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Panopticon: Age of Technology 
1992 
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Panopticon: Age of Big Data 
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Location-based Services 

Behavioral Advertising 

You Are The Product 
If you are not paying for it: 

Google 2011 Reza Shokri 



User-Data Requests By Governments  

You Are The Target 

Google Transparency Report – January to June 2012 Reza Shokri 



The Timeline of Panopticon 

Global and Ubiquitous 

Personal 

Reward-Oriented 
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Lack of Privacy 
• Imbalance of Power 
• Influence 
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Protecting Privacy 

• Behavioral 

• Legal 

• Computational 
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Computational Privacy 

Quantitative information flow, Differential privacy, Bayesian analysis of Mix networks, … 

untrusted 

Reza Shokri 



Computational Privacy 
For Location-tagged Data Sharing 

• Quantifying Privacy 
– Help individuals to accurately estimate their privacy risks 

 

• Protecting Privacy (in existing syestems) 
– Help individuals to find effective obfuscation mechanisms 

 

• Intelligent Tools and Technologies 
 

• Focus of this talk: Location-Privacy of Mobile Users 
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Location-based Services 

Exposed Location Trace 

[Who, When, Where] 

Original Location 

________________ Obfuscate ________________ 
Low Precision Hide Around Home Low Accuracy 

Use Pseudonyms 

Anonymize 

Protect Privacy 

Distort Information 



Issues/Challenges 

• Design Effective yet Useful Protection Mechanisms 

• Respect User’s Service Quality Requirements 

• Incorporate User’s Privacy Requirements/Sensitivities 

• Evaluate/Compare Various Protection Mechanisms 

• Find the Right Metric for Quantifying Location Privacy 

• Incorporate User’s Data Model (e.g., Mobility Model) 
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Quantifying Location Privacy 

Privacy Meter 

IEEE S&P (Oakland) 2011. R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux. 
  

PETS 2011. R. Shokri, G. Theodorakopoulos, G. Danezis, J.-P. Hubaux, and J.-Y. Le Boudec.  



Approach 

• Design a probabilistic framework 
– Formal definition of users/LBSs/defenses 

• Turn the evaluation of a Location-Privacy 
Protection Mechanism (LPPM) to an 
estimation problem 

• Throw attacks at the LPPM: Bayesian Inference 
– Metric: Estimation Error 

• Design and implement a software tool 
– Location-Privacy Meter (LPM) 
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A Probabilistic Framework 
Location Privacy 
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Location-Privacy Meter (LPM) 

http://icapeople.epfl.ch/rshokri/lpm 

Modular 

pdf 

pdf 

LBS 

Estimation 

Share  

Protect 

Attack 

Quantify 

Obfuscation 
Anonymization 
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Knowledge Construction: User Profiling 
Mobility: Markov Chain 

Estimating transition 
probabilities given 
available traces and 
mobility constraints 

Gibbs Sampling 

Samplers 

r: location (region) 
y: location trace (potentially incomplete) 
c: mobility constraints matrix (of 0/1) 
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Location-Privacy Meter (LPM) 

http://icapeople.epfl.ch/rshokri/lpm 

Modular 

pdf 

pdf 

LBS 

Obfuscation 
Anonymization 

Estimation 

Share  

Protect 

Attack 

Quantify 
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Quantifying Location Privacy 

Where was Alice yesterday at 10am? 

Which observed trace is Alice’s? 
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De-Anonymization Attack 
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De-Anonymization Attack 

Hidden Markov Models 
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De-Anonymization Attack 

Compute 𝛼 iteratively Reza Shokri 



De-Anonymization Attack 
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Localization Attack 
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Using LPM: Some Examples 

• Real location traces 
– Time instant: 5min 

– 40 Locations in SF bay-area 

• LBS Application 
– Sharing location with some access prob. p at 

each time instant 

• LPPM 
– A: Anonymize (random permutation) 

– On: Obfuscate within 2^n nearby locations 

– Fm: Send a fake location to LBS with prob. m 
(when user does not have a query herself) 
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On average: User sends 
1 query every 50min 

Average Anonymity: Fraction of wrongly identified observed traces Reza Shokri 



 

Location Privacy: Adversary’s probability of error in finding correct location, averaged over all locations. 



Evaluating Other Metrics: K-anonymity 

LPPM (A, O5, F0.9) 

LPPM (A, O3, F0.5) 

LPPM (A, O1) 
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Conclusion and Remaining Issues 

• We developed Location-Privacy Meter tool that 
enables us to consistently evaluate and compare 
effectiveness of location-privacy protection 
mechanisms (LPPMs), using Bayesian inference 

 

• Yet, How to: 
– Maximize location privacy? 

– Find a balance between privacy and service quality? 

– Protect against a strategic adversary (best inference)? 
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Protecting Location Privacy 

Privacy Defense 

ACM CCS 2012, R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. Le Boudec. 



A User-Centric Approach 

• Use our probabilistic model (introduced in the first part) 
– In modeling e.g., location, LBS, LPPM, and metric 

 

• Respect each user’s own privacy and service quality 
requirements 
 

• Protect against the optimal inference attack, instead of 
assuming a given inference algorithm: Anticipate the 
location inference attacks 
– Each user protects against the strongest adversary that is 

specific to her (mobility and requirements) 
 

• Model the Strategic interaction between user and attacker 
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Game (Localization) 

GAME 

LEADER FOLLOWER BELIEF 

Zero-Sum 
Bayesian 

Stackelberg 
Game 

User accesses 
LBS from loc. 𝑟 

gain 

loss 
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Optimal Obfuscation 

Proper probability 
distribution function 

Respect user’s 
service quality 
constraint  

User’s Privacy 
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pdf: K-nearest Obfuscation  pdf: Optimal Obfuscation  

Uniform dist. over k nearest non-zero prob. neighbors  Distribution according to optimal LPPM f 

The service quality threshold of 
the optimal obfuscation function is 
set to the service quality loss of 
the k-nearest obfuscation function 

Visualization 

30 most visited locations 
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Optimal Inference 
Dual of the optimal obfuscation LP 

Shadow price of the service quality constraint . 
(exchange rate between service quality and privacy) 

 
Proper probability distribution function 

 

Minimizing the user’s 
maximum privacy under the 
service quality constraint 
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Evaluation:  
Optimal vs. Existing Methods 

• Real location traces 
– Collected by Nokia Lausanne 

 

• Obfuscation 
– K-nearest 
– Optimal 

• Attack 
– Bayesian (not considering user’s service quality constraints) 
– Optimal 

• Metric 
– Both dp and dq are Euclidean distance functions 
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Privacy of one user for a given service quality threshold 

11 users 

Privacy as the expected estimation error (Euclidean distance in km)  

Attack is optimal 
in both cases 
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The Bayesian Inference Attack ignores the service quality constraint 

Evaluating (LPPM, Attack) Pairs 

k=1 k=30 

K-nearest, Bayesian 
Optimal, Bayesian 
K-nearest,  Optimal 
Optimal, Optimal 
 

Defense,  Attack 
Uniform 

distribution 
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Conclusion 

• We proposed an interactive decision making 
(game-theoretic) approach for protecting 
privacy in data-sharing applications 

– Anticipate inference attacks (rational adversary) 

– Respect user’s service quality constraint 

• Privacy risk is user-specific, hence should be 
the protection mechanisms 
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Conclusion 

• We need accurate models plus useful tools 

• Users themselves are unable to accurately evaluate 
their privacy level and to define effective defenses 
– We provide tools to quantify and protect location privacy 

• Privacy is user-dependent 
– Intelligent tools need to adapt to user’s requirements 

– A user’s behavior can be analyzed to learn her data model, 
sensitivities, and requirements (e.g., which places she 
visits, which checked-in locations she deletes later) 

• Our Bayesian inference and game-theoretic approaches 
can be used in other data-sharing systems 
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