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Panopticon: Age of Technology
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Panopticon: Age of Big Data
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If you are not paying for it:

You Are The Product
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You Are The Target

User-Data Requests By Governments
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The Timeline of Panopticon
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Lack of Privacy

* |Imbalance of Power

* |Influence
w8
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Protecting Privacy

* Behavioral
e Legal
 Computational
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Computational Privacy

background
knowledge

system

untrusted

individual P Privacy Enhancing Technologies — Eﬂtlty

computation
storage
communication

Some information leakage is
needed to receive a Service side channel

Quantitative information flow, Differential privacy, Bayesian analysis of Mix networks, ...
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Computational Privacy
For Location-tagged Data Sharing

Quantifying Privacy
— Help individuals to accurately estimate their privacy risks

* Protecting Privacy (in existing syestems)
— Help individuals to find effective obfuscation mechanisms

* Intelligent Tools and Technologies

* Focus of this talk: Location-Privacy of Mobile Users
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Location-based Services
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Issues/Challenges

* Evaluate/Compare Various Protection Mechanisms
* Find the Right Metric for Quantifying Location Privacy

* Incorporate User’s Data Model (e.g., Mobility Model)

Quantification

* Design Effective yet Useful Protection Mechanisms

 Respect User’s Service Quality Requirements

Protection

* |ncorporate User’s Privacy Requirements/Sensitivities
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Quantifying Location Privacy

Privacy Meter

IEEE S&P (Oakland) 2011. R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux.

PETS 2011. R. Shokri, G. Theodorakopoulos, G. Danezis, J.-P. Hubaux, and J.-Y. Le Boudec.



Approach

* Design a probabilistic framework
— Formal definition of users/LBSs/defenses

e Turn the evaluation of a Location-Privacy
Protection Mechanism (LPPM) to an
estimation problem

e Throw attacks at the LPPM: Bayesian Inference
— Metric: Estimation Error

* Design and implement a software tool
— Location-Privacy Meter (LPM)
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A Probabilistic Framework
Location Privacy
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Location-Privacy Meter (LPM)

Protect

Estimation

Obfuscation
Anonymization

LBS
Pm’ria-l-)__Tzcxces and Stutistics) M Od u Ia rT 0 0 I in C++
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Knowledge Construction: User Profiling

Mobility: Markov Chain pr,r’(u) = IP’r{Afj’l = 7/ | AZ =7}

Estimating transition E{p|y.c}
probabilities given

available traces and Pr{p|y,c} = Z Pr{p,y|y,c}

mobility constraints
y

) ~ (Pr{p|y' .y, c}, )

ol
Gibbs Sampling Y (  Priy | p{ }7 yJC})

ﬁil} v, r!

574,1

r: location (region)
y: location trace (potentially incomplete)
c: mobility constraints matrix (of 0/1)
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Location-Privacy Meter (LPM)

Estimation

Obfuscation
Anonymization

LBS
Pm’ria-l-)__Tzcxces and Stutistics) M Od u Ia rT 0 0 I in C++
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Quantifying Location Privacy

De-anonymization (re-identification) which observed trace is Alice's?
o = argmax, Pr{¥ =o| 0O = o}

Localization wnere was Alice yesterday at 10am? a actual
o observed

Pr{A" =r|o0s,0"(u) = @}

o pseudonym

Privacy of users: expected estimation error of adversary
in his inference attacks
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De-Anonymization Attack

Maximum Weight Assignment
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De-Anonymization Attack
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De-Anonymization Attack

Reza Shokri Compute « iteratively



De-Anonymization Attack

Maximum Weight Assignment

\
1 —
/

Pr{og |o(u) =}

Reza Shokri



Localization Attack
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Using LPM: Some Examples

* Real location traces
— Time instant: 5min
— 40 Locations in SF bay-area

* LBS Application

— Sharing location with some access prob. p at
each time instant

* LPPM

— A: Anonymize (random permutation)
— On: Obfuscate within 2*n nearby locations

— Fm: Send a fake location to LBS with prob. m
(when user does not have a query herself)
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Evaluating Other Metrics: K-anonymity
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Conclusion and Remaining Issues

 We developed Location-Privacy Meter tool that
enables us to consistently evaluate and compare
effectiveness of location-privacy protection
mechanisms (LPPMs), using Bayesian inference

* Yet, How to:
— Maximize location privacy?
— Find a balance between privacy and service quality?
— Protect against a strategic adversary (best inference)?
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Protecting Location Privacy

Privacy Defense

ACM CCS 2012, R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and J.-Y. Le Boudec.



A User-Centric Approach

Use our probabilistic model (introduced in the first part)
— In modeling e.g., location, LBS, LPPM, and metric

Respect each user’s own privacy and service quality
requirements

Protect against the optimal inference attack, instead of
assuming a given inference algorithm: Anticipate the
location inference attacks

— Each user protects against the strongest adversary that is
specific to her (mobility and requirements)

Model the Strategic interaction between user and attacker
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Reza Shokri

Game (Localization)

location privacygain

User accesses
LBS from loc. r

user profile obfuscation” inference

) {ren F— {n()

estimated
BELIEF LEADER FOLLOWER

Zero-Sum
Bayesian
Stackelberg

Qloss('ﬁb,f, dq) = Z'f‘,f‘ ’{[)( ) . f(ﬂr) . dq(f,?“) < Q}I;gf Game
Privacy(1, fyh,dy) = > a -, (r) - f(Fr) - h(7|F) - dp(7,7)

dg(7,7)

service qualityloss



Optimal Obfuscation

Choose f(7|r),z7,Vr,7 in order to

User’s Privacy

Maximize T

subject to

pr <Y W(r) - f(Fr) - dy(F,7), V7,7

Respect user’s
service quality
constraint

Proper probability
distribution function

Reza Shokri



User's Profile

Visualization

The service quality threshold of
the optimal obfuscation function is
set to the service quality loss of
the k-nearest obfuscation function

30 most visited locations
pdf: K-nearest Obfuscation pdf: Optimal Obfuscation

Uniform dist. over k nearest non-zero prob. neighbors Distribution according to optimal LPPM f
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Optimal Inference

Dual of the optimal obfuscation LP

Choose h(7|7),y,, Vr,7, 7, and z € [0,00) in order to

Minimize Z V(r) - yr + 2 - Qloss

subject to

Minimizing the user’s
maximum privacy under the
service quality constraint

yp > ¥ h(F[F) - dp(F, 1) — 2 - dg(F,7),Vr, 7

> h(F|F) = 1,7

h(#|7) > 0,V7, 7

Proper probability distribution function

> Shadow price of the service quality constraint .
z >0 . | |
(exchange rate between service quality and privacy)
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Evaluation:
Optimal vs. Existing Methods

 Real location traces
— Collected by Nokia Lausanne

Obfuscation

— K-nearest

— Optimal

Attack

— Bayesian (not considering user’s service quality constraints)
— Optimal

* Metric

— Both dp and dq are Euclidean distance functions

Reza Shokri



Privacy of one user for a given service quality threshold
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—e— K-nearest, Bayesian | Evaluating (LPPM, Attack) Pairs
—e— Optimal, Bayesian ; ; _ I

| . K-nearest, Optimal |+ USEl | ' &
. Optimal, Optimal

| - Uniform
Defense, Attack | | | distribution

g0 000000009@e
: . -
- w7

0.160329 0.399895 0.930509 1.16883 1.35572  1.57467
QM k=30

loss
The Bayesian Inference Attack ignores the service quality constraint
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Conclusion

 We proposed an interactive decision making
(game-theoretic) approach for protecting
privacy in data-sharing applications

— Anticipate inference attacks (rational adversary)
— Respect user’s service quality constraint

* Privacy risk is user-specific, hence should be
the protection mechanisms

Reza Shokri



Conclusion

 We need accurate models plus useful tools
* Users themselves are unable to accurately evaluate
their privacy level and to define effective defenses
— We provide tools to quantify and protect location privacy
* Privacy is user-dependent
— Intelligent tools need to adapt to user’s requirements

— A user’s behavior can be analyzed to learn her data model,
sensitivities, and requirements (e.g., which places she
visits, which checked-in locations she deletes later)

e QOur Bayesian inference and game-theoretic approaches
can be used in other data-sharing systems
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