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Abstract

Obtaining a reliable gradient estimate for an unknown function when given only its discrete

measurements is a common problem in many engineering disciplines. While there are many

approaches to obtaining an estimate of a gradient, obtaining lower and upper bounds on this

estimate is an issue that is often overlooked, as rigorous bounds that are not overly conservative

usually require additional assumptions on the function that may either be too restrictive or im-

possible to verify. In this work, we try to make some progress in this direction by considering

four general structural assumptions as a means of bounding the function gradient in a rigorous

likelihood sense. After proposing an algorithm for calculating these bounds, we compare their

accuracy and precision across different scenarios in an extensive numerical study.

Introduction

In most experimental settings, measurements act as the fundamental tool for learning about the

nature of the measured quantity (modeling), confirming the statistical validity of a statement (hy-
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pothesis testing), or applying feedback to obtain some desired behavior (control/optimization).

However, while the knowledge obtained from measurements is often priceless, it generally comes

with two innate limitations – not only is it cost-prohibitive to obtain an exhaustive set of measure-

ments to completely identify an experimental quantity and its relation to the associated variables,

but the measurements that are collected are themselves, often due to sensor inaccuracies/noise,

subject to error and uncertainty. Mathematically, we may phrase this by defining the experimen-

tal quantity of interest as some function, f : Rnu → R, for which a discrete, sampled set of N

input-output pairings is available:

yi = f (ui)+wi, i = 1, ...,N, (1)

with u ∈ Rnu denoting the inputs (the manipulated variables), y the output (measurement), and w

the measurement noise.

The particular problem that we consider in this work is the following:

Given the set of inputs u1, ...,uN , the corresponding measured output values y1, ...,yN ,

and the assumption that f (u) is differentiable, calculate the bounds, ∇ f (u) and ∇ f (u),

on the function gradient, ∇ f (u), such that ∇ f (u)�∇ f (u)�∇ f (u) for some specified

u ∈ {u1, ...,uN}.

We start by presenting a simpler version of this problem, which involves only obtaining an estimate

of the function gradient (without bounding its uncertainty) and arises in a number of different,

often unrelated, engineering fields such as geology,1 image rendering,2 and particle filtering.3 The

authors’ own interest in the problem comes from its applicability to real-time optimization,4,5,6,7

where the objective is to steer a process towards economically optimal conditions while working

only with discrete measurements – using, for example, a gradient-descent method. We also note

that this problem may play an important role, for almost identical reasons, in numerical black-box

optimization when function evaluations are time consuming.8

A key trait of estimating the gradient, or the derivatives, of a function from its discrete mea-
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surements is that the problem is ill-posed and inverse,9 since applying the standard definition of a

derivative and taking the limit of a finite difference with a step size that tends to 0 will inevitably

yield an estimate of ±∞ in the presence of noise. The standard way to solve such problems is

through the use of regularization, which, roughly speaking, calls for an assumption on the struc-

ture or nature of f (u). Perhaps the simplest assumption is the one of Lipschitz continuity with

respect to the different input directions:

κ j ≤
∂ f
∂u j

∣∣∣
u
≤ κ j, ∀u ∈ {u1, ...,uN}, j = 1, ...,nu, (2)

i.e. that the derivatives ∂ f
∂u j

∣∣∣
u

are bounded by some finite constants κ j and κ j over the relevant

input set. This hypothesis is useful in that it is generally true (for most functions, one can always

choose the Lipschitz bounds to be sufficiently low and high) and in that it succeeds in regularizing

the problem by constraining the derivatives to lie in a finite-size box. Alternatively, one may

also regularize by imposing stricter structural assumptions, such as assuming f (u) to be linear

or quadratic and obtaining a regularized estimate by regressing the available input-output data

with these structures. Finally, we may also assume that f (u) is smooth to some extent, which

leads to general-purpose regularization methods like those of Tikhonov,10 where one enforces

that the finite-difference approximations of the function’s curvature be sufficiently small via the

penalization of their norm in a multi-criterion optimization problem.9,11

With the existence of all these methods, it should be clear that obtaining a regularized gradient

estimate is relatively straightforward. Unfortunately, the quality of any such estimate remains

suspect unless something can be said about its uncertainty. As a very simple example of why this

might matter, consider the problem of estimating the absorptivity of a liquid according to the Beer-

Lambert law A = εC, where A is the measured absorbance, ε the (unknown) absorptivity, and C

the concentration. A typical procedure would be to prepare solutions with different values of C, to

measure A for each solution, and to then regress the data so as to obtain ε̂ as the slope (see Figure 1

for a qualitative illustration). While one could make certain statistical claims about ε̂ (usually in the

least-squares sense), a stronger result would be to also give lower and upper bounds (ε and ε) on
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the absorptivity, which may in turn let the experimenter know if more measurements are needed or

if the current bounds are sufficiently tight. As a second, less trivial, example, we note that recent

work in real-time optimization12 has formalized a robust procedure that can achieve optimality

provided that bounds on the gradients, rather than the gradients themselves, are available. More

abstractly, one may envision that being able to provide uncertainty bounds for gradient estimates

would be welcomed in many applications where a gradient estimate is desired.

C

A

ε̂

ε

ε

Figure 1: Linear regression of concentration-absorbance data (five discrete points) to obtain ε̂ . The
lines defined by ε and ε may be seen as the regressions corresponding to the possible lower and
upper fits, which define the smallest and largest possible absorptivities with corresponding fits that
are still statistically valid.

Not surprisingly, obtaining bounds that are relatively tight, and therefore useful, requires a bit

more work than just obtaining an estimate. To the best of the authors’ knowledge, the most relevant

existing methods for doing this are those for quantifying the estimation error in finite-difference

estimates, where the standard approach consists in writing out the Taylor series expansion of f (u)

and upper bounding its nonlinear components (to bound the truncation error) and then bound-

ing the measurement noise w (to bound the error due to noise).7,13 Such approaches are innately

conservative as they consider both the worst-case deterministic and stochastic elements, and are

generally not proposed as methods to obtain uncertainty bounds on the gradient estimate – rather,

they are used to choose the input points u so as to either minimize the worst-case error from the

forthcoming finite-difference estimate or to keep its norm below some specified value. Analogous
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concepts are also used to bound the error of the gradient of a regression model in derivative-free

optimization schemes,8 but are also more conceptual than practically useful, and serve largely to

check that the input data set is well-poised for regression.

So as to circumvent these difficulties, the method proposed in this work follows a significantly

different philosophy. Namely, we propose to obtain gradient uncertainty bounds by exploiting a lo-

cal structural assumption on f (u) together with the probability density function (pdf) of the noise,

which allows us to regress the observed data with the assumed structure subject to a likelihood

criterion. We then proceed to calculate the minimal and maximal derivatives that the regressed

structure may allow without losing statistical validity. The benefits of our approach lie in that:

(a) if the structural assumption is correct, the calculated bounds are guaranteed to be accurate and

to contain the true gradient with a chosen probability P,

(b) the method is general and admits many different structural assumptions, with the overall trend

that more general structures yield more accurate, but less precise, bounds (analogous to the

bias-variance tradeoff in statistical learning14).

The theoretical foundations for our method, as well as its algorithmic implementation, are dis-

cussed in Sections 2 and 3 and comprise the first half of the paper.

In practice, it is often the case that the structure of f (u) is not known, even locally, and so

assuming an incorrect structure may lead to inaccuracy, where the calculated uncertainty interval

does not contain the true gradient. For this reason, we dedicate the second half of the paper (Section

4) to an exhaustive set of numerical experiments, where different regularizing structures for various

functions f (u) are investigated in an attempt to evaluate the accuracy and precision of each choice

of regularizing structure on average. The studies also touch upon a number of other factors that

may influence the quality of the bounds and, although it is impossible to evaluate the bounds’

absolute quality outside of any specific context or application, are complemented by efforts to give

insight and recommendations wherever it is possible to do so.

5



Local Likelihood Regularization with Structural Constraints

In this section, we discuss the theoretical aspects of our approach, which is centered around the

following maximum-likelihood (ML) regularization of a local subset of some n≤N measured data

points subject to structural constraints:

maximize
ŷ,ŵ,F̂,d̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷ, F̂, d̂ ∈ S

, (3)

where p : R→ R is the pdf of the noise, ŷ ∈ Rn the estimated noise-free output values, ŵ ∈ Rn

the estimated noise values, F̂ ∈ Rnu×n the matrix of gradient estimates [∇ f̂ (u1)...∇ f̂ (un)], and d̂

a vector of estimated auxiliary variables that depends on the specific definition of the structure S,

the latter usually corresponding either to parameters in a parametric structure or to discrete values

in a non-parametric one. In simpler terms, Problem (3) constructs a function that satisfies the

structure-induced constraints S (by specifying ŷ, F̂, d̂) in a way that maximizes the joint probability

of the resulting noise realization (ŵ). It is assumed that the noise values are independent and that

the corresponding pdf is available. One may also extend (3) to accommodate different pdfs for

different measurements, but the discussion here is limited to a sole pdf for simplicity.

It is crucial to note that without the structural constraints ŷ, F̂, d̂ ∈ S the above regularization

is essentially useless, as it would simply set every ŵ value to that which corresponds to the max-

imum of the pdf (i.e. the mode). As such, S is the regularizing element in this problem, and may

be seen abstractly as any additional assumption on f (u). More specifically, the previously given

examples of f (u) being Lipschitz-continuous, linear or quadratic, or having curvature that is sub-

ject to certain smoothness conditions may then all contribute to define S via precisely formulated

mathematical constraints.

We now proceed to discuss the concept of structure validity, propose four types of structures

that may be used in (3), and finish by showing how one may calculate the gradient bounds in this
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framework.

Valid and Invalid Structures

We start by making the somewhat evident statement that regularizing with valid structures (i.e.

assumptions that the true function f (u) satisfies) leads to more accurate results than regularizing

with invalid ones. However, as confirming the validity of a structure is usually not possible without

sampling the entire input space, we are forced to work from the other end and to focus our efforts

on rejecting the structures that can be guaranteed, with a certain probability, to be invalid.

This may be statistically quantified by defining a likelihood value that serves as a lower bound,

with probability P, on the likelihood for the true measurement noise of n samples. Denoting this

value by LP, we define it implicitly as follows:

prob(
n

∏
i=1

p(wi)≥ LP) = P. (4)

Analytically, one would calculate this quantity by integrating the pdf of
n
∏
i=1

p(wi), but this is not

possible in the general case since such an integration may be intractable. We may, however, obtain

a very good approximation of LP by Monte Carlo sampling. This is essentially done by drawing n

samples a large number of times and building the approximate pdf of the likelihood.

We are now in the position to define the concept of a probabilistically invalid structure.

Definition 1 (P-invalidity). The structure set S is said to be P-invalid, or invalid with probability

P, if the set of all feasible solutions to Problem (3) with a likelihood greater than or equal to LP,

denoted by E , is empty:

E = {ŷ, ŵ, F̂, d̂ :
n

∏
i=1

p(ŵi)≥ LP; ŵ = y− ŷ; ŷ, F̂, d̂ ∈ S}=∅. (5)

We may then think of LP as a threshold below which a certain invalid structure is deemed as

statistically unlikely, since enforcing such a structure would force the resulting noise estimates to
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have a low likelihood. A simple way to check whether a structure can be declared as P-invalid is

formulated next.

Lemma 1 (Guarantee of P-invalidity). Let {ŷ∗, ŵ∗, F̂∗, d̂∗} be the global maximum of (3). If
n
∏
i=1

p(ŵ∗i )< LP, then S is P-invalid.

Proof. By the global optimality of ŵ∗, it follows that
n
∏
i=1

p(ŵi) ≤
n
∏
i=1

p(ŵ∗i ) < LP for all ŵ in the

feasible set of (3), which implies E =∅ and thus the P-invalidity of S.

As a simple example of P-invalidity, consider the case where f (u) is quadratic and the regular-

izing structural assumption is that of linearity. Problem (3) can then be written as:

maximize
ŷ,ŵ,F̂,â,b̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷi = âT ui + b̂, i = 1, ...,n

∇ f̂ (ui) = â, i = 1, ...,n

, (6)

where we make the link with the general formulation in (3) by noting that d̂ = {â, b̂}, and that

S = {ŷ, F̂, â, b̂ : ŷi = âT ui + b̂, i = 1, ...,n; ∇ f̂ (ui) = â, i = 1, ...,n}.

Clearly, enforcing this structure for a data set that extends beyond a local (linear) neighborhood

would lead to a poor fit with significant residuals and a low value of
n
∏
i=1

p(ŵ∗i ). This is illustrated

for a one-dimensional case in Figure 2.

Having treated the case of rejecting the structural hypothesis when it is false, we now consider

the alternative of rejecting the structural hypothesis when it is, in fact, true.

Lemma 2 (False P-invalidity). Consider the case where f (u) meets the structural assumptions of

S. The probability of S being declared P-invalid as by Lemma 1 is at most 1−P.

Proof. By our definition of P-invalidity in (5), we need simply to prove that the probability of E =

∅ is at most 1−P or, equivalently, that the probability of E 6=∅ is at least P. We prove the latter

by considering the following choice of variables: ŷi = f (ui), ŵi = wi,∇ f̂ (ui) = ∇ f (ui), i = 1, ...,n,
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Figure 2: P-invalidity of a linear structure for data generated from the quadratic function f (u) :=
u2, with an additive measurement noise w ∈N (0,0.25). Here, we illustrate the case of iteratively
fitting a linear function to a data set that is augmented by one point at a time (starting from a set
of two points, u = 0 and u = 0.5, and appending from left to right as shown in the figure). For the
cases of 5 points or less, the ML fit of Problem (6) has a likelihood greater than L0.99 and so the
linear structure cannot be rejected. For 6 points, however, the fit is sufficiently unlikely so as to
allow rejection of the linear structure with a probability of 0.99.
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together with d̂ = d, where d denote the auxiliary variables that define f (u). We show that this

choice of variables belongs to E with a probability of P by considering the three sets of constraints

that define E . First, it follows that this choice satisfies ŷ, F̂, d̂ ∈ S, or f (u) would violate the

structural constraints of S, which it cannot by assumption. The condition that ŵ = y− ŷ is clearly

satisfied as well, since it simply becomes the measurement equality (1). As such, both of these

conditions are satisfied with a probability of 1. The remaining condition,
n
∏
i=1

p(ŵi) =
n
∏
i=1

p(wi) ≥

LP, is satisfied with a probability of P by the definition of LP in (4), and so the joint probability of

all three conditions being satisfied is P. Having thereby provided one choice of variables for which

E 6= ∅ with a probability of P, we now note that other choices of ŷ, ŵ, F̂, d̂ belonging to E may

also exist, thereby allowing us to state that the probability of E 6=∅ must be at least P.

Lemma 2 may thus be seen as an upper bound on the probability of a false negative – the

probability of rejecting a structure as P-invalid when it is valid. The practical consequence is that,

for a sufficiently high P, a valid structure is almost always guaranteed to be retained.

Choice of Structure

While the structural constraints of S can take a number of different forms, it should be clear that

tighter, more constrained sets should be much preferred, provided that they are not invalid, as doing

so places more restrictions in the regularization and increases its usefulness. Of particular interest

are the limitations that different choices of S place on F̂, and thereby on the gradient estimate,

∇ f̂ (u). We now proceed to define four structures that succeed in constraining F̂, each to a different

extent, and show how they may be formulated in the framework of (3). The Lipschitz assumption

of (2) is also incorporated into S, where we note that although obtaining the Lipschitz constants κ

and κ may range from trivial to very difficult in practice,12 very conservative estimates will suffice

here, since the essential role of these constants is to define a compact domain for the gradients and

to thereby ensure boundedness of the estimates.
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Linear Functions

Linearity is perhaps the most frequently used and the most restricting assumption, being only

(approximately) valid in a small local neighborhood for most nonlinear functions. With respect to

gradient estimation, the characteristic trait of the linear structure is that the gradient is constant:

maximize
ŷ,ŵ,F̂,â,b̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷi = âT ui + b̂, i = 1, ...,n

∇ f̂ (ui) = â, i = 1, ...,n

κ � ∇ f̂ (ui)� κ, i = 1, ...,n

. (7)

Quadratic Functions

The assumption of quadratic structure is also standard (it is, for example, particularly common in

response surface methods15). Here, we consider the version without interaction terms between the

variables, i.e. where the matrix of quadratic coefficients Q̂ ∈ Rnu×nu is diagonal:

maximize
ŷ,ŵ,F̂,Q̂,â,b̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷi = uT
i Q̂ui + âT ui + b̂, i = 1, ...,n

∇ f̂ (ui) = 2Q̂ui + â, i = 1, ...,n

κ � ∇ f̂ (ui)� κ, i = 1, ...,n

. (8)

The choice of a diagonal Q̂ is motivated by the fact that including interaction terms, while entirely

valid, significantly weakens the regularization power of the structure (the degrees of freedom scal-

ing quadratically in nu rather than linearly). As with the linearity assumption above, we note that

the parametric nature of d̂ (which is, in this case, {Q̂, â, b̂}) leads to equality constraints on the

gradients.
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Convex/Concave Functions

This type of regularization, although not new conceptually,11,16 appears to be much less common

and uses the first-order convexity/concavity conditions to constrain the gradient. Unlike in the

linear and quadratic cases, this structure is not parametric and is described by inequalities:

maximize
ŷ,ŵ,F̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷi +∇ f̂ (ui)
T (u j−ui)≤ ŷ j, i, j = 1, ...,n (i 6= j)

κ � ∇ f̂ (ui)� κ, i = 1, ...,n

, (9)

maximize
ŷ,ŵ,F̂

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷi +∇ f̂ (ui)
T (u j−ui)≥ ŷ j, i, j = 1, ...,n (i 6= j)

κ � ∇ f̂ (ui)� κ, i = 1, ...,n

, (10)

with (9) and (10) corresponding to the convex and concave cases, respectively.

Difference of Bounded Convex Functions

The difference of convex (DC) functions – or any function that can be expressed as the sum of a

convex and a concave function – are well-trodden ground in the domain of global optimization,17

but have not, to the best of the authors’ knowledge, been proposed for use in regularization. This is

not surprising, given the generality of DC functions (any twice continuously differentiable function

is proven to be DC), as such a regularization would ultimately fail due to any measured data always

being described perfectly by some DC structure. To make the structure restricting, and thereby

apt for regularization, we propose to use “difference of bounded convex” (DBC) functions with

additional box constraints on both the convex and concave components forcing them to lie inside

the infinity norm of the data (with additional slack for noise), together with analogous constraints

on the derivatives:

12



maximize
ŷ,ŵ,F̂,ŷcvx,ŷccv,F̂cvx,F̂ccv

n

∏
i=1

p(ŵi)

subject to ŵi = yi− ŷi, i = 1, ...,n

ŷ = ŷcvx + ŷccv

F̂ = F̂cvx + F̂ccv

ŷcvx,i +∇ f̂cvx(ui)
T (u j−ui)≤ ŷcvx, j, i, j = 1, ...,n (i 6= j)

ŷccv,i +∇ f̂ccv(ui)
T (u j−ui)≥ ŷccv, j, i, j = 1, ...,n (i 6= j)

−‖y‖∞−max(|w|, |w|)≤ ŷcvx,i ≤ ‖y‖∞ +max(|w|, |w|) ,

i = 1, ...,n

−‖y‖∞−max(|w|, |w|)≤ ŷccv,i ≤ ‖y‖∞ +max(|w|, |w|) ,

i = 1, ...,n

κ � ∇ f̂ (ui)� κ, i = 1, ...,n

−max
(
|κ j|, |κ j|

)
≤ ∂ f̂cvx

∂u j

∣∣∣
ui
≤max

(
|κ j|, |κ j|

)
i = 1, ...,n, j = 1, ...,nu

−max
(
|κ j|, |κ j|

)
≤ ∂ f̂ccv

∂u j

∣∣∣
ui
≤max

(
|κ j|, |κ j|

)
i = 1, ...,n, j = 1, ...,nu

, (11)

with w and w defined as {w,w : prob(wi ≤ w) ≥ 0.99,prob(wi ≥ w) ≥ 0.99}, i.e. as the 99%-

probability worst-case lower and upper deviations due to the noise. Problem (11) is an extension

of (9) and (10) in that it constructs bounded convex and concave parts and then uses their sum (the

DC function) to regularize the data. Note that the choice to bound the convex/concave components

and their derivatives as done here is just one option, other choices being possible. However, the

particular definition of (11) allows us to obtain either (9) or (10) by simply setting either ŷccv, F̂ccv

or ŷcvx, F̂cvx to 0, respectively, thereby allowing the DBC structure to be seen as a generalization of

the convex/concave ones.

Table 1 summarizes the computational aspects of Problems (7)-(11), while Table 2 establishes
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the concrete links with the general formulation given in (3) by defining S and d̂ for each case.

Table 1: The computational aspects – number of variables, constraints (inequality, equality, and
box), and degrees of freedom – for the different regularization problems. We note that the con-
vex/concave and DBC regularizations are more prone to scale-up issues with an increasing number
of data points, as the number of inequality constraints grows quadratically in n.

Structure Variables Inequalities Equalities Box DoF
Linear n(nu +2)+nu +1 − n(nu +2) 2nnu nu +1
Quadratic n(nu +2)+2nu +1 − n(nu +2) 2nnu 2nu +1
Convex/Concave n(nu +2) n(n−1) n 2nnu n(nu +1)
DBC n(3nu +4) 2n(n−1) n(nu +2) 2n(3nu +2) 2n(nu +1)

The choice of these four structures is strategic in that one sees a progression in generality, as

shown below:

linear ⊆
quadratic (semidefinite)⊆ convex/concave⊆ DBC

quadratic (indefinite)
, (12)

with the class of DBC functions subsuming everything but the indefinite quadratic, and the class of

linear functions being the least general and subsumed by all of the others. The natural consequence

of this order is that we would expect DBC functions to be valid for many more cases than con-

vex/concave or quadratic functions, which should in turn be valid more often than linear functions

(it should be noted that, although we are unable to prove that DBC functions as we have defined

them will always be more general than all quadratics, this often appears to be the case and will be

confirmed in the numerical trials later). Generality comes, however, at the cost of regularization

power – regularization using linear functions is the tightest (note that the gradient is constrained

by equality and that the number of degrees of freedom in the regularization problem is the lowest

by far), while DBC regularization is very loose (seen, again, purely by the number of degrees of

freedom given to the regularization). Quadratic and convex/concave structures represent, in some

sense, a middle ground between these two.

Another, more practical, justification for these choices is that they all yield S that are convex

polyhedra and thereby avoid major tractability issues. As an example of an extension with such
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Table 2: Definitions of S and d̂ for the regularizations given in (7)-(11).

Structure S d̂

Linear
{ŷ, F̂, â, b̂ : ŷi = âT ui + b̂, i = 1, ...,n;
∇ f̂ (ui) = â, i = 1, ...,n;
κ � ∇ f̂ (ui)� κ, i = 1, ...,n}

{â, b̂}

Quadratic
{ŷ, F̂,Q̂, â, b̂ : ŷi = uT

i Q̂ui + âT ui + b̂, i = 1, ...,n;
∇ f̂ (ui) = 2Q̂ui + â, i = 1, ...,n;
κ � ∇ f̂ (ui)� κ, i = 1, ...,n}

{Q̂, â, b̂}

Convex
{ŷ, F̂ : ŷi +∇ f̂ (ui)

T (u j−ui)≤ ŷ j, i, j = 1, ...,n (i 6= j);
κ � ∇ f̂ (ui)� κ, i = 1, ...,n} ∅

Concave
{ŷ, F̂ : ŷi +∇ f̂ (ui)

T (u j−ui)≥ ŷ j, i, j = 1, ...,n (i 6= j);
κ � ∇ f̂ (ui)� κ, i = 1, ...,n} ∅

DBC

{ŷ, F̂, ŷcvx, ŷccv, F̂cvx, F̂ccv : ŷ = ŷcvx + ŷccv; F̂ = F̂cvx + F̂ccv;
ŷcvx,i +∇ f̂cvx(ui)

T (u j−ui)≤ ŷcvx, j, i, j = 1, ...,n (i 6= j);
ŷccv,i +∇ f̂ccv(ui)

T (u j−ui)≥ ŷccv, j, i, j = 1, ...,n (i 6= j);
−‖y‖∞−max(|w|, |w|)≤ ŷcvx,i ≤ ‖y‖∞ +max(|w|, |w|) , i = 1, ...,n;
−‖y‖∞−max(|w|, |w|)≤ ŷccv,i ≤ ‖y‖∞ +max(|w|, |w|) , i = 1, ...,n;
κ � ∇ f̂ (ui)� κ, i = 1, ...,n;

−max
(
|κ j|, |κ j|

)
≤ ∂ f̂cvx

∂u j

∣∣∣
ui
≤max

(
|κ j|, |κ j|

)
,

i = 1, ...,n, j = 1, ...,nu;

−max
(
|κ j|, |κ j|

)
≤ ∂ f̂ccv

∂u j

∣∣∣
ui
≤max

(
|κ j|, |κ j|

)
,

i = 1, ...,n, j = 1, ...,nu}

{ŷcvx, ŷccv,

F̂cvx, F̂ccv}
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issues, we note that past work by the authors has shown quasiconvex structures to be useful for

bounding the gradient as well.18 Unfortunately, regularizing with a quasiconvex or quasiconcave

function generally leads to an intractable S unless certain relaxations are made (a combinatorial

algorithm to perform such a regularization is currently under development, however).

Calculating the Bounds on the True Gradient

We note that assuming a certain structure to be valid for a set of n data points (i.e. not dismissing

it as P-invalid) is already sufficient to put implicit bounds on the gradient estimates F̂, as they are

restricted to those values that belong to E . To make these bounds explicit and more suited for use

in applications, we simply propose to calculate the minimal and maximal values of each derivative

over E for some specified ui:

∂ f
∂u j

∣∣∣
ui

:= min
ŷ,ŵ,F̂,d̂∈E

∂ f̂
∂u j

∣∣∣
ui
, j = 1, ...,nu , (13)

∂ f
∂u j

∣∣∣
ui

:= max
ŷ,ŵ,F̂,d̂∈E

∂ f̂
∂u j

∣∣∣
ui
, j = 1, ...,nu , (14)

which represents a conservative but robust outer approximation, as we essentially construct a box

around all of the feasible values that each gradient may take.

We now prove the following result regarding the accuracy of these bounds with respect to the

true gradient ∇ f (ui).

Theorem 1 (Accuracy of Calculated Bounds). Let f (u) have the structure S and let ∇ f (ui) and

∇ f (ui) be calculated according to (13) and (14). Then, ∇ f (ui) � ∇ f (ui) � ∇ f (ui) is satisfied

with a probability of at least P.

Proof. Using the same argument as in Lemma 2, we consider the choice ŷi = f (ui), ŵi =wi,∇ f̂ (ui)=

∇ f (ui), i = 1, ...,n, d̂ = d, which we know belongs to E with a probability of P.

Supposing that this choice belongs to E , we now prove that ∇ f (ui) � ∇ f (ui) � ∇ f (ui) with

a probability of 1. Proceeding by contradiction, we suppose that ∇ f (ui)� ∇ f (ui)� ∇ f (ui) does
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not hold, which implies that at least one of the inequalities
∂ f
∂u j

∣∣∣
ui
≤ ∂ f

∂u j

∣∣∣
ui
≤ ∂ f

∂u j

∣∣∣
ui

is not met. We

choose to suppose that the lower bound is violated, with
∂ f
∂u j

∣∣∣
ui
> ∂ f

∂u j

∣∣∣
ui

(a symmetrical argument

follows for the upper bound). If this is true, then, as there is no element in E with a value strictly

inferior to
∂ f
∂u j

∣∣∣
ui

, it follows that there is no element in E with a value equal or inferior to ∂ f
∂u j

∣∣∣
ui

.

However, this is clearly false since the chosen point belongs to E and has a value of ∂ f̂
∂u j

∣∣∣
ui
= ∂ f

∂u j

∣∣∣
ui

.

We have thereby provided one choice of variables for which the joint probability of their be-

longing to E and of ∇ f (ui) � ∇ f (ui) � ∇ f (ui) is P. As other choices may also exist, it follows

that the probability of ∇ f (ui)� ∇ f (ui)� ∇ f (ui) is at least P.

The practical significance of Theorem 1 is to guarantee that, when the chosen structure is

correct, (13) and (14) yield accurate bounds that contain the true gradient with a probability of at

least P.

An Algorithm for Computing Gradient Bounds

As only very general structures will be valid for all of the N available data points when the data

cover a significant portion of the input space, we propose an algorithm to locally search and dis-

cover the neighborhood where the proposed structure is not P-invalid. Once such a neighborhood

is found, we compute the gradient bounds over the set E for that neighborhood by employing the

methods described in the previous section.

The algorithm to compute ∇ f (u) and ∇ f (u) for the point u given the input set u1, ...,uN and

the output measurements y1, ...,yN is as follows:

1. Choose a value of P and a structure S (e.g. one of the four structures given in the preceding

section). Compute U as the set of all input points ordered increasingly in their Euclidean

distance from u (with u being the first element). Likewise, apply the same ordering to the

output measurements y to compute Y . Let (·̃) denote the change of indices due to the ordering

(e.g., with ũ1 = u and ỹ1 = y, where y is the measurement corresponding to u). Since this

also affects the definition of S, denote by S̃ the structural constraints with the ordering applied
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(note that the same definitions as in Table 2 may be used for S̃ if the substitutions u→ ũ are

made).

2. Let nL and nU denote the lower and upper bounds, respectively, on the number of points

closest to u for which the chosen structure is not P-invalid. Set nL := 1 and nU := N.

3. Define the test number nT := d0.5nL + 0.5nUe if nU > 2 and nT := 1 if nU = 2, and define

UT and YT as the subsets of U and Y with the first nT elements retained. Likewise, let S̃T

denote the structural constraints corresponding to only nT data points.

4. Use Monte Carlo sampling to approximate LP,T – the value of the LP bound for nT data

points.

5. Check the P-invalidity of the structure on UT by solving the following log-likelihood version

of Problem (3) to global optimality:

ŷ∗, ŵ∗, F̂∗, d̂∗ = argmaximize
ŷ,ŵ,F̂,d̂

nT

∑
i=1

log p(ŵi)

subject to ŵi = ỹi− ŷi, i = 1, ...,nT

ŷ, F̂, d̂ ∈ S̃T

. (15)

If
nT
∑

i=1
log p(ŵ∗i )< log LP,T , then the structure is P-invalid on UT , in which case set nU := nT .

Otherwise, set nL := nT . If nU −nL < 2, proceed to Step 6. Otherwise, return to Step 3.

6. Compute the gradient bounds ∇ f (u) and ∇ f (u) by solving the following optimization prob-

lems to global optimality for each of the input variables ( j = 1, ...,nu):

∂ f
∂u j

∣∣∣
u
= argminimize

ŷ,ŵ,F̂,d̂

∂ f̂
∂u j

∣∣∣
ũ1

subject to ŵi = ỹi− ŷi, i = 1, ...,nL

ŷ, F̂, d̂ ∈ S̃L
nL

∑
i=1

log p(ŵi)≥ log LP,L

, (16)
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∂ f
∂u j

∣∣∣
u
= argmaximize

ŷ,ŵ,F̂,d̂

∂ f̂
∂u j

∣∣∣
ũ1

subject to ŵi = ỹi− ŷi, i = 1, ...,nL

ŷ, F̂, d̂ ∈ S̃L
nL

∑
i=1

log p(ŵi)≥ log LP,L

. (17)

We now make some remarks regarding the algorithm’s implementation.

• The gradient bounds computed in Step 6 are guaranteed to be accurate with a probability

of at least P when the assumed structure over UL matches the structure of the true function

(Theorem 1).

• The overall computational burden may be summarized as follows:

– Both re-ordering the points with respect to u, as well as approximating LP,T , are negli-

gible with respect to the other computations (in our experience, 1000 sets of nT samples

are more than sufficient for a good estimate of LP,T in the Monte Carlo sampling).

– Steps 3-5 essentially describe a bisection algorithm, and thus (15) needs to be solved,

approximately, log2(N−1) times.

– As Problems (15), (16), and (17) require global solutions, the practical implication

that follows is that the pdf p(w) be log-concave (e.g. Gaussian, Laplacian, or uni-

form) if these problems are to be solved efficiently via convex optimization methods.

11 When this is so, the main computational burden of our algorithm is approximately

2nu + log2(N − 1) convex optimization problems. When the pdf is not log-concave,

true global optimization methods are required and the computational cost may grow

drastically. A similar difficulty is encountered if structures resulting in a nonconvex S

are chosen.

• The algorithm supposes knowledge of the noise pdf, whose availability in practice depends

on the ease with which the sample noise can be modeled or obtained from experiments.
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• The algorithm does not provide an estimate of the gradient, although one is readily obtained

for the linear or quadratic structures if (7) or (8) are solved. For the non-parametric struc-

tures, it is up to the user to decide what the estimate should be, with the bounds obtained by

the algorithm acting to limit the decision space.

• Any choice of the structures presented here is guaranteed to not be declared as P-invalid for

nT := 1, as a regularization with a single point is essentially free of structural constraints (the

point can take any value while satisfying these constraints). This serves to guarantee that the

bisection algorithm converges, as there exists some nT ≥ 1 for which the structure is not P-

invalid. Practically, larger values of nT are desired as they result in stronger regularizations

with more constraints.

• The initial choice of nT , which is by definition d0.5+ 0.5Ne here (assuming N > 2), could

be modified if the user expects S to be valid for either a small or large number of points, in

which case nT could be initialized as 1 or as N, respectively. This is unlikely to be crucial,

but could speed up the bisection algorithm.

Numerical Studies

Using the four structures proposed, the algorithm is tested on noisy data generated from the fol-

lowing six functions (Figure 3):

f1(u) = u1 +u2

f2(u) = u2
1−u2

2

f3(u) = u4
1 +u4

2

f4(u) = u2
1u2

2 +5sin(3u1)sin(3u2)

f5(u) = u2log(u1 +3)

f6(u) = u1u3
2

, (18)
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Figure 3: The six functions used to test the algorithm for computing gradient bounds.

where we restrict the relevant input space to −2 � u � 2 and consider a total of 100 points reg-

ularly distributed on a 10 by 10 grid defined by the Cartesian product of [−2,−14
9 , ...,

14
9 ,2]×

[−2,−14
9 , ...,

14
9 ,2]. The functions f1(u), f2(u), and f3(u) represent functions where some of the

structural assumptions are correct: f1(u) is linear, quadratic, convex/concave, and DBC, f2(u) is

quadratic and DBC, and f3(u) is convex and DBC. The functions f4(u), f5(u), and f6(u) are of

more practical interest as they represent functions where none of the structural hypotheses hold –

they are neither linear, quadratic, nor convex/concave. From a quick analytical inspection it is un-

likely that they are DBC either – none of the three can be written as a sum of a convex and concave

function, let alone a convex and concave function with boundedness constraints. The purpose of

these three functions is thus to test the accuracy and precision of the bounded estimates when the

structural hypotheses are not satisfied (i.e. when Theorem 1 does not apply).

Prior to defining our metrics for accuracy and precision, we give, in Table 3, the Lipschitz

constants for the six functions, defined here as twice the minimal and maximal derivatives over

the relevant input space. As mentioned before, the Lipschitz constants act as ultimate, though not

very precise, global bounds on the gradient, and are used to bound the gradient estimates in the

regularization. In this study, they also serve a second purpose and are used for scaling the computed
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bounds so as to evaluate their accuracy and precision (αa and αp, respectively) as follows:

αa := 1− 1
nu

nu

∑
j=1

1
κ j−κ j

min
∂g

∂u j
∈
[

∂ f
∂u j

∣∣∣
u
, ∂ f

∂u j

∣∣∣
u

]
∥∥∥∥ ∂g

∂u j
− ∂ f

∂u j

∣∣∣
u

∥∥∥∥
1

αp := 1− 1
nu

nu

∑
j=1

1
κ j−κ j

(
∂ f
∂u j

∣∣∣
u
−

∂ f
∂u j

∣∣∣
u

) , (19)

where the accuracy measure is defined as the average distance by which the true gradient falls

outside of the calculated bounds (αa = 1 if it lies within them) scaled by the respective ranges. The

precision measure reflects the average reduction in distance between the lower and upper bounds

that is achieved with respect to the full range (αp = 1 if the bounds are tight and define a point,

and αp = 0 if they are simply the lower and upper Lipschitz constants). Figure 4 illustrates these

definitions geometrically.

Table 3: The Lipschitz constants used for the numerical studies.

κ κ

f1(u) [−2;−2] [2;2]
f2(u) [−8;−8] [8;8]
f3(u) [−64;−64] [64;64]
f4(u) [−62;−62] [62;62]
f5(u) [−4;−2log 5] [4;2log 5]
f6(u) [−16;−48] [16;48]

We corrupt the measurement at each point with additive Gaussian noise, wi ∈N (0,σ2), i =

1, ...,100, and vary the standard deviation as σ = 0.1,0.4,0.7,1.0 to test for the effect of noise on

the estimates.

With regard to implementation specifics, the algorithm of Section 3 is always run once for all

of the available data points (i.e. by setting each point as u once) and the results averaged – unless

otherwise stated, we do not focus on the quality of the calculated bounds for any particular u. A P

value of 0.99 is used unless stated otherwise. For the solution of (15), (16), and (17) we employed

the CVX-SeDuMi modeling-solver package19,20 in the MATLAB interface. In the rare (< 1%)

cases where the solver encountered numerical difficulties and failed to yield a solution, we simply

left the results out of the averaging.
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Figure 4: A geometric illustration of how accuracy and precision were calculated in this study
for the gradient bounds obtained from (16) and (17). Here, the true gradient (the point in the
bottom right) falls outside of the box constructed around the constrained space E . By our metric,
the accuracy of the bounds is calculated as αa = 1− 0.5 c1

κ1−κ1
− 0.5 c2

κ2−κ2
. The precision, which

reflects the size of the calculated box in comparison to the original one defined by the Lipschitz
constants, is calculated as αp = 1−0.5 d1

κ1−κ1
−0.5 d2

κ2−κ2
.
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Finally, for the case where the structure is assumed to be convex/concave, we perform the

regularization with both convex and concave functions in parallel and then simply choose the one

that has the larger nL. If nL is the same for both, we choose the function that has the larger ML

value for the nL data points. As such, the worst-case computational burden is doubled for this

specific choice of S. The justification for running the convex/concave regularization in parallel

(i.e. lumping both convex and concave into a single structural hypothesis) comes from the fact that

the two are mutually exclusive unless the function is linear.

We proceed to report the results for the different tests.

Study 1: General Trends in Algorithm Performance

To obtain a good idea of the average quality of the estimated bounds, we conduct a three-level

study with the levels being:

• the function f (u) used to generate the data (6 choices),

• the regularizing structure S (4 choices),

• the noise level σ (4 choices),

for a total of 96 cases. The results for f1(u) and f4(u), considered as the most representative, are

given in Tables 4 and 5 (we refer the reader to the Supporting Information for the results for the

other functions).

Table 4: Results of Study 1 for f1(u), expressed in the form of calculated mean ± calculated
standard deviation.

Linear Quadratic Convex/Concave DBC

σ = 0.1
αa = 1.0000±0.0000
αp = 0.9722±0.0014

αa = 1.0000±0.0000
αp = 0.9332±0.0197

αa = 1.0000±0.0000
αp = 0.7367±0.1664

αa = 1.0000±0.0000
αp = 0.0065±0.0177

σ = 0.4
αa = 1.0000±0.0000
αp = 0.9003±0.0040

αa = 1.0000±0.0000
αp = 0.7551±0.0732

αa = 1.0000±0.0000
αp = 0.4729±0.1517

αa = 1.0000±0.0000
αp = 0.0000±0.0000

σ = 0.7
αa = 1.0000±0.0000
αp = 0.7964±0.0053

αa = 1.0000±0.0000
αp = 0.5976±0.0966

αa = 1.0000±0.0000
αp = 0.3302±0.1577

αa = 1.0000±0.0000
αp = 0.0000±0.0000

σ = 1.0
αa = 1.0000±0.0000
αp = 0.7745±0.0082

αa = 1.0000±0.0000
αp = 0.5679±0.1001

αa = 1.0000±0.0000
αp = 0.2728±0.1640

αa = 1.0000±0.0000
αp = 0.0000±0.0000
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Table 5: Results of Study 1 for f4(u).

Linear Quadratic Convex/Concave DBC

σ = 0.1
αa = 0.9769±0.0174
αp = 0.9303±0.1484

αa = 0.9948±0.0049
αp = 0.8259±0.2323

αa = 0.9978±0.0055
αp = 0.8437±0.1141

αa = 0.9998±0.0012
αp = 0.4386±0.3205

σ = 0.4
αa = 0.9914±0.0098
αp = 0.9364±0.0874

αa = 0.9959±0.0100
αp = 0.8276±0.2198

αa = 0.9981±0.0058
αp = 0.8104±0.1166

αa = 1.0000±0.0000
αp = 0.1993±0.1929

σ = 0.7
αa = 0.9930±0.0090
αp = 0.9421±0.0342

αa = 0.9923±0.0124
αp = 0.8786±0.1739

αa = 0.9965±0.0074
αp = 0.7984±0.1158

αa = 1.0000±0.0000
αp = 0.1063±0.1342

σ = 1.0
αa = 0.9866±0.0158
αp = 0.9454±0.0317

αa = 0.9876±0.0146
αp = 0.9214±0.1028

αa = 0.9933±0.0127
αp = 0.8117±0.1231

αa = 1.0000±0.0000
αp = 0.0651±0.0895

We start by cautioning the reader that these numbers may not be interpreted in any sort of

absolute sense, as they are defined with respect to the Lipschitz constants and could be, in principle,

made arbitrarily close to 1 by increasing the size of the box defined by κ −κ . Furthermore, we

have no way of stating which accuracy or precision values are “good” or “satisfactory”, as this

is completely application-dependent and must be decided by the user – one should not, therefore,

be misled by the high (>0.9500) values of αa and αp as being a testament to the high quality of

the bounds. Having said this, we go on to highlight the general trends witnessed in the numerical

trials:

• Theorem 1 is verified in all trials where the structural assumption is correct. This is witnessed

by αa = 1 for all the relevant cases for the functions f1(u), f2(u), and f3(u) (even though

there remains, at most, a 0.01 probability of inaccuracy). This property is not influenced by

the noise level.

• When the assumed structure is correct, increasing the noise clearly reduces the precision of

the gradient bounds (seen in all columns of Table 4, for example). The exact trend does not

appear to be linear, however, and may vary with the structure and nature of the function. We

also note that this trend does not appear to hold when the assumed structure is incorrect.

• The expected accuracy vs. precision tradeoff is observed, perhaps most clearly for f1(u)

(see Table 4), where the linear structure gives the most precise bounds, followed by the

quadratic, the convex/concave, and finally the DBC. On the other hand, we often see that the

linear structure gives the least accurate estimates for functions where none of the structural
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hypotheses are correct (see Table 5), with convex/concave often attaining a better accuracy

than the quadratic in these cases. DBC functions justify their expected generality by giving

perfect accuracy scores in almost all cases (the case with σ = 0.1 for f4(u) being the only

exception). However, one also sees that, for the majority of the cases, DBC functions are

no more useful than the Lipschitz constants, as they generally fail with respect to precision

( f4(u) being the only case where a relatively large reduction appears to be achieved).

We attempt to give some general guidance based on these observations:

• If the structure of the true sampled function is known, then it is probably best to use this

structure to regularize. If the estimated bounds are not tight enough to serve their desired

purpose, use a more restricting, but less accurate, structure. If multiple valid structures are

available, it is unequivocally best to use the more restricting one.

• It is unlikely that DBC functions would be useful for regularization in most cases, since good

precision may often be needed. However, if the goal of the estimated bounds is to refine

overly conservative Lipschitz constants (or to obtain an estimate of the Lipschitz constants

from the available data), then the DBC approach may actually be quite useful as it appears

to be generally accurate and as such would yield valid bounds.

• As a single, general-purpose, robust choice when the structure of the true function is un-

known, the convex/concave regularization appears to achieve a respectable tradeoff between

accuracy and precision in many cases. As such, it could be used as a first-choice regular-

izing structure for such cases. However, it is not difficult to envision a multiple-structure

algorithm that is tailored to the application – i.e. one that starts with the least restricting

functions (DBC) and proceeds down towards the most restricting ones (linear) until suffi-

ciently tight bounds are obtained.

We now proceed to study the sensitivity of αa and αp with respect to other factors – namely,

the value of P, the geometric location of the point being tested, the number of data points available,
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and the dispersion of the points. So as not to overwhelm the reader with too many results, we only

choose the specific case of f6(u) with σ = 0.7 as the basic reference for the studies that follow

(this choice being somewhat arbitrary).

Study 2: Effect of P

As P plays a crucial role in checking the validity of a structure with regard to local data, we expect

that lowering its value would lead to the following:

• Fewer data points used in the regularization (smaller nL), since the odds of a structure being

declared P-invalid increase as P is lowered (the constraint on the likelihood is tightened –

see Definition 1).

• A higher probability of the bounds being incorrect when the structure is valid (by Theorem

1). A similar result may be expected when the structure is approximately correct (e.g. a

linear structure over a small neighborhood).

Considering only the case of f6(u) and σ = 0.7, we set P to values of 0.10, 0.70, 0.80, and 0.90,

with the results reported in Table 6. No major changes are observed when P is lowered from 0.99

to 0.70, and while some degradation in performance does seem to occur for P = 0.10 (lowered

accuracy for the linear structure, lowered precision for both the linear and quadratic structures,

more variation in precision for all structures), it does not appear to be drastic given the drastic

change in P. As such, while we would rather be conservative and take P = 0.99, the effects of

not doing so and using lower values do not appear to be too critical for the data set used here

(suggesting, perhaps, that the importance of P is largely theoretical).

Study 3: Effect of Point Location

It is important to note that the (non-parametric) convex/concave and DBC structures only con-

strain the gradient by inequalities. While this is a reflection of their generality over the linear and
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Table 6: Results of Study 2, with lower P values being used.

Linear Quadratic Convex/Concave DBC

P = 0.99
αa = 0.9933±0.0149
αp = 0.9441±0.0485

αa = 0.9924±0.0144
αp = 0.9274±0.0776

αa = 0.9981±0.0076
αp = 0.8326±0.1103

αa = 1.0000±0.0000
αp = 0.0300±0.0428

P = 0.90
αa = 0.9924±0.0135
αp = 0.9446±0.0452

αa = 0.9926±0.0149
αp = 0.9274±0.0854

αa = 0.9978±0.0057
αp = 0.8275±0.1152

αa = 1.0000±0.0000
αp = 0.0332±0.0451

P = 0.80
αa = 0.9938±0.0126
αp = 0.9417±0.0441

αa = 0.9942±0.0133
αp = 0.9084±0.1236

αa = 0.9983±0.0055
αp = 0.8248±0.1100

αa = 1.0000±0.0000
αp = 0.0326±0.0456

P = 0.70
αa = 0.9943±0.0109
αp = 0.9420±0.0445

αa = 0.9936±0.0151
αp = 0.9012±0.1405

αa = 0.9988±0.0037
αp = 0.8258±0.1081

αa = 1.0000±0.0000
αp = 0.0328±0.0459

P = 0.10
αa = 0.9879±0.0147
αp = 0.9295±0.1015

αa = 0.9951±0.0181
αp = 0.8544±0.1865

αa = 0.9976±0.0128
αp = 0.8218±0.1318

αa = 1.0000±0.0000
αp = 0.0368±0.0492

quadratic assumptions, there is an added weakness in regularization with these structures that oc-

curs whenever the point of interest is located on the edge of the input space. We illustrate this

idea in Figure 5, where we have taken a one-dimensional case and generated data (with negligible

noise) that clearly may be described by a convex function. As shown by the dashed lines, the as-

sumption of convex structure constrains the gradient at the center point to lie in the sector described

by the angle θ1, as leaving this sector would imply that the gradient no longer supports the other

points of the function (thereby violating the first-order condition of convexity). Furthermore, it is

evident that the two neighboring points play a crucial role in constraining the gradient in such a

manner. For the rightmost point, however, no such constraint exists to bound the maximal value of

the gradient, which could then, in the worst case, stretch up to +∞ (in our trials, this would simply

be the upper Lipschitz constant). As a result, the precision of the gradient bounds achieved with

these structures is likely to suffer significantly when u is an edge or corner point.

We study this phenomenon by considering progressively smaller inner subsets of the generated

data, where we retain all of the data but compute gradient bounds only for the inner sets as shown

in Figure 6. Table 7 provides the results, which confirm our expectations, as significant improve-

ments in precision are noted for both the convex/concave and DBC structures as we go deeper and

deeper into the interior of the data set. Some improvement is noted for the linear and quadratic

structures as well, but this is expected to be due to the fact that the inner layers of function f6(u) are

progressively more linear (see Figure 3), thereby leading to better estimation with these structures.

It is difficult to make any practical recommendations with regard to this behavior when the
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Figure 5: The necessity of having well-distributed neighboring points for obtaining precise gradi-
ent bounds in a convex regularization.

Original Set
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u1

u2

(-2,-2)

(2,2)

Figure 6: Sets that are deeper in the interior of the full data set are expected to yield more precise
gradient bounds when regularized with convex/concave or DBC structures.

Table 7: Results of Study 3, which demonstrates the increased precision of bounds obtained for
convex/concave and DBC structures when points deeper in the interior of the data set are consid-
ered.

Linear Quadratic Convex/Concave DBC

Original Set
αa = 0.9933±0.0149
αp = 0.9441±0.0485

αa = 0.9924±0.0144
αp = 0.9274±0.0776

αa = 0.9981±0.0076
αp = 0.8326±0.1103

αa = 1.0000±0.0000
αp = 0.0300±0.0428

Inner Set 1
αa = 0.9979±0.0046
αp = 0.9562±0.0343

αa = 0.9960±0.0072
αp = 0.9647±0.0226

αa = 0.9996±0.0011
αp = 0.8917±0.0662

αa = 1.0000±0.0000
αp = 0.0420±0.0476

Inner Set 2
αa = 0.9973±0.0045
αp = 0.9714±0.0153

αa = 0.9954±0.0056
αp = 0.9741±0.0176

αa = 0.9992±0.0027
αp = 0.9369±0.0328

αa = 1.0000±0.0000
αp = 0.0512±0.0466

Inner Set 3
αa = 0.9992±0.0011
αp = 0.9778±0.0093

αa = 0.9991±0.0009
αp = 0.9775±0.0111

αa = 1.0000±0.0000
αp = 0.9478±0.0195

αa = 1.0000±0.0000
αp = 0.0771±0.0352
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input data set is fixed, apart from the encouragement to keep in mind that the precision of the

estimates obtained by convex/concave or DBC regularization may vary significantly depending on

how “well-surrounded” the data point in question is. When the input set is not fixed and can be

changed (as is the case in optimization7,8), this behavior should motivate the user to choose input

points that are somehow favorable to this regularization.

Study 4: Effect of Data Size

It is not difficult to surmise that having more (less) available data is likely to lead to better (worse)

and tighter (looser) estimates, since every additional data point translates into a potential new

constraint for the regularization problem. To confirm this formally, we carry out tests for coarser

grids with 64, 36, and 16 points, noting that these are still regularly distributed across the space

defined by −2� u� 2.

Table 8 provides the results, which show that the precision of the bounded estimates undergoes

a consistent degradation as fewer and fewer data points are used, although this is not so evident with

the linear structure, which appears to give fairly precise (though not necessarily accurate) estimates

regardless of the data size. The accuracy of the bounded estimates is not affected significantly by

using more or fewer data in this case.

Table 8: Results of Study 4, which show the effect of using less data on the quality of the bounds.

Linear Quadratic Convex/Concave DBC

100 points
αa = 0.9933±0.0149
αp = 0.9441±0.0485

αa = 0.9924±0.0144
αp = 0.9274±0.0776

αa = 0.9981±0.0076
αp = 0.8326±0.1103

αa = 1.0000±0.0000
αp = 0.0300±0.0428

64 points
αa = 0.9878±0.0216
αp = 0.9408±0.0496

αa = 0.9912±0.0141
αp = 0.8918±0.1322

αa = 0.9979±0.0057
αp = 0.8072±0.1200

αa = 1.0000±0.0000
αp = 0.0201±0.0367

36 points
αa = 0.9905±0.0142
αp = 0.9201±0.0512

αa = 0.9932±0.0248
αp = 0.7440±0.2354

αa = 0.9983±0.0051
αp = 0.7872±0.1155

αa = 1.0000±0.0000
αp = 0.0123±0.0232

16 points
αa = 0.9751±0.0191
αp = 0.9238±0.0372

αa = 0.9975±0.0045
αp = 0.5399±0.2547

αa = 0.9959±0.0111
αp = 0.7152±0.1266

αa = 1.0000±0.0000
αp = 0.0031±0.0122

The natural and expected recommendation that comes out of this study is that more experiments

may be carried out if more precise bounds are desired.
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Study 5: Effect of the Distribution of the Data

Finally, we consider the scenario where the points are irregularly distributed. In particular, we

consider the effect of poorly-poised data for which the regularized maximum-likelihood fit is not

uniquely defined (or where the likelihood value is very insensitive to perturbations near the max-

imum)8 due to a lack of proper “excitation” in the different input directions. To study this, we

generate the 100 data points (i = 1, ...,100) in the following random manner:

ui,1 ∈U (−2,2)

ui,2 = ui,1 +N (0,s2)

ui,2 <−2→ ui,2 :=−2

ui,2 > 2→ ui,2 := 2

, (20)

with s acting as a scatter parameter. For s = 0 or very small, the data are not well-poised as they

are one-dimensional (along u1 = u2), but become well-poised as s is increased, with a projection

onto the box −2� u� 2 enforced if the generated point fails to fall inside. The cases tested, from

s = 0 to s = 0.4, are illustrated in Figure 7 and the corresponding results are presented in Table 9.

Table 9: Results of Study 5, with irregularly dispersed data points.

Linear Quadratic Convex/Concave DBC

Standard
αa = 0.9933±0.0149
αp = 0.9441±0.0485

αa = 0.9924±0.0144
αp = 0.9274±0.0776

αa = 0.9981±0.0076
αp = 0.8326±0.1103

αa = 1.0000±0.0000
αp = 0.0300±0.0428

s = 0
αa = 1.0000±0.0000
αp = 0.3263±0.0231

αa = 0.9992±0.0067
αp = 0.3386±0.0797

αa = 1.0000±0.0000
αp = 0.2545±0.0413

αa = 1.0000±0.0000
αp = 0.0315±0.0350

s = 0.1
αa = 0.9891±0.0214
αp = 0.8792±0.0590

αa = 0.9952±0.0116
αp = 0.8953±0.0545

αa = 1.0000±0.0000
αp = 0.2915±0.0569

αa = 1.0000±0.0000
αp = 0.0121±0.0182

s = 0.2
αa = 0.9940±0.0113
αp = 0.9174±0.0459

αa = 0.9920±0.0182
αp = 0.9421±0.0301

αa = 1.0000±0.0000
αp = 0.4434±0.1146

αa = 1.0000±0.0000
αp = 0.0173±0.0245

s = 0.3
αa = 0.9948±0.0132
αp = 0.9323±0.0440

αa = 0.9893±0.0171
αp = 0.9626±0.0227

αa = 1.0000±0.0000
αp = 0.5526±0.1428

αa = 1.0000±0.0000
αp = 0.0125±0.0202

s = 0.4
αa = 0.9933±0.0126
αp = 0.9479±0.0344

αa = 0.9884±0.0156
αp = 0.9652±0.0246

αa = 1.0000±0.0000
αp = 0.6130±0.1584

αa = 1.0000±0.0000
αp = 0.0125±0.0214

The observed effect of poisedness (in this case, the size of s) on the precision of the bounds

is somewhat expected – better poised data lead to more precise bounds for all cases except those

corresponding to the DBC structure (where the precision appears to be so low so as not to suffer
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Figure 7: Cases with irregularly distributed data points for different values of the scatter parameter
s (the top-left case being the standard).
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much, if at all, from the lack of poisedness). The natural recommendation is therefore to make sure

to work with well-poised data whenever possible, as failing to do so will lead to imprecision in the

bounds.

We finish with a numerical warning concerning data points that are very close together in irreg-

ularly dispersed sets, as such a case may cause numerical issues in the regularization problem due

to scaling. This is mostly relevant for the convex/concave and DBC structures, where constraints

such as ŷi +∇ f̂ (ui)
T (u j − ui) ≤ ŷ j become extremely ill-conditioned as ‖u j − ui‖ → 0. Either

removing some of the data or binning it may be necessary in such cases.

Conclusions

This paper has discussed the problem of obtaining uncertainty bounds for the gradient estimate of

a discretely sampled function at a given input point, and we have proposed the use of maximum-

likelihood regularization subject to structural constraints as a means of obtaining useful gradient

bounds. In particular, the problem appears to be largely solved for the cases where both the struc-

ture of the function and the pdf of the measurement noise are known, as here it is possible to

guarantee that the obtained bounds be accurate with a chosen probability. This, together with the

trend that more restricting structures lead to more precise bounds (smaller uncertainty intervals),

has been confirmed in the numerical trials, with a number of other relevant effects being explored

as well.

Many questions remain unanswered for the general case where the noise pdf is only approxi-

mated and where the structural hypotheses are false, however. Our numerical study has addressed

the latter issue, showing that the DBC structural assumption is almost always accurate (but impre-

cise), and that the convex/concave structure is often a good compromise when more precision is

needed. There are many cases where the linear and quadratic regularizations also perform compa-

rably well with respect to accuracy, but it remains difficult to judge the results in general terms, as

the quality of the uncertainty bounds, with regard to both accuracy and precision, will inevitably

33



vary from application to application. In this sense, we hope to have provided a number of op-

tions (the regularizing structures) for the potential user to try so as to find the one that is the best

for them. Clearly, other general structures could also be proposed (e.g. quasiconvexity or log-

convexity/concavity).

Finally, it is difficult to judge if the six functions tested here truly represent the full variety

of cases that may be encountered in practice (a very likely answer is “no”). As such, the ideas

presented could benefit from exposure to real applications, and some are already being carried out

by the authors in the real-time optimization context. Another relevant aspect that has not been

sufficiently treated here is dimensionality (only nu = 2 was considered in the tests). Although

neither the theory nor the algorithm appear to suffer from scale-up issues, this should nevertheless

be confirmed.

Supporting Information Available

The results of Numerical Study 1 that have been omitted here are available in the Supporting

Information. This information is available free of charge via the Internet at http://pubs.

acs.org/.
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