the indentation give also invaluable information about the various treatments

and complement the information obtained by the rupture load. From those pictures, we

can define two distinct parameters that give information about a) the mechanical properties

of the layer (i.e. internal cohesion forces) and b) the adhesion between Parylene and the

substrate (i.e. interfacial adhesion forces). Figure 4.16 shows the beginning and the end of

the indentation for a Si3N4 substrate treated according to all 4 conditions. The silanization

increases the interfacial adhesion force (i.e. the adhesion between the layer and the substrate).

It can be seen by the smaller delamination area of Figure 4.16b) (condition 2), compared to

Figure 4.16a) (condition 1) while the thermal treatment increases both the internal cohesion

forces (i.e. the internal forces of the layer due to a higher crystallinity) and the interfacial

adhesion force. On Figure 4.16c) one cannot see delamination outside of the indentation area

whereas it is the case for condition 1 (Figure 4.16a)) Therefore, comparatively, the adhesion has

improved with the thermal treatment. In addition, unlike condition 2 (Figure 4.16b)) where the

silanisation has improved the adhesion also, the Parylene layer is not torn apart, but ripples

at the end of the indentation. This confirms that the mechanical properties of the layer were

improved by the treatment. The combination of the silanization with the thermal treatment

improves both the interfacial and internal cohesion forces as can be seen on Figure 4.16d).

Based on the XRD measurement, AFM characterization and scratch test, it can be concluded

that the thermal treatment is the main factor preventing the delamination of the Parylene
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Figure 4.16: Images of the position of the rupture load (top) and the end (bottom) of the
imprints after a scratch test measurement on a Si3N4 sample. a) shows the imprints for
condition 1, b) condition 2, c) condition 3 and c) conditions 4.

layer exposed to KOH. The thermal treatment enables to densify the layer so as to prevent

the KOH from penetrating through the layer for at least 5 hours. However for longer exposure

time, as suggested by the XRD and AFM data, the morphology of the film changes which

indicates a swelling and a penetration of KOH through the layer. The combination of the

thermal treatment with the silanization (condition 4) improves the adhesion of the layer and

delays the delamination. As a result parylene treated according to condition 4 can be used as

a mask for KOH etching.

4.2.3.2 Testing of the 3D mask

The final test was dedicated to prevent KOH from entering into microfluidic channels during

5h of wet etching. Figure 4.17 shows an example of a channel at different process steps.

Figure 4.17a) shows channel after Parylene deposition and treatment according to condition

4. The detailed view of the inlet shows that Parylene has entered and blocked the entrance.

Figure 4.17b) shows a channel after 5h hours in KOH. It can be seen that the Parylene has

prevented the KOH from entering inside the channel. Analysis of all the tested channels

showed that 96% of them were still protected from the KOH.

After the KOH etching and analysis of the channel an assessment was made to remove the

Parylene from the sample. Since Parylene is extremely resistant to most chemicals, an O2
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Figure 4.17: Optical images and details (inset) of a microfluidics channel (height 1.2µm) seen
through the transparent Pyrex slide. Image a) shows a channel after Parylene deposition and
recrystallization We can clearly see that Parylene has entered approximately 200µm into the
channel and is still here, unaffected after 5 hours KOH exposure (image b).

plasma was used to etch the mask. However, improved properties of the Parylene mask made

it harder to remove the polymer with an O2 plasma during 90 minutes at 500 W and base

pressure of 0.7 mbar. Figure 4.18a) shows inlet of the channel with small residues. Additional

exposure to O2 plasma for 150 minutes has not enabled the complete removal of Parylene

residues in the channels. To remove the residues a thermal oxidation was used. It has been

shown [85] that thermal oxidation of Parylene leads to chain scission. Therefore a thermal

treatment at 700 ◦C during 2 hours (in an air atmosphere) was performed. This treatment

enabled to remove all residues from inside the channel as can be seen in Figure 4.18b). The

probable chain scission of Parylene by thermal oxidation has probably lead to formation of

CO2 or other volatile chains that escaped from the channels.

Figure 4.18: Images showing residues after first attempt to remove the Parylene mask with and
Oxygen plasma treatment (a). Image b) shows the same channel after a heat treatment that
has removed all the residues.

Presented results of the KOH etching of channels protected with Parylene allow to conclude
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that Parylene treated according to condition 4 can be used as a 3D mask to effectively block

the entrance of a microchannels. It has beem also shown that it is possible to remove the

Parylene afterwards without affecting the microchannels.

4.2.4 Microfabrication results

Once the final microfabrication process was completed, the NADIS probes were characterized

with optical and scanning electron microscopes. Figure 4.19 shows optical micrographs of

the single and double beam probes. The ‘short’ cantilevers (Figure 4.19a)) had a free length in

the range from 120µm to 140µm. The ‘medium’, single beam cantilevers (Figure 4.19b)) had a

free length in the range from 150µm to 180µm, whereas free length of the ‘medium’ double

beam cantilevers varied from 220µm to 320µm. The difference in the release length is due

to the geometry of the design. The ‘long’ cantilevers (Figure 4.19c)) had a free length from

350µm to 400µm. Modification of the fabrication process with critical point drying decreased

the cantilever breakage. However, detailed investigations of the long cantilevers with SEM

revealed small cracks which could cause leakage during the microinjection experiments, and

therefore it was decided not to use them. The extensive rinsing used to eliminate the amount of

KCl residues reduced the number of probes with blocked channels. In total, the modifications

of the microfabrication process decreased the number of broken cantilevers to 8% and the

probes with blocked channels to 5%.

Figure 4.19: Optical micrograph of a) the short, single beam straight cantilever; b) the medium,
single beam oblique cantilever; c) the long, single beam oblique cantilever; d) the medium,
double beam cantilever.

Figure 4.20 shows SEM micrographs of a NADIS probe. The shape of the tip, the square

based pyramid (Figure 4.20a)) was determined by the KOH etching of the (100) silicon wafer.

The height of the tip was approximately 11µm. The radius of the tip apex varied from

25 nm to 50 nm. The cross–sectional view of the tip (Figure 4.20b)) shows its hollow core

that is connected to the fluidic channel.

Figure 4.20c) and d) show cross sectional views of a single and double beam cantilever respec-
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Figure 4.20: SEM micrograph presenting a) top view of the free end of the cantilever with the
tip; b) the cross sectional view of the hollow tip connected to the channel; c) the cross sectional
view of the single beam cantilever; d) the cross sectional view of the double beam cantilever.

tively. The width of the single beam cantilever was 20.6µm; the width of the fluidic channels

was 18.2µm. The double beam cantilever had a beam width of 10.6µm and a channel width

of 8.2µm respectively. The values of the beam and the channel width were varied between

5 % to 10 % across the wafer for both types of probes due to inhomogeneous thermal oxidation.

The height of the probe and the channel depended strongly on the RIE etching process step.

The etching was uneven and therefore resulted in many different heights across the wafer.

The expected height of the channel and the beam was 1.4µm and 3.8µm respectively. The

fabricated height of the channel varied from 2µm to 3.2µm and the beam height varied from

4.4µm to 5.6µm.

4.2.5 Metallization of the AFM probes

Initially, the probes were coated with subsequent layers of chromium, gold and carbon. How-

ever, the coating required several process steps and therefore was not very practical. To

simplify the metallization process the probes were coated with platinum. Platinum thin films

on glass are known to have good reflectance87 and in our case did not require chromium to

promote adhesion. Deposition was made in a simple sputtering process, which was shorter

than gold evaporation. The platinum thickness was approximately 47 nm, similar to the

gold thickness. Platinum has higher density than gold - 21450 kg m−3, while gold’s density
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is 19300 kg m−3. This makes the platinum more resistant during imaging with the ion beam

and during the milling process; hence the protective carbon layer was no longer needed. A

comparison of the two metallization processes is presented in Table 4.5. Figure 4.21 shows

SEM micrographs of AFM tips coated with gold and platinum after the milling process. The

surface of the tip coated with platinum is rougher than the tip coated with gold due to the

larger platinum grains.

Table 4.5: A comparison of two metallization processes.

Gold (Au) Platinum (Pt)

Coating method thermal evaporation sputtering
Adhesion promotion layer Chromium (Cr) -
Film protective layer Carbon (C) - sputtered -
Thickness 45 nm Au + 5 nm Cr 47 nm Pt
Reflectance excellent good

Figure 4.21: SEM micrograph of an AFM tip coated with a) 45 nm of gold and b) 47 nm of
platinum layer.

4.2.6 Fabrication of the tip aperture

The closed NADIS tips described in Section 4.1.1 had a simple circular and square aperture

located at the tip apex for the deposition of liquid on a surface by capillarity. Three further tip

apertures were developed for single cell manipulation: a needle–like aperture (Figure 4.22b))

and two flat apertures, square shaped (Figure 4.22c)) and titled trapezoidal(Figure 4.22d))

apertures.

A needle-like aperture was produced for cell injection. The ellipsoidal opening was located

next to the tip apex in order to retain a sharp tip to break the cell membrane. In this situation

the role of the apex would be to penetrate the cell membrane and help the insertion of the
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tip into the cell. Once the tip is inserted a biomaterial can be delivered into the cell via the

aperture.

Flat apertures were also developed for labelling the cell membrane and other surfaces. Here

the goal was to avoid sharp points that might damage the membrane and to bring the aperture

into very close contact with the membrane to minimise leakage of liquid and label into the

surrounding environment. The first aperture that was produced was a square aperture. This

fulfils the criteria of removing sharp points from the tip. However, because of the 10° angle

of the AFM cantilever from the horizontal it does not bring the aperture into perfectly close

contact with a flat surface. For this reason, a tilted trapezoid aperture was designed and

fabricated. This aperture compensates the 10° tilt caused by the AFM holder (since the tip was

milled at −10° in reference to the tip base). In this case the tip could be brought in contact

with a sample and deposit material only at the restricted, by the geometry of the tip aperture,

contact area with the sample.

Figure 4.22: Schematic drawings of a NADIS tip with a) a circular aperture at the tip apex,
brought in contact with the cell membrane to deposit biomolecules; b) a needle-like aperture
located next to the apex, to use the sharp tip to penetrate the cell membrane and deliver
molecules into the cell; c) a flat square shaped aperture to label the cell membrane d) a tilted
trapezoidal aperture, which allows a perfectly flat contact with the membrane.

4.2.6.1 Milling the apertures

A standard FIB holder was used to mill the aperture tip with an ion beam perpendicular to the

base of the pyramidal tip. This configuration allowed the milling of the tip from the top and

it could create circular and needle like apertures. However, the holder could not be used to

position the AFM tip so as to mill the pyramid from the side as was required to fabricate flat

apertures (both square and trapezoidal). To fabricate these apertures a new FIB holder was

developed (Figure 4.23a)).

The new FIB holder had one face tilted at 45°. The AFM chips were fixed to the face of the

holder with the tips pointing upwards. By using the different rotation and tilting angles
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Figure 4.23: Schematic drawings of the new FIB holder. The AFM chips are fixed to the inclined
face of the holder (the tips pointed upwards) to mill the apertures with the ion beam tilted
at different angles with respect to the base of the tip a). Configuration of the tip vs. the ion
beam to fabricate: the needle-like aperture b); the flat square shaped aperture c); and the
tilted trapezoidal aperture d).

of the FIB stage the pyramidal tips were milled when the ion beam was 1) perpendicular

(Figure 4.23b)), 2) parallel (Figure 4.23c)) or 3) tilted at −10° with respect to the base of the tip

(Figure 4.23d)).

The process parameters used to mill the apertures were adapted from the fabrication of closed

NADIS probes. The angle of incidence depended on the type of aperture. Table 4.6 gives a

summary of the process parameters used for fabrication of the tip openings.

4.2.6.2 Results

When the beam was perpendicular to the base of the tip, the tip was milled from the top and

circular and needle like apertures were created (Figure 4.24a)-d)). By milling the tip apex with

a parallel ion beam the tip apex could be removed, creating a flat square shaped aperture
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Table 4.6: A comparison of two metallization processes.

Parameter Value

Ion beam current I = 30pA
Acceleration voltage U = 30kV
Dwell time t = 500ns
Beam Overlap 50 %
Angle of incidence Θ= 0° when milling circular openings

Θ= 35° when milling flat square openings
Θ= 45° when milling tilted trapezoidal openings
Θ= 55° when milling needle-like openings

(Figure 4 e)-h)). When the ion beam was tilted -10° relative to the base of the tip the tip apex

was developed by an oblique plane and a tilted trapezoid shaped aperture was created (Figure

4 f)-l)).

Different sizes of the apertures were fabricated. Typically the circular opening was 200 nm in

diameter; the needle-like opening usually had a 200 nm long semi–minor axis; and 600 nm

long semi–major axis, the flat square-shaped aperture was 500 nm×500 nm in size; the tilted

trapezoidal aperture had long and short bases 500 nm and 300 nm in length respectively, and

the legs were 400 nm long.

Fabrication of the needle like aperture revealed problem of uneven tip sharpness. Figure 4.25

shows SEM micrographs of two tip apexes with different radii after the metalization step.

Figure 4.25a) shows an AFM tip with an approximate tip radius of 75 nm and Figure 4.25b)

presents a tip with an approximate tip radius of 100 nm.

4.2.7 Discussion

The fabrication of the NADIS probes for microinjection into living cells was based on the

fabrication process of the 2nd generation NADIS probes. Two main modifications were

introduced to the fabrication process: The extensive rinsing of the wafer under the vacuum

after the KOH etching step significantly decreased the contamination problem, such that it

now affected just 5% of the cantilevers. The second modification introduced a critical point

drying step to prevent the long cantilevers from breakage. Unfortunately, the long cantilevers

still had cracks and could not be used. The origin of these cracks is not yet fully understood.

Fabrication of the needle like aperture revealed two fabrication problems. The first problem

was the uneven sharpness of the tip apex presented in. The fabrication process of the first

design of the NADIS probes had the same uneven tip sharpness, but since the tip apexes

were removed to create a circular opening, the problem did not exist. However in the present

fabrication of the NADIS probes, the aperture is located next to the tip apex, in order to use the

apex to break the membrane of the living cell. An uneven sharpness of the tip apex will cause
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Figure 4.24: Schematics of the tip–ion beam configuration. The ion beam (i.b.) is perpendicular
to the base of the tip a). SEM micrographs b-c) show the NADIS tip with the needle-like
aperture from the side and d) from the top. Figure e) shows changed configuration for milling
the flat square shaped apertures. The ion beam is parallel to the base of the pyramidal tip
so the tip apex is removed from the side. SEM micrographs shows f) the NADIS tip with the
aperture seen from the side, g) a closer look at the flat apex and h) top view of the aperture.
Figure i) shows configuration for milling with the beam tilted to −10° in reference to the base
of the tip. In this case the beam removed the apex creating an oblique plane with a trapezoidal
aperture j–l).

discrepancies during the cell membrane penetration. The radius of the tip apex varies from

25 nm to 50 nm after the fabrication of the wafer. After the metalization step, when the tip is

coated with 47 nm thick platinum the final values of the radius varies from 75 nm to 100 nm.

The second important problem was encountered during the FIB milling process. In the first

part of this fabrication step the ion beam is adjusted (focus and astigmatism) and the milling

pattern is positioned next to the apex. This whole procedure is manual and its accuracy

depends on user experience. Due to the inaccuracy in the beam adjustment the length of the

semi–minor axis of the ellipsoidal opening varies from 190 nm to 250 nm. This can cause a

variation in the amount of delivered material into the cell. The position of the milling pattern

is even more critical. The milling pattern has to be positioned close to the tip apex, so when

the apex penetrates the cell membrane a part of the tip with the opening can be inserted into

the cell (Figure 4.26b)). When the aperture is too far away from the apex (Figure 4.26a)) it

might not fit inside the cell. However, if the milling pattern is positioned too close to the apex

(Figure 4.26c)), the apex might be partially destroyed by the ion beam and the tip might not be
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Figure 4.25: SEM micrograph presents a) a tip apex with 75 nm radius; b) a tip apex with
100 nm radius.

sharp enough to penetrate the cell.

Figure 4.26: SEM micrograph of a tip with a) the aperture positioned too far away from the
apex; b) positioned correctly; c) positioned too close and the apex was destroyed by the ion
beam milling..

4.3 Summary

The fabrication of the NADIS probes for microinjection into living cells was based on the

fabrication process of the second design of the NADIS probes. Several modifications of the

NADIS chip and the cantilever design were introduced. The width of the chip was increased

and the number of reservoirs was reduced in order to ensure good closed channel between

the chip and the fluidic system of the AFM holder. The cantilevers had single or double beams

and three lengths: short (from 120µm to 140µm), medium (single beam: 150µm to 180µm;

double beam: 220µm to 320µm) and long (350µm to 400µm). Two main modifications in-

troduced to the microfabrication process allowed to successfully fabricate single and double

beam probes with cantilever length up to 320µm.

The fabrication of the NADIS chips with the cantilevers was on the wafer scale, whereas the

fabrication of the tip apertures was on a single chip level. Three new types of tip apertures

were proposed: the needle like tip designed for delivery of molecules inside the living cells;

the square shaped aperture and the titled trapezoid shaped aperture for labeling the cell
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membrane and other surfaces. The fabrication of the last two apertures was possible due to

the design and fabrication of a new FIB probe holder, which allows milling of the tips from

different sides.
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5 AFM – based microinjection system:
assembly and characterization

This chapter discusses the assembly of the system, the spring constant of the NADIS probes,

filling of the system with liquid, liquid expulsion and flow of fluids through the system. The

system specifications are extensively discussed. Finally, based on the specifications, injection

parameters are determined.

5.1 Assembling of the system components

The AFM–based microinjection system was built based on the NADIS probe, AFM probe holder

with fluidic channels and four commercially available components: the NanoWizard® AFM

microscope, the inverted microscope Axiovert 200, the JPK PetriDishHeater and the pressure

pulse generator – PM8000 Injector (details of these products are outlined in the Section 2.4.1).

Figure 5.1 presents the complete system. The NADIS probe is first placed on the AFM probe

holder and mounted on the AFM microscope. The microscope is then placed on the top of the

inverted phase contrast microscope such that the NADIS probe is located inside a Petri dish

held by the Petri dish heater. The Petri dish heater has an opening in the middle which is used

for optical access by the inverted microscope to visualize the cells and control the position of

the NADIS probe inside the Petri dish.

The development and fabrication of the NADIS probe was extensively described in the previous

chapter. To mount the probe on the AFM microscope and connect its fluidic channels to the

microinjector, an AFM holder with fluidic channels was developed. The geometry of the holder

is based on the geometry of a standard AFM holder used for the given AFM microscope. Since

the NADIS probe consists of single or double channels, the AFM probe holder was designed

to incorporate two fluidic channels. The outlets of the channels are on the top of the holder,

where the NADIS probe is to be placed, and the inlets are positioned at the side of holder.

Connectors were mounted to the inlets so that flexible tubes could be connected to the holder

channels (Figure 5.2).

For the NADIS probe with a single channel, only one channel of the AFM holder is used. To
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Figure 5.1: a) Shows entire system where the AFM microscope is placed on the top of the
inverted phase contrast microscope. Inside the AFM microscope an AFM probe holder with the
NADIS probe is mounted. The probe holder is connected with elastic tube to the microinjector.
b) A detailed view on the AFM probe holder. The holder is mounted inside the AFM microscope
from the top. The bottom of the probe holder with the NADIS probe is inserted inside the Petri
Dish, where the Petri Dish is placed in the Petri Dish heater (not shown). There are two fluidic
connectors coming out from the holder from which one is connected to the microinjector via
the tube. c) Top view of the Petri Dish with the Petri Dish heater. The heater has an opening in
the middle through which a lens from the inverted phase contrast microscope has an access
to the bottom of the Petri Dish.

attach the NADIS probe to the holder and to ensure a sealed connection between the probe

and the holder channels a biocompatible double-sided tape was used (Figure 5.3).

Once the probe is mounted on the holder, placed on the AFM microscope and connected to

the microinjector, the system is ready to be used. In order to work with the system, further

information about its properties is required.

5.2 Characterization of the system

During the cell injection experiments, the NADIS tip will first penetrate the cell membrane.

When inserted inside the cell, an aqueous liquid can be injected. To control the interaction

forces between the tip and the cell, the spring constant of the cantilever has to be known. To

control the liquid delivery passing into the cell, details on filling of the probe, flow of the liquid

through the probe as well as volume control of the ejected liquid is required.
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5.2. Characterization of the system

Figure 5.2: a) Design of the AFM holder with two fluidic channels. The inlets of the channels
are on the side and the outlets on the top of the holder, where the NADIS probe will be placed.
b) Top view and c) bottom view of the holder with mounted connectors for the flexible tubes.

5.2.1 Calibration of the spring constant of the NADIS cantilevers

The spring constant was measured using the cantilever-on-cantilever (COC) method [86–88].

The COC is a static deflection method using a reference cantilever with a well-defined spring

constant and a test cantilever with unknown spring constant. The principle of this method is

to measure the deflection of the test cantilever pushed against the reference cantilever as a

function of the AFM stage displacement. The accuracy of this method is reported to vary from

5 % to 30 % [86–88].

Table 5.1 shows the measured values of the spring constant for two fabricated cantilever

types, the single beam and the double beam. The single beam cantilevers had either short or

medium length. The measured post-fabrication cantilever length of 50 randomly chosen short

single beam cantilevers varied from 120µm to 140µm. The spring constant of these probes

varied from 14.3 N m−1 for 120µm long cantilevers to 7.8 N m−1 for 140µm long cantilevers.

The double beam cantilevers had one type of the cantilever length – the medium type. The

measured post-fabrication cantilever length of 50 randomly chosen double beam cantilevers

varied from 220µm to 320µm. The spring constant of these probes varied from 3.2 N m−1 for

220µm cantilever length and 1.4 N m−1 for the 320µm cantilever length.

Table 5.1: Measured values of the spring constant for a single and double beam type cantilevers.

Type of the cantilever Free length [µm] Measured spring constant k [N m−1]

Single beam short 120-140 14.3 – 7.8
Single beam medium 150 -180 5.8 – 4.2
Double beam medium 220-320 3.2 – 1.4

Stiffness of the fabricated cantilevers is higher compared to the stiffness evaluated in the

design (Section 3.2). The difference is caused by two factors: the free length of the cantilever
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Figure 5.3: a) The AFM holder with the double–side tape. The tape has two openings for the
outlets of the holder channels. b) The NADIS probe is placed on the tape in a way so the
openings in the tape and the NADIS reservoirs are aligned.

and the cantilever height. The fabricated length of the cantilevers was shorter than expected

for the single beam cantilevers. The expected free length of the single beam cantilevers

was in the range from 115µm to 215µm for the short type and from 215µm to 315µm for the

middle type. The expected free length of the double beam cantilevers was in the range from

215µm to 315µm and it was in accordance with the designed values. However, the stiffness

of these probes is higher than predicted. This is due to the second factor – the cantilever

height. In the design, the height of all the cantilever types was 3.8µm, while the height of the

fabricated probes is larger and varies from 4.4µm to 5.6µm. As explained in Chapter 3 this

variation arose from inhomogeneous dry etching along the wafer.

For the proof-of-concept microinjection experiment, NADIS probes with single beam can-

tilevers were chosen. Based on the measured values of the cantilevers spring constant, this

choice was limited to single beam medium type probes. In next section, characterization of

fluid flow through this probe is described.

5.2.2 Filling of the system with liquid

Once the cantilever stiffness is calibrated the system is filled with an aqueous liquid. To fill the

system, the flexible tube attached to the microinjector is first pre-filled (the liquid is aspired

into the tube by means of an underpressure) and then connected to the AFM holder. When

a pressure is applied to the system, the AFM holder channel is filled first before the NADIS

probe. To control if the probe is correctly filled, the resonance frequency of the cantilever is

measured during the process.

By measuring the resonance frequency of the cantilever, a decrease in its frequency value
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should be observed once the cantilever channel is filled based on the following equation [89]:

ϑ= 1

2π
·
√

c

me f f +ml
(5.1)

where, k is the cantilever spring constant, me f f is the effective mass of an oscillating cantilever

calculated as 23% of the cantilever mass, and ml is the 23% value of the liquid mass inside the

cantilever.

While the probe is being filled, the resonance frequency of the cantilever decreases until the

channel and the tip are completely filled with liquid. To analyze how much the resonance

frequency will decrease, 15 medium, single beam probes were filled with liquid. The average

decrease in the cantilever resonance frequency after being filled with liquid was measured

to be (26±9) kHz. Table 5.2 shows measured values for individual cantilevers and Figure 5.4

shows an example of a measured decrease in the resonance frequency for the first probe.

Table 5.2: Resonance frequency measurements of the NADIS probe before and after being
filled with liquid. The average decrease in resonance frequency is (26±9) kHz

Probe number Resonance frequency ϑ [kHz] for Difference ϑ [kHz]
Empty probe Filled probe

1 118 90 28
2 130 95 35
3 102 76 26
4 93 70 23
5 104 82 22
6 118 86 32
7 124 94 30
8 121 100 21
9 94 72 22

10 116 99 17
11 144 114 30
12 77 59 18
13 127 99 28
14 131 96 35
15 87 65 23

The obtained average decrease in resonance frequency (26±9) kHz was used to indicate if the

probes were correctly filled with liquid. When the decrease was much lower than the average

value, the probes were usually found to be blocked with residues or gas bubbles.
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Figure 5.4: Measurement of the resonance frequency of a NADIS cantilever. When the can-
tilever channel is filled with liquid the resonance frequency is shifted to lower value.

5.2.3 Characterization of the fluid flow through the system

The goal of the flow characterization was to investigate whether the basic theoretical model

can predict the behavior of the fluids in the fabricated system. The fluid flow was deter-

mined experimentally and the results were compared with the theoretical model based on the

Navier–Stokes equation.

The theoretical flow of liquids through the system was described with the conventional theory

in Chapter 3. By applying a constant pressure gradient ∆p to the system, a steady state flow Q

can be generated according to the Hagen–Poiseuille law:

∆p = Rhyd ·Q (5.2)

where, Rhyd is the hydraulic resistance of the system, depending on the system geometry and

liquid viscosity. The theoretical discussion showed that the hydraulic resistance of the system

is entirely determined by the hydraulic resistance of the NADIS probe (outlined in Chapter 3,

Section 3.4.2).

Experimentally, the hydraulic resistance of the NADIS probe was determined by measuring
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the volumetric flow rate as a function of applied pressure through the fluidic system of the

probes. The experimental apparatus is presented schematically in Figure 5.5. It consists of

a microinjector connected to an optically transparent glass tube with an inlet to supply the

liquid. The glass tube is then connected to a polymeric adapter with the NADIS probe. The

flow measurements were based on an optical measurement technique described by Richter et

al. [90]. The system with the glass tube was placed under an optical microscope connected to

a CCD camera and a computer. The flow rate in the glass tube was measured by volumetric

discharge of the fluid through the NADIS system as a function of time (details outlined in

Chapter 3, Section 2.4.3).

Figure 5.5: Schematic of the experimental apparatus.

Pressure losses in the connectors and the glass tube were estimated to be a small fraction

of the total pressure drop. The exit pressure was assumed to be equal to the atmospheric

pressure. Before each measurement a number of readings were taken to verify that the flow is

reasonably steady. The measurements were taken for monotonically increasing pressure. First,

the results will be presented in the plot as a function∆p(Q). Based on the linear approximation

of the measured values, the hydraulic resistance Rhyd is determined. Further, the results are

analysed through the Reynolds number Re defined as [91]:

Re = ρQdh

Acη
(5.3)

where, ρ is the fluid density, Q is the liquid flow, dh hydraulic diameter of the channel calcu-

lated as four times cross-section of the channel divided by its whetted perimeter, Ac is the

cross-sectional area of the channel and η is the fluid viscosity.

And the entrance length Le , the length of the channel required to achieve fully developed flow,
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defined as:

Le = 0.06Redh (5.4)

The fluid flow was measured for two cases: first, for a NADIS probe without a tip and with an

embedded rectangular channel (Figure 5.6a)), and second, for a NADIS probe with a tip and a

complete fluidic system consisting of the channel connected to the hollow tip including an

opening (Figure 5.6b)).

Figure 5.6: Schematic drawing of a) NADIS probe without tip with embedded rectangular
channel, b) NADIS probe with a tip and fluidic system consisting of embedded channel
connected to hollow tip with an opening.

5.2.3.1 Flow measurments of gas

First, the flow of nitrogen (N2) through the NADIS probes was measured. To trace the move-

ment of the N2 in the glass tube, a thin column of deionized water was introduced into the

glass tube via the liquid inlet. The flow of gas was measured based on the displacement of the

thin water column as a function of time. The hydraulic resistance of the water column was

negligible.

Figure 5.7 presents a graph showing the measured and calculated dependency ∆p(Q) of

nitrogen gas flowing through the NADIS probe without the tip. The size of the rectangular

channel embedded inside the probe was: 1200µm in length, 23.8µm in width and 3.2µm in

high. For the calculation, a nitrogen viscosity of ηN2 = 17.81×10−6 Pa s at 25 ◦C was used. For

the applied pressure ranging from 2×104 Pa to 1×105 Pa, the measured flow values varied

from 51 nL to 285 nL. The measured values were in close proximity to the theoretical values

and could be approximated with a linear model.

From the linear fit, the hydraulic resistance was extracted and compared with the theoretical

value. Table 5.3 shows the comparison. It can be seen that the values are in a very good

agreement.

Based on the measured flow values, the Reynolds number was calculated to be in the range of

0.2 < Re < 1.5, and the entrance length was in the range of 82 < Le < 468nm. The values of the

Reynolds number show that the flow is laminar. A comparison of the entrance length with
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Figure 5.7: Theoretical and measured flow values for rectangular channel of the NADIS probe
without the tip. The experimental values were approximated with a linear model.

Table 5.3: Comparison of theoretical and measured values of hydraulic resistance for the
NADIS probe without the tip.

Hydraulic resistance Theoretical Rc Experimental Rm

Values [Pa s m−3] 3.29×1014 3.27×1014

the length of the channel shows that the flow was fully developed. Also the Knudsen number

K n was calculated to investigate if, for the absolute pressure range considered (105 <∆p <
2×105 Pa), behavior of nitrogen falls well inside the Navier–Stokes equation regime [92]. The

calculated values were in the range of 0.032 > K n > 0.016, which verifies that the nitrogen

behavior can be described by the Navier– tokes equation.

In addition, the flow of nitrogen trough the NADIS probes with the tip was measured. The tip

had a square opening of 6µm×6µm measured with SEM. The size of the rectangular channel

was assumed to have the following values: length L = 1200µm, width w = 23.8µm and height

h = 2.6µm. Figure 5.8 presents the measured and theoretical values of the flow. The measured

flow was in the range of 72 < Q < 418nL and was higher than predicted by the theoretical

model.

Approximation of the measured flow values with a linear fit allowed extraction of the hydraulic

resistance value. Table 5.4 shows a comparison between the experimental value of the hy-

draulic resistance with the theoretical value. It can be seen that the measured values are

approximately 3 times smaller than the theoretical values.

The flow of nitrogen trough the square 6µm×6µm tip opening with a wall length of 0.15µm

was described by Reynolds number Re and entry length Le . The Reynolds number varied
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Figure 5.8: Theoretical and measured flow values for NADIS probe with the tip. The tip had a
square 6µm×6µm opening. The experimental values were approximated with a linear model.

Table 5.4: Comparison of theoretical and measured values of hydraulic resistance for the
NADIS probe with 6µm×6µm tip opening.

Hydraulic resistance Theoretical Rc Experimental Rm

Values [Pa s m−3] 6.13×1013 2.35×1014

from 0.78 < Re < 4.56 depending on the flow value, which suggests laminar flow through the

opening. The entry length was in 0.27 < Le < 1.55µm range, which was larger than the 0.15µm

length of the opening, indicating that the flow through the tip opening was not fully developed.

The Knudsen number was in 0.03 > K n > 0.02 range, which falls inside the Navier-Stokes

equation regime [92].

As a next step, flow of nitrogen through NADIS probes with circular openings of 1.78µm in

diameter was measured. The size of the rectangular channel was assumed to have the following

values: length L = 1200µm, width w = 23.8µm and height h = 2.6µm. The flow measurements

of the N2 was unsuccessful as the flow was decreasing in time for a constant pressure. This

problem did not occur when the N2 was replaced with carbon dioxide (ηCO2 = 14.5×10−6 Pa s

at 20 ◦C). Figure 5.9 presents measured and theoretical flow values for the pressure ranging

from 2×104 Pa to 1×105 Pa. The measured flow was in the range from 81 < Q < 312nL and

was higher than the theoretical values.

The measured flow values were fitted with a linear model to extract the value of the hydraulic

resistance. Table 5.5 shows comparison between the theoretical and experimental values of

the hydraulic resistance. It can be seen that the measured values are approximately 2 times

smaller than the theoretical values.
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Figure 5.9: Theoretical and measured flow values for NADIS probe with the tip. The tip had a
circular opening of 1.78µm in diameter. The experimental values were approximated with a
linear model.

Table 5.5: Comparison of theoretical and measured values of hydraulic resistance for the
NADIS probe with 1.78µm diameter tip opening.

Hydraulic resistance Theoretical Rc Experimental Rm

Values [Pa s m−3] 5.08×1014 2.35×1014

The flow of carbon dioxide through the circular tip opening with a wall length of 0.15µm was

described by Reynolds number Re and entry length Le . The Reynolds number varied from

3.8 < Re < 14.6 depending on the flow value. The range of the Reynolds number falls in the

laminar flow regime. The entry length was in 1.28 < Le < 4.9µm range, which shows that the

gas flow through the 0.15µm long and 1.78µm in diameter circular opening was not fully

developed. The Knudsen number values were in 0.032 > K n > 0.016 range for the absolute

pressure range of 105 <∆p < 2×105 Pa, which falls inside the Navier–Stokes equation regime

[92].

Finally, the flow of carbon dioxide trough a NADIS probe with 200 nm in diameter tip opening

was measured. The size of the rectangular channel was assumed to have following values:

length L = 1200µm, width w = 23.8µm and height h = 2.6µm. Figure 5.10 presents the mea-

sured and theoretical values of the flow for the pressure varying from 1×104 Pa to 2×105 Pa.

The measured flow values were in the range from 0.7 <Q < 14.8nL and were higher compared

to the theoretical values.

The measured flow values were approximated with a linear model to extract the hydraulic

resistance value. Table 5.6 shows a comparison of the theoretical and experimental values of

the hydraulic resistance. It can be seen that the measured values are 5 times smaller than the
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Figure 5.10: Theoretical and measured flow values for NADIS probe with the tip. The tip had a
needle like opening of 0.2µm in diameter. The experimental values were approximated with a
linear model.

theoretical values.

Table 5.6: Comparison of theoretical and measured values of hydraulic resistance for the
NADIS probe with 0.2µm diameter tip opening.

Hydraulic resistance Theoretical Rc Experimental Rm

Values [Pa s m−3] 5.59×1016 1.15×1016

The flow of carbon dioxide trough the 200 nm diameter tip opening was described by Reynolds

number Re and entry length Le . The Reynolds number varied from 0.3 < Re < 6, which falls

into the laminar flow regime. The entry length was in the range of 0.1 < Le < 2.1µm. The wall

length of the tip opening has 0.15µm which suggests that for the smallest applied pressure of

1×104 Pa the flow was fully developed after 0.1µm. However, for the higher pressure values,

the calculated entrance length was larger than the length of the opening, indicating not fully

developed flow. The Knudsen Number values calculated for the absolute pressure range

1×105 Pa to 3×105 Pa were 0.29 > K n > 0.09, which shows that the gas behavior falls into the

transition regime and should be described with the Burnett equation [92].

In general, the flow of gas trough a rectangular channel of a NADIS probe without the tip was in

very good agreement with the theoretical model. Calculation of the Reynolds number and the

entrance length showed that the flow was laminar and fully developed. Flow measurements

of gas trough a rectangular channel connected to a tip with an opening had few times higher

values than predicted by the theory. The gas flow through the tip openings was not fully

developed.
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5.2.3.2 Flow measurements of liquid

Since aqueous liquids are desired for the cell injection, the flow of deionized and filtrated

water was measured.

The water flow was first measured through 3 NADIS probes without tip. The flow measure-

ments were carried out in an ambient atmosphere and each system was first flushed with

nitrogen before water was introduced. The 3 NADIS probes had a similar length of 1200µm and

width of 23.8µm. The height of the first cantilever was 3.2µm, the second 3.0µm, and the third

3.2µm. For the calculations, a water viscosity of ηH2O = 1.002×10−3 Pa s at 20 ◦C was consid-

ered. Figure 5.11 presents a plot showing the measured and calculated flow values for pressures

ranging from 2×104 Pa to 2×105 Pa. For the first probe, the measured flow values varied from

3.6 nL to 20.4 nL over the pressure range of 2×104 <∆p < 2×105 Pa. For the second probe, the

flow values varied from 3.0 nL to 16.7 nL over the pressure range of 2×104 <∆p < 17.2×104 Pa,

and for the third probe, the flow values varied from 4.5 nL to 26.5 nL over the pressure range of

2×104 <∆p < 13.7×104 Pa. For all the 3 probes, the measured values were higher than the

theoretical values.

Figure 5.11: Theoretical and measured flow values for 3 NADIS probe without the tip. The
experimental values were approximated with a linear model.

The measured flow values were approximated with a linear model to extract the values of

the hydraulic resistance for each of the 3 probes. Table 5.7 shows comparison between

the theoretical and experimental values of the hydraulic resistance. It can be seen that the

measured values are approximately 2 to 3 times smaller than the theoretical values.

The water flow through the 3 probes was characterized by the Reynolds number and the

entrance length. Table 5.8 presents summary of the Reynolds number values and the entrance

length values together with the measured flow values for a given pressure range for each probe.
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Table 5.7: Comparison of theoretical and experimental hydraulic resistance values for the 3
NADIS probes without the tip.

Hydraulic resistance 1 2 3

Theoretical Rc [Pa s m−3] 18.5×1015 22.5×1015 18.5×1015

Experimental Rm [Pa s m−3] 9.3×1015 10.5×1015 5.2×1015

Table 5.8: ]

[Summary of the measured flow, Reynolds number and entrance length]Summary of the
measured flow values, Reynolds number values and entrance length values for a given

pressure range for each probe.

Probe 1 2 3

Pressure range ∆p[Pa] 2×104 to 2×105 2×104 to 17.2×104 2×104 to 13.7×104

Flow range Q [nL s−1] 3.6 to 20.4 3.3 to 16.7 4.5 to 26.5
Reynolds number Re 2×10−4 to 1×10−3 2×10−4 to 1×10−3 3×10−4 to 2×10−3

Entrance length [µm] 0.09 to 0.5 0.07 to 0.4 0.11 to 0.66

The Reynolds number values and the entrance length values show that the water flow in the

rectangular channels is laminar and fully developed. In next step, water flow measurements

through a NADIS probe with square 6µm×6µm tip opening was measured. The size of

the rectangular channel was assumed to have following values: length L = 1200µm, width

w = 23.3µm and height h = 2.6µm. However, the measured flow decreased with time when a

constant pressure was applied. In order to measure the flow of water in these systems, two

modifications were introduced: the probes were pre-filled with carbon dioxide and the water

was de-gassed. Carbon dioxide dissolves in water which decreases probability of gas bubble

nucleation in the channels. These modifications allowed the water flow to be measured.

Figure 5.12 presents a graph with the theoretical and experimental flow values measured

for pressure range (2×104 <∆p < 2×105 Pa). The measured flow varied from 0.2 nL to 6 nL

depending on the applied pressure. The values were higher compared to the values calculated

from theory.

The measured flow values were fitted with a linear model to extract the value of the hydraulic

resistance. Table 5.9 shows a comparison between the theoretical and experimental values of

the hydraulic resistance. It can be seen that the measured value is 0.7 times smaller than the

theoretical values.

Table 5.9: Comparison of theoretical and measured values of hydraulic resistance for the
NADIS probe with 6µm×6µm tip opening.

Hydraulic resistance Theoretical Rc Experimental Rm

Values [Pa s m−3] 45.1×1015 32.5×1015
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Figure 5.12: Theoretical and measured flow values for NADIS probe with the tip. The tip had a
square 6µm×6µm opening. The experimental values were approximated with a linear model.

Table 5.10 presents a summary of the flow values, the Reynolds number values and the entrance

length values for water flowing through the tip opening with a wall length of 0.15µm.

Table 5.10: Summary of the measured flow values, Reynolds number values and entrance
length values for water flowing through the square 6µm×6µm tip opening with a wall length
of 0.15µm

Pressure range Flow range Reynolds number Entrance length
∆p [Pa] Q [nL s−1] Re Le [µm

2×104 to 2×105 0.2 to 6 3×10−5 to 1×10−3 0.01 to 0.3

The Reynolds number values and the entrance length values show that the water flow in

the rectangular channels is laminar and fully developed. Next, measurements of the water

flow through a NADIS probe with circular tip opening of 1.78µm in diameter was assessed.

Again, the measured flow decreased with time for a constant applied pressure. The introduced

modifications: pre-filling with carbon dioxide and water de-gassing did not improve the flow

stability. A similar situation was observed for NADIS probes with 0.5µm and 0.2µm diameter

tip openings. Since the flow measurement required longer lasting measurements, it is possible

that the gas bubbles plugged the system and prevented the measurements. Therefore, the

water flow measurements through these probes were abandoned.

All the successfully measured flow values for the 3 NADIS probes without the tip and for the

NADIS probe with square 6µm×6µm tip openings were higher than predicted by the theory.
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5.3 Control of ejected liquid volume

During the concept study (Chapter 3) of the liquid delivery into living cells, two main advan-

tages of using an AFM-based injection system over standard microinjection were determined:

control of the tip-cell membrane interactions during cell penetration and control of the

amount of liquid delivered into the cell.

In the first approach, it was assumed that aqueous based solutions will be injected into

the cytosol, which mainly consists of water (thus injecting water into water). As the liquid

delivery is generated by an external pressure, the amount of ejected liquid from the tip opening

depends on the pressure value and the ejection time (the length of the pressure pulse). In

order to determine range of values for the two parameters several assumptions have been

made:

1. injected liquid is not impeded by cell organelles;

2. the cytosol is assumed to behave like water, thus surface tension effects between the

injected aqueous liquids and cytosol are not present;

3. the viscosities of the aqueous liquids are equal to the viscosity of water at 37 ◦C;

4. the tip apex is inserted into the cell in such a way that the entire tip opening is enclosed

inside the cell; and

5. during liquid injection, the liquid flow is in a steady state fully developed laminar flow.

With these assumptions the injected volume∆V of liquid depends on the injection parameters,

the pressure ∆p and the length of the pressure pulse ∆t according to the formula:

∆V = ∆p∆t

Rhyd
(5.5)

where, Rhyd is the hydraulic resistance of the NADIS probe.

For cell injection experiments, NADIS probes with tip openings 0.2µm in diameter (needle

like type) were addressed. Water flow measurement through openings smaller than 1.87µm in

diameter resulted in a system with gas bubbles. However, as the theoretical model proved to

be realistic, it was further used as indication of the flow rate through systems with small tip

apertures. Figure 5.13 presents a graph with theoretical flow values for a pressure range be-

tween 0 and 1×105 Pa for a probe with a 0.2µm diameter, needle like opening. The calculated

flow is in the femto liter range and the value of the hydraulic resistance is 26.7×1017 Pa s m−3.

Knowing the hydraulic resistance and the value of the applied pressure, the length of the

pressure pulse can be calculated for a known amount of liquid. In Chapter 3 (Concept study),
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Figure 5.13: Theoretical values of the steady state flow of water through needle like opening
type in the NADIS probe.

the volume range of liquid that can be injected into a cell without causing cell damage was

calculated to vary from 5 fL to 400 fL. Table 5.11 presents the calculated length of pressure

pulses ∆t for given pressure values ∆p required to inject the minimum and the maximum

liquid volume into a cell.

Table 5.11: Values of the applied pressure and calculated length of the pressure pulses required
to inject the minimum and the maximum liquid volumes.

Injected volume Pressure Pressure pulse length
∆V [fL] ∆p [Pa] ∆t [s]

5 700 19
5 1000 13
5 1300 10

400 10000 106
400 20000 53
400 30000 35

The duration of the pressure pulses was calculated for a pressure setting range and the time

setting range of the microinjector used in the system. The pressure setting range starts from

689.5 Pa and goes to 413685.5 Pa with a resolution of 689.5 Pa. The time setting range starts

from 10 milliseconds and goes to 327.6 seconds with resolution of 10 milliseconds over the

whole range.
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5.4 Discussion

Characterization of the AFM-based microinjection system focused on three main aspects:

cantilever spring constants, specifications of properly filled probes (with water) and fluid flow

measurements through the probes.

First, the stiffness of the cantilevers was measured. It was found that the probes are stiffer

than expected. The single beam probes assigned to the proof-of-concept microinjection

experiments had spring constants varying from 8 N m−1 to 15 N m−1 for the short length type

and 4 N m−1 to 6 N m−1 for the medium length type. Since cell indentation experiments with

AFM probes should be performed with flexible cantilevers, it was decided to use only the

single beam probes with the ‘medium’ length type.

In the next step, filling of the probes was controlled by measuring the resonance frequency

of the vibrating cantilever. Due to the cantilever filling with water, its resonance frequency

decreased. It was determined that the average decrease is 26 kHz. This value will be used in

future experiments as an indication of a correctly filled system.

Finally, the volumetric flow rate Q of fluids through NADIS probes was measured. Two types of

probes were used: one where the fluidic system consisted only of a rectangular channel, and a

second where the channel was connected to a hollow tip with an aperture. The measured flow

values were used to find the value of the hydraulic resistance for each probe. The measured

hydraulic resistance was further compared with the theoretical value.

The flow of nitrogen through the rectangular channel, with known geometry and without a

tip was in an excellent agreement with the theoretical model. In the theoretical model, the

nitrogen is treated as a continuous medium. For the absolute pressure range (105 < ∆p <
2×105 Pa), Knudsen numbers K n were in the range between 0.032 to 0.016, which falls well

inside the Navier–Stokes equation regime [92]. The calculated Reynolds numbers Re and

entrance length Le based on the measured flow were from 0.2 to 1.4 and 82 nm to 468 nm,

respectively, indicating fully developed laminar flow.

The value range of the Knudsen number indicates, according to Roy et. al [92], a slip flow

regime. However, the experimental data fit well with the ones reported by Harley et al.[93] and

Pfahler et al. [94], where no slip flow of nitrogen was reported.

Measurements of the nitrogen flow through NADIS channels connected to a hollow tip with

a square 6µm×6µm tip opening were 3 times higher than predicted by theory. Based on

the values of the Knudsen number, nitrogen flowing through the tip opening behaves as

a continuous medium. The entrance length however shows that the flow cannot be fully

developed due to the small length of the tip opening. This could explain the difference

between the measured and theoretical values, since the theoretical model assumed a fully

developed laminar flow.

An attempt to measure the flow of nitrogen through probes with tip openings smaller than
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the 6µm×6µm opening resulted in decreasing flow over time for a constant pressure. At this

point it is not certain, why this effect occurred. When nitrogen gas was replaced with carbon

dioxide this effect was not present. Flow of carbon dioxide through a NADIS probe with a

circular tip opening of 1.78µm was measured. The measured hydraulic resistance was 2 times

smaller than predicted by the theoretical model. In addition the values of the entrance lengths

showed that the flow was not fully developed which could explain the difference between

experiment and theory. Calculated values of the Knudsen number show that nitrogen flowing

through the tip opening behaves as a continuous medium.

The flow measurements of carbon dioxide through the 200 nm needle like tip opening showed

5 times smaller value of the hydraulic resistance than predicted by the model. The difference

could be explained by the values of the Knudsen number showing that the flow values fall

into the Burnett equation regime and also by the fact that the flow was not fully developed, as

shown by the values of the entrance length.

Water flow measurements were first conducted on 3 similar NADIS probes without a tip. The

rectangular channel inside the probe had length of 1200µm and width of 23.8µm. The first

probe had a channel height of 3.2µm, the second 3.0µm, and the third 3.2µm. The measured

values of the hydraulic resistances were 9.3×1015, 10.5×1015 and 5.2×1015, respectively,

which shows acceptable repeatability of the measurement system. However, the values differ

from 2 to 3 times compare to the calculated values of the hydraulic resistance. The values of

the Reynolds number and the entrance length showed that the flow was fully developed and

laminar. The difference in hydraulic resistance values could have been caused by the viscosity

value used for the theoretical calculations. During the experiments, only the temperature of

the atmosphere surrounding the experimental system was measured. However, the system

was placed under an optical microscope, which could have heated the system and therefore

changed the liquid viscosity.

Following, the flow measurements through the 3 NADIS probes without tips, the water flow

measurements through probes with fluidic channels connected to the tip with an opening

were assessed. First experiments failed due to the blockages formed in the system. This effect

might have had two sources.

As air is always present in water it is assumed that the presence of the tip may have caused

nucleation of air bubbles. Nucleation and stabilization of air bubbles in liquids has been

examined by Crum [95]. Free air bubbles cannot cause nucleation as it would increase their

liquid–vapour interface and make them unstable. Crum suggested that the nucleation must

be associated with mechanisms stabilizing the bubbles such as impurities on the surface or

surface defects. Meng et al. [96] described a bubble capture mechanism for large bubbles

already present in the system. A moving bubble is trapped in a ‘bubble sink’ which minimizes

the surface energy of the bubble. As an example, a concave pit was presented. In such a ‘sink’,

the total energy of the bubble is reduced as the liquid–vapour interface is reduced. Figure 5.14a)

presents SEM micrograph of a cross–sectional view of the NADIS tip. The geometry of the
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hollow tip fulfills the requirements of a ‘bubble sink’. In addition, inside the tip, as a result

of the fabrication process, two smaller concave pits are present, enhancing nucleation and

capturing of the gas bubbles.

Figure 5.14: SEM micrograph presenting cross–sectional view of the hollow tip a) and it’s
schematic drawing with marked positions of the ‘bubble sinks’.

The bubble nucleation and/or capturing occurred in the system due to the tip geometry. In

order to diminish these effects, the water was either degassed with nitrogen gas, boiled or both

before each experiment. However, these methods did not eliminate the problem.

In addition to the presence of the air bubbles it is possible that the nitrogen gas was also

trapped in the system causing blockages. Before each experiment the fluidic system was

flushed with nitrogen gas. When the system was being filled with water part of the nitrogen gas

could have been captured by the ‘bubble sinks’ in the tip. To diminish this effect the nitrogen

was replaced with carbon dioxide due to its high solubility in water.

Combination of the water degassing and pre-filling of the system with carbon dioxide allowed

the flow of water to be measured through a tip with a square 6µm×6µm opening.

Obtained values of the hydraulic resistance were 0.7 times smaller than theoretical values. The

values of Reynold number and entrance length suggest fully developed laminar flow. At this

point, it is rather uncertain whether the differences in the hydraulic resistance were caused by

the heating of the system as for the water flow measured through the 3 NADIS probes without

the tip or if it was due to an effect connected with presence of the tip.

The water flow measurement through smaller tip apertures required longer lasting measure-

ments. Large time periods required to obtain repeatable flow read-outs through openings

smaller than 1.78µm in diameter were held responsible for allowing the gas bubbles to plug

the system and prevent the measurements. It is suspected that the geometry of the tip is

enhancing the plugging effect.

The fluid flow measurements through the NADIS probes were designed to determine if the

theoretical model created in Chapter 3 adequately predicts fluid behavior. The theoretical
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model was based on a few assumptions:

1. the flow is a fully developed laminar flow;

2. the Knudsen number is in the range of 0.001 to 0.1;

3. there is no slip flow effects;

4. the fluids behave like incompressible Newtonian fluids;

5. the walls of the channels are smooth and straight; and

6. the heat transfer and energy dissipation is negligible.

These assumptions permitted a very simple analytical solution to be found. However, their

presence caused quite significant deviation of the model when the flow of gases was measured.

Nevertheless, for the water flow measurements, the theoretical model proved to be realistic

and it could be used as an indication of the flow rate through systems with small tip apertures.

Based on the above conclusion, values of the pressure pulses required to inject a specific

amount of liquid into a cell were calculated theoretically. It is clear that due to the large

spectrum of assumptions used in the calculations, the parameters found contain a rather large

uncertainty. However, it should be noted that the prediction from chapter 3 of the volume of

liquid that can be injected into a single cell without causing damage varies from 5 fL to 400 fL

resulting in a large variation of volume allowed to be injected. Thus, although knowledge on

the amount of liquid ejected from the tip opening is theoretical, it is assumed to fall within the

required volume range.

5.5 Conclusions

The AFM-based microinjection system was assembled and characterized. First, the spring

constant of the NADIS probes was experimentally determined. The cantilever stiffness was

higher compared to the values assigned in the design. The difference was caused by two

factors: the free length of the cantilever and the cantilever height. Based on the measured

spring constant values, it was decided to use single beam NADIS probes with spring constants

lower than 7 N m−1 for the cell injection experiments.

Filling the system with liquid was tested through measurements of the cantilever resonance

frequency. It was found that due to the water presence in the cantilever, a decrease in the

resonance frequency of 26 kHz in average can be measured. This method was critical in

determining whether the probes were correctly filled with liquid, or blocked due to residues or

gas bubbles.
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Water flow measurement through NADIS probes with tip openings smaller than 1.78µm in

diameter resulted in system blockages; therefore, the theoretical model was used as indication

of the flow rate through systems with small tip apertures.
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6 AFM-based microinjection system:
biophysical analysis of probe indenta-
tion
6.1 Introduction: Mechanical penetration of a cell membrane

In order to deliver liquid into a cell via an AFM tip, it is crucial to understand the complex tip-

cell interactions. These interactions have been studied via ‘force spectroscopy’ as a function of

the tip-sample distance. The results are shown on a force-distance curve, which gives the force

on the tip at each point as it approaches (or is withdrawn) from an object. A typical curve for a

hard surface is shown in Figure 6.1a): when the AFM tip is far from the surface there is no force

on the tip. When the tip is in contact with the surface a rapid increase in the force is observed

(vertical line on the graph). If instead of a hard substrate one uses a living cell, the shape of the

force- distance curve changes (Figure 6.1b)) due to the viscoelastic properties of cell. When

the tip touches the cell and applies a force, the cell deforms. As the force applied increases, so

does the deformation [97]. Analysis of the force-distance curve allows this deformation to be

correlated with the mechanical properties of the cell and its elastic modulus to be calculated

[35].

Figure 6.1: Force-distance curve measured on a hard substrate a), on a cell b), c) and d). Curves
c) and d) have force ‘peaks’ (force drops) known to be the footprints of the cell membrane
penetration.

Force-distance curves for cell deformation sometimes show an abrupt drop in the force

observed on the AFM tip as shown in Figure 6.1c). This peak, clearly indicating a discontinuity
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in the cell-tip interactions, has been associated with penetration of the cell membrane by the

AFM tip[41, 42, 49, 98]. However, while Figure 6.1c) is representative of many force-distance

curves observed for cell deformation, much more complex curves are also obtained: an

example is shown in Figure 6.1d). This complexity can be understood as resulting from the

complexity of the eukaryotic cell, which contains a complex cytoskeleton and a large number

of organelles (Figure 6.2). Thus abrupt changes in the force-distance curve may be caused by

membrane penetration, but it is also possible that movement of organelles or elements of the

cytoskeleton within the cell may change the local mechanical regime [97].

Figure 6.2: Schematic of an animal cell and its components [63].

If the AFM-based microinjection is to be well-controlled the tip insertion mechanism should be

understood. In this chapter experiments to study AFM tip interactions with the cell membrane

will be described and discussed. The results obtained have been divided into the following

aspects:

1. Determination of tip insertion into the cell:

To date it has been assumed that when the AFM tip breaks the cell membrane, this can

be observed in the force-distance curve as an abrupt force drop or peak and that all

such peaks imply penetration of the cell5. However, given the complexity of the tip-cell

interactions, it is worth asking if every peak is indicative of penetration and how to

determine true tip insertion.

2. Probability of cell membrane penetration:

Once a method of determining the penetration is defined; the probability of cell pene-
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tration can be quantified. The probability depends on several factors like: tip sharpness

applied force, and cell morphology. Influence of these factors is shown and discussed.

3. Analysis of probe indentation with 5A method:

Force-distance curves contain more information that just that of penetration. Little

attention has been given to analysing and understanding this information. Here the

force-distance curve analysis is brought further. Five possible parameters that can

be read from a force-distance curve are discussed here and called the 5 parameter

analysis (5A). Breakage of the cell membrane under different experimental conditions is

described here with the 5A method.

4. 5A analysis of actin cytoskeleton modifications:

In this study the analysis of cells with modified and unmodified actin cytoskeletons is

presented and applications of the 5A method for single cell studies are discussed.

6.2 How to determine cell membrane penetration1

To insert the tip inside the cell, the tip has to rupture the plasma membrane that encloses the

cell. The plasma membrane is a fluid-lipid bilayer spanned with transmembrane proteins

and held together by interfacial-hydrophobic interactions and van der Waals interactions [63]

(Figure 6.3).

Figure 6.3: Drawing of three-dimensional view of a cell membrane [63].

When the membrane is “subjected to a persistent tension, an unstable (nanoscale) hole will

emerge at some time to cause a rupture” [99]. In this way an AFM tip can cause membrane

rupture during cell indentation. As the indentation is monitored via the ‘force spectroscopy’,

the rupture event is registered as an abrupt force drop on the force-distance curve. However,

during an indentation experiment, a force drop might also occur due to other reasons – for

example, tip interactions with membrane proteins, and not necessarily due to rupture. The

1“Proof of a cell membrane penetration with an AFM tip on a force-distance curve.” J. Bitterli, S. Ahmed, M.
Giazzon, N. Matthey, Ph. Renaud, M. Liley; manuscript in preparation.
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open question is: When does a force drop (a peak) indicate cell rupture? In the literature,

Kagiwada et al. [98] decided that for their experimental conditions the success of tip insertion

was measured for force drops larger than 500 pN, Obataya et al. [41] used 100 pN as a rupture

threshold. Other authors [42, 47, 49, 97, 100] considered only whether the force drop is present

or not. A consistent definition of a penetration peak is required in order to produce consistent

data on tip insertion into living cells. Here the criteria and possibility of such a definition are

assessed.

6.2.1 Analysis of tip insertion

A hypothesis is proposed based on the assumption that when an AFM tip ruptures the cell

membrane and passes from outside the cell to inside of it, a change in elastic modulus should

occur and that this change should be observable on the force-distance curve. Thus, the

penetration of the cell membrane occurs when both a force drop and an elasticity change are

measured.

This hypothesis was tested experimentally by bringing AFM tips into contact with a large

number of living cells and by analyzing the resulting force-distance curves.

Force spectroscopy measurements were carried out on individual live human osteosarcoma

cells from the SaOs-2 cell line. In total 350 cells were investigated with applied forces varying

from 1 nN to 18 nN (50 cells per condition, each indented only once). Two different tip types

were used: commercially available probes with sharp tips with a tip radius of 10 nm, and NADIS

probes with a mean tip radius value of 100 nm (the tip radius can vary from 50 nm to 150 nm).

The obtained 350 force-distance curves obtained were converted into force-separation curves.

Two parameters were extracted from each curve: the force drop (Figure 6.4a)) and the change

in elastic modulus (∆E) associated with each force drop. A force drop was considered to be

present when its value was higher than 3 times the standard deviation of the noise. To measure

∆E the curve was divided into two regions, the first region-before the peak up to its apex

(region A-B in Figure 6.4b)) and the second region C-D (marked black) after the force drop.

An elastic modulus (Young’s Modulus) was fitted to the first region using a Herzian model

for pyramidal tips. Then, the C-D region of the curve was displaced, so that point C meets

point B (Figure 6.4c)). When the elastic modulus fitted to the first region does not follow the

second region of the curve, as shown in the example, a change of the elastic modulus occurred.

Figure 6.4d) shows the same curve with two elastic modulus fits, E1 and E2. The E1 fit shows

the elastic modulus before the force drop. The elastic modulus after the peak is determined

using the same baseline and contact point as for E1. In the example shown E1 has a larger

value than E2 showing elasticity decrease after the force drop.

Based on the above method, the 350 force-separation curves were classified into 4 characteris-

tic types (Figure 6.5).

Type I curves (Figure 6.5a)) show no Force drop (Fd is smaller than 3 times the standard
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Figure 6.4: Force-separation curve with a Force drop a), divided into two regions (red and
black). An elastic modulus fitted to the red part b). Displaced black part of the curve does
not follow the fit c). The elasticity fit for both regions shows the decrease in elasticity after the
force drop, E1 > E2.

Figure 6.5: Type I force-separation curve with no change in elastic modulus and no Force
drop (Fd ) a) Type II, with no change in the elastic modulus but a force drop b) Type III, with a
decrease in elastic modulus and a force drop c) Type IV, with an increase of elastic modulus
and a force drop d).

deviation of the noise, σ) and no change in elastic modulus and are known in the literature as

the indentation curves.

Type II curves have a Force drop but no change in the elastic modulus (Figure 6.5b)).

Type III curves have a Force drop and show a decrease in elastic modulus after the peak

(Figure 6.5c)).

Type IV curves have a Force drop and show an increase in the elastic modulus after the peak

(Figure 6.5d)).

Once the curves had been classified, a comparison was made of the percentage of each curve

type obtained for the different tip and force conditions of the measurement. Figure 6.6 presents

the results. Figure 6.6a) shows the results obtained for the 10 nm sharp tips at forces of 1 nN,

3 nN and 5 nN,while Figure 6.6b) shows the results for 100 nm sharp NADIS tips at forces of

3.5 nN, 7 nN, 13.5 nN and 18 nN. It can be seen that in both cases, when the force increases

the percentage of the type I curves, (‘indentation curves’), decreases and the percentage of
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the type II and type III curves increases. The percentage of the type IV curves seems to not

depend on the applied force for both 10 nm and 100 nm tip sharpness.

Figure 6.6: Chart showing distribution of the force distance curves as a function of maximum
applied force for 10 nm sharp tip a) and 100 nm sharp tip b).

As the number of curves with peaks (type II to IV) increases with the applied force for both

tip types, it is assumed that the peak is associated with penetration. Within these curves, the

curves with a change in elastic modulus (type III and IV) dominate. This is especially the

case for the 10 nm tip radius. The data tends to confirm the hypothesis that tip indentation is

usually associated with a change in elasticity. However, it is not clear that a change in elasticity

is ‘required’ to determine tip penetration. Further investigation with direct evidence of tip

insertion by transport of material into the cell will be presented in Chapter 8.

During the experiment a ‘blunt tip effect’ was observed caused by the cell residues (e.g. cell

membrane, and also internal components of the cell due to the tip insertion) attaching to the

tip apex. Each time a tip was brought in a contact with the cell, a small amount of residue was

transfer to the tip. After a significant number of cell indentations the tip apex was covered with

residues causing increase in the tip radius. To understand this effect the tips were investigated

with SEM after different numbers of cell indentations. It was found out that for 10 nm sharp

tips the ‘blunt tip effect’ can significantly influence the measurements after 50 indentations.

For 100 nm sharp NADIS tips this effect was significant after more than 100 indentations.

The difference between these tip types might arise from the fact that the 10 nm sharp tip

penetrates the cell membrane more often than the NADIS probe, increasing the probability

of the residue transfer from the cell to the apex and also from the fact that a smaller tip is

more sensitive to residue accumulation. For the final measurements each 10 nm sharp tip

was used for maximum 50 and NADIS tip was used for maximum 100 indentations. Figure 6.7

presents SEM images of two NADIS tips before and after indentations. It was concluded that

the amount of cell residues depends more on the amount of cell indentations than on the

applied force.
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Figure 6.7: SEM micrograph of two NADIS tips are presented before and after cell indentation
experiments. a) First NADIS tip before measurements, b) after 50 indentations with an applied
force of 3.5 nN, and c) after additional 50 indentations with the applied force of 7 nN. D)
Second NADIS tip before measurements, e) after 50 indentations at applied force of 13.5 nN,
and f) after additional 50 indentations at applied force of 18 nN.

6.2.2 Proposed specifications of tip insertion

Given the previous discussion and analysis of the force drop and elasticity change the following

definition of cell membrane penetration with an AFM tip will be used throughout this thesis.

First, the presence of the Force drop is defined as being when the height of a peak is higher

than 3 times the standard deviation of the noise:

Fd > 3σ (6.1)

Second, an elasticity change has to occur after the force drop:

E1 6= E2 (6.2)

Table 6.1 summarizes the conditions for which a tip will be considered to indent or penetrate

a cell.

6.3 Probability of cell membrane penetration

As the conditions required to determine cell membrane penetration have been defined, the

probability of cell membrane penetration can be measured. Penetration of cell membrane
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Table 6.1: Tip–cell membrane interaction determined by the Force drop and the change in
elastic modulus.

Cell indentation Cell penetration

Type I Type II Type III Type IV
Fd < 3σ Fd > 3σ Fd > 3σ Fd < 3σ
E1 = E2 E1 = E2 E1 > E2 E1 < E2

can be expected to depend on many parameters such as: the tip sharpness [41], the applied

force [100], the position (above nucleus or cytoplasm) [42, 97], and cell morphology [42, 98].

6.3.1 Influence of tip sharpness

In this study the force spectroscopy measurements used to analyze tip insertion in Section 6.2.1

were used to demonstrate influence of the tip sharpness. In total 350 force-separation curves

were obtained with two tip types: 10 nm sharp tips and 100 nm sharp NADIS tips, for applied

forces varying from 1 nN to 18 nN, and SaOs-2 cells seeded on a Petri dish. For both probes,

the total travel distance of the cantilever was the same – 10µm (approach and retract mo-

tion) and the speed was 2µm s−1. The tip position was always above the nucleus. The data

were completed with additional 50 force-distance curves measured with 10 nm sharp tip and

applied force of 15 nN.

The results are presented in the form of a graph (Figure 6.8e)). The result for the 10 nm sharp

tips at forces of 1 nN, 3 nN, 5 nN and 15 nN are marked with blue dots while the results for

100 nm sharp NADIS tips at forces of 3.5 nN, 7 nN, 13.5 nN and 18 nN are marked with red

dots. Probability of cell membrane penetration with 10 nm sharp tip for the maximum applied

force of 15 nN is more than 90 %. When the 100 nm sharp NADIS probe is used at maximum

applied force of 18 nN the probability is found to be less than 50 %.

The result confirm the expectation that the sharper the tip apex the higher the probability of

the cell membrane penetration.

6.3.1.1 Force distance–curves with multiple force drops

Within the experimental results force-distance curves with multiple force drops were found

(Figure 6.9).

The experimental data were analyzed in terms of the number of force drops and their depen-

dency on the applied force. Table 6.2 shows the results. It was observed that the number of

force drops (Fd ) depends on both the applied force and the tip sharpness. The higher the

applied force and the sharper the tip, the larger the number of force-distance curves with

multiple force drops.
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Figure 6.8: SEM images of a) sharp tip with 10 nm radius a) and NADIS tip with 100 nmtip
radius b). Schematic drawing of tip geometry for c) 10 nm sharp tip and d) 100 nm sharp tip.
e) a graph showing the probability of cell membrane penetration as a function of applied force
for the two types of tip.

Table 6.2: Tip–cell membrane interaction determined by the Force drop and the change in
elastic modulus.

10 nm tip 10 nm tip

Applied 0 Fd At least At least At least Applied 0 Fd At least At least At least
Force Fd 2 Fd 3 Fd Force 1 Fd 2 Fd 3 Fd

1 nN 96 % 4 % 0 % 0 % 3.5 nN 96 % 4 % 0 % 0 %
3 nN 60 % 40 % 2 % 0 % 7 nN 86 % 14 % 6 % 0 %
5 nN 16 % 84 % 48 % 28 % 13.5 nN 64 % 36 % 16 % 2 %

15 nN 8 % 92 % 52 % 34 % 18 nN 56 % 44 % 16 % 6 %

Force–distance curves with more than one force drop have been already described in the

literature [42, 45, 97]. As the first force drop is always attributed to the penetration of the cell

membrane, the origin of the other force drops is still not confirmed. It has been suggested

that the presence of the second and further force drops could be explained by penetration of

the nuclear membrane [97]. Since there is not enough evidence confirming or rejecting this

possibility, it will be considered during the cell injection experiments using NADIS probes in

chapter 8.

In order to inject biomaterial into the cytoplasm, the tip should penetrate the cell membrane.

Penetration of further membranes might result in injection into the nucleus or another or-

ganelle, potentially damaging the cell. The choice of applied force therefore needs to be based

on a compromise between high probability of tip insertion and probability of obtaining only

one force drop on the force-distance curve.

93



Chapter 6. AFM-based microinjection system: biophysical analysis of probe indentation

Figure 6.9: Example of a force–separation curve with 1 force drop a), 2 force drops b), 3 force
drops c) and at least 3 force drops d).

6.3.2 Influence of cell–surface interactions

In these experiments, the probability of cell membrane penetration for the SaOs-2 cells seeded

on three types of substrates was measured. The first substrate was a plastic Petri dish. The

second substrate was glass coated with fibronectin, and the third type was glass patterned with

PLL-g-PEG/fibronectin spots. On the patterned substrate, the fibronectin spots were circular

with a diameter of 45µm; the pitch between the discs was 130µm. The entire surrounding

surface was PLL-g-PEG, a surface chemistry which discourages cell spreading.

Cells on a Petri dish (Figure 6.10a)) or on a glass surface coated with fibronectin (Figure 6.10b))

have more space to spread in all directions. The resulting cells have a heterogeneous morphol-

ogy and a large area in contact with the substrate. In contrast, on the glass surface patterned

with PLL-g-PEG/fibronectin spots (Figure 6.10c)) the cells are spatially restricted in the area

in which they can grow. It can be seen that the cells have a round morphology with the

dimensions of the spot size.

Figure 6.10: Cells viewed via phase contrast microscopy on: a) a Petri dish, b) a glass surface
homogeneously coated with fibronectin, and c) on 45µmdiameter PLL-g-PEG/fibronectin
spots.

The comparison study was initially done with the 100 nm NADIS tips and an applied force of

20 nN. The tip insertion probability for cells grown on the Petri dish substrate was measured

to be 50 %. However on the glass substrates patterned with PLL-g-PEG/fibronectin spots the
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probability was 0 %. Increasing the applied force to 100 nN did not change this: the tip still did

not penetrate the cell membrane.

When commercially available probes with 10 nm sharp tips were used, the penetration events

were observed. A comparison study for all three culture surfaces was therefore done for the

10 nm sharp tips and a constant applied force of 5 nN. The results are presented in Table 6.3.

The highest probability of tip insertion (84 %) was measured for cells grown on the Petri dish

substrate. Very similar penetration probabilities were observed for glass surfaces coated with

a uniform coating of fibronectin (55 %) and with a pattern of fibronectin spots in a PLL-g-PEG

background (54 %).

Table 6.3: Probability of cell membrane penetration for cells seeded on 3 types of substrates.

Percentage of penetration events of SaOs-2 cells grown on:

Tip Applied Petri glass coated glass patterned with
Sharpness force dish fibronectin PLL-g-PEG/fibronectin spots

10 nm 5 nN 84 % 55 % 54 %
100 nm 20 nN 50 % - 0 %

The results show that very different probabilities of penetration can be found depending on

the chemistry of the cell culture substrate. However, these differences are not necessarily

linked to the morphology of the cells. Cell morphologies on the Petri dish and glass coated

with fibronectin are similar but the penetration probability is much higher for cells seeded

on Petri dish. The morphologies of the cells on the uniform fibronectin surface and on the

fibronectin spots are very different, but the penetration probabilities are almost identical.

These results suggest that the penetration probability depends not only on cell morphology

but on cell–surface interactions in general.

6.3.3 The influence of ethylenediaminetetraacetic acid (EDTA)

The probability of tip insertion into cells on glass coated with fibronectin and glass patterned

with PLL-g-PEG/fibronectin spots was further studied. The SaOs-2 cells were seeded on

the two types of substrates with medium containing (25 mmol of EDTA (details in chapter 2,

section 2.5). EDTA is a chelator; it binds to metal ions like C a+2 and makes them unavailable

for cells. It has been shown that EDTA induces denaturation of G–actin [101–104] and F-actin

[102, 104], that make up the actin cytoskeleton.

Probability of cell membrane penetration was measured with 10 nm sharp tip and the same

experimental conditions as in section . Obtained results were compared with the probability of

tip insertion on samples not treated with EDTA (described in section ) as presented in Table 6.4

. It is shown that addition of EDTA into the cell media changes the probability of tip insertion

into cells. For cells spread in all direction on glass coated with fibronectin addition of EDTA

decreases the probability from 55 % to 36 %.However, when cells are spatially restricted in the
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area on the PLL-g-PEG/fibronectin spots the probability increases from 54 % to 75 % after the

addition of EDTA.

Table 6.4: Probability of cell membrane penetration for cells treated and without EDTA treat-
ment.Percentage of penetration events of SaOs-2 cells with 10 nm sharp tip and applied force
of 5 nN

Treatment glass coated with fibronectin glass patterned with
PLL-g-PEG/fibronectin spots

No EDTA 55 % 54 %
With EDTA 36 % 75 %

Kagiwada et al.[98] showed that the cell actin cytoskeleton of plays a significant role in proba-

bility of tip insertion. The actin skeleton consists of actin mesh and stress fibres. It has been

shown that actin mesh, localized under the cell membrane, has a direct influence on the cell

membrane penetration and the stress fibres might facilitate the insertion by giving the cell a

mechanical stability.

It is known that EDTA influences G- and F–actin. However its effect on the actin cytoskeleton

of the SaOs-2 cells in general is not yet understood. Taking into consideration results presented

by Kagiwada et al. [98] it is possible that EDTA has modified the actin cytoskeleton of the

SaOs-2 cells which influenced the penetration probability.

6.4 Analysis of probe indentation: 5A method 2

Force-distance curves contain more information that just that of tip insertion. When an

AFM tip penetrates a cell, additional information can be extracted from the force-distance

curve. Yokokawa et al. [97] extracted a ‘penetration force’ parameter from the force-separation

curves and showed its analysis. Kim et al. [42] discussed a ‘penetration distance’ parameter.

Kagiwada et al.[98] and Obataya et al.[41] discussed a ‘force drop’ parameter. In this section

five parameters that can be read from a force-separation curve are described. The parameters

are further used in a simple biophysical analysis of the cell membrane penetration for different

experimental conditions. As the analysis is based on the 5 parameters therefore the name is: 5

parameter analysis (5A).

6.4.1 Description of the 5A method

The five parameters were divided into two groups, macro and microparameters.

2“Analysis of approach curve after cell membrane penetration with a 5A method.” J. Bitterli, A. Meister, S.
Ahmed, M. Giazzon, N. Matthey, Ph. Renaud, M. Liley; manuscript in preparation.
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6.4.1.1 Macroparameters

The macroparameters are presented in the Figure 6.11. The tip is brought in contact with a cell

and starts to deform the cell, until its membrane ruptures. The cell deformation is called the

penetration depth,D1, and gives information on how far the tip indented the cell before the

rupture. Force at which the rupture was detected is called the penetration force, F1. After the

penetration the tip continues to indent the cell until the force reaches the value of the force

setpoint. Cell indentation measured from the contact point till the maximum indentation

point is called the indentation depth, D .

Figure 6.11: Schematic representation of the macroparameters and their representation on a
force–separation curve.

Table 6.5 contains a summary of the parameters with their definitions

6.4.1.2 Microparameters

Figure 6.12a) shows a schematic representation of the AFM tip indenting and penetrating

the cell. Figure 6.12b) shows a detailed representation of the tip interacting with the cell

membrane during penetration: A) just before the membrane is ruptured by the tip and B) just

after the rupture. The distance that the membrane slips along the AFM tip is given by d, the

membrane slip parameter. The force F1 felt by the tip is due to deformation of the cell and

stretching of the cell membrane, and the change in the force to F2 is due to relaxation of the
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Table 6.5: Macroparameters and its definitions

Parameter Symbol Definition

Indentation Depth D Cell deformation, measured on the z–axis from
the contact point until the maximum deformation
point.

Penetration Depth D1 Deformation of the cell, measure on the z–axis from
the contact point until the rupture point.

Penetration Force F1 Force at which rupture occurred

membrane on rupture. A very simple mechanical model of this interaction is presented on

Figure 6.12c). The cell is represented by a spring with a known rigidity kc . Directly after the

membrane rupture the rigidity of the cell changes due to the membrane relaxation to k ′
c .

Based on this simple elastic model force, the force, F acting on the cell can be described as:

F = kc x (6.3)

where, kc is the cell rigidity and x is the cell indentation caused by the force. The force acting

on the cell, causing cell membrane penetration is defined as:

F1 = kc D1 (6.4)

Where D1 is the penetration depth – a measure of how much the cell was indented before its

membrane broke (a macroparameter presented in the nsection above).

After rupture the measured force acting on the tip has decreased:

F2 = k ′
c (D1 −d) (6.5)

where, k ′
c is rigidity of the cell after the tip insertion, and d is a measure of how much the

membrane moved up on the tip after rupture, called the membrane slip.

To a first approximation, the changes in cell rigidity due to tip insertion are negligible:

k ′
c (D1) = kc (D1 −d) (6.6)
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Figure 6.12: Schematic representation of an AFM tip indenting the cell to the point where the
cell membrane breaks at measured penetration force F1 and penetration depth D1 a). Directly
after cell membrane rupture the measured force decreases to value F2 and the broken cell
membrane moves up to distance d b). Membrane rupture described with a mechanical model.
The cell is represented by a spring with known rigidity kc c).

The difference in the force before and after the cell membrane penetration, the force drop Fd ,

is therefore described as:

Fd ≡ F1 −F2 = kc d (6.7)

The ratio of the force drop Fd to the penetration force F1 is therefore directly proportional to

the membrane slip d over the penetration depth D1:

Fd

F1
= d

D1
(6.8)
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Figure 6.13: Force–distance curve showing dependency between the force drop Fd and the
penetration force F1 to the membrane slip d and the penetration depth D1.

Figure 6.14 presents the force-distance curve with two parameters: force drop Fd and mem-

brane slip d . These two parameters are called microparameters as they describe tip interacting

with the breaking cell membrane, compared to the macroparameters which describe cell de-

formation during tip insertion.

Figure 6.14: Schematic representation of the microparameters on a force–separation curve.
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6.4.2 5A analysis of probe indentation

The 5A method was first applied to analyse the indentation results presented in section . In

total, 400 force-separation curves were obtained on SaOs-2 cells seeded on a Petri dish with

two tip types: 10 nm sharp tips with tip half angles of 25° and 100 nm NADIS tips with tip

half angles of 35°, for applied forces varying from 1µm to 18µm. The force-separation curves

were previously analysed in terms of probability of cell membrane penetration. In the present

section the 5A method is used to bring the analysis of the curves further and understand the

dependence of the 5 parameters on the tip geometry.

Figure 6.15 shows an analysis of the indentation depth parameter (D) for the two tip types.

The results are presented as histograms. Figure 6.15a) shows the histograms for 10 nm sharp

tips at forces of 1 nN, 3 nN, 5 nN and 15 nN and 100 nm NADIS tip at forces of 3.5 nN, 7 nN,

13.5 nN and 18 nN. The same results are shown in Figure 6.15b) in the form of a graph of the

indentation depth versus the applied force for the two tip types. Values of the indentation

depths are average values obtained from the histograms and the error bars are sample standard

deviations of these values. It can be seen that in both cases, when the force acting on the cell

increases the indentation depth increases as well. Comparison of the indentation depth for

the 10 nm and 100 nm sharp tips shows a dependency of the indentation depth on the tip

geometry: the smaller the tip radius and the tip half angle the higher the indentation depth.

Figure 6.16 shows penetration depth (D1) and penetration force (F1) for 10 nm sharp tips

and 100 nmNADIS tips. A statistical analysis of the results showed no significant difference

between the penetrations depths measured for the two tip types. However, there is a difference

between the penetration forces. The penetration of a cell membrane with 10 nm sharp tip

requires a little over half as much force compared to the 100 nm sharp tip. As a result in order

to penetrate a cell membrane of a SaOs-2 cell a 10 nm sharp tip has to first indent the cell to

1.16µm depth and apply a force of 2.5 nN, whereas a 100 nm sharp tip has to apply 4.4 nN to

obtain a similar indentation and penetration (Figure 6.17a)).
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Figure 6.15: Comparison of indentation depth results obtained for 10 nmand 100 nm sharp tips,
presented in the form of a) histograms, and b) a graph. The bullets on the graph are average
values presented on the histograms, and the error bars show sample standard deviation of the
values.
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Figure 6.16: Comparison of a) penetration depth (D1) and b) penetration force (F1) histograms
for 10 nm sharp tips and 100 nmNADIS tips. Values on the histograms represent average values
and their sample standard deviations. (*p < 0.05).

Figure 6.17: Schematic of cell membrane rupture with 10 nm and 100 nm sharp tip. a) shows
the influence of the tip geometry on the penetration force F1 and penetration depth D1. b)
shows the influence of the geometry on the force drop Fd and the membrane slip d .
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Figure 6.18a) shows an analysis of the force drop parameter Fd . It can be seen that cell

membrane rupture with 10 nm sharp probes results in a force drop Fd twice as high as that

of the 100 nm NADIS tip. Higher force drop is caused by larger cell membrane relaxation

after the membrane breakage, which is possible due to the geometry of the 10 nm sharp

tip. The influence of the tip geometry on the membrane rupture is also shown on the graph

(Figure 6.18b)), where the force drop Fd is plotted as a function of penetration force F1. Results

obtained for 10 nm sharp tip are marked with red points; the blue points show 100 nm NADIS

tip results. It can be seen that cell membrane rupture with the sharp tips occurs at low

penetration forces F1 and high force drops Fd , whereas for the NADIS tips the penetration

forces F1 are large and the force drops Fd are small. This is also schematically shown on the

Figure 6.18b).

Figure 6.18: Comparison of the Force drop Fd for two 10 nm sharp tips and 100 nm NADIS tips
(*p < 0.05) a). Graphical representation of the force drop Fd dependence on the penetration
force F1 for the two tip types b).

Figure 6.19 shows histograms of the membrane slip parameter d for the two tip types. It can

be seen that breakage of a cell membrane with the 10 nm sharp and 25° half angle tip results

in 250 nm membrane slip along the tip, while with the 100 nm sharp and 35° half angle tip the

value is 3 times smaller. The influence of the tip geometry on this parameter is schematically

shown on Figure 6.17b). The higher the membrane slip, the larger is the membrane relaxation.

The slippage of the membrane upwards the tip during the membrane rupture measured with

the d parameter was described with the simple elastic model presented in section . This model

was used to derive the relationship that the ratio between the force drop Fd and penetration

force F1 should be equal to the ratio of the membrane slip d and penetration depth D1:

Fd

F1
= d

D1
(6.9)
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Figure 6.19: Comparison of the membrane slip parameter d (*p < 0.05).

If this is true then Fd /F1 divided by d/D1 should be equal to 1 on every force distance curve:

Fd D1

F1d
= d

D1
(6.10)

Figure 6.20a) and b) shows graphs presenting Fd /F1 and d/D1 in the form of points measured

for each force-separation curve. Figure 6.20a) shows these ratios for 10 nm sharp tips. Fig-

ure 6.20b) shows these ratios for 100 nm NADIS tips. A statistical analysis of the approach

curves showed that there were no significant differences between the Fd /F1 and d/D1 ratios

for the 10 nm sharp tips and in contrast significant differences were found for the approach

curves obtained with the 100 nm NADIS tips.

Figure 6.20c) and d) show histograms of the ratio of Fd /F1 to d/D1 obtained for each force-

separation curve in the form of histograms. Figure 6.20c) shows the histogram for 10 nm

sharp tips and Figure 6.20d) for 100 nm sharp tips. There is a clear difference between the two

histograms: Figure 6.20c) is close to a normal distribution with a mean slightly higher than

1 (1.15); Figure 6.20d) has less regularly distributed data a broader distribution and a mean

value 1.46.

These results shows that the simple elastic model used to describe the rupture of a cell

membrane by an AFM tip is a good model for the 10 nm sharp tip with a 25° half angle

and support the concept of a membrane slip parameter d. A value close 1 indicates that

the approximation k ′
c (D1) = kc (D1 −d) is appropriate: any non-linearity in the membrane

105



Chapter 6. AFM-based microinjection system: biophysical analysis of probe indentation

Figure 6.20: Graphical representation of the Fd /F1 and d/D1 ratios for a) 10 nm sharp tip and
b) 100 nm sharp tip.

response-for example, a rapid stiffening of the system before rupture like a balloon – is small

on the length scales relevant for membrane penetration. However, for membrane rupture by

the 100 nm NADIS tip (35° half angle tip), the fit to the model is less good. Different factors

may play a role here: firstly, the poor reproducibility of the AFM tip size and shape; secondly

the membrane slip determined from the model, at 75 nm, is smaller than the nominal tip

radius. Further investigation of the relevance of the model using a variety of different tip

shapes might contribute to our understanding of the processes involved.

6.5 5A analysis of actin cytoskeleton modifications 3

The actin cytoskeleton consists of the actin mesh (or cell cortex) and stress fibres (Figure 6.21).

The actin mesh can be found mostly just below the cell membrane – an interaction site of

cytoskeleton and the cell membrane [105], whereas stress fibres are located in the entire cell.

Kagiwada et al.[98] showed that actin mesh has a direct influence on the cell membrane

penetration, and that stress fibres might facilitate the insertion by giving the cell a mechanical

3“5A analysis of actin cytoskeleton modifications.” J. Bitterli, S. Ahmed, M. Giazzon, N. Matthey, Ph. Renaud,
M. Liley; manuscript in preparation.
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Figure 6.21: Schematic of actin cytoskeleton structures located in a single adherent cell. The
actin mesh (short red lines) represents actin mesh located below the cell membrane. The
stress fibres (long red lines) create a network of fibres inside the entire cell.

stability (Figure 6.22). In their experiments they performed cell penetration with an AFM

tip on 8 cell types and liposomes and observed that they could insert a tip into all cell types

but not the liposomes (Figure 6.22a)). Only the liposomes did not possess actin structures.

They concluded that actin structures allow tip insertion and designed further experiments to

determine which of these structures have a direct influence on the tip insertion. They showed

that the actin mesh has a direct influence on tip insertion. They have measured the probability

of cell membrane penetration using cell types with varying sizes of actin meshwork and found

that the smaller the actin meshwork the higher the probability of penetration (Figure 6.22b)).

The influence of stress fibres on tip insertion is indirect and plays a role in situations when the

stress fibres are well developed (Figure 6.22c)).

Figure 6.22: Schematic of a) an AFM tip inserted through a cell membrane with actin mesh
undercoat. Without the actin mesh the tip undergoes invagination by a lipid bilayer and
cannot penetrate the cell. b) A small size of the actin mesh (denser actin mesh) increased
probability of tip insertion. c) diagram explaining how different actin structures influence the
penetration probability. All the figures presented here are from Kagiwada et al. [98]

The conclusions of this research group inspired the experimental analysis described in this

section. In Section 6.3.1.1 and Section 6.3.2 the dependency of the tip insertion probability on
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the cell–surface and cell–EDTA interactions were discussed. It was shown that, using a 10 nm

sharp tip, the probability of cell membrane penetration of SaOs–2 cells seeded on glass coated

with fibronectin, and on glass patterned with PLL-g-PEG/fibronectin spots is the same at 55 %.

The addition of EDTA to the medium decreases the penetration probability of cells seeded

on glass coated with fibronectin to 36 %, while it increases it to 75 % for cells seeded on the

patterned glass.

Table 6.6: Probability of cell membrane penetration (taken from Section 6.3.1.1)

Percentage of penetration events of SaOs-2 cells grown on:

Tip Applied Petri glass coated glass patterned with
Sharpness force dish fibronectin PLL-g-PEG/fibronectin spots

10 nm 5 nN 84 % 55 % 54 %
100 nm 20 nN 50 % - 0 %

To understand the penetration probability results, the force–separation curves were analysed

with the 5A method and the cells were stained against F-actin and viewed by confocal mi-

croscopy in order to show the organisation of the actin cytoskeleton. A comparative analysis

with the 5A method combined with the confocal observations was done for 3 conditions:

1. Cells spread on the glass coated with fibronectin and glass patterned with PLL-g-

PEG/fibronectin spots

2. Cells spread on the glass coated with fibronectin, with and without EDTA

3. Cells spread on the glass patterned with PLL-g-PEG/fibronectin spots, with and without

EDTA

Based on the results and the conclusion presented by the Kagiwada et al.[98] that actin

cytoskeleton is responsible for tip insertion it is proposed that the 5A method allows to

measure actin cytoskeleton modifications of single living cells.

6.5.1 Comparative analysis between cells spread on fibronectin and patterned fi-
bronectin

Cells spread on glass coated with fibronectin are allowed physically more space to spread

in all directions resulting in a heterogeneous morphology and a larger contact area with the

substrate. Cells spread on the glass patterned with PLL-g-PEG/fibronectin spots are spatially

restricted in the area in which they can grow resulting in round morphology with dimension

of the spot size. Cells on both substrates were stained against F–actin and investigated with

confocal microscopy. Figure 6.23 presents single cells at varying z-axis heights. Figure 6.23a)

shows a cell spread on the glass coated with fibronectin. It can be observed that the actin

cytoskeleton is mostly built up from well-developed thick stress fibres. There is a small amount
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of actin mesh present at the upper side of the cell membrane. Figure 6.23b) shows single cell

on the glass patterned with PLL-g-PEG/fibronectin spot. A large amount of dense actin mesh

can be observed in a ring shape. Stress fibres although present are not as well developed and

can only be seen at the bottom of the cell.

Figure 6.23: Cells viewed via confocal microscopy (from z–axis) top to bottom: a) show cell
spread on glass coated with fibronectin, b) shows cell spread on glass patterned with PLL-g-
PEG/fibronectin spot. Green–Alexa Fluor 488 Phalloidin, marker for Actin.

Further, the cells were stained with DAPI to label cell nuclei. Three parameters were measured

by confocal microscopy: the cell height, the nuclear height and the membrane-nucleus

distance. Figure 6.24 shows the results. The cells spread on glass coated with fibronectin

are in average 4.6µm high while cells spread on the fibronectin spots are 6.5µm high. The

nuclei of the cells spread on fibronectin are 3.6µm high, whereas the nuclei of cells spread on

fibronectin spots are 5.2µmhigh. The distance between the cell membrane and the nucleus is

also smaller for cells spread on plain fibronectin. These observations can be explained by the

limited area in which the cells on fibronectin spots can grow. As the cells are limited in their

spreading potential in the x-y axis, the cells grow in the z-axis.

Based on the distribution of actin structures and measured values of cell and nucleus height,

and a membrane–nucleus distance a schematic drawing of cell spread on the glass coated with

fibronectin and glass coated with fibronectin spots was made to demonstrate the difference

in the distribution of actin mesh and stress fibers. Figure 6.25a) shows a cell spread on the

glass coated with plain fibronectin. It can be seen that well developed stress fibers dominate

in the actin cytoskeleton. The actin mesh is present only below the upper cell membrane.

Figure 6.25b) shows a cell spread on the glass coated with fibronectin spots. The stress fibres

are present only on the bottom part of the cell and are not as well developed. The dominating

component of the actin cytoskeleton is the actin mesh.

The probability of cell membrane penetration of 50 cells per substrate type in the absence

of EDTA was measured in section . Now, the force–separation curves obtained during these

experiments were analysed with the 5A method. Table 6.6 presents the results. A statistical
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Figure 6.24: Comparison of cell height, nucleus height and membrane–nucleus distance
between cells spread on glass coated with fibronectin and glass coated with fibronectin spots.
6 to 8 cells per condition were measured.

Figure 6.25: Based on the confocal microscope measurements a schematic drawing of cell
spread on the glass coated with fibronectin a) and cell spread on the fibronectin spot b) was
created.

analysis showed no significant difference between the values obtained on the different sub-

strates. Despite the differences in morphology and actin cytoskeleton of cells spread on the

glass coated with fibronectin and cells spread on the glass with fibronectin spots the indenta-

tion mechanism with 10 nm tip remains the same. First, the tip applies a 2.3 nN force (F1) to

indent the cells to approximately 1µm depth (D1) to achieve cell membrane rupture. After the

rupture the cell membrane undergoes relaxation causing a force drop (Fd ) of 300 pN to 400 pN

and the membrane slips (d) around 150 nm up the tip. As the indentation continues to reach

the setpoint of 5 nN the tip indents the cells further to reach the same value of indentation

depth (D) of 2µm. For comparison the mechanism of cell membrane rupture for cells spread

on the two substrate types is presented in Figure 6.26.

The difference in the cell morphology and actin cytoskeleton of the cells is caused by the area

occupied by fibronectin (as the glass used to fabricate the substrates and the fibronectin were

the same). Cells spread on plain fibronectin have an actin cytoskeleton dominated mostly by

stress fibers and the actin mesh is present only under the upper part of the cell membrane.

When a cell is spread on a restricted to a fibronectin spot area this ratio changes, and the

actin mesh is a dominating component, whereas the stress fibers are present only on the
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Table 6.7: Comparison of penetration probability and the 5A parameters between cells spread
on the two substrates. Statistical analysis showed no significant difference between the values.

Cells spread on:
Measured factors glass coated with fibronectin glass patterned with

PLL-g-PEG/fibronectin spots

Penetration probability 55 % 54 %
Indentation depth D (1.85±0.26)µm (1.98±0.19)µm
Penetration depth D1 (1.17±0.21)µm (0.94±0.12)µm
Penetration Force F1 (2.23±0.43) nN (2.30±0.26) nN
Force drop Fd (310±60) pN (443±58) pN
Membrane slip d (122±23) nm (163±21) nm

bottom of the cell. Surprisingly, the presented indentation analysis shows no difference in the

penetration process between cells spread on the two substrates.

6.5.2 Comparative analysis between cells spread on fibronectin, with and with-
out EDTA

In section Section 6.3.2 EDTA was added to the cell medium and decreased the penetration

probability from 54 % to 36 %. It was mentioned that EDTA binds to metal ions like C a+2

making them unavailable for cells and inducing denaturation of G–actin [101–104] F-actin [102,

104]. However its influence on the actin cytoskeleton is not yet understood. Measurements of

the penetration probability suggest that EDTA has modified the SaOs-2 cells so as to reduce

tip penetration.

F-actin staining results of cells with and without added EDTA are shown at varying z-axis

heights on Figure 6.27. Figure 6.27a) shows cells without EDTA and Figure 6.27b) shows cell

with EDTA. Very little actin mesh is visible at the top of the actin cytoskeletons of cells with

EDTA compared to those without. Instead the stress fibres are very well developed and are

much thicker compared to the cells without added EDTA.

Additional staining with DAPI was used to measure the cell height, the nuclear height and the

membrane nucleus distance. Figure 6.28 shows the results. The average heights of cells and

nuclei without EDTA are 4.6µm and 3.6µm respectively and for cells with EDTA these values

are 5.8µm and 3.6µm respectively. The value of the membrane–nucleus distance for cells

without EDTA is 0.75µm on average. The measured values of this distance for the cells with

EDTA were less than 0.5µm - the minimum distance that can be determined by the confocal

microscope. Therefore it was assumed that the membrane–nucleus distance for the modified

cells was less than this and its value was defined as 0.25µm.

Based on the stained actin cytoskeleton and measured values of cell, and nucleus height,

and a membrane–nucleus distance a schematic representation of the cells was proposed

111



Chapter 6. AFM-based microinjection system: biophysical analysis of probe indentation

Figure 6.26: Schematic of cell membrane rupture of a cell spread on a) plain fibronectin and b)
on fibronectin spots. A statistical analysis showed no significant difference in the measured
values.

(Figure 6.29). Figure 6.29a) shows a cell without EDTA, with well developed stress fibres and

well-developed actin mesh under the upper cell membrane. Figure 6.29b) shows a cell with

EDTA. The stress fibres are thicker and their presence is even more dominating compared to

the previous cell.

The results of the 5A analysis of the force–separation curves together with the penetration

probability are presented in Table 6.8. The statistical analysis showed significant differences

between the values of 3 parameters: both the indentation depth D and the penetration depth

D1 were measured to be about half as big for the cells with EDTA as for the cells without EDTA.

The membrane slip d was measured to be twice as big for the cells with EDTA as for those

without EDTA. The penetration force F1 and the force drop Fd were the same. Figure 6.30

shows a schematic representation of membrane rupture for both cells.

These results show that when a cell is exposed to EDTA membrane rupture occurs at the

same penetration force F1 as for a cell with EDTA but at half the penetration depth D1. The

membrane breaks despite the fact that the cell is less deformed and the membrane is less

stretched. Such conditions seem to be less prone to membrane breakage and could explain

decrease of the penetration probability to 36 % compare to unmodified cells.

Stress fibers play an important role in modulating cell elasticity [106] and maintaining cell
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Figure 6.27: Cells spread on the glass coated with fibronectin viewed via confocal microscopy
(from Z–axis top to bottom: a) unmodified cell, b) modified cell with EDTA. Green–Alexa Fluor
488 Phalloidin, marker for Actin.

Figure 6.28: Comparison of cell height, nucleus height and membrane-nucleus distance
between cells unmodified and modified with EDTA. 6 to 8 cells per condition were measured.

shape. Charras and Horton [107] suggested that the stress fibres in addition apply a pre–stress

onto the cell interior. The confocal microscopy results showed that stress fibres dominate in

the actin cytoskeleton of all cells. In cells with EDTA the stress fibres were more developed

and thicker compared to those in cells not exposed to EDTA suggesting higher cell stiffness.

This assumption is in agreement with the 5A analysis showing smaller indentation D and

penetration depth D1 for the same applied force compare to cells without EDTA. The much

larger force drop Fd might be explained by higher pre–stresses caused by the more prominent

stress fibres. As the actin mesh in all the cells was not well developed it was assumed that its

influence on the membrane rupture was minor.
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Figure 6.29: Schematic representation of actin cytoskeleton in a) unmodified cell, and b)
modified with EDTA cell.

Table 6.8: Comparison of penetration probability and the 5A parameters between cells spread
on the two substrates. Statistical analysis showed no significant difference between the values.
*p < 0.05

Cells spread on:
Measured factors glass coated with fibronectin glass patterned with

PLL-g-PEG/fibronectin spots

Penetration probability 55 % 36 %
Indentation depth D (1.85±0.26)µm (0.94±0.13)µm*
Penetration depth D1 (1.17±0.21)µm (0.49±0.11)µm*
Penetration Force F1 (2.23±0.43) nN (2.68±0.63) nN
Force drop Fd (310±60) pN (730±172) pN*
Membrane slip d (122±23) nm (124±29) nm

6.5.3 Comparative analysis between cells spread on patterned fibronectin, with
and without EDTA

In this section differences between cells with and without EDTA on glass with a pattern of

PLL-g-PEF/fibronectin spots were analyzed with the 5A method and confocal microscopy.

The penetration probability of cells exposed to EDTA increased from 54 % to 75 % compared

to cells in the absence of EDTA. F-actin staining results of cells with and without EDTA are

shown at varying z-axis heights on Figure 6.31. Figure 6.31a) shows a cell in the absence of

EDTA and Figure 6.31b) shows a cell in the presence of EDTA. In both cases the actin mesh is a

dominant component of the actin cytoskeleton. The presence of EDTA increases the density of

the actin mesh. Stress fibres are present only at the bottom of the cell and are well developed

and thicker than stress fibers without EDTA.

Figure 6.32 shows the measured height of the cells, their nuclei, and the membrane-nucleus

distances after DAPI staining. Cells treated with EDTA are 8µm high, while untreated cells

are 6.5µm high in average. The nuclei of the treated cells are also higher, 6.6µm compared to

5.2µm in untreated cells. The EDTA treatment has also decreased the membrane – nucleus

distance from 1.4µm to 0.9µm.
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Figure 6.30: Schematic of cell membrane rupture of a cell a) without and b) with EDTA.

Based on the confocal observations of actin cytoskeleton and measured values of cell, and

nucleus height, and a membrane – nucleus distance a schematic representation of cells was

proposed (Figure 6.33). Figure 6.33a) shows a cell in the absence of EDTA and Figure 6.33b)

shows a cell with EDTA. Exposure to EDTA increased the density of the actin mesh, and the

stress fibres present at the bottom of the cell are better developed and thicker compared to

the cell in the absence of EDTA.

The results of the 5A analysis of the force–separation curves and the penetration probability

are presented in Table 6.9. The statistical analysis showed significant differences between

the values of the microparameters: the force drop Fd and the membrane slip d of the cells

with EDTA are significantly higher. The force drop increased from 443 pN to 647 pN and the

membrane slip increased from 163 nm to 242 nm. The macroparametrs: indentation depth D ,

penetration depth D1 and penetration force F1 are the same for both conditions.

The rupture of the cell membrane measured with the 5A method is presented schematically in

Figure 6.34. For an applied force of 2.5 nN both cells undergo an indentation of approximately

1µm and membrane rupture occurs. The relaxation of the broken cell membrane treated with

EDTA is significantly higher as the force drop Fd is larger. Also the cell membrane slips 100 nm

more up the tip compared to the untreated cell.

115



Chapter 6. AFM-based microinjection system: biophysical analysis of probe indentation

Figure 6.31: Cells spread on the glass coated with fibronectin spots viewed via confocal
microscopy (from Z–axis top to bottom: a) cell in the absence of EDTA, b) cell with EDTA.
Green –Alexa Fluor 488 Phalloidin, marker for Actin.

Figure 6.32: Comparison of cell height, nucleus height and membrane–nucleus distance
between cells unmodified and modified with EDTA. 6 to 8 cells per condition were measured.

Confocal imaging of the actin cytoskeleton showed small amount of stress fibres located

mostly at the cell bottom in all the cells, thus their influence on the cell indentation can

be expected to be negligible, which is in agreement with the 5A analysis. Although EDTA

modifies the stress fibres making them better developed and thicker, this does not change

the cell elasticity: an AFM tip with a force of 2.5 nN indents both cells with and without EDTA

to the same extent. Confocal imaging of the actin mesh showed denser structures in cells

treated with EDTA. This may be visible in the rupture behaviour of the cell membrane. The

results of Kagiwada et al. [98] show that a denser actin mesh results in a higher penetration

probability. This is in agreement with this result, as the probability of penetration increased

from 54 % to 75 % in the presence of EDTA. The larger force drop Fd measured for cells in

the presence of EDTA suggests that a denser actin mesh may also influence the membrane

relaxation.
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Figure 6.33: Schematic representation of actin cytoskeleton in a) a cell without EDTA, and b) a
cell with EDTA.

Table 6.9: Comparison of penetration probability and the 5A parameters between cells un-
treated and treated with EDTA. *p < 0.05

Cells spread on glass coated with patterned fibronectin spots
Measured factors without EDTA with 25 mmol EDTA

Penetration probability 54 % 75 %
Indentation depth D (1.98±0.19)µm (1.92±0.19)µm
Penetration depth D1 (0.94±0.12)µm (1.06±0.12)µm
Penetration Force F1 (2.30±0.26) nN (2.50±0.29) nN
Force drop Fd (443±58) pN (647±75) pN*
Membrane slip d (163±21) nm (242±28) nm*

6.5.4 Discussion

Kagiwada et al. [98] demonstrated that the size and density of a cell’s actin mesh, and amount

and level of development of it’s stress fibers contribute to the efficiency of tip insertion. This

study investigated the use of a 5A analysis of force–separation curves of tip insertion to analyse

modifications of the actin cytoskeleton. Based on this hypothesis 3 comparative analyses of

cell penetration with an AFM tip combined with confocal imaging of actin cytoskeleton were

demonstrated.

In the first analysis, the indentation of SaOs-2 cells spread on glass coated with fibronectin and

glass coated with fibronectin spots was compared. Confocal imaging of the actin cytoskeleton

showed that cells spread on restricted fibronectin spots have actin cytoskeleton consisting

mostly of actin mesh while the few stress fibres are present only at the bottom of the cell. The

cells spread on the uniform fibronectin surface have large amounts of well-developed stress

fibres and the actin mesh is present only under the upper cell membrane. The differences in

the proportion of actin cytoskeleton components did not influence the penetration proba-

bility and statistical analysis showed no significant differences in any of the values of the 5

parameters. These results show that changes in cell morphology and cytoskeleton are not

always reflected in the tip-cell interactions on cell rupture.

The second analysis was of tip insertion into cells spread on a glass surface uniformly coated
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Figure 6.34: Schematic of cell membrane rupture of a cell a) unmodified and b) modified with
EDTA.

with fibronectin: cells spread on this substrate were analysed in the presence and absence

of EDTA, a chelator that binds to metal ions like C a+2 and makes them unavailable for cells.

It has been shown in the literature that EDTA denatures G–actin [101–104] and F-actin [102,

104]. Studies of the influence of EDTA on the actin cytoskeleton of single living cells are

not available. However, the denaturation of G– and F-actin suggests that EDTA modifies the

actin cytoskeleton of cells. The confocal images of EDTA treated cells stained against F-actin

presented in this chapter showed better developed and thicker stress fibres compared to

untreated cells. In both cases the actin mesh was present only under the upper part of the cell

membrane and in small amounts. Despite the fact that the analysis of the confocal images

was only qualitative the differences in the actin cytoskeleton were clear.

n EDTA treated cells with an actin cytoskeleton dominated by stress fibres the tip insertion

probability was reduced from 55 % to 36 %. Analysis of the force–separation curves and a

comparison of the 5 parameter values between untreated and treated cells showed that the

EDTA treated cells were stiffer: for the same applied force the indentation depth D was half

as big for the treated cells as for the untreated cells. In addition the penetration depth D1 for

the treated cells was half as big as for the untreated cells, while the force drop Fd parameter,

which describes cell membrane relaxation after cell membrane rupture, was twice as big for

the EDTA treated cells.
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It has been shown that the presence of F-actin in cells influences cell elasticity [106, 107] and

causes a pre-stress onto the cell interior [107, 108]. It is thus easy to conceive that the increase

in the presence of stress fibres could lead to the observed increase in cell stiffness. The reduced

penetration depth D1 can also be associated with the increased cell stiffness and the fact that

the penetration force F1 remains unchanged. Any explanation of the higher value of the force

drop Fd , and the reduced probability of penetration is, however, more speculative.

The third analysis concerned tip insertion on cells spread on fibronectin spots on a glass

surface: cells in the presence and absence of EDTA were compared. Confocal imaging of the

actin cytoskeleton of cells spread on fibronectin spots showed that in such conditions stress

fibres are present only on the bottom of the cells and that the actin mesh is the dominant

component. EDTA treated cells had denser actin mesh compared to untreated cells.

Analysis of the force–separation curves and comparison of the 5 parameters showed no

significant difference between the macroparameters: indentation depth D , penetration depth

D1 and penetration force F1. However, a statistical analysis showed significant differences

between microparameters: the force drop Fd and the membrane slip d . Both parameters had

higher values for EDTA treated cells, indicating larger membrane relaxation and membrane

slippage after rupture. The differences in the microparameters was attributed to the EDTA

modifications of the actin mesh: a denser actin mesh facilitated tip insertion (in agreement

with Kagiwada et al. [98]), membrane slip up the tip and membrane relaxation.

The 5A method presented here can be used to obtain more information about the mechanical

characteristics of the tip insertion process. The data presented here suggest the potential of

this approach while underlining the complexity of all aspects of the living cell. They are an

open invitation to the interested scientist to take this approach further.

One interesting extension of this work would be the investigation of healthy and unhealthy

cells using cell penetration experiments and the 5A analysis. In particular, a number of specific

diseases have been linked to actin cytoskeleton defects [109]. For example, dystrophic muscle

cells, “due to the defects in dystrophin’s ability to link the actin to cell surface” cause muscular

dystrophy diseases.

6.6 General discussion

6.6.1 Determination of tip insertion

A hypothesis was proposed for determining when an AFM tip has penetrated a cell membrane

based on the assumption that penetration of the cell membrane occurs when a force drop and

an elasticity change occur at the same time on a force-separation (f-s) curve. To support this

hypothesis cell indentation experiments were performed with 10 nm and 100 nm sharp tips

and forces were applied on cells ranging from 1 nN to 18 nN. After analysis of the f-s curves,

the curves were classified into 4 types:
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1. Type I: F-s curves without a force drop, known in literature as indentation curves

2. Type II: F-s curves with a force drop and no change in elasticity

3. Type III: F-s curves with a force drop and a decrease in elastic modulus after the force

drop

4. Type IV: F-s curves with a force drop and an increase in elastic modulus after the force

drop

For both tip sharpness the number of f-s curves with a force drop increases when the maximum

force applied on a cell increases. Since, intuitively, it is expected that the harder the tip presses

on a cell membrane the more probable is the cell penetration, it can be assumed that the force

drop can be related to membrane rupture (Figure 6.6).

It can be also expected that when a tip passes through a stiff cell membrane into a softer

cell cytoplasm an elasticity change should occur as well. Analysis of the elasticity change

on the f-s curves with force drop showed that an elasticity change occurred on most of the

curves. For the 10 nm sharp tip and the highest force setpoint of 5 nN, 90 % of the f-s curves

had characteristic force drops from which only 6.6 % of the curves showed no elasticity change.

For the 100 nm NADIS tip and the highest force setpoint of 18 nN, 54 % of the f-s curves had

force drops from which 18.5 % showed no elasticity change. The presence of a force drop with

no elasticity change might for example be due to interactions of a tip with proteins associated

with the cell membrane.

Within the f-s curves with a force drop and a change in elasticity, two types of elasticity change

were observed, first, when the elasticity decreases after the tip penetrates the cell (type III

f-s curves), and second, when the elasticity increases once the tip is inside the cell (type IV

f-s curves). A decrease in the elasticity could be explained by AFM tip breaking a stiff cell

membrane and entering in contact with a softer cytoplasm. The f-s curves analysis show that

the number of type III f-s curves have tendency to increase with increasing force setpoint for

both tip sharpness.

An increase in elasticity (type IV f-s curves) suggests that after the membrane breakage the tip

has encountered a stiffer component of the cell. Such a component might be, for example,

the nucleus or another organelle. It has been shown [110] that the nucleus can be stiffer than

a cell. Thus, it could be possible that when an AFM tip ruptures a cell membrane, it comes

directly into contact with a stiff organelle. The percentage of type IV f-s curves is higher for the

100 nm NADIS tip (out of all the f-s curves with a force drop and a change in elasticity, 37 % of

the curves were type IV curves, compared to 10 nm sharp tip, where in total only 11 % of the

curves were classified as type IV), suggesting an influence of the tip sharpness on probability

of encountering a stiffer component of the cells after the penetration.

The analysis of the f-s curves for 10 nm and 100 nm sharp tips in terms of force drop and

elasticity change support the presented hypothesis. However they provide only indirect
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evidence. Further confirmation would be required, for example by injection of a fluorescent

dye into living cells using the NADIS probes. Comparison of the force-distance curves obtained

on successful injection into the cell with those obtained where no injection occurred would

show if the penetration was always associated with an elasticity change in the f-s curve.

6.6.2 Force-separation curves with multiple force drops

Within the f-s curves analysis, curves with multiple force drops were found. It was shown that

the number of force drop increases with the maximum applied force (Table 6.2). F-s curves

with multiple force drops have been already described in the literature [42, 45, 97]. The first

force drop is associated with membrane rupture; however origin of the other force drop is

not certain at the moment. Yokokawa et al. [97] suggested that presence of the second and

more force drops could be explained by penetration of the nuclear membrane. To confirm this

assumption a nuclear injection experiment could be carried out using for example the NADIS

probes. The injection into a cell of a fluorescent dye that stains the nucleus and an f-s curve

analysis of the successfully injected dye might show if the presence of the first and second

force drops is due to penetration of the cell membrane followed by the nuclear envelope.

Another possible explanation for the multiple force drops is slippage of the tip inside the cell.

It is possible that after penetration of the AFM tip into the cell, further indentation results in

enlarging of the opening of the membrane which could result in additional force drops on the

f-s curve as the membrane slips up the tip. This hypothesis might be tested using for example,

an AFM tip with different surface chemistries e.g. an antifouling layer to penetrate the cell

membrane and investigate the presence and characteristics of multiple force drops.

6.6.3 5A method

5 parameters were defined from a force–separation curve with a penetration peak. Four of

these parameters have already been mentioned in the literature: the indentation depth (D)

[97], the penetration depth (D1)[42] the penetration force (F1)[42], and the force drop (Fd )[41,

98]. The fifth parameter, the ‘membrane slip’ (d) has not yet been discussed in publications

on AFM/cell interactions.

A simple mechanical model was presented, based on the assumption that d represents the

movement of the cell membrane up the AFM tip during rupture of the membrane. In this

model the forces of the membrane on the tip are represented by a linear spring where it was

assumed that cell spring constant just before the cell penetration is the same as the cell spring

constant directly after the penetration (Figure 6.12).

Further, the 5 parameters were tested on f-s curves obtained on SaOSs-2 cells with 10 nm and

100 nm sharp tips. It was shown that the penetration force (F1) depends on the size of the tip

radius. The larger the radius the higher the force required to rupture a cell membrane. The

penetration depth (D1) does not depend on the tip size. It was measured that breakage of a
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SaOs-2 cell membrane occurs at penetration depth D1 of approximately 1µm, and penetration

force F1 of 2.5 nN for 10 nm sharp tip and 4.4 nN for 100 nm sharp tip. The indentation depth

D , the penetration depth D1 and the penetration force F1 were here called macroparameters,

as they describe the behaviour of the entire cell upon a contact with the tip. The force drop Fd

and the membrane slip d were called microparameters, as they describe breakage of the cell

membrane.

It was shown that the force drop Fd and the membrane slip d depend on the geometry of the

tip. When the tip radius and the half tip angle are small (the 10 nm sharp tip had half angle tip

of (25°, the 100 nm sharp tip half angle tip of (35°) the values of the microparameters are high.

According to the simple mechanical model describing cell membrane rupture, the ratio of

Fd /F1 (force drop over penetration force) divided by ratio of d/D1 (membrane slip over

penetration depth) should be equal to 1. An analysis of this dependency for every f-s curve is

presented in Figure 6.20. This shows that the mechanical model is in very good agreement

with the results obtained with the 10 nmsharp tip, but that the agreement is less good for the

100 nm NADIS tip. This can be clearly seen from the histograms, where for the 10 nm sharp

tip most of the F d/F 1÷d/D1 values are close to 1, whereas for 100 nm sharp tip the values

are range from 1 to 1.6. The results suggest that the simple elastic model perfectly describes

rupture of a cell membrane with a sharp and narrow AFM tip. To confirm this assumption

further experiment would be required with tip radii of for example 20 nm, 50 nm and 80 nm

sharp tip. Another interesting point is the influence of the half angle tip on the membrane

rupture. In experiments presented here two tip sharpness with two different half tip angles

were used. More experiments would be required to investigate how variation of the half angle,

while keeping the same tip sharpness, is influencing the cell membrane penetration and if the

presented here model can be used to describe the penetration.

6.7 Conclusions

Three main aspects of mechanical cell membrane penetration were presented here: determi-

nation of tip insertion into a cell; dependence of the probability of penetration on tip geometry,

cell-substrate interactions and the presence of EDTA; biophysical analysis of the penetration.

To determine tip insertion the hypothesis was proposed that when an AFM tip breaks the

cell membrane and passes from outside the cell to inside of it a change in elastic modulus

should occur and that this change in elastic modulus should be observable in the force

separation curve. Indirect evidence of this hypothesis was provided through analysis of 350

force-separation curves obtained for 10 nm and 100 nm sharp tips with applied forces varying

from 1 nN to 18 nN. For most of the force-separation curves the peak was associated with

change in elastic modulus (in total, for 10 nm sharp tip 91.5 % f-s curves, and 77.8 % for 100 nm

sharp tip. Based on the hypothesis a specification of cell penetration with an AFM tip was

proposed: a force drop is considered to be present when its value is higher than 3 standard

deviation of the noise, and an elasticity change has to occur.
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Based on this proposed specification, the probability of penetration of SaOs-2 cells was

measured for 10 nm and 100 nm sharp tips and three different substrates: a Petri dish, glass

uniformly coated with fibronectin and glass coated with patterned PLL-g-PEG/fibronectin.

For 10 nm sharp tips and an applied force of 5 nN the penetration probability of cells spread

on a Petri dish was 84 % and 55 % and 54 % when cells on the uniform fibronectin and on the

patterned PLL-g-PEG/fibronectin respectively. For 100 nm NADIS tips and an applied force of

20 nN the penetration probability of cells spread on a Petri dish was 50 % and on patterned

PLL-g-PEG/fibronectin was 0 %.

A biophysical analysis of cell membrane penetration was shown here using 5 parameters

obtained from a force-separation curve. Four parameters are known from the literature, the

fifth parameter-the membrane slip, was proposed based on a simple mechanical model. The

influence of the tip geometry on the different parameters was investigated with 10 nm and

100 nmsharp tips. It was shown that indentation depth, penetration force, force drop and

membrane slip depend on the tip sharpness and the penetration depth is independent of the

sharpness. An analysis of the Fd /F1 ÷d/D1 values, for 10 nm and 100 nm sharp tips, supports

the association of the fifth parameter with the slip of the membrane up the AFM tip during

rupture.

In conclusion, the success of cell penetration strongly depends on the tip geometry and the

surface on which the cell is spread. The biophysical analysis of the penetration gives insight

into the mechanical tip-cell interactions. This analysis will be of great use during microinjec-

tion experiments and will help to distinguish effects that due to the tip–cell interaction from

the effects caused by liquid delivery.
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7 Quantification of single cell damage 1

Since AFM allows the interaction between the tip and the sample to be controlled precisely,

very little or no damage is expected to be done to the cell by the tip during penetration. To

confirm this assumption invasiveness of an AFM tip was investigated and will be described in

this chapter. Very few studies have been dedicated to investigating cell necrosis and apoptosis

due to breakage of the cell membrane with an AFM tip. Han et al.[50] showed that no cell

damage can be expected for a tip diameter smaller than 200 nm. This demonstration was

based on a single melanocyte cell. To form a better view on the possible tip invasiveness,

more studies with a significant number of cells is required. However experiments using larger

number of single cells are challenging, as every individual cell has to be first indented with an

AFM tip and a force-separation curve has to be recorded and analyzed in order to know if the

cell was penetrated or not. After the indentation of each cell, the sample with the cells has to be

checked for possible cell damage. If a cell is damaged, analysis of the force–separation curve

attributed to this cell will show whether the damage could be triggered by the tip penetration.

To study tip invasiveness on a large number of cells two methods were proposed:

1. When the cells are spread on a Petri dish

2. When the cells are spread on glass patterned fibronectin

With these methods invasiveness of tip insertion was investigated for two situations:

1. when the tip penetrates only the upper part of the cell (Figure 7.1a))

2. when the tip penetrates the cell entirely (Figure 7.1b))

amples with cells were investigated for possible damage either directly after the last cell was

indented with a tip, or 20 hours after the last indentation. By investigating cell damage directly

1„Quantification of cell damage.“ J. Bitterli, S. Ahmed, M. Giazzon, N. Matthey, Ph. Renaud, M. Liley;
manuscript in preparation.
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Figure 7.1: Schematic drawing of an AFM tip positioned above the nucleus and penetrating a)
only upper part of the cell, and b) the entire cell.

after the penetration, presence of severe cell membrane damage or necrosis was assessed. By

investigating cell damage 20 hours after the last cell penetration, possible triggering of cell

apoptosis by tip indentation was assessed.

7.1 Method 1: Cell damage quantification using Petri dish

In the first method quantification of tip invasiveness of SaOs-2 cells spread on Petri dish was

assessed. To be able to localize individual cells, a specific grid with squares was designed and

printed on optically transparent foil and glued to the bottom of the Petri dish on which the

cells were spread. Each square was marked with a letter and a number. Figure 7.2a) shows

an optical image of a Petri dish with such grid with squares, and Figure 7.2b) shows a phase

contrast image of a single square with seeded cells. For tip invasiveness measurements it

was preferable to have from 60 to 100 single cells seeded inside one square. To fulfill this

requirement, 10000 to 20000 cells were seeded on a Petri dish. After the seeding the samples

were incubated for 24 hours. Squares containing an ideal number of cells was chosen for

indentation experiments with an AFM tip. Phase contrast images of the square were saved

and printed for cell identification. The sample was placed in the AFM sample holder for cell

indentation experiment.

Figure 7.2: Mapping of a Petri dish with a grid with squares. a) shows optical image of a
grid glued to the bottom of the Petri dish with SaOS-2 cells, and b) is a phase contrast image
showing a detailed view of a c5 square with cells.

During the cell indentation experiment contact time between an AFM tip and a cell was set
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7.1. Method 1: Cell damage quantification using Petri dish

to 5 seconds, the same value that will be used during cell injection experiments with NADIS

probes. The contact time between an AFM tip and a cell is the time during which the AFM tip

stays in the cell after reaching the force setpoint value. When that time is set to 0 seconds the

AFM tip comes in contact with a cell, indents the cell until the given force setpoint is reached,

and retracts from the cell immediately after. Figure 7.3 shows examples of a) force-time curve

demonstrating indentations with 0 seconds contact time, and b) shows force-time curve with

5 seconds contact time. The force-time curves show changes in interaction forces between

the tip and the cell as a function of time, compare to the force-separation curves which show

interaction forces as a function of tip-cell distance.

Figure 7.3: Force–separation curve with a) 0 s contact time and b) 5 s contact time. The peaks
present on both curves show tip penetration of the cell membrane.

After the penetration experiment the sample with cells is checked for cell damage. The cell

damage is investigated with a LIVE/DEAD kit. The LIVE/DEAD kit contains two components.

The first component was Calcein-AM. This is a highly lipophilic and cell membrane permeable.

Although CAM is not a fluorescent molecule, when it enters viable cells it is metabolized by the

cell to a dye that emits a strong green fluorescent signal. The second component is propidium

iodide. This is a nuclear stain which cannot pass through the membranes in a living cell. It

passes only through a dead cell’s membranes and intercalates with the DNA in the nucleus

to emit a strong red fluorescence. After applying the kit to the cells, the cells are viewed by

fluorescence microscopy. Cells emitting in the green are counted as live cells. When a cell

emits red light, it means that the cell membrane was severely damaged upon contact with the

AFM tip. Figure 7.4a) shows a fluorescence image of a control sample treated with the LIVE/

DEAD kit. Most of the cells emit green fluorescence, except for one red cell which was counted

as a dead cell.

Last step of tip invasiveness investigation is counting of the alive and dead cell. A phase

contrast image of cells taken before the penetration experiment is overlapped with confocal
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Figure 7.4: a) Confocal image of cells treated with the LIVE/DEAD kit. Cells emitting green
fluorescence are alive and the red cell is counted as dead. b) Phase contrast image of cells
taken before the penetration experiment overlapped with confocal images of cells treated with
the LIVE/DEAD kit after the penetration experiment.

images of cells after staining with the LIVE/DEAD kit. Figure 7.4b) shows an example of

such overlapped pictures. Based on the analysis of the overlapped pictures the number of

damaged cells is extracted. Force–distance curves of every damaged cell is analyzed in order

to investigate if the dead cells were penetrated with an AFM tip.

The methods presented here consist of 3 main steps:

1. Seeding of the SaOs–2 cells on a Petri dish, attaching the mapping grid with squares and

choosing a square containing from 60 to 100 cells for indentation experiment.

2. Performing cell indentation experiment on a defined number of single cells with a

defined force setpoint and a contact time of 5 seconds.

3. Staining the sample with the LIVE/DEAD kit, imaging with confocal microscope and

comparing phase contrast images before the indentation experiment with the fluores-

cence images after the experiment to count dead cells.

7.1.1 Cell damage analysis after cell membrane penetration

With such defined method invasiveness of 100nm sharp NADIS tip was measured on 50

SaOs-2 cells. First invasiveness of tip penetrating only upper part of a cell was measured. In

Chapter 6 Section 6.3.1.1 the probability of penetration of SaOs - 2 cells spread on Petri dish

was measured with the 100 nm sharp NADIS tip. It was shown that for 18 nN force setpoint (the

highest setpoint used) the penetration probability is 50 %. Analysis of the force–separation

curves allowed to measure indentation depth (D) of the tip. It was shownthat for this setpoint

value, the tip indents the cells up to 2.7µm on average. Measured via confocal microscopy, the

height of the cells was on average 4.6µm (chapter 6 section 6.5.5). Based on these results, in

order to have a high probability of penetration in the upper part of the cell, a force setpoint of

20 nN was set.
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7.1. Method 1: Cell damage quantification using Petri dish

In order to investigate cell damage, each sample was treated with the LIVE/DEAD kit immedi-

ately preceding the last cell indentation. Total time needed to indent 50 cells is 3 hours, which

means that the first indented cell was stained 3 hours after, and the last cell, was stained 5

minutes after the indentation.

Preparation of the sample took place in sterile conditions, whereas cell indentation experiment

with an AFM and treatment with the kit were done in non-sterile conditions.

Figure 7.5 shows the results. A phase contrast image of cells before the indentation experiment

is overlapped with confocal images of cells treated after the experiment. Only cells emitting

green fluorescence are present. On the image 8 individual cells are highlighted and their

force-separation curves are demonstrated. 5 cells are shown as tip insertion examples, with

penetration peak marked with black arrow on each force-separation curve, and 3 cells are

shown as indentation examples. Two cells on the image marked with red circles do not emit

fluorescence signal. These cells were not indented during the experiment. Their absence was

probably caused by the sample treatment with the LIVE/DEAD kit, which required washing

steps.

Analysis of the force-separation curves showed that 28 cells were penetrated, from which 12

cells had more than one peak present.

Based on the overlapped images all the cell indented with an AFM tip survived, and managed

to repair their cell membranes before treatment with the LIVE/DEAD kit. Lack of cells emitting

red fluorescence is a proof that during the sample treatment cell membrane of the penetrated

cells was impermeable for propidium iodide.

To study cell death another sample with cells was prepared. After indentation of 50 cells with

the 100 nm sharp NADIS tip, the sample was placed in the incubator for 20 hours and then

treated with the LIVE/DEAD kit. Figure 7.6 shows the results. It can be seen that after 20

hours the number of cells increased and the cells changed their position which made the

cell identification very difficult. Cells marked with red circles were present before treatment

with the LIVE/DEAD kit. Their absence on the fluorescence images can be explained by

many factors: they were washed from the samples during treatments, or they died due to tip

indentation.

Obtained results showed that this method cannot be used to investigate tip invasiveness 20

hours after the indentation experiments. In order to perform such experiments a new method

was proposed.
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Figure 7.5: Overlapped phase contrast image before tip indentation experiment with confocal
images of cells after the experiment (applied force 20 nN) and treated with the LIVE/DEAD kit
directly after the experiment. 8 cells are pointed are pointed and their force-separation curves
are demonstrated. Black arrow on a curve shows penetration event.

7.2 Method 2: Cell damage quantification using patterned fibronectin

In this method the cells were seeded on commercially available glass substrates patterned with

fibronectin. The pattern of the fibronectin had a disc shape of a diameter of 45µm (further

called fibronectin spot); the pitch between the discs was 130µm. The entire surrounding

surface was PLL-g-PEG, a surface chemistry which discourages cell spreading. The sample

contains marked sections, each containing 81 fibronectin spots.

The cells were seeded on the glass slide in a way to obtain a high number of fibronectin spots

occupied by only one cell. The high number of fibronectin spots occupied by one cell was

achieved by addition of 25 mmol EDTA to cell medium during regular culture. Once the cells

had attached they were washed with PBS and then left in regular culture media supplemented

with 25 mmol HEPES buffer. EDTA was used here as it prevents cells in suspension from
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7.2. Method 2: Cell damage quantification using patterned fibronectin

Figure 7.6: Overlapped phase contrast image before tip indentation experiment with confocal
images of cells after the experiment (applied force 20 nN) and treated with the LIVE/DEAD kit
20 hours after the experiment.

clustering. Single cell on a fibronectin spot was physically restricted in the area in which it

could spread. This allowed the position of the cell 20 hours after the indentation experiment

to be controlled. Figure 7.7 presents a phase contrast image of one section with 81 fibronectin

spots. It can be seen that not every spot is occupied by a cell and some spots have more than

one cell. For the tip indentation experiments sections containing more than 50 spots with

single cells were chosen. The spots are arranged in an array to allow individual cells to be

located.

During the penetration experiment the contact time between the tip and the cell was set to 5

seconds Also the same LIVE/DEAD kit was used to investigate possible cell damage after the

indentation experiment.

In the summary, the second method consisted of 3 steps:

1. Seeding of the SaOs-2 cells on glass coated with fibronectin spots, and choosing a section

containing more than 50 spots occupied by single cells for indentation experiments

(sterile conditions).

2. Performing cell indentation experiments on a defined number of single cells with a

defined force setpoint and a contact time of 5 seconds (non-sterile conditions).

3. Staining the sample with the LIVE/DEAD kit and imaging with confocal microscope
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Figure 7.7: Phase contrast image of a section with 81 fibronectin spots. The spots are trans-
parent and cannot be seen on the picture. Most of the spots are occupied by cells and empty
spaces show locations of spots to which cells did not attached.

(non-sterile conditions).

With such defined methods tip invasiveness was investigated. However, in Chapter 6, Sec-

tion 6.3.1.1 it was shown that penetration probability of cells spread on the fibronectin spots

for 100 nm sharp NADIS tip was 0 %. This means that this method is not suitable for AFM

tips with large tip radius. However, the penetration probability for 10 nm sharp tips was mea-

sured to be 84 % at force setpoint of 5 nN. Based on this results further investigation of tip

invasiveness will be done with the 10 nm sharp tip.

7.2.1 Cell damage analysis after cell membrane penetration

Tip invasiveness of 10 nm sharp tips was first investigated for a situation when the tip pene-

trates only the upper part of the cell. Penetration probability for the 10 nm sharp tip at 5 nN

force setpoint was 75 %. Analysis of the force –separation curves shows that for this setpoint

value, the tip indents the cells up to 1.92µm in average. Measured with a confocal microscope

the height of the cells was 8µm on average (Chapter 6, Section 6.5.4). Based on these result,

the 5 nN force setpoint value was used in further experiments.

The possible cell damage due to cell penetration was investigated both directly, and 20 hours

after the last cell indentation. The direct measurement of the cell damage was done to

investigate if the cell is able to recover and repair its membrane in a short time. Analysis of

the cell damage 20 hours after the penetration was done to investigate if the tip insertion can
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induce cell apoptosis.

Figure 7.8a) shows tip invasiveness measured directly after the indentation experiment. It can

be seen that all cells emit green fluorescence. Analysis of the force-separation curves showed

that 35 cells were penetrated with the tip. 4 examples of cell emitting the green fluorescence

are presented with their force-separation curves. Each curve has a penetration peak. Lack of

cell stained red on the picture shows that cells managed to repair their membranes before the

treatment with the LIVE/DEAD kit.

Figure 7.8b) shows the results measured 20 hours after the indentation experiment. 43 cells

were emitting green signal, 7 cells were either emitting red signal or missing. Any cells which

were missing were assumed to be dead as the SaOs-2 cell line is an adherent cell line. Analysis

of the force-separation curves showed that 40 cells were penetrated with the tip. Not all

of the dead cells were penetrated. As an example cell 1c and its force-separation curve is

presented. It can bee seen that the tip only indented the cell. Another example, cell 8i was

also only indented and 20 hours after the indentation two cells were found there, suggesting

that the cell went through mitosis. Two additional examples are shown as well: cell 6h with its

force- separation curve showing penetration peak, and cell 8g with its force-separation curve

showing multiple penetration peaks.

In summary, no cell damage was observed on the first sample treated with the LIVE/DEAD

kit directly after the indentation experiment. 7 cells were missing on the second sample, first

incubated for 20 hours and after treatment with the kit. The cells that detached from the

sample are assumed dead.
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Figure 7.8: Confocal images of cells after indentation experiment (applied force 5 nN) and
stained with the LIVE/DEAD kit; a) shows cells stained directly and b) 20 hours after the
experiment. Positioning of the cells allows attributing the force-separation curves to individual
cells and identifying whether the cell was penetrated or only indented. Alive cells are stained
with green marker; dead cells are stained with the red die. Positions marked with red circle
show cells that were indented and got detached during the treatment with the kit.
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7.2.2 Cell damage analysis after penetration of the entire cell

In this experiment possible tip invasiveness was investigated for situation when the tip pene-

trates entire cell and touches the bottom of the substrate on which the cell has spread. In order

to obtain a high amount of such situations a high value of 30 nN force setpoint was chosen.

The possible cell damage due to cell penetration was investigated like in the previous section

immediately, and 20 hours after the last cell indentation.

Figure 7.9a) shows tip invasiveness the results measured directly after the indentation experi-

ment. It can be seen that all cells emit green fluorescence. Analysis of the force-separation

curves showed that 50 cells were penetrated with the tip. 4 examples of cells emitting green

fluorescence are presented with their force-separation curves. Each curve has several pen-

etration peaks. Peaks shown in the circle are due to the tip penetration of the bottom cell

membrane. After penetrating the entire cell the tip is pressing on the glass substrate, indicated

by the 90° steep part of the force-separation curve.

Figure 7.9b) shows the results measured 20 hours after the indentation experiment. 46 cells

were emitting green signal, 4 cells were missing, marked with a red circle, and 5 cells divided

into two cells, marked with a green circle. Analysis of the force-separation curves showed that

all the cells were penetrated with the tip. 2 examples of missing cells are presented, cell 2b

and 5f, and 2 examples of cells that went through the mitosis, cell 1i and 2g. Force-separation

curves of the 4 cells show penetration peaks of the bottom cell membrane followed by 90°

steep part of the curve indicating tip pressing on the substrate.
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Figure 7.9: Confocal images of cells after indentation experiment (applied force 30 nN) and
stained with the LIVE/DEAD kit; a) shows cells stained directly and b) 20 hours after the
experiment. Positioning of the cells allows attributing the force-separation curves to individual
cells and identifying whether the cell was penetrated or only indented. Alive cells emit green
fluorescence; dead cells emit red fluorescence. Places marked with red circles show positions
of cells that were indented and now are missing. Green circles show cells that divided during
the 20 hours.
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In summary, no cell damage was observed on the first sample treated with the LIVE/DEAD kit

directly after the indentation experiment. This allowed us to assume that cells are capable of

fast recovery and membrane repair even after extreme invasiveness of the AFM tip. Analysis of

the fluorescence images of the second sample showed 4 cells were missing and 5 cells went

through mitosis 20 hours after the last cell penetration. Any cells which were missing were

assumed to be dead. These results show that after penetration of the entire cell with a 10 nm

sharp tip, all the cells were alive directly after the penetration and only 4 cells were found

dead on a sample investigated 20 hours after the last cell penetration. Based on these results

it can be assumed that cells are able to recover and repair damage caused by mechanical

penetration of a tip very quickly. Observation of the cells 20 hours after the experiment shows

that although the tip punctured the cells from their top to bottom, in 92 % of the cases the cells

were alive. This shows that it is highly improbable that tip insertion can trigger biochemical

reactions in the cell that would cause apoptosis. To confirm this assumption a control sample

was prepared. The cells were seeded on the glass patterned with fibronectin spots and was

placed inside the AFM microscope for 3 hours. No indentation experiment was performed.

The sample was only exposed to the same non-sterile conditions like discussed in the above

samples. After the exposure the sample was left in the incubator for 20 hours and treated with

the LIVE/DEAD kit.

Figure 7.10 shows overlapped confocal images of the sample. After 20 hours 4 cells were

missing (marked with red circles).

Figure 7.10: Overlapped confocal images of control sample exposed to non-sterile conditions
for 3 hours and after treated with the LIVE/DEAD kit. Alive cells emit green fluorescence; dead
cells emit red fluorescence. Places marked with red circles show positions of cells that were
indented and now are missing.
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Confocal imaging of the control sample showed that amount all the cells 4 died due to natural

cell death. This result suggests that missing cells on the previous samples (where each cell was

penetrated with the tip) might have died due to natural cell death and not upon a contact with

an AFM tip.

7.3 Discussion

The cell damage caused by tip insertion was investigated in two ways: Firstly, when the cells

were spread on a Petri dish, and second, when the cells were spread on glass patterned with

fibronectin spots. In both cases, after the sample preparation, 50 cells were indented with an

AFM tip. Directly after or 20 hours after the indentation the cells were investigated for cell

damage with a LIVE/DEAD kit. The results are summarized in Table 7.1 and Table 7.2 .

Table 7.1: Results of the force-separation curves analysis combined with the amount of dead
and alive cells spread on Petri dish and indented with 100 nm sharp NADIS probe with applied
force of 20 nN.

50 examined cells

Indented cells Indented cells

22 28
Alive Dead Alive Dead

22 0 28 0

Table 7.2: Summary of the cell death analysis on glass pattern with fibronectin spots treated
with the LIVE/DEAD kit directly after and 20 hours after the indentation experiment with
10 nm sharp tip and applied force of 5 nN and 30 nN.

Force setpoint Cells analyzed after 0 hours Cells analyzed after 20 hours

0 nN (control)
Dead Alive Dead Alive

0 50 4 46

5 nN

Indented Penetrated Indented Penetrated
15 35 10 40

Alive Dead Alive Dead Alive Dead Alive Dead
15 0 35 0 8 2 35 5

30 nN

Indented Penetrated Indented Penetrated
0 50 0 50

Alive Dead Alive Dead Alive Dead Alive Dead
- - 50 0 - - 46 4

With the first method the 100 nm NADIS tip invasiveness was analyzed directly after the last

cell indentation. During the cell indentation experiments the force setpoint was set to 20 nN

in order to achieve high probability of tip penetrating only upper part of a cell. Analysis of the
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force-separation curves showed that 22 cells out of 50 were penetrated with the tip. Confocal

imaging of the sample showed that all the 50 cells were alive after the experiment. All the

penetrated cells repaired their ruptured membranes as no red fluorescence was emitted during

confocal imaging of the cells. The results obtained show that cell membrane penetration with

a 100 nm sharp tip does not create any immediate damage to cells.

It was not possible to assess cell damage 20 hours after indentation due to cell division

preventing identification of the individual cells.

In the second method cells were spread on fibronectin spots. Single cells on fibronectin spots

are physically restricted in the area in which they can spread. This allows the position of

the cell to be controlled 20 hours after an indentation experiment. Since the penetration

probability of 100 nm NADIS tip is 0 % when cells are spread on the fibronectin spots cell

damage was investigated with 10 nm sharp tip. The indentation experiments were performed

with 5 nN and 30 nN force setpoint value. 50 cells were indented for each condition. In each

case cell damage was investigated directly after, or 20 hours after the indentation experiment.

When a 10 nm sharp tip penetrates a cell with 5 nN force setpoint, the tip penetrates only the

upper part of the cell. Analysis of the force-separation curves showed that 35 out of 50 cells

were penetrated with the tip. Treatment with the DEAD/LIVE kit directly after indentation

followed by imaging of the sample showed that all 50 cells were alive. In a second sample the

force-separation curves showed that 40 out of 50 cells were penetrated with the tip. Analysis

20 hours after the penetration/indentation and fluorescence imaging of the sample showed

that 43 cells were alive and 7 cells were missing. Since the SaOs-2 cells are adherent cells,

the 7 missing cells were counted as dead cells. When a 30 nN force setpoint was used, the

tip penetrated the entire cell and hit the bottom of the substrate. Fluorescence imaging of

cells treated with the LIVE/DEAD kit directly after the penetration showed that all cells were

alive and managed to repair their ruptured membranes. Imaging of cells treated 20 hours after

penetration showed 46 live cells emitting green fluorescence and 4 cells missing.

Analysis of the control sample 20 hours after exposure to non-sterile conditions reveled 4

cell missing. This result shows that even under conditions where cells are not exposed to

mechanical stress and cell membrane penetration, around 8 percent of the cell population

can be expected to die. This value can be compared with the values obtained after indentation:

with a 5 nN force setpoint 14 % of cells were dead after 20 hours with a 30 nN force setpoint 8 %

of cells were dead. This comparison suggests that cell penetration (even most drastic, when

an AFM tip penetrates entire cell) with a 10 nm sharp tip does not triggering cell death.

These results show that SaOs-2 cell are surprisingly resistant to AFM tip penetration, clearly

possessing suitable mechanisms that allow to repair their ruptured membranes and recovers

rapidly after tip insertion. SaOs-2 cells – an osteosarcoma cell line – are robust adherent

eukaryotic cells. It is possible, perhaps likely, that other cell types are more sensitive to AFM

tip penetration. Therefore, extension of this work to other cell lines and primary cells could

give a more general overview on the invasiveness of the AFM tips.
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Different tip shapes (cylindrical or conical) could be used to test the limits of cell robustness.

In this study the tip was inserted in the cell for 5 seconds and left static. It would be interesting

to see how the cell would react to the tip being inserted in the cell for a longer period of time

and how if moving the tip whilst inside the cell would influence cell damage.

A limiting factor in using SaOs-2 cells for long term studies is their capacity to divide very

quickly and make identification of individual cells that have been penetrated impossible.

Using a cell type that divides more slowly, such as nerve cells, would allow the long term effects

of cell penetration to be studied.

7.4 Conclusions

Two methods on how to measure possible single cell damage were demonstrated.

The first method allows cell damage to be measure a few hours after tip insertion into cells

which are spread on a petri dish. The second method allows cell damage to be measured on

cells grown on glass patterned with PLL-g-PEG/fibronectin spots, 24 hours after tip insertion.

Measurement of tip invasiveness directly after the cell penetration showed no cell damage,

even when the tip was penetrating the cell entirely and touching the substrate. Measurement

of tip invasiveness 20 hours after the cell penetration showed maximum 14 % of cell death.

This is similar the rate of natural cell death measured on the control sample.

Results obtained here show that cell penetration with an AFM tip does not cause severe

damage to cells. This result will be further utilised in the analysis of microinjection of liquids

into cells with the NADIS probe.
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8 Microinjection using the AFM–based
system

Once the AFM-based microinjection system had been fabricated and characterized (Chapters 4

and 5), and AFM tip insertion into single living cells had been studied (Chapters 6 and 7), the

system was used to inject liquids into cells. These experiments were used to test the feasibility

of the system and investigate which technological aspects require further development. Two

types of experiments were designed, first to investigate feasibility of intracellular injection,

and second, to inject liquid directly into a cell nucleus.

8.1 Experimental design

The intracellular injection experiments were designed to investigate different aspects con-

cerning successful liquid delivery after tip insertion into a single cell. In previous chapters

theoretical values of the volume of liquid that can be delivered into a single cell were discussed;

experimental values of the injection parameters: the pressure and the length of the pressure

pulse were proposed; the probability of cell membrane penetration was measured to find

optimal conditions for tip insertion; and finally possible cell death due to tip insertion was

investigated in order to understand the effect of tip invasiveness into cells. All these results

presented in Chapters 4 to 7 were used to design the intracellular injection experiments.

Figure 8.1 presents schematically the experimental design. The experiment consists of 6

steps. The first step is the preparation of a sample with cells and liquids used for injection. In

Chapter 6, Section 6.3.1.1 it was shown that the highest probability of cell penetration with

NADIS tips was measured for cells seeded on a Petri dish. Based on this result it was decided to

use cells seeded on this substrate. Two liquids were used: sterile water and fluorescent sodium

salt dissolved in PBS at a concentration of 0.1 mg mL−1. The water injection experiment was

designed to check for possible leakage of the fluidic connectors, clogging of the tip opening

due to cell membrane residues, and to study tip interactions with the cells during liquid

injection via force-time curves. Injection of the fluorescent solution was dedicated to study

the most suitable values of the injection parameters (pressure and length of the pressure

pulse).
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Figure 8.1: Diagram showing the planning of the experiment.

The second step is the filling of the system with liquid, according to the method presented

in Chapter 5, Section 5.2.2. When the NADIS probe is filled the resonance frequency of the

vibrating cantilever decreases until the channel and the tip are completely full of liquid. An

average decrease of (26±9) kHz (as measured in Section 5.2.2) indicates that the probes are

correctly filled. Once the NADIS probe is filled, the sample with cells is placed in the Petri dish

heater mounted on the AFM stage.

Steps 3 to 5 concern the movement of the NADIS probe: cell indentation (the tip approach),

the tip pause (the time during which the tip is not moving and stays in contact with the cell)

used for injection, and tip retraction from the cell.

The tip approach was designed based on the approach parameters used during the penetration

probability measurements presented in Chapter 5. The cantilever approaches each cell with a

speed of 2µm s−1. The force setpoint was chosen based on the penetration probability results

measured in chapter 6. For a 20 nN setpoint, the penetration probability was measured to be

50 %. For the cell injection experiments it was decided to use the same value.

When the force with which the tip is indenting a cell reaches the given setpoint, the probe is

kept still for few seconds in a constant height mode. This pause is used to decide whether the

tip has penetrated the cell or not and to inject liquid if penetration has occurred. To analyze

tip penetration the tip-cell interactions are monitored in real time, with an oscilloscope, in

the form of the force-time curve. If the force-time curve has a characteristic force drop, it

is assumed that the tip has penetrated the cell and that liquid can be injected into the cell.

During the water injection experiments different time values of the pause are tested to find an

optimum value.

The injection parameters (step 4) were chosen based on the results presented in Chapters 5

and 6, and are used as a reference: a pressure of 5000 Pa (2µm s−1) and a length of the pressure

pulse of 20 ms.

After the pause the tip is automatically retracted from a cell at the same speed of 2µm s−1 (step

5).

The last step is dedicated to investigating with a fluorescent microscope the cell sample after
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injection of fluorescent solution, in order to search for cells emitting fluorescent signal.

8.2 Preliminary experiments

The main goal of these experiments was to test the system for leakages, study tip interactions

with cell during the injection, and test clogging of the tip opening. This was done by injecting

water into the cell to cause the cell to explode. Cell explosion occurs immediately after the

injection, making it a very efficient way to investigate if the AFM-based microinjection system

works correctly.

Figure 8.2 shows optical images of a two cells before (Figure 8.2a) and Figure 8.2c)) and directly

after (Figure 8.2b) and Figure 8.2d)) the injection. When too much liquid is injected into a cell,

first, the cell membrane bursts due to the excess of water, and immediately after the cell starts

to shrink and detach from the surface.

Figure 8.2: Injection of excess of water into a cell. Figure a)-c) show cells directly before
injection, figure b)–d) directly after.

The injection of water was done with NADIS probes with needle-like openings approximately

300 nm in diameter. Resonance frequency measurements during filling of the system showed

a decrease of the resonance frequency of 28 kHz. During the first cell indentation experiments

20 nN force setpoint was used, however only few tip insertion events were measured. In order

to increase number of the insertion events force setpoint values of 50 nN, 80 nN and 100 nN

were used.

Tested values of the tip pause-the time during which the tip was kept still in constant height

mode after reaching the force setpoint, were 5 s, 10 s and 30 s, depending on the length of the

injection pulse.

The values of the injection parameters: the pressure ∆p and the length of the pressure pulse

∆t were chosen according to the reference values (∆p = 50mbar, ∆t = 20ms). The reference

values are theoretical values which should create a pressure pulse that injects a volume of

liquid that a single cell can accommodate. In order to inject excess of water in a single cell

it was decided to use higher values than the reference ones: ∆p = 200mbar, ∆t = 50ms.

However, injection of water with these parameters did not damage any of the first 5 penetrated

cells. The first cell explosion was observed for ∆p = 500mbar, ∆t = 500ms. These values were
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used for injection into the next cells, however no cell explosion was observed. An additional

increase of the values to ∆p = 700mbar, ∆t = 1300ms resulted in a successful cell damage.

After 2 hours from the beginning of the experiment, cell damage due to injection occurred

only when the length of the pressure pulse was set to 10 s (∆p = 700mbar, ∆t = 10000ms).

Figure 8.3shows force-time (f-t) curves (the tip approach, the pause and the retraction) ob-

tained for the first and the last exploded cells. Figure 8.3a) shows force-time curve of the first

successful cell damage. First the tip indented the cell with a force setpoint of 20 nN. As the tip

reached the setpoint value, it was kept in contact with the cell at the constant height for 5 s

(the 5 s pause). Once the presence of a force drop was confirmed on the detailed view of the

approach f-t curve (Figure 8.3b)) a pressure pulse was generated (∆p = 500mbar,∆t = 500ms).

After the pause the tip was retracted from the cell. Figure 8.3c) shows the force-time curve of

the last successful cell damage. During the approach the tip indented the cell with 100 nN

force setpoint. Figure 8.3d) shows a detailed view of the approach part of the f–t curve. The

force drop suggests cell penetration. During the pause of 30 s a pressure pulse was generated

with a pressure ∆p = 700mbar during time ∆t = 10s. When the pressure pulse was applied

to the system a sudden increase in measured force of approximately 1µN was observed. The

force stopped increasing when the pressure pulse ended. For the rest of the pause force

fluctuations were observed until the tip was retracted from the cell.

The water injection experiment showed that: values of the injection parameters had to be

much higher than expected, and had to be slowly increased with time to ensure that liquid

was ejected from the system. In addition when during the pressure pulse a sudden apparent

force increase was observed in the force-time curve. The shape of the apparent force peak

depended on both applied pressure and length of the pressure.

8.2.1 Mechanical stability of probe/probe holder seal

The sudden increase in measured apparent force when applying a pressure pulse could be

caused by the movement of the polymer tape used to attach the NADIS tip to the AFM probe

holder. Figure 8.4 shows a schematic drawing of a cross sectional view of the NADIS tip, the

tape and the holder. It is possible that when the microinjector applies a pressure pulse to eject

the liquid from the tip, the polymer tape deforms, causing movement of the NADIS probe.

To test this hypothesis two experiments with NADIS probes were performed. In the first

experiment the probes were kept still in a constant height mode 50µm above the substrates

while the pressure pulses were applied to the probes and the force-time curves were registered.

Two NADIS probes were used, one without an opening in the tip, and one with a 250 nm

opening at the tip apex. The probes were kept in air at room temperature and they were filled

with air. When a pressure pulse was applied to the NADIS probe without opening, the air

could not be ejected, contrary to the NADIS probe with the 250 nm opening.

Figure 8.5 presents the force-time curves, the applied pressure varied from 0.2 bar to 2 bar,
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Figure 8.3: Force–time curve of a) the first successfully exploded cell with b) a detailed view
of the approach; c) the last successfully exploded cell (note the Force axis is in µN) with d) a
detailed view of the approach fragment.

and the length of the pressure pulses varied from 0.25 s to 5 s. Figure 8.5a) shows results for

the NADIS probe without the opening. The increase in the measured force was observed only

when a pressure pulse was applied. It can be seen that even the smallest and the shortest

pressure pulse used (∆p = 0.2bar, ∆t = 0.25s), was causing an increase in measured force

and that the higher the pressure the higher was the apparent force increase. Figure 8.5b)

shows results for the NADIS probe with a 250 nm opening. It can be seen that, when the same

injection parameters were used, the force increase was much lower, for the probe with opening

than for the probe without opening. A clear peak in the apparent force occurs for pressure

pulses higher that 0.4 bar. These measurements indicate that the apparent force increase

during the pressure pulse is caused by deformation of the tape attaching the NADIS probe to

the AFM probe holder.
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Figure 8.4: Schematic drawing of the NADIS probe attached to the AFM probe holder with the
double-side polymeric tape. When a pressure pulse is applied to the system, the tape deforms
and cause movement of the NADIS probe.

Figure 8.5: Force increase measurements when the system is kept still above the surface in
constant height mode and a) the NADIS probe has a tip without opening, and b) the NADIS
probe has a tip with a 250 nm opening.
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In a second experiment, the probes were first approached to glass substrates and were kept

in contact with the substrates in a constant height mode while pressure pulses were applied

to the probes and the force-time curves were registered. The applied pressure varied from

0.2 bar to 2 bar, and the length of the pressure pulses varied from 0.25 s to 5 s. After the pres-

sure pulses the probes were retracted from the glass surfaces. The same two NADIS probes

were used as in the previous experiments, one with no tip opening, and one with a 250 nm

opening.

Figure 8.6 presents the force-time curves. Figure 8.6a) shows results for the NADIS probe

without the opening. A sudden increase in apparent force was observed simultaneously with

the applied pressure pulse for all pressure pulse conditions. The apparent force increased as

the applied pressure increased. For the highest pressure pulse values the measured signal got

saturated and the entire force increase could not be measured. Figure 8.6b) shows results for

the NADIS probe with a 250 nm opening. It can be seen that the first force increase occurs for

the pressure value of 0.8 barand the pulse length of 0.25 s (marked with red arrow).

Figure 8.6: Apparent force increase when a tip is kept in constant height mode in contact with
a glass substrate. Figure a) shows results for the NADIS probe without tip opening and figure
b) shows results for the NADIS probe with a 250 nm tip opening.

147



Chapter 8. Microinjection using the AFM–based system

These results seem to explain why during the injection a sudden apparent force increase

appears on the force-time curves. The comparison between the probes without and with

opening showed that the force increase depends on the applied pressure, which explains why

on the force-time curve registered for the first cell explosion, the apparent force increase was

not observed (Figure 8.3a); ∆p = 0.5bar, ∆t = 0.5s), but was present for the last cell explosion

(Figure 8.3c); ∆p = 0.7bar, ∆t = 10s).

8.2.2 Origin of increasing resistance to liquid injection

However, it was still not clear why values of the injection parameters had to be slowly increased

during the experiment. 3 possible options were considered: the tip opening clogging with cell

residues; leakage in the system; the formation of gas bubbles in the microfluidic system of the

NADIS probe discussed before in Chapter 5, Section 5.2.3.

In order to investigate if the increase in the values of injection parameters could be caused by

clogging of the tip opening with cell residues, a tip was investigated with a SEM microscope

directly after an injection experiment. The tip opening was free from residues. Clogging of the

tip opening was further tested with another NADIS probe with a tip opening of 250 nm. The

probe was used to indent 100 cells, out of which 50 cells were penetrated. SEM imaging after

the indentation experiments also showed no tip clogging. Figure 8.7 presents images of the

tip with the 250 nm opening after the experiment. Figure 8.7b) shows detailed view of the tip

opening. It can be seen that while a small quantity of residue covers part of the tip opening, it

does not appear to block the tip opening.

Figure 8.7: SEM images of a NADIS tip with 250 nmopening after indentation of 100 cells, from
which 50 cells were penetrated.

To test for possible leakage through the microfluidic connectors, the system without the NADIS

probe was partially filled with water. The outlets of the probe holder channels were blocked

and a constant pressure of 2 bar was applied to the system. The system was immersed in a

large water container and movement of the water meniscus inside the fluidic tubes of the

system was investigated with an optical microscope. No movement was detected, indicating

that possible leakage occurs below detection limit of 15 nL h−1through the connectors.
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To test for possible leakage through the tape sealing the NADIS tip to the AFM holder, the

system with the NADIS probe of 200 nm opening was filled with air. As the AFM holder and

the tape are optically transparent, the tape-NADIS probe behaviour was observed with an

optical microscope. When the seal is tight, no air bubbles can be seen trapped between the

NADIS probe and the tape and no nucleation of new air bubbles is observed. When a constant

pressure of 2 bar was generated for 5 min no air bubbles were observed, suggesting that the

seal remained tight. When the pressure was increased to 4 bar, after 5 min air bubbles begin

to occur between the tape and the NADIS, which could be the origin of a leak. Since during

the water injection experiments, the pressure was not higher than 2 bar it was assumed than

no leakage occurred during the experiment.

Based on the SEM imaging of the tip apexes and the leakage tests it was concluded that

most probably the constant increase in the values of the injection parameters is caused by

nucleation of gas bubbles inside the hollow AFM tip.

8.2.3 Discussion

A water injection experiment was used to test the AFM-based microinjection system. The

system was used to inject excess of water into cells to cause cell damage. The experimental

results showed that the system can be used as a microinjection tool.

The water injection experiments also revealed that the 20 nN force setpoint value was not

enough to achieve a 50 % penetration probability. During the injection experiment forces up

to 100 nN were used. It is not clear why this higher setpoint is necessary. It might be due to

the differences in radii of the NADIS tips. In the chapter 4 (Microfabrication of the NADIS

probes) it was outlined that the tip radius can vary from 50 nm to 150 nm, which could cause

a difference in penetration probability between the NADIS probes.

Several tip pause times used to confirm penetration events and inject the liquid were tested,

ranging from 5 s to 30 s. It was verified that a 5 s pause was enough to check if the approach

force-time curve had a force drop, and immediately after apply a pressure pulse. It was also

found that the values of the injection parameters had to be slowly increased in order to inject

an excess of water and cause cell damage. Leakage tests showed that the system is watertight.

The SEM imaging of the tip openings suggest that it is improbable that the tip opening is

blocked with cell residues. In the absence of a visible cause, the effect was attributed to

possible nucleation of gas bubbles inside the tip. Table 8 compares values of the force setpoint

and injection parameters proposed to be used at the beginning of the experiment with the

values that were required to be used during the experiment.

Based on these results, values of the force setpoint, tip pause and the injection parameters

were adapted for the injection of the sodium fluorescein experiment.
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Table 8.1: Comparison of the parameters values assumed in the experiment designed with the
values used during the experiment.

Force setpoint Tip pause Pressure ∆p Pulse length ∆t

Assumed in the design 20 nN 5 s 0.2 bar 0.02 s
Used in practice 20 nN to 100 nN 5 s to 30 s 0.5 bar to 2 bar 5 s to 10 s

8.3 Intracellular injection of sodium fluorescein

The main goal of this experiment was to test values of the injection parameters allowing liquid

delivery without causing cell damage. It was decided to deliver a fluorescent solution into

individual cells, and use the fluorescent signal emitted by the cells as evidence of successful

injection.

Before the experiment several NADIS probes were investigated with SEM in order to find a

probe with a small tip radius. The injection of the sodium fluorescein was done with a NADIS

probe with a tip radius of 75 nm and a needle-like opening approximately 200 nm in diameter.

Cantilever resonance frequency measurement during the probe filling showed decrease of

21 kHz.

Table 8.2 presents values of the force setpoint, tip pause and injection parameters used in the

experiment.

Table 8.2: Comparison of the parameters values assumed in the experiment designed with the
values used during the experiment.

Force setpoint Tip pause Pressure ∆p Pulse length ∆t

Used in experiment 50 nN or 80 nN 5 s 0.8 bar 0.5 s

Figure 8.8 shows an example of overlapped phase contrast and fluorescence images taken after

the experiment. In total 23 SaOs-2 cells were targeted. The number of cells was limited in order

to reduce the time of the experiment and thus the possibility of gas bubble formation inside

the tip. During the water injection experiment, which lasted 2 hours, the values of injection

parameters had to slowly increase to cause cell explosion, which was attributed to the effect of

the gas bubbles nucleation. In order to diminish this effect it was decided to shorten the time

of the experiment to 0.5 h, which should allow to use constant injection parameters. In order

to achieve high penetration probability 50 nN and 80 nN force setpoint values were used.

Two control measurements were carried out at the start of the experiment. The first measure-

ment was to determine whether fluorescent solution could be ejected from the NADIS tip.

The first cell was targeted (marked with the * on the Figure 8.8a), detail on the Figure 8.8b))

and the tip brought into contact with the cell. The system was paused for 5 s at the setpoint

for the applied force. Since a force drop was observed on the force-time curve a pressure
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pulse was applied to the probe to deliver the solution. The values of the injection parameters

(∆p = 2bar, ∆t = 1s) were intentionally designed to eject a large liquid volumes. As a result

the cell exploded (Figure 8.8c)) confirming that the injection system is working. The injected

cell died, and detached from the surface.

The second cell was used to investigate the possibility of spontaneous diffusion from the tip,

when no pressure pulse is applied. In this measurement, the tip was brought into contact with

the cell (marked ** in the Figure 8.8a), detail in Figure 8.8d)) and a force drop was observed

on the force-time curve. The tip stayed in contact with the cell for 5 s and no pressure pulse

was applied to the probe. After that time the tip was retracted from the cell. In a further step

the force setpoint was decreased to 10 nanoN and the tip was brought into contact with the

same cell. The force-time curve showed no force drop. During the pause a pressure pulse

(∆p = 0.8bar; ∆t = 0.5s) was applied to the probe. Analysis of the sample with the confocal

microscope showed that the cell was not emitting a fluorescent signal. Thus penetration of the

cell without a pressure pulse does not result in the injection of liquid into the cell. Similarly

ejection of liquid from the tip in the absence of force drop in the force-distance curve does not

result in injection of liquid into the cell.

To deliver solution to the rest of the cells the following values of injection parameters were

used: ∆p = 0.8bar; ∆t = 0.5s. When the tip was brought in contact with cell, a pressure

pulse was applied independently of the presence of the force drop. After the experiment the

sample was analysed with the fluorescent microscope and 14 of the 21 cells were found to be

fluorescing.

Figure 8.8: Overlapped confocal and phase contrast images of SaOs-2 cells after the injection
of fluorescent molecules a). The single * shows detached fluorescent body of the dead cell.
The cell died due to injection of an excessive amount of molecules. Figure b) shows phase
contrast image of the cell before the injection and figure c) shows phase contrast image of the
cell directly after the injection. Cell marked with the double ** was used to test the diffusion
of the material from the tip. The tip was inserted to the cell without applying pressure to the
AFM probe. Further the cell was indented with the fluorescent molecules were ejected from
the tip. The cell did not emit the fluorescent signal. Figure d) shows phase contrast image of
the cell after the indentation.
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Within the 14 fluorescent cells some were among the last cells injected. Based on this observa-

tion it can be concluded that the system was injecting sufficient liquid volume throughout the

entire experiment and no increase in the values of the injection parameters was required. This

was perhaps due to the fact that the experiment lasted less than 40 minutes.

The values of the injection parameters∆p = 0.8bar;∆t = 0.5s, resulted in a sudden increase in

apparent force when the pressure pulse was applied to the NADIS probe, which is in agreement

with the water injection results and the tape deformation tests.

The results of this experiment were used to test the hypothesis that the penetration of the

cell membrane is associated with both the force drop and the elasticity change, (presented

in Chapter 6, Section 6.2.1). For this purpose the force distance curves of the 21 individual

cells were analyzed in terms of the force drop and change in elastic modulus and classified

into the types of the force - separation curves discussed in Chapter 6. Of the 7 cells that did

not emit a fluorescent signal, 6 of them had the type I force-separation curves (Figure 8.9a))

and 1 had type II force-separation curve (Figure 8.9b)). Of the 14 cells that were emitting a

fluorescent signal, 9 of the cells had type III curves (Figure 8.9c)) and 5 had type IV curves

(Figure 8.9d)). Figure 8.9 presents example of a force-separation curve for each curve type and

Table 8.3 contains percentage of the analysed curves.

Table 8.3: Analysis of the force–distance curves after the delivery of biomolecules to SaOs-2
cells. Fd is a force drop parameters, E1 is an elastic modulus measured before the force drop
and E2 is an elastic modulus measured after the force drop, σ is a standard deviation of the
noise.

Types of force distance curves found for

Cells that did not emit the fluorescent signal-33 % Cells that did emit the fluorescent signal-67 %

Type I Type II Type III Type IV
Fd = 0 E1 = E2 Fd > 3σ E1 > E2 Fd > 3σ E1 < E2 Fd > 3σ

28 % 5 % 43 % 24 %
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Figure 8.9: Examples presenting 4 types of force distance curves found after the injection
experiment.
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8.3.1 Discussion

The injection of sodium fluorescein molecules into cells was used to investigate if the system

can deliver liquid volumes into cells that do not cause cell death. The values of the injection

parameters for this experiment were chosen based on the results of the water injection experi-

ment. As a result out of 21 cells, 14 cells were emitting a fluorescent signal and none of the

cells exploded during the experiment. All were apparently alive a few hours after the injection

(the time during which the fluorescence analysis was done).

The experimental results were also used to test the hypothesis that the cell membrane penetra-

tion occurs when both a force drop and an elasticity change are present on a force-separation

curve (discussed in Chapter 6, Section 6.2.1). The force-separation curves from the 21 cells

used in the injection experiments were analysed in terms of the force drop Fd and change in

elasticity E , and classified according to the four curve types. The force-separation curves from

cells emitting fluorescent signal were falling into type III or type IV curves, indicating that the

cell penetration is associated with the force drop and also with the change in elasticity. Out of

the 7 cells that were not emitting the fluorescent signal, 6 cells had force-separation curves

falling into type I curves, representing only cell indentation. One cell had a force-separation

curve with a force drop value of 172 pN and no elasticity change was observed (shown on

Figure 8.9b)). This example suggests that the type II curves show no tip penetration and

support the proposed hypothesis. However, given the very small number of cells tested in this

experiment, further experiments are required. Table 8.4 contains a summary of the conditions

for which a tip is indenting or penetrating the cell membrane.

Table 8.4: Tip–cell membrane interaction determined by the force drop Fd and change in
elastic modulus E .

Cell indentation Cell penetration

Type I Type II Type III Type IV
Fd = 0 E1 = E2 Fd > 3σ E1 > E2 Fd > 3σ E1 < E2 Fd > 3σ

8.4 Intranuclear injection

The goal of this experiment was to test if the microinjection system with 200 nNtip opening

can deliver liquid directly into cell nuclei.

To test this, a solution of both sodium fluorescein and propidium iodide was used. Propidium

iodide intercalates with the DNA to emit a strong red fluorescence but cannot pass sponta-

neously through the nuclear envelope of a living cell. By injecting a solution of both sodium

fluorescein and propidium iodide into a cell it was possible to test whether the tip had pen-

etrated the cell membrane (the cell fluoresces in the green) and whether it also entered the

cell nucleus (the nucleus fluoresces in the red). The concentration of propidium iodide in the

mixture was very high (1 mg mL−1) to ensure a strong fluorescent signal. Table 8.5 presents
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values of the force setpoint, tip pause and injection parameters used in the experiment.

Table 8.5: Summary of the parameters values used during the injection of sodium fluorescein
molecules.

Force setpoint Tip pause Pressure ∆p Pulse length ∆t

Used in practice 50 nN to 150 nN 5 s 0.4 bar to 0.8 bar 0.5 s

Forces up to 150 nN were used in order to increase the penetration probability of the nuclear

envelope. The pressure pulse values were 0.4 bar and 0.8 bar. During the intracellular injection

of sodium fluorescein it was shown that a pressure of 0.8bars was sufficient to successfully

deliver liquid into the cells. For intranuclear injection it was decided to use pressure values

not higher than 0.8 bar due to the possibility of damaging the cell nuclei.

Figure 8.10 shows fluorescent images taken after the experiment. In total 20 SaOs-2 cells were

targeted, out of which 3 emitted a green fluorescent signal and 4 cells died immediately after

the injection, presumably due to an excess of delivered volume. None of the 3 cells emitting

green fluorescence also emitted in the red.

Figure 8.10: Confocal images of SaOS-2 cells after the injection of the sodium fluorescein
and propidium iodide mixture. a) shows two neighbouring cells and b) shows single cell, all
emitting green fluorescence after succesfull delivery of liquid.

Table 8.6 compares results of the force–separation curve analysis with the cell analysis. Four

different force setpoints were used in the experiment: 50 nN, 80 nN, 100 nN and 150 nN. For

50 nN setpoint 4 curves out of 11 had a penetration peak. Out of the 4 cells penetrated, 3

exploded directly after injection and 1 emitted a green fluorescent signal (Figure 8.11b)). For

the 80 nN setpoint 2 cells out of 4 were penetrated, of which one died due to the excess of

injected liquid and 1 did not emitting a fluorescent signal. For the 100 nN setpoint 2 cells out

of 3 were penetrated and both emitted a green fluorescent signal (Figure 8.11a)). Finally, for

the 150 nN applied force 1 cell out of 2 was penetrated but did not emit a fluorescent signal.

Some insight into these results lies in the in depth analysis of the penetration events on

the force-separation curves. Figure 8.11 shows the force-separation curves with penetration

peak for the 50 nNsetpoint. The penetration peak occurs when the tip partially indents each

cell. Liquid was injected into each cell, since, after the experiment one cell was emitting the

fluorescent signal and 3 others exploded immediately after the injection.

Figure 8.12a)-b) show force-separation curves for 80 nN and Figure 8.12c)-d) - for 100 nN

applied force. Figure 8.12a) shows penetration of a cell membrane after partial cell indentation.
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Table 8.6: Comparison of the force-separation curve analysis with the cell analysis (green
fluorescent emission, death, or no fluorescence).

20 cells used in the experiment
9 Penetrated cells 11 Indented cells

Applied forces 50 nN 80 nN 100 nN 150 nN 50 nN 80 nN 100 nN 150 nN

Number of curves 4 2 2 1 7 2 1 1
Fluorescent signal 1 - 2 - - - - -
Cell death 3 1 - - - - - -
No Signal - 1 - 1 7 2 1 1

Figure 8.11: Force-separation curves measured for 50 nN applied force.

Figure 8.12b)-d) have also penetration events on their force-separation curves, however the

tip has first indented the cell to the point that only thin part of the cell was kept between the

tip and the hard substrate, and after the tip penetrated the cell and touched the substrate.

It can be seen that injection into a cell in such situation can result in no liquid delivery into

cells, since 1 cell out of 3 was not emitting the fluorescent signal. Similar results were obtained

when the cell was penetrated with 150 nN applied force. The registered force-separation curve

had similar shape to the force-separation curves presented on Figure 8.12b)-d).

Explosion of 4 cells out of 7 shows that too much liquid was injected into cells. At this point

it is not clear, if the cell damage occurred because the cells could not accommodate the

liquid volume or perhaps due to too large volumes delivered directly to the cell nuclei. During

intracellular injection of sodium fluorescein injection parameters of 0.8 bar and 0.5 s were used

and none of the 14 penetrated cells exploded after the injection. Here, 1 cell exploded after

injection of liquid with pressure pulse of 0.4 bar and 0.5 s and 3 after injection with pressure

pulse of 0.8 bar and 0.5 s. Out of the 4 exploded cells, two cells had force-separation curves

with two force drops (Figure 8.12b) and Figure 8.12a)). In chapter 6, section 6.3.1 two possible

meanings of the second force drop were discussed: penetration of the nuclear envelope and

slippage of the tip into to cell. The results presented here suggest that the second peak may be

associated with further membrane penetrations. It is interesting to observe, for example, that

the f-s curve shown in Figure 8.12b) shows a second force drop that is clearly associated with a
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Figure 8.12: Force-separation curves measured for a) - b) 80 nN applied force, and c)-d) 100 nN
applied force.

change in elasticity and results in cell death. However, for many of the f-s curves, the peaks

are very close to the point where the AFM tip comes into contact with the cell culture support:

they are therefore difficult to interpret. These results clearly show that the interpretation of

the force-distance curves for cell penetration is complex, particularly at higher force setpoints

or when the tip contacts the underlying cell culture support.
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8.5 General Discussion

The three injection tests (water injection, sodium fluorescein injection, and mixture injec-

tion of sodium fluorescein with propidium iodide) were used to perform proof of concept

experiments of the AFM-based microinjection system. The tests have shown that the AFM

probe could penetrate the cell membrane and that liquid could be delivered into the cells.

The liquid volume depended, as expected on the values of the injection parameters (pressure

and time). It was shown that cell injection of water with 300 nm tip opening and high values

of the injection parameters ∆p > 0.5bar and ∆t = 0.5s caused immediate cell death. Since

in Chapter 6 it was shown that tip insertion does not cause cell death, it was concluded that

during the injection experiment, the cells died due to excess injected liquid.

During the experiment design reference values of the injection parameters were proposed

based on the predicted values of cell volume (Chapter 3, Section 3.2.1) and liquid flow through

NADIS probes discusses in Chapter 5, Section 5.3. It was assumed that in order to successfully

deliver liquid to cells with 200nm opening, values of the injection parameters should be

∆p = 0.05bar, 16 times smaller compare to used ∆p = 0.8bar, and ∆t = 0.02s, which was 25

times smaller than used in the experiment. There are a number of possible explanations

of the large differences in the injection values needed. One possible explanation relates to

the position of the tip apex and its opening during tip insertion. The theoretical values of

the injection parameters were calculated assuming that the entire tip opening is inside the

cell during injection (Figure 8.13a)). However, the membrane slip parameter calculated in

Chapter 6, Section 6.4.1, is 75 nm while the diameter of the tip opening is 200 nm. With a

tip half angle of 35°, even a perfectly positioned opening and a perfectly sharp tip would

require the cell membrane to be displaced by more than 200 nm times cos(35°) or 164 nm

(Figure 8.13b)) for the tip opening to be entirely inside the cell. This suggests that the tip

opening is not entirely enclosed in the cell during the injection (Figure 8.13c)) resulting in

partial injection of liquid outside the cell. Thus, in order to deliver a given liquid volume into a

cell, higher values of injection parameters are required compare to the theoretical situation.

To test the hypothesis that the experimental values of the injection parameters are higher than

the theoretical ones due to the partial insertion of tip opening, an injection experiments could

be performed with tip opening centrally located at the tip apex. Positioning the tip opening at

the apex would decrease the penetration probability, however, once the tip was inserted, the

probability that the entire tip opening was enclosed inside the cell would be much higher.

Another explanation for the difference between calculated and experimental injection pa-

rameters was proposed by Minaschek et al. [66]. The suggestion is that the delivered liquid

might leak out from the cell during the injection. The leakage may be due tothe cytoplasmic

viscosity that is counteracting the injection, or due to weak adhesion or lack of it between the

ruptured membrane and the tip. However, in presented here experiments cells explosion and

their rapid recovery after the injection suggest otherwise. If the leakage had occurred it would

have been difficult to cause cell explosion, since most of the liquid would escape. Also due to
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Figure 8.13: Schematic drawing presenting a) a theoretical situation in which the tip is inserted
inside the cell, in a way that the entire tip opening is enclosed inside the cell, resulting in
liquid delivery only into the cell. b) Cell membrane rupture with the NADIS tip with opening
of 200 nm. Directly after the rupture the membrane moves up along the tip, of a distance
of 75 nm in average, for a NADIS probe with approximately 100 nm tip radius. The distance
is called a membrane slip and it is a parameter that can be read from a force-separation
curves. c) Probable situation during injection experiment, when the tip is inserted in a way
that the tip opening is only partially inserted inside the tip. In such a situation the liquid only
partially injected inside the cell and partially into the cell medium. d) Possible situation during
intranuclear injection. The tip can penetrate the cell membrane and the nuclear envelope;
however the tip geometry makes it unlikely to insert the tip opening inside the nucleus. As a
result the liquid is delivered outside the nucleus.

the leakage the hole made by the tip in the cell would enlarge and caused more damage to the

cells. Possibly, both hypotheses: partial insertion of the tip opening into cells and the leakage

of liquid during injection might be right.

In the Section 8.2.1 (Mechanical stability of probe/probe holder seal) effect of sudden force

increase during the liquid injection was discussed. It was proposed that this effect is caused

by deformation of the polymer tape used to attach NADIS probe to the AFM probe holder.

During the tape deformation the tip is pushed towards the cell causing uncontrolled tip-cell

interactions. To eliminate this effect the polymeric tape would need to be replaced with more

rigid material.

The possibility of only partial insertion of tip opening inside a cell might also play an important

role during intranuclear injections with the NADIS probes. Even if the tip penetrates the

nuclear envelope, it is could be unlikely that the tip opening will be inserted inside the nucleus
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(Figure 8.13d)) resulting in liquid delivery only into the cell cytoplasm.

8.6 Conclusions

The proof of concept injection results clearly demonstrate that the AFM-based microinjection

system can be used as a tool to deliver liquid into single living cells. During the preliminary

injections of water, an excess of liquid was delivered to cells and caused cell explosion giving

an instantaneous confirmation of successful injection. This approach allowed to successfully

test system limitations, such as leakage and clogging of the tip aperture. It was shown that the

system is tight for pressures up to 2 bar and no clogging was observed. The water injection

results showed that during the pressure pulse an apparent force increase occurs. The results

of the mechanical stability tests showed that this effect is caused due to the deformation of

the polymer tape used to attach the NADIS probe to the probe holder. Further development of

the seal between the probe and probe holder would be required to eliminate this effect.

The intracellular injection experiment demonstrated injection into cells without cell damage

and was used to test the hypothesis presented in Chapter 6 on the determination of tip

insertion. As a result out of 21 cells, 14 cells were emitting a fluorescent signal and none of

the cells exploded during the experiment. Analysis of the force-separation curves showed

that all force-separation curves of the cells emitting fluorescent signal showed a change in

elasticity after a force drop. Among the 7 cells that did emit a fluorescent signal, one cell had a

force-separation curve with a force drop but no elasticity change. These results are exactly

as predicted by the hypothesis. However, given the very small number of cells tested in this

experiment, further experiments would be needed to confirm the hypothesis.

Direct injection into cell nucleus was also attempted. It was shown that during the injection

the tip could penetrate the cell membrane and deliver the liquid into the cell, but labelling of

the nuclear DNA was not shown. It is, however, suggestive, that in these experiments-in which

no damage to the cells was expected - cell death was observed 4 times. These experiments

clearly demonstrated the difficulty of interpreting complex (and sometimes, simple) force

separation curves where cell penetration is involved.
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9 Conclusion & Outlook

The main objective of this thesis was to develop a micro injection system for single adher-

ent cells based on AFM probes with a micro fluidic system. Additional objectives were the

demonstration of injections into cells and a better understanding of the involved AFM/cell

interactions.

The realized microinjection system was based on the Nanoscale Dispensing (NADIS) probes,

an earlier development at CSEM. The existing micro fabrication process of the NADIS probes

was adapted to improve the poor fabrication yield. A KOH etch mask made of parylene C

was developed to address the KCl contamination of the etched fluidic channels of the probes.

Extensive investigations of adhesion promotion methods such as thermal treatment and

recrystallization of the parylene C mask proved its suitability as a polymer KOH etch mask that

can be easily stripped, even from narrow structures such as the microchannels by thermal

treatment at 700 ◦C for several hours.

Three tip apertures were developed for single cell manipulation: a needle like aperture for cell

injection, where an ellipsoidal opening was located next to the tip apex in order to retain a

sharp tip to break the cell membrane, and two flat apertures for labeling the cell membrane

and other surfaces. The openings with a diameter between 200 nm and 500 nm were milled

with a focused ion beam.

An attempt was made to characterize the fluidics properties of the system. Pressure dependent

flows of gases and degassed water were measured through the NADIS probes with tip apertures

up to 200 nm in diameter. The results for larger tip openings were successfully fitted with a

linear model and can be approximated by simple theoretical model based on Hagen-Poiseuille

law. The water flow measurement through tip apertures smaller than 2µm resulted in tip

clogging due to gas bubbles. Therefore the theoretical model was used as indication of the flow

rate through systems with small tip apertures which allowed to determine reference values of

the injection parameters for the proof of concept injection experiments.

A more in-depth analysis of force-separation curves was developed allowing the biophysical
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analysis and interpretation of penetration phenomena. 5 parameters were defined from

a force-separation curve with a penetration peak. Four of these parameters have already

been mentioned in the literature, whereas the fifth parameter, the membrane slip has been

proposed in this work. A simple mechanical model was presented, based on the assumption

that the membrane slip parameter represents the movement of the cell membrane up the

AFM tip during rupture of the membrane. The analysis of the force-separation curves with

this model has shown that the mechanical model is in very good agreement with the results

obtained with the 10 nm sharp tip, but that the agreement is less good for the 100 nm NADIS

tip.

A study was made of the invasiveness of the different AFM tips, as well as possible cell death

caused by tip penetration. The obtained results allow to claim that the cell penetration with

an AFM tip does not cause a severe damage to cells. Directly after the cell penetration there is

no cell damage and 20 hours after a maximum of 14 % of cell apoptosis was observed, a value

similar to the natural cell death measured on the control sample.

The proof of concept liquid delivery into individual cells was studied. Intentional injection

of a large water volume resulted in cell explosion which was used as confirmation that the

injection system is working. No system leakage for pressure values up to 2 bar and no clogging

of the tip opening with cell residues were observed. The sodium fluorescein injection was

used to test values of the injection parameters. The values of the injection parameters were

chosen based on the results of the water injection experiment. None of the cells exploded

during the sodium fluorescein injection experiment and all were apparently alive a few hours

after the injection. Direct injection into cell nucleus was also attempted. It was shown that

during the injection the tip could penetrate the cell membrane and deliver the liquid into the

cell, but labelling of the nuclear DNA was not achieved.

Combined technical development of the AFM based microinjection system with the study of

cell membrane penetration allowed to propose for the first time a definition of a cell membrane

penetration, discover the membrane slip parameter and define the 5A method for biophysical

analysis of probe indentations.

The proposed AFM-based microinjection system could be a powerful tool for direct injection

of molecules into nuclei of single cells. However, to achieve this goal further development

of the NADIS probes is required. First of all, the geometry of the tip has to be re-considered

to assure penetration of the nuclear envelope and complete insertion of the tip opening.

Secondly, geometry of the microfluidic channels inside the NADIS probe has to be re-designed

in order to gain control over the ejected from the tip liquid.
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