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ABSTRACT 
We construct a model of innovation diffusion that incorporates a spatial component into a classical imitation-innovation 
dynamics first introduced by F. Bass. Relevant for situations where the imitation process explicitly depends on the spa-
tial proximity between agents, the resulting nonlinear field dynamics is exactly solvable. As expected for nonlinear col-
lective dynamics, the imitation mechanism generates spatio-temporal patterns, possessing here the remarkable feature 
that they can be explicitly and analytically discussed. The simplicity of the model, its intimate connection with the 
original Bass’ modeling framework and the exact transient solutions offer a rather unique theoretical stylized frame-
work to describe how innovation jointly develops in space and time. 
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1. Introduction 
Since the middle of the XXth century, a substantial lit-
erature emphasizes the importance of quantitative models 
that enable the forecasting of the diffusion of techno-
logical innovations (DTI) not only for pure academic 
interest, but for its practical relevance. While the empiri-
cal evidence that quantification of DTI is possible was 
initially recognized by E. Mansfield [1] and Z. V. 
Griliches [2,3], the first quantitative stylized dynamical 
modeling framework was proposed by F. Bass in his 
seminal 1969 paper [4]. Similar in essence to the P.-F. 
Verhulst’s epidemiological logistic equation, the Bass’ 
model uses an aggregated differential approach ena-
bling the reproduction of the relevant dynamical features 
of the adoption of a new product and/or a new technol-
ogy in a society of consumers. Bass’ nonlinear dynamics 
is basically governed by the ratio of two control parame-
ters, namely the innovation and imitation rates. Intro-
ducing a quadratic nonlinearity into the evolution equa-
tion, the model mathematically describes consumer imi-
tative interactions. This nonlinearity leads to an evolution 
characterized by two distinct time scales, i.e. a fast initial 
exponentially growing phase followed by a slow asymp-
totic evolution when full equilibrium demand is nearly 

reached. The seminal works of J. A. Schumpeter [5] and 
subsequently of B. Jovanovic and R. Rob [6] support this 
observation by illustrating the importance of imitation 
waves in DTI and the formation of business cycles. 

In general, interaction-based models have been em-
ployed for various applications ranging from epidemiol-
ogy [7], variance of crime rates across space when direct 
interdependencies occur between nearest neighbors [8], 
herd behavior in financial markets [9-12] to social 
movements and political uprisings (see [13] and [14] for 
several additional references). Interaction-based methods 
have also been useful tools in modeling the diffusion of 
innovation [16-21]. In their contribution, G. Ellison and 
D. Fudenberg [22,23] study agents who consider the ex-
periences of their neighbors in deciding which of two 
technologies to adopt, in a world where players use rules 
of thumb that ignore historical data but may incorporate a 
tendency to use the more popular technology. In this 
learning environment, agents observe both their neighbors’ 
choices, and periodically reevaluate their decisions, as 
opposed to making a once-and-for-all choice. R. Ander-
gassen et al. [24] investigate the evolutionary process of 
imitation and innovation as a search mechanism in a 
given neighbourhood of firms. In their world, the spread-
ing of information through neighbourhoods allows firms 
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to acquire knowledge leading to innovation waves as 
firms attempt to glean information on best practice tech-
niques, which they subsequently imitate. For additional 
models where preference orderings over alternatives in a 
choice set can depend on the actions chosen by other 
agents, see [25-28]. 

The original Bass’ dynamics is aggregated and hence 
fails to detail the influence of spatial location of agents 
in the imitative behavior of consumers. Intuitively, spa-
tial considerations strongly affect the interactions be-
tween agents and the underlying imitation mechanisms. 
In fact spatial proximity is argued to be a major driving 
force of innovation diffusion which often exceeds the 
external marketing efforts such as advertising [29,30]. In 
1991, P. Krugman [31] pointed out that production is 
remarkably concentrated in space. This observation opened 
a strong research effort devoted to the understanding of 
the spatial dimension of innovation diffusion. M. P. 
Feldman [32,33] echoed P. Krugman’s observation in 
pointing out that geographical effects are even more 
stringent for innovative activity because the rationale for 
the formation of adopter clusters is related to the role of 
word-of-mouth and imitation in the diffusion of innova-
tions. As emphasized in [34], a clear correlation exists 
between geographical proximity and the strength and 
speed of word-of-mouth spread, sometimes labeled as the 
neighborhood effect. 

In addition to these works, a wealth of empirical stud-
ies exemplify the importance of geography in the diffu-
sion of knowledge and R & D. Spatially-mediated knowl-
edge spillovers of R & D are explicitly discussed in 
[35-38]. It is noteworthy to observe that this pure geo-
graphic view can be generalized by defining metric dis-
tances on abstract state spaces in order to describe the 
evolution of technological advance, R & D investment 
volume or any other abstract features [39] on which agents 
can compete by adjustment of their individual behavior. 

Recent literature suggests that imitation interactions 
between interacting agents like bacteria, flies, quadru-
peds or fishes can explain the formation of compact spa-
tio-temporal patterns, i.e. swarms or platoons, which 
spatially evolve as quasi-solid bodies [40,41]. The flock-
ing mechanism originates from mimetic type decisions 
based on agents’ observations of their neighbors. To the 
best of our knowledge, spatial flocking mechanisms seem 
to be barely discussed in the interaction-based socioeco-
nomic literature. Hence a natural and simple attempt to 
analytically infer the role of spatial parting is to introduce 
spatial effects and it is the aim of our paper to incorporate 
their influence into the original Bass’ evolution. 

Adding a spatial dimension transforms the Bass’ ordi-
nary differential equation into a partial differential equa-
tion (PDE). Due to the underlying imitation mechanism, 
the resulting PDE will be intrinsically nonlinear, a per-

spective that generally offers little hope for explicit solu-
tions in the realm of field theories. The present paper 
illustrates how a simple natural spatial extension of the 
original Bass’ dynamics leads nevertheless to a fully 
solvable nonlinear field dynamics, a truly remarkable 
result. The resulting equations belong to the discrete ve-
locities Boltzmann equations (DVBE) which describe the 
macroscopic properties of a dilute gas. The specific DVBE 
that can be derived from the Bass’ dynamics coincide 
with the Ruijgrok-Wu (RW) model introduced and 
solved by T. W. Ruijgrok and T. T. Wu [42]. This inti-
mate connection with statistical physics suggests that the 
Bass’ dynamics can be obtained, via a mean-field limit, 
from a microscopic point of view in which a large num-
ber of agents interact. While the mean-field approach is a 
basic tool in statistical physics of large systems, it has 
now been explicitly used in recent econometric studies as 
well (see illustrations in [10-12,14,15,28]). Relying on 
the law of large numbers, the mean-field limit allows one 
to write deterministic evolution for probability densities 
in question. In the sequel, we will explicitly construct the 
microscopic connection that exists between the Bass’ 
imitation model with spatial effects and the RW model 
inspired by a similar approach adopted in [43] for a 
multi-agent dynamics in logistics and econophysics con-
texts. In [43], the dynamics exhibit a nonlinear term due 
to a specific imitation mechanism giving rise to the fa-
mous Burgers’ nonlinear PDE to describe the emergence 
of spatio-temporal patterns. As illustrated in [44], RW 
dynamics actually generalizes the Burgers’ equation, the 
spatio-temporal Bass’ model presented here can itself be 
viewed as a natural generalization of the multi-agent 
imitation model studied in [43]. 

Besides its direct practical relevance, the simplicity of 
the original Bass model, for which exact analytical solu-
tions are available, has undoubtedly contributed to its 
popularity in the economics and management literatures. 
Endowing Bass’ dynamics with spatially-dependent imi-
tation mechanisms confers a new dimension to interac-
tion-based socioeconomic modeling, opening the possi-
bility to analytically study the generation of spatio-tem- 
poral patterns in a highly nonlinear context. Our stylized 
dynamics can be viewed as an exceptional possibility to 
analytically observe the spatio-temporal effects arising 
for a collection of agents subject to imitation interactions. 

2. Spatially-Dependent Imitation Dynamics 
Consider a collection  of N autonomous agents which 
are in a migration process on the one-dimensional real 
line . At any time , we assume that the com-
plete population is composed by two types of agents 

!

t!! "!
"!  

and #! , $ %= # "!&! ! , characterized by two associ-
ated $ %,x t -dependent migration velocities $ %,V x t"  and 

Copyright © 2012 SciRes.                                                                                  TEL 



F. HASHEMI  ET  AL. 3

$ ,V x t# %
N

%

 on . At any time, each agent is subject to 
modify his/her velocity. Agents k , , 
change their velocity either spontaneously or after an 
autonomous decision based on an imitation process (IP). 
Let us write 

!
a !! = 1,2, ,k "

$ ,x t' , respectively $ , %x t( , as the spon-
taneous transformation rates from states $ %,x t'" # , 
respectively $ %,x t(# " . Apart from these sponta-
neous transitions, additional transitions are assumed to be 
triggered by mutual agents’ interactions. Specifically, for 
an agent k , located at position x at time 

#! !

t

#! !

a !! "!!

V" V

, 
the IP mechanism is assumed to depend on the observa-
tion of the current velocity states, (i.e.  or # ), 
adopted by other proximity members located in the 
neighborhood $ % ),k x t" !  of agent k  (by neighbor-
hood k

a
$ %, ,x t"  we assume here a linear interval around 

the location x of agent k , it will be further defined in 
Equation (5)). For an arbitrary agent ,k * * , we de-
fine his/her imitation decision rule according to his/her 
interactions with other agents as follows: 

a
a

a

!!

!!# #1) Dynamic rule for an agent k, . At time 
, the agent ,ka #  simultaneously observes the (ve-

locity) state of the agents contained in his/her neighbor-
hood k

t "!!

$ %, .x t"  The presence of agents $ %, ,j ka x" ! t" , 
, seen by ,k  triggers an imitation mechanism 

which enhances the transition rate towards the state 
j k+ a #

V" , 
i.e. k$ % $, , % $ %, .x t x t ", i x t -

,

( (# . /  The extra contribution 
 is proportional to (i.e. is monotonically increas-

ing with) the number of agents 
$ %,ki x t

ja " , , in the 
neighborhood 

j k+
$ ,k %x t"  of agent . ,ka #

a2) Dynamic rule for an agent k, . At time 
 the agent ,k "  simultaneously observes the (ve-

locity) state of the agents contained in his/her neighbor-
hood  k

!!" "

,t "!! a

$ , %x t"   and does not modify its velocity what-
ever he/she observes. 

According to these dynamic rules, the time-dependent 
position k $ %X t  of agents ka !!

= 1, 2,

, , can 
be written as a set of coupled stochastic differential 
equations (SDEs): 

= 1,2, ,k N"

,$ % $ %= ,k kX t I t k " N$

%

        (1) 

where k $I t  stands for a two-velocity-states Markov 
chain (i.e. the state space is here $ % $ %0 , , ,V x t V x t" #

$ %, ,x t

$ % 1,

1

.

:=2

$ %

$ %, ,

, ,

i x tk

V x t

V# ", -". /

), 
the transition rates of which are defined by: 

$ %
$ %

t

t
'" #

#
$ %

$ %

,x t

x t

V x

V x
(

#
     (2) 

The noise source in Equation (1) can also be viewed as 
a non-homogeneous, alternating, Markov renewal proc-
ess in which the inverse transition rates x t' #  and 

k$ % $ % 1
,,x t i" x t

#

$ ,V x"

(,. -/
%t

 are respectively the mean sojourn 
times in states  and # . We can therefore 
directly observe that in Equation (1), the coupling be-
tween the various agents is realized via the extra 

$ %,V x t

$ %,ki x t  

transition rate. 
For an agent ,ka # #!! , located at position x at time 

t "!! , we shall write: 

$ % 0 1 $ %0 1 $ %0 1, ,,
, = = ,k a a x t a x tj j k j kj k j k

i x t
! ! !" "+ +

3 3! ! !
! " "

 (3) 

where $ %,k x t"  is the neighborhood affecting the imi-
tation rate of agent ,ka # , and 014  stands for the indica-
tor function. From now on, we consider a very large 
population of agents, i.e. , and instead of indi-
vidual agent trajectories, we now think in terms of prob-
ability densities in order to characterize the evolution of 
the global population  of agents. To this aim, we 
write 

!

56N

!
$ % 7 8,P x t ! 0,1  and $ % 7 8, t 0,1Q x !  to denote the 

density of agents ,ja " "!! a and  to be found 
at position 

,j # !!#

x!!  at time t . "!!
For such a large population of agents, individual fluc-

tuations become negligible and we can adopt a mean- 
field approach (MFA). This consists in considering that, 
statistically, the time evolution of an arbitrary agent is 
representative of the whole population. When this repre-
sentative agent is located at position x at time t "!! , 
the MFA views the influence of other agents inside his/her 
neighborhood $ %,x t"  as an external effective inter-
active mean-field which enables us to replace Equation 
(1) by a single scalar SDE: 

$ % $ %= ,X t I t$                  (4) 

where in Equation (4), the $ %,ki x t  transition rates are 
replaced by an effective rate $ %,i x t  defined by: 

$ % $ % $ %2

2
,   , , d ,

x
k x

i x t i x t P z t z
"9

#9:# %      (5) 

where the radius "9!!  characterizes the size of the 
neighborhood interval $ %,x t"  which triggers the IP of 
the representative agent. Note that for diffusion processes, 
SDEs of the type given by Equation (1), driven by WGN, 
have been recently used for describing multi-agent dy-
namics with IP in [43]. In this particular situation, the 
rigorous mathematical foundations for the MFA proce-
dure have been established in [45]. 

Associated with the SDEs given by Equations (4) and 
(5), the MFA enables us to write a Fokker-Planck equa-
tion for the probability densities  and $ ,P x t % $ %,Q x t , 
[44]: 

$ % $ % $ %

$ % $ %$ % $ % $ %

$ % $ % $ %

$ % $ %$ % $ % $ %

    , , ,

= , , , ,

    , , ,

= , , , ,

P x t V x t P x t
x

, ,

, ,

J P x t Q x t P x t Q x t

Q x t V x t Q x t
x

J P x t Q x t P x t Q x t

' (

' (

"

#

;
"

;

" # "

;
"

;

# " #

$

$
  (6) 

where the imitation rate term in Equation (6) reads as: 
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$ % $ %$ % $ % $ %2

2
, , , = , , d .

x

x
J P x t Q x t Q x t P z t z

"9

#9
,
< =. /: -   (7) 

The dynamics in Equation (6) is a coupled set of 
nonlocal and nonlinear field equations, which barely 
offers hope for any analytical discussion. However, for 
small radius 9  (i.e. infinitesimal interaction neighbor-
hoods), we may Taylor expand Equation (6), up to first 
order in , to obtain: 9

$ % $ % $ %

$ % $ % $ % $ %

$ % $ % $ %

$ % $ % $ % $ %

    , , ,

= , , , , ,

    , , ,

= , , , , .

P x t V x t P x t
x

P x t Q x t P x t Q x t

Q x t V x t Q x t
x

P x t Q x t P x t Q x t

' (

' (

"

#

;
"

;
"9 # "

;
"

;
#9 " #

$

$
  (8) 

We directly observe that Equation (8) can be viewed 
as a generalized Bass’ dynamics which confers relevance 
to the spatial dimension on which agents evolve. Indeed, 
similarly to the original Bass’ model, we include an imi-
tation process, represented in Equation (8) by the nonlin-
ear contribution . $ % $, ,P x t Q x t9

% $ %, , =t Q x t"
%

,Writing , the summation of 
both equations in (8) yields a continuity equation: 

$ $ %P x x t>

$ % $ % $ % $ %, , , ,x t V x t V x t x t
t x" #
; ;
> " " >, -. /; ;

= 0,

!

  (9) 

which in turn implies the normalization constraint: 

$ % $ %, d , d 1,  .P x t x Q x t x t "" ? @: :! !
!       (10) 

Although the dynamics given by Equation (8) has been 
derived for non-homogeneous and non-stationary pa-
rameters $ %,x t' , $ %,x t(  and , in the sequel 
we will restrict our attention to situations where these 
parameters can be assimilated to constants (i.e. 

$ ,V x t* %

,' (  
and ). V*

Spatial Homogeneous Regimes—Bass’ Model 
When , the spatial character disappears from 
the dynamics given by Equation (8), which implies that 

 and  More precisely, 
Equation (8) becomes: 

= =V V# "

$ % $ %t P t?

0

.,P x $ % $ %,Q x t Q t?

$ % $ % $ % $ % $ %
$ % $ % $ % $ % $ %

= ,

= ,

P t P t Q t P t Q t

Q t P t Q t P t Q t

' (

' (

"9 # "

#9 " #

$

$     (11) 

with the notation $ % $ %d:=
d

P t P t
t

$ . The constraint given 

by Equation (10) now simply becomes $ % $ % = 1P t Q t"  
and enables us to rewrite Equation (11) in the following 
form: 

$ % $ % $ % $ %2= 1P t P t P t
' (

At this stage, it is worth observing that for = 0'  and 
= 19 , Equation (12) reduces to 

$ % $ % $= 1 ,P t P t P t(# " %, -, -. /. /$          (13) 

which is precisely the original Bass’ dynamics [4] with 
(  being the ratio between the imitation and innovation 
rates. 

For completeness of the exposition, let us integrate 
Equation (12), with the initial condition , 
to get: 

$ % 0= 0 =P t P

$ % $ %$ % $ %$ %
$ % $ %

2
0 0

2
0 0

=
t

t

b P b e b P b
P t

P b P b e

# A9

# A9

A " # A " " A # " A "

" A " # # A "
 

(14) 
with the definitions: 

$ %1=
2

b ' (# 9 # #
9

 and $ %21= 4
2

.' ( (A 9 # # " 9
9

 

In the asymptotic time limit , Equation (14) 
converges to: 

t 56

$ % s= =lim tation
t

P t P b
56

A # .          (15) 

For the original Bass’ model obtained when = 0'  

and = 19 , we have $1= 1
2

b %(# #  and $ %1= 1
2

(A " . 

Accordingly, with 0 , Equation (14) reduces to the 
original Bass’ solution: 

= 0P

$ %
$ %

$ % $ % $ % $ %

$ %

1 1

1 1

1 1
= , =

t t

t t

e e
P t Q t

e e

( (

( (

( (

( (

# " # "

# " # "

, -# ". /
" "

.

1

 (16) 

Moreover s = =tationP bA #

= 0

, which expresses the fact 
that all agents ultimately adopt the new technology, as it 
is obviously expected in the original Bass’ modeling 
framework, when ' . 

3. Bass’ Dynamics with Spatio-Temporal  
Effects 

Coming back to the dynamics given by Equation (8) and 
introducing dimensionless coordinates via the Galileo 
transformation $ % $ %, ,x t y# s  defined by: 

$ %
$ %
$ %

2
= ,

0

V V
y x

V V V V
s t

# "

" # # "

B 9 " C9
B C B CD E

# #D E D ED E
F G F GD E9F G

     (17) 

we straightforwardly have: 

.(H I", -J J#9 # # #K L< =9 9J J. /M N
$  (12) 

$ % $ % $ %

$ % $ %
$ % $ % $ %

2           and

,

" #

# "

# "

, -9
; 4 ; 4< =

#< =. /

, -9 "
; 4 ; 4 "< =

#< =. /

#

#

x y

t y

V V

V V
V V

 

9; 4s

  (18) 
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which transforms Equation (8) into the coupled set of 
nonlinear partial differential equations (PDEs): 

= ,

= .

s y

s y

P P PQ P Q

Q Q PQ P Q

' (

' (

; " ; " # "
9 9

; # ; # " #
9 9

        (19) 

model of 
Boltzmann equations, first studied in [42]. The dynamics 
given by Equation (19) is remarkable, as 
alized Hopf-Cole logarithmic transformation, we get: 

The set of non-linear PDEs given by Equation (19) can 
be interpreted as being a discrete two velocity 

using a gener-

$ % $ % $ %, = log , log ,s yP y s H y s H y s# " ; # ;
9

 (20) 

$ %

(

$ % $ %, = log , log ,s yQ y s H y s H y s'
#; # ;

9
  (21) 

which actually reduces Equation (19) into the Tele-
graphist equation: 

$ % $ % $ %2, , ,ss yyH y s H y s H y s'(
; # ; #

9
 = 0.   (22) 

Accordingly, the dynamics given by Equation (8

 
s as: 

) with 
constant parameters can be exactly solved for any ini-
tial conditions $ %0P y  and $ % . According to [42],
the general solution read

0Q y

$ % $ % $ %

$ % $ %1 2

2
1               , , ,
2 2

s

1, =H y s A y s A y s

y s y sO
" "# #

    (23) 

where 

" " #, -. /

=
'(

O  and wher
9

e we have the following 

definitions: 

$ % $ %$ % $ %22
1 0, = d

y s

y s
y s s y y B y yO

"

#
P P# #: !#  ,P

and 
$ %

$ %
$ %$ % $ %

2    

22
122

,

1= ,
y s

y s

d
y s

s y y A y y
s y y

O
#

C
E P P P# #D ED EP# #F G

: !
 

 and  being the modified Bessel’s 
funct nd: 

"
B
D

#

with $ %0 4!
ions a

$ %1 4!

$ % $ % $ % $ %0 0
1= ,
2

B y P y Q y A y' (, -# " "< =9 9. /
       (24) 

$ % $ % $ %00

1= ex
y

0p d .
2

A y P y Q y yP P P# " # "K L
9 9M N

: (25) ' (H , -
< =. /

3.1 Behavior of the Solutions 
Though fully explicit and exact, the solution given by 

Equations (20) and (21) deserves discussion and in
pretation for specific situations and this is precisely
objective of this section. In what follows, we will sys-

I

ter-
 the 

tematically choose = 19  and unit velocities = 1V* * . 
cs that resulLet us here focus on the Bass’ dynami ts 

when = 0' . This directly implies that = = 0O '(  
and hence Equation (22) coincides with the ordinary 
wave equation. By definition of Bessel’s functions [46], 
we have that $ %0 0 = 1!  and $ %1 0 = 0! , thus leading to 
the usual wave solu  the form: tion in

$ % $ % $ % $ %= d .1 1,
2 2

y s

y s
H y A y s A y s B

"

#
s y yP P (26" " # ", -. / : ) 

Due to the fact that = 0' , we expect that the agents’ 
population "! velocity 1  increases by 
opposition to the population #!  of 

 with  
ts with velocity 

 =V" "
agen

= 1V# #  
plore the tran

wh do  Let us now ex-
t na d this for 

types of initial conditions. 
:

ich is 
sien

omed to 
ture of

ex
 the so

tinction.
lution an three 

a) Initial conditions  $ % $ %= ! y0  and P y $ %Q y =0 0  
In this case, the time-dependent  reads as:  solution

$ % $ % $ %, = and , 0.P y s y s Q y sQ # ?      (27) 

as it can be checked directly from Equations (20) and 
(21). Equation (27) is clearly consistent with the fact that 

= 0'  and hence that n from = 1V" "o transitions  to 
= 1V# #  velocities occur. Hence, starting with all agents 

locity with ve = 1V" " , they stay with their
d the 

 original ve-
locity an density $ %,P y s  is a uniform

b) I

ly traveling 
Dirac mass with velocity = 1V" "  towards the positive 
! -axis. 

nitial conditions: $ %P y =0 0  and $ % $ %Q y0  
r by direct substitution into Equation (19) or al-

ternatively by usi quations (20) and (21), one can 
verify that the time-dep solution in this case reads 
as: 

y = !
Eithe

ng E
endent 

$ % $ % $ $ %2, = ,
y s % $ %and = s

2
y s e y y s( #

s Q e y s
(

( Q#R # "  P

(28) 
where $ %y sR #  is a Heaviside cutoff function which 
identically vanishes for negative arguments. The dynam-
ics $ %,P y s  

locity V"

of the spatial dispersion of the agents with 
ve = 1"  

vior 
is illustrated in Figure 1. 

of the solution given by Equation (
can be easily understood. Indeed, the Dirac mas

The beha 28) 
s for 

$ %  ,Q y s es the fact that agents with velocity 
= 1V#

express
#  are gradually depopulated at the rate s(  for 

the  of agents traveling with velocity = 1V"benefit "  
and hence ing to  migrat $ %,P y s . The Heaviside function 
$ %y sR #  expresses the fact that no agent can possibly 

be found at a distance larger than y  at time t (remem-
the velocities here are = 1V* * ). It is worth ob-
hat in the original Bass’ model, the adoption rate 

ber that 
serving t
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Figure 1. Spatial dispersion P(y, s) of the agents with 
velocity V+ = +1 for different times s = [0.01; 20; 40]. The 
initial conditions are given by P0(y) = 0 and Q0(y) = !(y), " = 
0 and # = 0.1. In this case, the agents are immediately 
segregated and there are no imitation processes. 
 

ogiven in Equation (16) is equal t  $ %1 (" . This over-
comes the (  adoption rate that we will obtain below in 
Equation (29), due to the fact that in the present configu-
ration, imitation process does not enter into play in our 
spatial model, which drastically moderates the overall 
doption Indeed, in this limitin me the agents' a rate. g regi

diatelypopulations "!  and #!  are imme  and defini-
tively segregated, which hence never allows imitation 
processes to take effect (the unit rate discrepancy be-
tween the $ %1 ("  adoption rate occurring in Equation 
(16) and the (  rate in Equation (29) is obtained from 
the = 19  choice). The resulting temporal evolution of 
the agents’ o all ado n rate obtained in the present 
case ( $ % $ %= , dP t P y t y:! ), compared with the one of the 
original Bass’ model, will be illustrated later in Figure 4. 

Finally, l bserve that, from Equation (28), one 
immediately o ains: 

$ % $ %, d = 1 and , d = ,

ver ptio

et us o
bt

s sP y s y e Q y s y e( (# #, -#. /: :! !
(29) 

thus showing that Equation (10) is fulfilled. In addition, 
for asymptotic times s 56 , Equation (29) indicates 
that all agents ultimately adopt the = 1V" "  velocity as 
it is expected for the = 0'  regime

c) Initial conditions: 
. 

$ % $ % $ % $ %tanh tanh" # #, -. /P y = Q y = y $ y $
8$0 0  

For these initial conditions and for the particular choice 
= 2

1

(  and = 1 4S , the resulting tim endent solu-
tio del is given 

e-dep
o by: n of our spatial Bass’ m

$ %

$ % $ % $ %
$ %

$ % $$

2 e
2 , cosh

                   1 tanh tanh

y sA y s
H y s y s

y s y %

     ,

cosh1 1=

P y s

y s

s %

S
S

S

# "# " # "<K
# "<J .M

S

H , # #J

I-J4 # # # " # " L=
J/N

and 

(30) 

$ %

$ % $ % $ %
$ %

$ % $ %$ %

   ,

cosh1 1= e
2 , cosh

             1 tanh tanh ,

y s

Q y s

y s
A y s

H y s y s

y s y s

S
S

S S

# #
H , " #J # " "<K

" "<J .M
I
-4 # " # " " " L/
N

(31) 

where 

$ % $ % $ % $ %

$ % $ % $ %0 1
$ %
$ %

1

0

1, = , ,
2

= exp tanh tanh d

cosh
        = e ,

cosh

yy

y

H y s A y s A y s y s

A y e z z z

y
y

S S

S
S

" " # ", -. /

# # ", -. /

#
"

:

#

 

$ %

$ %$ % $ %$ %

$ % $ %

1

3

    ,

e= atan sinh atan sinh
2
e e atan e e atan e .y s y s y s y s

y s

y s y s
S

S S S S S

S S
#

# # # " " # " # # "

, -" " # # ". /

, -# " # #. /

#

 

The spatio-temporal dynamics of the agents 
with velocity 

$ %,P y s  
= 1V" "  

ns of 
is illu gure 2. The 

joint evolutio
strated in Fi

$ %, s
V"

 3

P y
velocity 
wn in Figure

 and  (representing 
agents with  respec
tively) are dra

In the present configuration, the two types of agents have 
an identical initial spatial distribution (i.e.

$ %,Q y s
 and V#= 1"

. 
= 1# -

 $ % $ %0 0= ,P y Q y  
y@ ). Hence, half of the agents hav ly the velocity 

= 1V"

e initial
" , the ot r hal  having the velocity = 1V#he f # , i.e. 

$ $% %0 0P y Q y:! . 

 

1d = d =
2

y y:!

 
Figure 2. Spatial dispersion P(y, s) of the agents with 
velocity V+ = +1 for different times s = [0; 0.2; 3; 10]. The 
initial conditions are given by 

$ % $ % $ % $ %P y Q y y y0 0
1= = tanh tanh

8
S S

S
, -" # #. / , 

= 0' , = 2(  and = 1 4S . 
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Figure 3. Spatial dispersions P(y, s) and Q(y, s) of the agents 
with velocity V+ = +1 and V– = –1 respectively, for times s = 
[0; 0.3; 1.2]. The initial conditions are given by  

$ % $ % $ % $ %P y Q y y y0 0
1= = tanh tanh

8
S S

S
, " # #. -/ , 

= 0' , = 2(  and = 1 4S . 
 
The spatio-temporal behavior of the solution given by 
Equations (30) and (31) can be split into two different 
time phases. For short times of the dynamics, the overlap 
between  and  is non-null (i.e. the two 
populati agents  are not spatially 
segreg  lead  imitation processes 
between t . anging their velocity 
from h imitation and 
spon  is gradu-
ally d e imita-
tion proc rlap between 

$ %,P y s
ons of 

ated), thus
he agents
= 1#  to

ous tran
opulated

esses
 and Q y

$ %,Q y s
 "!  and 
ing to stron

Agents are c
= 1"  due
s. Accord
e benefit o
reasing as the 

 gets 

#!
g
h

 to bot
ingly, 

f 

smaller, b

V#

tane
ep

$ %s

 V"

sition
 for th

 are dec
$ %, s

$ %,Q y s
$ %,P y s . Th
ove

ut the rate ,P y (  of 
spontaneous transitions from = 1V# #  to = 1V" "  re-
mains itself constant with time. In the time asymptotic 
regime, almost all the agents have adopted velocity 

= 1V  $ %,P y s  to behave as a "

de
"

nsity un
, leading

iformly trav
pr

city V"

obab
= 1

ility 
eling with velo "  to-

In  temporal evolution of the overall 
wards th itive . 

Figure 4, the
e pos ! -axis

adoption rate $ % $ %= , dP t P y t y:!  of the agents is illus-
trated and compared to the one observed for the Bass’ 
original model. For the present configuration, the overall 
adoption rate stands between ( , the rate observed for 
our spatial Bass’ model ce of imitation processes 
(Section 3.1.b), and 1,

in absen
( "  the rate obtained for the original 

aggregated Bass’ model. Hence, in general, the overall 
adoption rate of our spatial Bass’ model will be equal to 

$ % ,t( " $  $ % 8 80,1 ,t !$  with $ %t$  depending on the initial 
distributions of the agents and on the m arameters. 
Remember that the imitation rate (and hence the overall 
adoption rate) is controlled by the number of neighbors 
that each agent effectively observes during the imi tion 
process. In the aggregated (original) Bass’ model, this 
number is maximum as each agent systematically observes 

 
Figure 4. Temporal evolution of the overall adoption rate 
P(t): 1) for the original Bass’ model, 2) for our spatial Bass’ 
model when there are imitation processes (Section 3.1.c) 
and 3) for our spatial Bass’ model when there are no 
imitation processes because the two populations of agents 

"!  and #!  are immediately segregated (Section 3.1.b). 
 
the global population of agents. In the limiting regime of 
Section 3.1.b, the number of observed agents is equal to 
0 as the two populations of agents  and "! #!

 allowing 
 are 

initially and hence permanently segreg hus
no imitation processes. 

4. Conclusion and Perspectives 
Often, agents’ remoteness may naturally reduce the effi-
ciency of imitation processes, a feature that is totally 
absent in the original aggregated Bass’ approach. Incor-
porating a spatial dimension into the Bass’ dynamics is 
however not a minor extension. It transforms indeed a
nonlinear single dimension dynamics into a nonlinear

of ult y 
alculated. Indeed, the quadratic nonlinearity, due here to 

m

ic and exact modeling framework 
 spatio-temporal 
s. 

ated, t

 
 

infinite dimensional field dynamics for which, in general, 
no solution methods are available. It is hence remarkable 
that our spatial generalization of the original Bass’ dy-
namics leads to a class of models for which the evolution 

the res ing spatio-temporal patterns can be exactl
c
the underlying imitation mechanism, coincides with the 
collision term found in a solvable Boltzmann equation, 
the RW dynamics, used for gas models in mathe atical 
physics. Our paper points out that the RW dynamics, 
solvable via a linearizing logarithmic transformation, 
offers a unique, synthet
to study nonlinear features generated by
imitation processes in economics system

In this paper, we mainly focused on Bass’ dynamics 
which does not allow back transitions (i.e. = 0' , im-
plying no transitions from V"  to V# ). Allowing > 0' , 
regimes involving shock waves with propagating veloci- 

ties w emerge and the velocity range is 

odel p

ta
< < 1w( '

( '
#
"

, 
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[42]. When a dominant spontaneous tendency to stay in 
the V#  state exists (i.e. >' ( ), imitations enhance the 
spontaneous ( -flow from V V# "#  and may lead to a 
time-independent (i.e. = 0w ), shock type inhomogene-
ous solution. Depending on the initial conditions, this 
marginal stationary = 0w  solution separates two re-
gimes of shocks propagating with either positive or nega-
tive velocities, a rich dynamical behavior that deserves 
further investigations in economy. 
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