
The Multilevel Monte Carlo Method for Stochastic
Differential Equations driven by Jump-Diffusion Processes

Assyr Abdulle∗, Adrian Blumenthal†and Evelyn Buckwar‡

Abstract

In this article we discuss the multilevel Monte Carlo method for stochastic dif-
ferential equations driven by jump-diffusion processes. We show that for a reason-
able jump intensity the multilevel Monte Carlo method for jump-diffusions reduces
the computational complexity compared to the standard Monte Carlo method sig-
nificantly for a given mean square accuracy. Carrying out numerical experiments
on various examples, we compare the multilevel Monte Carlo method to standard
Monte Carlo methods with and without variance reduction techniques. These ex-
periments corroborate our theoretical findings and show for a sufficiently small
mean square accuracy a significant reduction of the computational complexity of
the multilevel Monte Carlo method compared to standard Monte Carlo methods.

Keywords: Multilevel Monte Carlo, Stochastic Differential Equations, Jump-
Diffusion Processes, Complexity Theorem, Variance Reduction Techniques

AMS subject classification (2010): 65C05, 60H35, 91G60

1 Introduction
Monte Carlo methods are commonly applied when we are interested in computing ex-
pectations of functionals depending on a stochastic process. Here, we assume that the
stochastic process is given by a stochastic differential equation (SDE) incorporating a
jump term with a finite rate intensity. In a Monte Carlo (MC) approach, sample paths
of the solution of an SDE are computed by a numerical integrator and the expected
value of the given functional is approximated by the average over those samples. This
procedure represents computing a statistical estimator of the desired quantity, and bias
and statistical errors are introduced due to the numerical method and the approxima-
tion of the expectation, respectively. The bound on the statistical error for the MC
method involves the inverse of the square root of the number of samples, as well as
the variance of the process. The nature of this bound can not be changed, however
many strategies to reduce the variance of the estimators and hence the complexity of
the procedure have been proposed in the past few years. Among them, we mention
variance reduction techniques such as estimators based on control variates or antithetic
variates (see e.g. [14]).
∗Department of Mathematics, Swiss Federal Institute of Technology Lausanne, Switzerland, e-mail:

assyr.abdulle@epfl.ch.
†Department of Mathematics, Swiss Federal Institute of Technology Lausanne, Switzerland, e-mail:

adrian.blumenthal@epfl.ch.
‡Institute for Stochastics, Johannes Kepler University Linz, Austria, e-mail: Eve-

lyn.Buckwar@jku.at.

1

A recent approach, originating with Heinrich [16], proposed by Kebaier [20] as a sta-
tistical Romberg method with two levels and extend by Giles [12] to the so-called
multilevel Monte Carlo (MLMC) method, allows to significantly speed up the classical
MC method thanks to hierarchical sampling. By applying the Monte Carlo method for
several nested time step sizes and choosing the right balance between the step sizes and
the number of simulations at each level, it is possible to reduce the computational com-
plexity of the Monte Carlo method for a given mean square accuracy. More precisely, to
compute the expectation of functionals with an accuracy I of O(ε), the computational
cost of O(ε−3) for the MC method is reduced to O(ε−2(log ε)2) for the MLMC method.
In this paper, we study the MLMC method for jump-diffusion processes. This class of
processes becomes important for example in financial modeling, when stock prices based
on diffusion processes should be modelled by taking into account sudden, unforeseeable
events [1, 33]. Then, models based on jump-diffusion processes are required for more
realistic modeling [29]. Furthermore, some physical processes cannot be modeled by
continuous processes and need to take into account single events. We mention here the
modeling of biological network dynamics [34] or chemical kinetics [13].
The MLMC method for jump-diffusions with finite rate activity has first been stud-
ied in [36, 35] and [2], whereas the case of Lévy processes with infinite rate activity
has been studied in [8, 28]. In this paper we discuss the complexity theorem of the
MLMC for jump-diffusion problems, in particular for the jump-adapted version of the
Euler-Maruyama method. We study the MLMC for jump-diffusion problems on various
examples and show significant speed-up compared to standard MC computations. The
new approach is also compared to estimators based on variance reduction techniques
(antithetic variates, control variates). The results show that for sufficiently small er-
rors, the MLMC method always outperforms these other techniques for the models
considered.
This paper is organised as follows. In Section 2 we discuss jump-diffusion processes and
numerical methods used to approximate such processes. In Section 3 we construct the
MLMC method for jump-diffusions and we give an extended version of the complexity
theorem presented in [12]. Finally, in Section 4 we present some numerical experiments
to illustrate our theoretical findings.

2 Preliminaries
Throughout this paper let (Ω,F ,P,Ft) be a filtered probability space where the filtra-
tion (Ft)t≥0 satisfies the usual condtions (see e.g. [27, pp. 4–6,12-13] or [32, pp. 1–2,49–
51]). We use in this paper the terms computational cost and computational complexity
synonymously to represent overall for an algorithm the number of time steps of a nu-
merical discretisation, the number of samples generated and the number of function
evaluations. These terms measure the complexity of algorithms and they will be used
when we compare the performance of algorithms.
We consider stochastic processes (S(t))t∈[0,T] on the bounded interval [0, T] described
by the stochastic differential equation incorporating diffusion and jump terms{

dS(t) = a(t, S(t−))dt+ b(t, S(t−))dW (t) + c(t, S(t−))dJ(t), 0 ≤ t ≤ T,
S(0) = S0 ,

(2.1)
I Here, the square root of the mean square error is chosen as a measure of the accuracy.

2

with S(t−) denoting S(t−) = lim
s↗t

S(s). Here (W (t))t∈[0,T] is anm−dimensional Wiener

process and (J(t))t∈[0,T] an r−dimensional compound Poisson process, J(t) = (J1(t),
. . . , Jr(t)). Each component Jk(t) is defined by

Jk(t) =
Nk(t)∑
i=1

(V k
i − 1),

where Nk(t) is a Poisson process with intensity λk and where the jump sizes are char-
acterised by V k

i . Further, the functions a : [0, T] × Rd → Rd, b : [0, T] × Rd → Rd×m,
and c : [0, T] × Rd → Rd×r represent the drift, the diffusion and the jump coefficient,
respectively. We assume standard Lipschitz and linear growth conditions on a, b and c
to ensure the existence of a strong solution of the SDE (2.1).

Remark 2.1. Note that if γki corresponds to the i-th jump time of Jk(t), then the jump
size of this jump is given by

S
(
γki

)
− S

(
γki −

)
= ck

(
γki , S

(
γki −

)) (
V k
i − 1

)
.

If we now assume ck
(
γki , S

(
γki −

))
= S

(
γki −

)
, as this is the case for the models we

consider in the following, then

S
(
γki

)
− S

(
γki −

)
= S

(
γki −

) (
V k
i − 1

)
,

and consequently
S
(
γki

)
= S

(
γki −

)
V k
i ,

which means V k
i corresponds to the ratio of the stochastic process before and after the

i-th jump of Jk(t). Thus the choice of V k
i − 1 above (see also e.g. [14, p.135]).

2.1 Numerical Schemes

In this section we recall two numerical schemes, the regular and the jump-adapted
Euler method, to approximate solutions of the SDE (2.1). The former is iterated using
a uniform step-size, whereas the latter includes the jump times into the otherwise
uniform time grid. we discuss the strong and the weak convergence of these numerical
schemes. For details and additional references on numerical methods for jump-diffusion
problems see [4, 3, 10, 18, 25, 26, 31, 5].

Regular Euler Method. The first numerical method that we consider is a natural
extension of the Euler-Maruyama method for SDEs driven by diffusion processes. The
regular Euler method is defined by a uniform step size h and the grid is given by

τ
T/h
h = {τ0, τ1, . . . , τT/h}, (2.2)

where τj = jh ∀j ∈ {0, 1, . . . , T/h}. Now, let Sj be an approximation of the stochastic
process S(t) at t = τj , i.e. Sj ≈ S (τj). The regular Euler scheme is defined by

Sj = Sj−1 + a (τj−1, Sj−1) (τj − τj−1) + b (τj−1, Sj−1) ∆Wj + c (τj−1, Sj−1) ∆Jj (2.3)

with j ∈ {1, 2, . . . , T/h}. By the initial condition, we have S0 = S(0) and the increments
of the m-dimensional Wiener process and the r-dimensional compound Poisson process

3

are given by ∆Wj = W (τj)−W (τj−1) and ∆Jj = J (τj)− J (τj−1), respectively. Note
that, by setting the jump coefficient c to zero, we get the Euler-Maruyama method,
which can be used for numerical approximations of SDEs driven by diffusions (see e.g.
[17]).

Jump-Adapted Euler Method. The second numerical method that we consider,
is the jump-adapted Euler scheme. Unlike the previous scheme, this method does not
have a uniform step size if there is at least one jump. In the case of the jump-adapted
Euler scheme, the jump times have to be added to the regular grid with uniform step
size h defined in (2.2). Recall that we consider a r-dimensional jump process, and thus,
the number of jumps in the time interval [0, T] are specified by the Poisson variables
N1(T), N2(T), . . . , N r(T) with intensities λ1T, λ2T, . . . , λrT . Hence, the grid for the
jump-adapted Euler scheme is given by

{τ0, τ1, . . . , τT/h} ∪ {γ1
1 , γ

1
2 , . . . , γ

1
N1(T)} ∪ · · · ∪ {γ

r
1 , γ

r
2 , . . . , γ

r
Nr(T)}, (2.4)

where γk1 , γk2 , . . . , γkNk(T) are the jump times in the interval [0, T] of the jump component
Jk(t). Thus, there are in total T/h +

∑r
i=1N

i(T) time steps. Adding the jump times
to the regular grid and rearranging the grid such that the j-th entry τj corresponds to
the j-th time step. The jump-adapted Euler scheme is identical to the regular method
in (2.3) but with j ∈

{
1, 2, . . . , T/h+

∑r
i=1N

i(T)
}
.

Remark 2.2. To ease the notation we describe in the sequel both numerical schemes
by (2.3) with j ∈ {1, 2, . . . , G}, where G = T/h+

∑r
i=1N

i(T) in the jump-adapted case
and G = T/h in the regular case.

Convergence of Numerical Methods. In this paper we consider two types of
convergence: the strong convergence and the weak convergence, respectively, as given
in the definition below.

Definition 2.3. Let S(tj) be the exact solution of the SDE (2.1) at t = tj and let
(Sj)j∈N be the approximate solution by a numerical method at the same time point.

1. A numerical method is converging with a strong order of convergence γstrong if

∃C ∈ R+ such that max
0≤j≤T/h

(
E
[
|Sj − S(τj)|2

])1/2
≤ Chγstrong , (2.5)

where τj = jh ∈ [0, T] and h is tending to 0.

2. A numerical method is converging with weak order of convergence γweak if there
exists C ∈ R+ such that for all functions p in a certain class (usually p satisfies
smoothness and polynomial growth conditions) we have

|E[p(Sj)]− E[p(S(τj)]| ≤ Chγweak (2.6)

for any τj = jh ∈ [0, T] fixed and h tending to 0.

Note that a possible class for the functions p is given by ClP (R). This class contains
functions of the type p : R → R that are l times continuously differentiable and that,
together with their partial derivatives up to order l, have polynomial growth (see e.g.
[21, p.153]).

4

The regular Euler method (see e.g. [4, p.276 and pp.291-292] and [3, p.6]) and the jump-
adapted Euler scheme (see e.g. [4, pp.350-351] or [3, p.9]) have, under appropriate
conditions for the coefficient functions a, b and c, a strong convergence of order 1/2.
Under appropriate conditions for the drift function a, the diffusion function b, the jump
function c, the initial condition S0 and the jump intensities λ1, λ2, . . . , λr, the regular
Euler scheme (see e.g. [4, p.508 and pp.517-520] and [3, p.11]) as well as the jump-
adapted Euler scheme (see e.g. [4, p.524] and [3, p.12]) have a weak convergence of
order 1.

3 Multilevel Monte Carlo Method for Jump-Diffusions
In this section we generalise the multilevel Monte Carlo method to stochastic differential
equations driven by jump-diffusions. We present here the construction of the Monte
Carlo method and the multilevel Monte Carlo method for jump-diffusions. Further-
more, we state and prove the corresponding complexity theorem. Consider the jump-
diffusion process (S(t))t∈[0,T] solution of the SDE (2.1) and a numerical approximation
(e.g., the Euler method or the jump-adapted Euler method previously introduced).
For a Lipschitz continuous function f : Rn → R we want to estimate the expectation
E [f (S(T))] from many realisations of the numerical solution of (2.1).
For simplicity of the presentation we describe in the sections 3.1 and 3.2 the Monte
Carlo and the multilevel Monte Carlo method for one-dimensional jump processes with
intensity λ = 1. We emphasise that our complexity theorem will be presented for the
general case of a r-dimensional jump process.

3.1 Monte Carlo Method for Jump-Diffusions

We recall the standard Monte Carlo estimator, which is given by

E [f(S(T))] ≈ 1
N

N∑
i=1

f
(
S

(i)
G

)
=: Ŷ , (3.1)

where we take a sample average over N independent paths with SG a numerical ap-
proximation of S(t) at the time end point T (see Section 2.1).

Remark 3.1. Note that h, as defined in Section 2.1, is the uniform time step size
of the regular Euler scheme. For the jump-adapted Euler scheme, the jump times are
added to the regular grid. Hence, if there is at least one jump, the grid is not regular
any more. However, in that case h corresponds to the maximum step size, i.e.

h = max
j∈{1,2,...,G}

(τj − τj−1) .

Applying the Monte Carlo method, two types of error arise (see e.g. [30, p.137]). Firstly,
there is an error due to the numerical approximation of S(t). This error introduces a
bias. In fact, we approximate the stochastic process (S(t))t∈[0,T] at t = T using a
numerical scheme, so that S(T) ≈ SG. Evaluating the function f and taking the
expectation on both sides leads to

E [f (S(T))] ≈ E [f (SG)] .

5

By linearity of the expectation and the fact that the samples S(i)
G are identically dis-

tributed, we have

E
[
Ŷ
]

= E
[

1
N

N∑
i=1

f
(
S

(i)
G

)]
= E [f (SG)] .

Hence, we obtain

bias
(
Ŷ
)

= E
[
Ŷ
]
− E [f (S(T))] = E [f (SG)]− E [f (S(T))] = O (h) , (3.2)

where we have used the first order weak convergence of the numerical schemes (see
Section 2.1) for the last equality.
Secondly, there is an error arising from the estimation of the expectation. The ex-
pectation, which is an integral, is approximated by taking the sample average over N
simulations. Due to the strong law of large numbers (see e.g. [9, pp.77-78]) and the
central limit theorem (see e.g. [6, p.233]), this approximation is almost surely unbiased.
However, there is a certain variance that depends on the number of simulations N (see
e.g. [11, p.231]). Indeed, for the variance of the estimator we have

Var
(
Ŷ
)

= 1
N2

N∑
i=1

Var
(
f
(
S

(i)
G

))
=

Var
(
f
(
S

(1)
G

))
N

= O
(
N−1

)
, (3.3)

where we have used first the independence of S(1)
G , S

(2)
G , . . . , S

(N)
G and then the fact that

they are identically distributed.
One way to describe the trade-off between the bias and the variance is given by the
mean square error, which can be decomposed as

MSE
(
Ŷ
)

= E
[(
Ŷ − E [f(S(T))]

)2
]

= Var
(
Ŷ
)

+
(
bias

(
Ŷ
))2

. (3.4)

By (3.2) and (3.3), we get

MSE
(
Ŷ
)

= O(N−1) + (O (h))2 = O
(
N−1 + h2

)
. (3.5)

In other words, for N large enough and h sufficiently small, there exists two constants
C1 and C2 such that

MSE
(
Ŷ
)
≈ C1N

−1 + C2h
2.

Now, let ε, a positive constant, be the desired mean square accuracy in the sense that

MSE
(
Ŷ
)

= O
(
ε2
)
.

To achieve such an accuracy, one requires N = O
(
ε−2) simulations and a regular step

size h = O (ε). We have to distinguish now between the two numerical schemes. The
regular Euler method has T/h steps, which is proportional to h−1 = O

(
ε−1), and thus,

a computational complexity of O
(
ε−3) is required for the regular scheme. In the jump-

adapted case, the jump times are added to the regular grid. The number of jumps over
the time interval [0, T] is given by the random variable N(T) which follows a Poisson
distribution with intensity λT . The expected number of jumps is given by E [N(T)] =
λT . Therefore, for the jump-adapted scheme, there are T/h+λT = O

(
ε−1 + λ

)
steps,

and thus, the computational complexity amounts to O
(
ε−2

(
1
ε + λ

))
.

6

Summing up the results for the standard Monte Carlo method for jump-diffusions, to
achieve a mean square error of order O

(
ε2), the regular Euler approach requires a

computational cost of O
(
ε−3). For the jump-adapted Euler approach, a computational

cost of O
(
ε−2

(
1
ε + λ

))
is necessary. Note that, by setting the jump intensity λ to

zero, we reproduce the result for diffusion processes in [12].

3.2 Multilevel Monte Carlo Method for Jump-Diffusions

The idea of the multilevel Monte Carlo method [13] is to apply the Monte Carlo method
for several nested levels of time step sizes and to compute different numbers of paths
on each level, from a few paths when the time stept size is small to many paths when
the step size is large. By choosing the right balance between the step sizes and the
number of simulated trajectories at each level it is possible to reduce the computational
complexity compared to that of the standard Monte Carlo method for a given mean
square accuracy.
We introduce now the multilevel Monte Carlo method for stochastic differential equa-
tions driven by jump-diffusions. Fix a positive number T as the time end point, an
integer M ≥ 2 as the refinement factor and an integer L as the total number of levels.
Define the uniform nested time step sizes

hl = T

M l
, l = 0, 1, . . . , L.

Furthermore, we fix anm-dimensional Wiener process (W (t))t∈[0,T] and a one-dimensional
compound Poisson process (J(t))t∈[0,T]. Let P denote the payoff function (e.g., P =
f(S(T))) and approximate P by Pl, where Pl = f (SM l) is an approximation of P
based on the numerical discretisation of S(t) with a regular step size hl. Applying the
telescopic sum, we can write

PL = P0 + P1 − P0 + P2 − P1 ± . . .+ PL−1 − PL−2 + PL − PL−1

= P0 +
L∑
l=1

(Pl − Pl−1) .

Taking the expectation on both sides and using the linearity of the expectation we
obtain

E [PL] = E [P0] +
L∑
l=1

E [Pl − Pl−1]. (3.6)

The idea of the multilevel Monte Carlo method is to approximate each term on the
right-hand side independently. In fact for the first term we have

E [P0] ≈ 1
N0

N0∑
i=1

P
(i)
0 =: Ŷ0,

where we take the average over N0 independent samples. The other terms are estimated
using Nl independent samples such that

E [Pl − Pl−1] ≈ 1
Nl

Nl∑
i=1

(
P

(i)
l − P

(i)
l−1

)
=: Ŷl,

7

for l ∈ {1, 2, . . . , L}. We emphasise that the estimates P (i)
l and P (i)

l−1 are based on the
same jump-diffusion path, i.e., the same Brownian motion path and also on the same
sample path of the compound Poisson process. Therefore the estimator for the MLMC
method is given by

E [PL] ≈ 1
N0

N0∑
i=1

P
(i)
0 +

L∑
l=1

1
Nl

Nl∑
i=1

(
P

(i)
l − P

(i)
l−1

)
=

L∑
l=0

Ŷl =: Ŷ . (3.7)

Next we derive the variance and the computational cost for the MLMC estimator Ŷ .
Firstly we point out that in the partial estimator Ŷl = 1

Nl

∑Nl
i=1

(
P

(i)
l − P

(i)
l−1

)
each term

in the sum is produced from a jump-diffusion process that is independent of the jump-
diffusion processes used for the other summands. Using this independence combined
with the fact that the jump-diffusion processes are identically distributed and denoting
the variance of a single sample of P (i)

l −P
(i)
l−1 by Vl, the variance of the partial estimator

Ŷl is given by

Var
(
Ŷl
)

= Var

 1
Nl

Nl∑
i=1

(
P

(i)
l − P

(i)
l−1

) = 1
N2
l

Nl∑
i=1

Var
(
P

(i)
l − P

(i)
l−1

)
︸ ︷︷ ︸

=:Vl

= Vl
Nl
.

Thus the variance of the combined estimator Ŷ is given by

Var
(
Ŷ
)

= Var
(

L∑
l=0

Ŷl

)
=

L∑
l=0

Var
(
Ŷl
)

=
L∑
l=0

Vl
Nl
. (3.8)

Note that we have used the independence of the partial estimators Ŷl resulting from
the independence of the jump-diffusion processes.
Secondly, concerning the computational complexity of Ŷ , at each level l there are Nl

Monte Carlo simulations required to approximate the expectation. Furthermore, d
numerical discretisations (one for each component of the d-dimensional SDE (2.1))
are carried out with a regular step size hl. For the jump-adapted Euler scheme, the
expected number of jumps λT of each discretisation has to be added to the number of
steps resulting from the regular grid, T

hl
. Hence, there are d

(
T
hl

+ λT
)
steps necessary

in the jump-adapted case. Considering the evaluation of the function f as a single
operation, the computational cost is given by

Cost
(
Ŷ
)

=
L∑
l=0

2Nld

(
T

hl
+ λT

)
=

L∑
l=0

2Nld
T(
hl

1+λhl

) .
For the regular Euler scheme, the jumps do not affect the time grid, and thus there
are T

hl
steps. The computational cost, given by Cost

(
Ŷ
)

=
∑L
l=0 2Nld

T
hl
, is the same

as for diffusion problems. Taking also into account that the order of weak and strong
convergence are the same as for the Euler-Maruyama method, the construction for
regular Euler is identical to the one in the diffusion case. Therefore we concentrate in
the following on the jump-adapted Euler approach.
Finally, fixing a positive constant D as the fixed computational budget, we can set up
an optimisation problem, which minimises the variance of Ŷ for a fixed computational

8

complexity:

minimise Var
(
Ŷ
)

=
L∑
l=0

Vl
Nl

subject to Cost
(
Ŷ
)

=
L∑
l=0

2Nld
T(
hl

1+λhl

) = D ,

(3.9)

where we want to find a solution with respect to the positive variables Nl > 0, with
l ∈ {0, 1, . . . , L}. The optimisation problem (3.9) can be solved by standard methods
(e.g., using Lagrange multipliers). The following proposition holds.

Proposition 3.2. The solution to the optimisation problem for the continuous variables
N0, N1, . . . , NL given in (3.9) satisfies for l ∈ {0, 1, . . . , L}

Nl = D

2dT

√
Vl

hl
1+λhl

L∑
k=0

√√√√ Vk
hk

1+λhk

. (3.10)

Now we show that Vl = O (hl). Note that since the jump-diffusion processes are i.i.d.,
we work in the following with the notation Pl instead of P (i)

l . The strong order of
convergence 1/2 of the jump-adapter Euler method (see Section 2.1) yields

E
[
|SM l − S(T)|2

]
= O(hl) as l→∞. (3.11)

For the variance of one single sample we have

Vl = Var(Pl − Pl−1) ≤
(
Var(Pl − P)1/2 + Var(Pl−1 − P)1/2

)2
,

where we have used the Cauchy-Schwarz inequality.
Furthermore, using the property of f being Lipschitz continuous, we have

Var(Pl − P) ≤ E
[
(Pl − P)2]

= E
[
(f(SM l)− f(S))2

]
≤ CE

[
|SM l − S|2

]
,

where C ∈ R+. Thus, by (3.11),

Var (Pl − P) = O(hl) as l→∞.

Note that we also have Var (Pl−1 − P) = O(hl), as hl−1 = Mhl withM being constant.
We thus have Vl = O(hl) and in other words, for hl sufficiently small, there is a positive
constant K such that Vl = Khl.
We can then write the number of simulations per level as

Nl =

D

2dT

√
Khl

hl
1 + λhl

L∑
k=0

√√√√√ Khk
hk

1 + λhk

= D

2dT

hl

√
1

1 + λhl
L∑
k=0

√
1 + λhk

. (3.12)

9

Combining this with (3.8), we obtain for the variance of the MLMC estimator

Var
(
Ŷ
)

=
L∑
l=0

Vl
Nl

=
L∑
l=0

Khl

D

2dT

hl

√
1

1 + λhl
L∑
k=0

√
1 + λhk

= 2dTK
D

(
L∑
l=0

√
1 + λhl

)2

. (3.13)

Note that by increasing the computational budget the variance can be made as small
as desired. However, usually the computational budget is limited. Thus we fix now
a mean square accuracy of O

(
ε2) and we determine the corresponding computational

budget D and the number of levels L.
We consider now the mean square error (3.4). For the bias we have

bias
(
Ŷ
)

= E
[
Ŷ
]
− E[P] = E [PL]− E[P] = E [PL − P] ,

where we have used the linearity of the expectation. Using the first order weak conver-
gence of the jump-adapted Euler scheme (see Section 2.1), we obtain

bias
(
Ŷ
)

= E [PL − P] = O (hL) . (3.14)

Hence, to achieve a mean square error of MSE
(
Ŷ
)

= O
(
ε2), we require in particular

that the bias satisfies bias
(
Ŷ
)

= O (ε), and thus,

hL = T

ML
= K̃ε,

for L large enough and where K̃ is a positive constant. Rearranging terms and taking
the natural logarithm we obtain L = 1

logM

(
log T + log K̃−1 + log ε−1

)
. Hence, the

number of levels L satisfies
L = log ε−1

logM +O (1) . (3.15)

This shows us how to choose L. Finally, to achieve a mean square accuracy of O
(
ε2)

we also require Var
(
Ŷ
)

= O
(
ε2). Considering (3.13), this is equivalent to

2dTK
D

(
L∑
l=0

√
1 + λhl

)2

= K̂ε2,

where K̂ is a positive constant. Rearranging terms and taking an upper bound, we get

D = 2dTKK̂−1ε−2
(

L∑
l=0

√
1 + λhl

)2

≤ 2dTKK̂−1ε−2
(
√

1 + λT
L∑
l=0

1
)2

= 2dTKK̂−1ε−2 (1 + λT) (L+ 1)2 . (3.16)

10

Hence, the computational budget satisfies

D = O
(
dε−2(log ε)2(1 + λT)

)
,

where we have used the result for L in (3.15).
Therefore, considering the multilevel Monte Carlo method for jump-diffusions and using
the jump-adapted Euler method, to achieve a mean square error of

MSE
(
Ŷ
)

= O
(
ε2
)

a computational complexity of

Cost
(
Ŷ
)

= O
(
dε−2(log ε)2(1 + λT)

)
is necessary.

Remark 3.3. Note that when considering the jump-adapted method instead of the
regular one, the additional term (1 + λT) appears in the computational cost. Usually
the time end point T is fixed and thus the parameter of interest is the jump intensity
λ. Observe that by setting λ to zero, we produce the results for the MLMC method
for multi-dimensional diffusions. Hence, the approach in this paper delivers a natural
extension of the MLMC method to jump-diffusion processes.

Remark 3.4. As mentioned earlier, the construction of the MLMC method for jump-
diffusions is based on a one-dimensional jump process. In a more general approach,
where jumps are driven by an r-dimensional compound Poisson process, the computa-
tional cost for a fixed mean square accuracy of MSE

(
Ŷ
)

= O
(
ε2) is given by

Cost
(
Ŷ
)

= O
(
dε−2(log ε)2

(
1 +

r∑
i=1

λiT

))
.

3.3 Complexity Theorem for Jump-Diffusions

In this section we give an extended version (to jump-diffusions) of the complexity
theorem given in [12] for diffusion processes. In particular the jump-adapted version of
the Euler-Maruyama method is considered. The proof largely follows the original proof
of Giles [12]. For the sake of completeness we present the details of the arguments.

Theorem 3.5 (Complexity Theorem for Jump-Adapted Schemes). Fix two positive
integers T and M such that M ≥ 2 and let λ1, λ2, . . . , λr be r positive numbers. Let
(S(t))t∈[0,T] ⊂ Rd be a solution to the stochastic differential equation (2.1). Let P
be a functional of S(t). Denote by Pl an approximation of P using a jump-adapted
numerical approximation with a regular time step size hl = T/M l.
Suppose that there exist independent estimators Ŷl (based on Nl Monte Carlo simula-
tions) and that there exist positive constants α ≥ 1/2, β > 0, ci > 0 (i ∈ {1, 2, 3}) such
that:

(i) E [Pl − P] ≤ c1h
α
l ,

(ii) E
[
Ŷl
]

=
{

E [P0] , l = 0
E [Pl − Pl−1] , l > 0 ,

11

(iii) Var
(
Ŷl
)
≤ c2

hβ
l
Nl
,

(iv) Cost
(
Ŷl
)
≤ c3d

Nl

hl
(1 + λ̃hl),

where λ̃ =
∑r
i=1 λi. If Conditions (i)-(iv) hold, then there exists a positive constant c4

such that for all ε < 1
e there exist positive integers L ∈ N∗ and Nl ∈ N∗ such that the

combined estimator of E [P],

Ŷ =
L∑
l=0

Ŷl,

has a mean square error that is bounded by

MSE
(
Ŷ
)

= E
[(
Ŷ − E [P]

)2
]
≤ ε2

with a computational complexity bounded by

Cost
(
Ŷ
)
≤

c4dε

−2(1 + λ̃T), β > 1,

c4dε
−2(log ε)2(1 + λ̃T), β = 1,

c4dε
−2−(1−β)/α(1 + λ̃T), 0 < β < 1,

where the logarithm is taken with the natural basis.

An immediate consequence of the theorem above is the result for the regular Euler-
Maruyama scheme presented in the following corollary, which also holds for multi-
dimensional diffusion problems (the proof of the corollary can also be obtained by
following [12]).

Corollary 3.6 (Regular Schemes). Suppose we use a regular scheme for the numerical
approximation. Subject to the assumptions (i)-(iii) as in Theorem 3.5, and replacing
(iv) with Cost

(
Ŷl
)
≤ c3d

Nl

hl
, the mean square error is bounded by MSE

(
Ŷ
)
≤ ε2 and

the bound for the computational cost is characterised by

Cost
(
Ŷ
)
≤

c4dε

−2, β > 1,

c4dε
−2(log ε)2, β = 1,

c4dε
−2−(1−β)/α, 0 < β < 1.

Proof of Theorem 3.5. Throughout this proof the notation dxe is used for rounding up
the real number x to the next higher integer. First, let ε < 1

e and we choose the total
number of levels L to be equal to

L =

log

(√
2c1T

αε−1
)

α logM

 . (3.17)

In the first part we prove that the squared bias of Ŷ is bounded above by ε2

2 . In
the second part we prove that the variance of Ŷ has an upper bound given by ε2

2 .
Combining the results of the two parts leads to an upper bound of

MSE
(
Ŷ
)

= Var
(
Ŷ
)

+
(
bias

(
Ŷ
))2
≤ ε2

2 + ε2

2 = ε2. (3.18)

12

(a) Estimation of
(
bias

(
Ŷ
))2

Using L as defined in (3.17), the following inequalities can be established:

log
(√

2c1T
αε−1

)
α logM ≤ L <

log
(√

2c1T
αε−1

)
α logM + 1

⇐⇒
√

2c1ε
−1 ≤

(
ML

T

)α
︸ ︷︷ ︸

=h−αL

<
√

2c1ε
−1Mα.

Therefore we get the inequalities
M−αε√

2
< c1h

α
L ≤

ε√
2
. (3.19)

Recall that Ŷ is an estimator of E [P], and thus the bias of the combined estimator is
given by

bias
(
Ŷ
)

= E
[
Ŷ
]
− E [P] .

Taking into account the linearity of the expectation and condition (ii), we have

E
[
Ŷ
]

= E
[
L∑
l=0

Ŷl

]
=

L∑
l=0

E
[
Ŷl
]

= E [P0] +
L∑
l=1

E [Pl − Pl−1] = E [PL] .

Using in addition Condition (i), the squared bias satisfies
(
bias

(
Ŷ
))2
≤ c2

1h
2α
L , and

taking into account the upper bound of (3.19), we obtain(
bias

(
Ŷ
))2
≤ ε2

2 .

(b) Estimation of Var
(
Ŷ
)

Now it remains to show that the variance of Ŷ is bounded by ε2

2 . First we establish
the inequality

L∑
l=0

h−1
l <

M2

M − 1
(√

2c1
)1/α

ε−2. (3.20)

In fact we have by the definition of the time step size hl
L∑
l=0

h−1
l =

L∑
l=0

(
T

M l

)−1
= h−1

L

L∑
l=0

M l−L < h−1
L

M

M − 1 .

In addition, by the lower limit of (3.19), we have h−1
L < M

(
ε√
2c1

)−1/α
, and thus

L∑
l=0

h−1
l <

M2

M − 1
(√

2c1
)1/α

ε−1/α.

Finally, since by assumption ε < 1 the following inequalities are equivalent:

ε−1/α ≤ ε−2 ⇔ α ≥ 1
2 .

As by assumption α ≥ 1
2 we obtain (3.20).

To pursue the proof we need to distinguish three cases.

13

Case 1: β = 1. Inspired by (3.12), we set the number of samples at level l to

Nl =

2ε−2(L+ 1)c2
hl√

1 + λ̃hl

√
1 + λ̃T

 . (3.21)

Now, by considering first the independence of the partial estimators Ŷl, followed
by Condition (iii) and then the definition of Nl in (3.21), we have for the variance
an upper bound given by ε2

2 .

Indeed, using Var
(
Ŷ
)

= Var
(

L∑
l=0

Ŷl

)
=

L∑
l=0

Var
(
Ŷl
)
, we have

L∑
l=0

Var
(
Ŷl
)
≤

L∑
l=0

c2N
−1
l hl

≤
L∑
l=0

c2hl

ε2

2 (L+ 1)−1c−1
2

√
1 + λ̃hl

hl

1√
1 + λ̃T

= ε2

2 (L+ 1)−1 1√
1+λ̃T

L∑
l=0

√
1 + λ̃hl, ≤ ε2

2 ,

where we used
L∑
l=0

√
1 + λ̃hl ≤

√
1 + λ̃T (L+ 1). Therefore, in the case of β = 1,

the mean square error of Ŷ is bounded by ε2, i.e., (3.18) is satisfied. We derive
now an upper bound for the computational complexity of the combined estimator
in the case of β = 1. The idea is to bound first Nl and then to use condition (iv).
By definition of Nl (see (3.21)), we have in particular

Nl < 2ε−2(L+ 1)c2
hl√

1 + λ̃hl

√
1 + λ̃T + 1. (3.22)

We aim to find an upper bound for L + 1. By definition of L (see (3.17)), the
number of levels is bounded above by

L <
log

(√
2c1T

αε−1
)

α logM + 1 = log ε−1

α logM +
log

(√
2c1T

α
)

α logM + 1.

Furthermore we notice that ε < 1
e ⇔ e < ε−1 ⇔ 1 < log ε−1. Thus we get

L+ 1 <
log ε−1

α logM +
log

(√
2c1T

α
)

α logM + 2 ≤ c5 log ε−1, (3.23)

where c5 = 1
α logM + max

(
0, log(√2c1Tα)

α logM

)
+ 2. Using first condition (iv), followed

by the upper bound (3.22) of Nl and the inequality (3.20) as well as the bound
(3.23) for L + 1, we end up with the computational complexity for Cost

(
Ŷ
)

=

14

L∑
l=0

Cost
(
Ŷl
)
bounded by

Cost
(
Ŷ
)
≤

L∑
l=0

c3dNl
1 + λ̃hl
hl

<
L∑
l=0

c3d
1 + λ̃hl
hl

2ε−2(L+ 1)c2
hl√

1 + λ̃hl

√
1 + λ̃T + 1

= c3d2ε−2(L+ 1)c2

√
1 + λ̃T

L∑
l=0

√
1 + λ̃hl + c3d

L∑
l=0

1 + λ̃hl
hl

≤ c3d2ε−2(L+ 1)2c2(1 + λ̃T) + c3d(1 + λ̃T)
L∑
l=0

h−1
l

≤ (1 + λ̃T)dε−2 (log ε)2
[
c32c2

5c2 + c3
M2

M−1

(√
2c1
)1/α

]
.

Hence an upper bound for the computational cost is given by

Cost
(
Ŷ
)
≤ c4dε

−2(log ε)2(1 + λ̃T),

where c4 = 2c3c
2
5c2 + c3

M2

M−1

(√
2c1
)1/α

.

Case 2: β > 1. The number of simulations at level l is chosen such that

Nl =

2ε−2c2T
(β−1)/2

(
1−M−(β−1)/2

)−1 h
(β+1)/2
l√
1 + λ̃hl

√
1 + λ̃T

 . (3.24)

Observe that the choice of Nl is the same as in the first case if the parameter β is
fixed at β = 1. In the following the derivation of the upper bound of the variance
of the combined estimator is very similar as in the case with β = 1. Due to the
independence of the partial estimators Ŷl, condition (iii) and the definition of Nl

in (3.24), we have

L∑
l=0

Var
(
Ŷl
)
≤

L∑
l=0

c2
hβl
Nl

≤ ε2

2 T
−(β−1)/2

(
1−M−(β−1)/2

) L∑
l=0

h
(β−1)/2
l .

Using the above upper bound with the inequality

L∑
l=0

h
(β−1)/2
l < T (β−1)/2 M (β−1)/2

M (β−1)/2 − 1
, (3.25)

we obtain

Var
(
Ŷ
)
≤ ε2

2 T
−(β−1)/2

(
1−M−(β−1)/2

) L∑
l=0

h
(β−1)/2
l < ε2

2 .

Hence the inequality (3.18) for the mean square error of Ŷ holds also in this case.
It remains to find the appropriate upper limit of the computational complexity

15

of the combined estimator Ŷ in this case where β > 1. By the choice of Nl in
(3.24), we have in particular

Nl < 2ε−2c2T
(β−1)/2

(
1−M−(β−1)/2

)−1 h
(β+1)/2
l√
1 + λ̃hl

√
1 + λ̃T + 1.

Combining this with condition (iv) and the inequalities (3.20) and (3.25), we
arrive at

Cost
(
Ŷ
)
≤

L∑
l=0

c3dNl
1 + λ̃hl
hl

<
L∑
l=0

c3d
(1 + λ̃hl)

hl

2ε−2c2T
(β−1)/2

(
1−M−(β−1)/2

)−1 h
(β+1)/2
l

√
1 + λ̃T√

1 + λ̃hl
+1]

≤ (1 + λ̃T)d
[
2ε−2c2c3T

(β−1)/2
(
1−M−(β−1)/2

)−1 L∑
l=0

h
(β+1)/2
l

+c3

L∑
l=0

h−1
l

]

< (1 + λ̃T)d
[
2ε−2c2c3T

(β−1)
(
1−M−(β−1)/2

)−2
+ c3

M2

M−1

(√
2c1
)1/α

ε−2
]
.

Rearranging this expression we get the required upper bound for the computa-
tional cost of Ŷ :

Cost
(
Ŷ
)
≤ c4dε

−2(1 + λ̃T)

with c4 = 2c2c3T
β−1

(
1−M−(β−1)/2

)−2
+ c3

M2

M−1

(√
2c1
)1/α

.

Case 3: 0 < β < 1. In the last case, we set the number of simulations for level l to

Nl =

2ε−2c2h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1 h
(β+1)/2
l√
1 + λ̃hl

√
1 + λ̃T

 . (3.26)

Similarly to the previous cases, taking into account the independence of the partial
estimators Ŷl, condition (iii) and the definition of Nl in (3.26), we obtain

L∑
l=0

Var
(
Ŷl
)
≤

L∑
l=0

c2
hβl
Nl

≤ ε2

2 h
(1−β)/2
L

(
1−M−(1−β)/2

) L∑
l=0

h
−(1−β)/2
l .

In addition we observe that
L∑
l=0

h
−(1−β)/2
l = h

−(1−β)/2
L

L∑
l=0

(
M−(1−β)/2

)l
,

where we applied the definition of the time step size hl = T
M l . Using next (recall

that β ∈]0, 1[)
L∑
l=0

(
M−(1−β)/2

)l
<
∞∑
l=0

(
M−(1−β)/2

)l
=
(
1−M−(1−β)/2

)−1
,

16

we have
L∑
l=0

h
−(1−β)/2
l < h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1
. (3.27)

Therefore the variance upper bound is given by

Var
(
Ŷ
)
≤ ε2

2 h
(1−β)/2
L

(
1−M−(1−β)/2

) L∑
l=0

h
−(1−β)/2
l

< ε2

2 h
(1−β)/2
L

(
1−M−(1−β)/2

)
h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1

= ε2

2 .

Finally we have to find the appropriate upper bound for the computational com-
plexity of the combined estimator in the case where 0 < β < 1. First, using
condition (iv), the upper bound of Nl as in (3.26), we obtain

Cost
(
Ŷ
)
≤

L∑
l=0

c3dNl
1 + λ̃hl
hl

<
L∑
l=0

c3d
1 + λ̃hl
hl

2ε−2c2h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1 h
(β+1)/2
l

√
1 + λ̃T√

1 + λ̃hl
+1]

≤ (1 + λ̃T)d
[
2ε−2c2c3h

−(1−β)/2
L

(
1−M−(1−β)/2

)−1 L∑
l=0

h
(β−1)/2
l

+c3

L∑
l=0

h−1
l

]
.

Taking into account inequality (3.27), we observe

h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1 L∑
l=0

h
−(1−β)/2
l < h

−(1−β)
L

(
1−M−(1−β)/2

)−2

and then using the lower bound given in (3.19), we obtain

h
−(1−β)/2
L

(
1−M−(1−β)/2

)−1 L∑
l=0

h
−(1−β)/2
l

<
(√

2c1
)(1−β)/α

M1−βε−(1−β)/α
(
1−M−(1−β)/2

)−2
.

In addition we notice that since β ∈]0, 1[, α > 0 and ε < e−1 < 1,

ε−2 < ε−2−(1−β)/α.

Combining this results with the inequality (3.20), we end up with

Cost
(
Ŷ
)
< c4dε

−2−(1−β)/α(1 + λ̃T),

17

where

c4 = 2c3c2
(√

2c1
)(1−β)/α

M1−β
(
1−M−(1−β)/2

)−2
+ c3

M2

M − 1
(√

2c1
)1/α

.

This completes the last case and therefore the proof of the complexity theorem.

Remark 3.7. Note that by setting the jump intensities λ1, λ2, . . . , λr to zero, and
by considering the one-dimensional case, we reproduce the complexity theorem for the
multilevel Monte Carlo method based on diffusions stated in [12].

Now we briefly discuss the conditions of the complexity theorem. The first condition,
(i), defines an upper bound for the bias of the estimator Pl. The constant α can be
obtained by looking at the order of weak convergence of the numerical approximation
method. For the regular and the jump-adapted Euler method, under appropriate con-
ditions for a(t, S(t)), b(t, S(t)), c(t, S(t)) and the jump intensities λ1, λ2, . . . , λr, the
weak order is one and therefore α = 1 (see Section 2.1). The second condition, (ii),
and the last condition, (iv), limit the choice of the partial estimators Ŷl. Condition
(ii) fixes the mean of Ŷl and the fourth condition (iv) defines an upper bound for the
computational complexity of the partial estimators Ŷl. Note that these two conditions
can usually be met by choosing partial estimators that are located around a given point
(can be obtained by deducting the bias of the estimator from the estimator and using
this difference as a new estimator) and by considering an upper limit for the computa-
tional complexity of the estimators. The most delicate condition is the third one, (iii).
This condition demands the variance of Ŷ to be bounded by the term given on the
right-hand side of (iii). In the case of the regular and the jump-adapted Euler method,
as in the approach in Section 3.2, an upper bound for the variance, in particular β, can
be found using the strong convergence property of the numerical method. In particular
for the Euler method, we have β = 1 (see Section 2.1).

4 Numerical Examples
In this section we consider two jump-diffusion models, the Merton and the Kou model,
and compare numerically the performance of the proposed multilevel Monte Carlo
method to the standard Monte Carlo method without any variance reduction technique,
as well as to the standard Monte Carlo method with variance reduction techniques, in
this case we use antithetic variates and control variates.

4.1 The Merton and the Kou Model

The Merton model, introduced in 1976 by Robert C. Merton in [15], is historically the
first jump-diffusion model in finance. The Kou model was first presented in 2002 by
Steven G. Kou in [22]. Both models are specified by the particular form (d = 1, m = 1,
r = 1) of the SDE (2.1):{

dS(t) = µS(t−)dt+ σS(t−)dW (t) + S(t−)dJ(t), 0 ≤ t ≤ T,
S(0) = S0,

(4.1)

18

where J(t) =
N(t)∑
i=1

(Vi− 1), and where N(t) is a Poisson process with intensity λ. In the
Merton model the jump sizes are characterised by

log(Vi)
iid∼ N

(
η, ν2

)
with η ∈ R and ν > 0. In the Kou model the jump sizes are double exponentially
distributed, i.e.,

log(Vi)
iid∼ K (η1, η2, p) ,

where K is an asymmetric exponential distribution, whose density function is given by

fk(x) = pη1e
−η1x1{x≥0} + (1− p)η2e

η2x1{x<0} (4.2)

with x ∈ R, η1 > 1, η2 > 0 and p ∈ [0, 1]. The parameters η1 and η2 define the decay
of the tails in the distribution of positive and negative jumps and the parameter p
specifies the probability of an upward jump (see e.g. [7, pp.111-112]).
Both jump-diffusion models admit an analytical solution given by

S(t) = S0 exp
{(

µ− σ2

2

)
t+ σW (t)

}N(t)∏
i=1

Vi

(see e.g.[15, p.129] and [22, p.1088]).
In the following we focus on pricing European call options, that is we intend to estimate
the expectation E [f(S(T))] with f given as

f(S(T)) = e−rT max (S(T)−K, 0) ,

where r is the risk-free interest rate, T the maturity and K the strike price of the
option, and S(T) is specified by Equation (4.1) (see e.g. [7, pp.321-324]).

Remark 4.1. To price options one works with risk-neutral measures. Under the risk-
neutral probability measure, i.e. under the measure such that the discounted underlying(
e−rtS(t)

)
t≥0 is a martingale (see [24, pp.67-71]), the Merton model is given by (4.1)

with drift

µ = r − λ (E [Vi]− 1) = r − λ
(

exp
(
η + ν2

2

)
− 1

)
(see e.g. [15, pp.128-129] and [14, p.137]). Similarly, the drift for the Kou model in
the risk-neutral case can be specified by

µ = r − λ
(

pη1
η1 − 1 + qη2

η2 + 1 − 1
)

(see e.g. [23, p.1179]).

4.2 Two Variance Reduction Techniques

We now describe the two variance reduction techniques which we compare in the fol-
lowing numerically with the MLMC method.

19

4.2.1 Antithetic Variates

The idea of the antithetic variates is to produce for every sample path an antithetic
one, which is based on the realisations of the original path, and thus is computationally
cheap to get. For instance, if the random variable U is uniformly distributed over the
interval [0, 1], then so is 1 − U . Suppose sample paths are generated by realisations
u1, u2, . . . of U . Then the antithetic paths are produced using 1 − u1, 1 − u2, . . . as
realisations (see e.g. [14, p.205]).
The antithetic variates estimator is given by

ŶAV = 1
2N

(
N∑
i=1

f
(
S

(i)
G

)
+

N∑
i=1

f
(
S̃

(i)
G

))
,

where the realisations S̃(i)
G are based on an antithetic path. To produce sample paths

of the two jump-diffusion models presented in Section 4.1 one requires realisations
of the normal distribution for the diffusion part, and the log-normal and the double
exponential distribution for either of the jump parts. If x is a realisation of the normal
distribution, then we take x̃ = −x for the antithetic path. For the Merton model, if x
is log-normally distributed, then the antithetic realisation is obtained by

x̃ = exp
(
µ− σ

(log(x)− µ
σ

))
.

For the Kou model, observe that a realisation of the double exponential distribution
with density given in (4.2) can be obtained by

x =

1
η2

ln
(

u
1−p

)
, if u < 1− p,

− 1
η1

[
ln
(

1
p

)
+ ln (1− u)

]
, if u ≥ 1− p,

where u is a realisation of a standard uniform distribution. Hence, for the antithetic
path we take into account 1− u instead of u, i.e.

x̃ =

1
η2

ln
(

1−u
1−p

)
, if 1− u < 1− p,

− 1
η1

[
ln
(

1
p

)
+ ln (u)

]
, if 1− u ≥ 1− p.

4.2.2 Control Variates

Suppose we would like to estimate the mean of a random variable Y . Let Ȳ be an un-
biased estimator of E [Y] and let X be another random variable (called control variate)
with known mean. Then Y ∗ = Ȳ − ξ (X − E [X]) is also an unbiased estimator of E [Y]
for any coefficient ξ, but the variance of Y ∗ can be minimised. Note that the parameter
ξ can be estimated using a least-squares approach (see e.g. [14] pp.186-187). The same
idea also applies for functionals of random variables.
For our example, under the risk-neutral measure the process

(
e−rtS(t)

)
t≥0 is a martin-

gale. Hence,
E
[
e−rTS(T)

]
= S0,

and thus, S(T) can be used as control variate (see [14, pp.188-189]). The control
variates estimator is given by

ŶCV = 1
N

N∑
i=1

(
f
(
S

(i)
G

)
− ξ̂N

(
S

(i)
G − e

rTS0
))
,

20

where ξ̂N is the least-squares estimator of ξ (see e.g. [14, p.188]).

4.3 Numerical Results

We consider Equation (4.1) in the setting of Section 4.1 with T = 1, S0 = 1, K = 1,
r = 0.05, σ = 0.2, λ = 1. Further we employ the refinement factor M = 4 in the
MLMC method. For the Merton model, as in Example 10.2 in [7], we fix η = −0.1 and
ν = 0.1. For the Kou model, we set the probability of an upward jump to p = 0.3 and
we fix η1 = 50 and η2 = 25, as, for instance, in [23, pp.1184-1185].

Remark 4.2. With regard to a financial model, the chosen data have the following
meaning: The parameter T represents the maturity of the option and the initial share
price S0 as well as the strike price are 1 (we do not specify the currency here). The
risk-free interest rate is set to 5% and the implied volatility is chosen to be 20% (see
e.g. [19, pp.296-297]). In a financial context the jump intensity typically lies between
0.05 and 2, see e.g. [3, pp.369-371]. Here we have chosen λ = 1 as this is often the
case in [7] (see e.g. Example 10.1 and Example 10.2).

1 2 3 4 5 6
−16

−14

−12

−10

−8

−6

−4

−2

0

Level l

lo
g

M
 V

a
ri
a
n
c
e

P
l

P
l
−P

l−1

Slope = −1

1 2 3 4 5 6
−15

−10

−5

0

Level l

lo
g

M
 |
M

e
a
n
|

P
l

P
l
−P

l−1

Slope = −1

Figure 1: Comparison of the variance (left figure) and the mean (right figure) of the MLMC
and the MC method over different levels using the Merton model and jump-adapted Euler.

In Figure 1 we compare the variance and the mean of the MLMC method and the
standard Monte Carlo method without any variance reduction technique using the
jump-adapted Euler method applied to the Merton model. To produce the two plots,
2×104 sample paths have been generated. The left plot shows the logarithm with base
M of the variance of Pl, the discrete approximation of the variable P using the time
step size hl = T

M l , and Pl−1, respectively, against the number of levels l. One observes
that the curve for Pl − Pl−1 is almost parallel to the straight line of slope minus one.
This indicates that the variance of a single sample verifies Var (Pl − Pl−1) = O (hl) as
suggested by the theory, see Section 3.2. Note that the variance of Pl, used for the
standard MC method, is more or less constant whereas the variance of Pl − Pl−1, used
for the MLMC method, decreases as l increases. At level l = 6, Var (Pl − Pl−1) is
approximately 46 times smaller than Var (Pl).
The right plot of Figure 1 represents the logarithm with baseM of the absolute value of
the mean of Pl and Pl−Pl−1, respectively, against the number of levels l. The curve for

21

E [Pl − Pl−1] is almost linear with slope minus one. Therefore, we have E [Pl − Pl−1] =
O (hl), which corresponds to the weak convergence of order one of the jump-adapted
Euler method, see Section 2.1. At level l = 6, the absolute value of E [Pl − Pl−1], used
for the MLMC method, is about 48 times smaller than the absolute value of E [Pl], used
for the standard Monte Carlo method.
We next also compare the MLMC method to the standard MC method with two vari-
ance reduction techniques described in Section 4.2. As a measure of the effectiveness
of the methods we use the mean square error (MSE) described in Section 3.1 (see also,
e.g., [14]). The MSE can be approximated by a sample average over N∗ simulations:

MSE
(
Ŷ
)

= E
[(
Ŷ − E [f(S(T))]

)2
]
≈ 1
N∗

N∗∑
i=1

(
Ŷ (i) − Y

)2
, (4.3)

where Ŷ (i) are independent realisations at time T . For our computations we have used
N∗ = 1000. We also report the computational cost of the different methods for ε
being the desired parameter in the mean square accuracy of MSE

(
Ŷ
)

= O
(
ε2) for the

MLMC method. Based on (3.16) in Section 3.2 we can bound the computational cost
of the MLMC method in the jump-adapted case by

Cost
(
Ŷ
)
≤ 2Tε−2(1 + λT)(L+ 1)2, (4.4)

where we have set the constants K and K̂ in (3.16) to 1. Similarly we get in the regular
case the same upper bound without the factor (1+λT). The computational cost of the
other three methods is given by

Cost
(
Ŷ
)

=

2N

(
T
h + λT

)
, for jump-adapted Euler,

2N T
h , for regular Euler.

(4.5)

Remark 4.3. The only additional cost, compared to the standard Monte Carlo method,
of the control variates estimator is due to the computation of ξ̂N . However, this cost
is negligible compared to the other cost since ξ̂N can often be computed using vector
multiplication. For the antithetic variates, antithetic paths are generated, but these are
based on realisations of the original sample paths, and thus, no significant additional
cost occurs.

ε MLMC MC AV CV
0.1 1.00e-2 1.10e-3 2.89e-4 2.44e-5
0.01 1.00e-4 7.98e-5 3.96e-5 1.99e-5
0.005 2.50e-5 3.68e-5 2.56e-5 1.31e-5
0.002 4.00e-6 2.81e-5 2.33e-5 1.14e-5
0.001 1.00e-6 2.27e-5 2.21e-5 1.06e-5
0.0001 1.00e-8 2.18e-5 2.15e-5 1.03e-5

Table 1: Estimated mean square error of the methods MLMC, standard MC, antithetic variates
(AV) and control variates (CV) for different values of ε using the Merton model and jump-
adapted Euler.

Table 1 shows the estimated mean square error of the four methods for different values of
ε using the Merton model and jump-adapted Euler. Similar results have been obtained

22

in the regular case and for the Kou model. The results are obtained through the
following procedure. For a given ε, using (4.4), the upper bound for the computational
cost of the MLMC is computed and then fixed. Furthermore, the total number of
levels L is determined according to (3.15). For the MC, the antithetic and the control
variates methods, we fix the step size h = hL = T/ML as in [20] or [12]. Then, the
number of simulations N is computed for these methods by (4.5). Finally, we run the
N simulations and approximate the MSE of the different methods according to (4.3).
Figure 2 illustrates the results in a loglog-plot. The accuracy ε is taken from the set

ε ∈ {0.1, 0.01, 0.005, 0.002, 0.001, 0.0001} .

We observe that as ε gets smaller, i.e., as the accuracy increases, the MLMC method has
the lowest mean square error of all methods, followed by the control variates method,
the antithetic method and the standard Monte Carlo method. In addition we notice
that the MSE of the MLMC method decays linearly as ε tends to zero, whereas the
MSE of the other three methods first roughly decays linearly to finally hardly decay as
ε decreases.

10
−4

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Merton Model, Jump−Adapted Euler

ε

M
S

E

MLMC

MC

AV

CV

Figure 2: Estimated mean square error of the methods MLMC, standard MC, antithetic
variates (AV) and control variates (CV) for different values of ε using the Merton model and
jump-adapted Euler.

5 Conclusion
In this paper we have extended the multilevel Monte Carlo method to multi-dimensional
stochastic differential equations driven by jump-diffusions for estimating the expec-
tation of functionals depending on d-dimensional SDEs driven by an m-dimensional
Wiener process and an r-dimensional compound Poisson process. Numerical experi-
ments have been carried out to compare the MLMC method to the Monte Carlo method
without any variance reduction technique as well as with two variance reduction tech-
niques, the antithetic variates and the control variates. The numerical results confirm

23

our theoretical findings and show for a sufficiently small mean square accuracy a sig-
nificant reduction of the computational complexity of the MLMC method compared to
the other methods.

References
[1] Y. Ait-Sahalia. Telling from discrete data whether the underlying continuous-time

model is a diffusion. Journal of Finance, 57:2075–2112, 2002.

[2] A. Blumenthal. The Multilevel Monte Carlo Method for SDEs driven by Jump-
Diffusions with Applications in Finance. Master’s thesis, Swiss Federal Institute
of Technology Lausanne, January 2011.

[3] N. Bruti-Liberati and E. Platen. Approximation of Jump Diffusions in Finance
and Economics. Computational Economics, 29:283–312, 2007.

[4] N. Bruti-Liberati and E. Platen. Numerical Solution of Stochastic Differential
Equations with Jumps in Finance. Springer, Sydney, 2010.

[5] E. Buckwar and M. G. Riedler. Runge-Kutta methods for jump-diffusion differen-
tial equations. Journal of Computational and Applied Mathematics, 236(6):1155–
1182, 2011.

[6] G. M. Clarke and D. Cooke. A basic course in statistics. Edward Arnold, London,
third edition, 1992.

[7] R. Cont and P. Tankov. Financial Modelling With Jump Processes. Chapman &
Hall/CRC, London, 2004.

[8] S. Dereich. Multilevel Monte Carlo algorithms for Lévy-driven SDEs with Gaussian
correction. Ann. Appl. Probab., 21(1):283–311, 2011.

[9] V. Fabian and J. Hannan. Introduction to Probability and Mathematical Statistics.
John Wiley & Sons, Michigan, 1985.

[10] A. Gardoń. The order of approximations for solutions of Itô-type stochastic differ-
ential equations with jumps. Stochastic Analysis and Applications, 22(3):679–699,
2004.

[11] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer,
New York, 2003.

[12] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Research,
56(3):607–617, 2008.

[13] D. Gillespie. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.,
58, 2007.

[14] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New
York, 2004.

[15] P. Glasserman and N. Merener. Numerical solution of jump-diffusion LIBOR
market models. Finance and Stochastics, 7:1–27, 2003.

24

[16] S. Heinrich. Monte Carlo complexity of global solution of integral equations. Jour-
nal of Complexity, 14:151–175, 1998.

[17] D. J. Higham. An Algorithmic Introduction to Numerical Simulation of Stochastic
Differential Equations. SIAM Review, 43(3):525–546, 2001.

[18] D. J. Higham and P. E. Kloeden. Numerical methods for nonlinear stochastic
differential equations with jumps. Numerische Mathematik, 101:101–119, 2005.

[19] J. Hull. Options, futures, and other derivatives. Pearson Prentice Hall, New Jersey,
2009.

[20] A. Kebaier. Statistical Romberg Extrapolation: A new variance reduction method
and applications to option pricing. Annals of Applied Probability, 15(4):2681–2705,
2005.

[21] P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equa-
tions. Springer-Verlag, Berlin, 1995.

[22] S. G. Kou. A Jump-Diffusion Model for Option Pricing. Management Science,
48:1086–1101, 2002.

[23] S. G. Kou and H. Wang. Option pricing under a double exponential jump diffusion
model. Management Science, 50:1178–1192, 2004.

[24] D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to
Finance. ellipses, Paris, 1997.

[25] X. Q. Liu and C. W. Li. Weak approximations and extrapolations of stochastic
differential equations with jumps. SIAM J. Numer. Anal., 37:1747–1767, 2000.

[26] Y. Maghsoodi. Mean square efficient numerical solution of jump-diffusion stochas-
tic differential equations. Indian J. Statist., 58:25–47, 1996.

[27] X. Mao and C. Yuan. Stochastic Differential Equations with Markovian Switching.
Imperial College Press, London, 2006.

[28] H. Marxen. The Multilevel Monte Carlo methof used on a Lévy driven SDE. Monte
Carlo methods and Applications, 16(2):167–190, 2010.

[29] R. C. Merton. Option pricing when underlying stock returns are discontinuous.
Journal of Financial Economics, 3:125–144, 1976.

[30] G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical
Physics. Springer, Heidelberg, 2004.

[31] E. Mordecki, A. Szepessy, and R. Tempone. Adaptive weak approximation of
diffusions with jumps. SIAM J. Numer. Anal., 4:1732–1768, 2008.

[32] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models.
Springer Finance, Pittsburgh, 2004.

[33] P. Tankov and E. Voltchkova. Jump-diffusion models: a practitioner’s guide.
Banque et MarchÃˆs, 2009.

25

[34] D. Wilkinson. Stochastic modeling for systems biology. Chapman and Hall/CRC,
2006.

[35] Y. Xia. Multilevel Monte Carlo method for jump-diffusion SDEs. Technical report,
University of Oxford, http://arxiv.org/abs/1106.4730, 2011.

[36] Y. Xia and M. B. Giles. Multilevel path simulation for jump-diffusion SDEs. to
appear in Monte Carlo and Quasi-Monte Carlo Methods 2010, Springer-Verlag,
2012.

26

	Introduction
	Preliminaries
	Numerical Schemes

	Multilevel Monte Carlo Method for Jump-Diffusions
	Monte Carlo Method for Jump-Diffusions
	Multilevel Monte Carlo Method for Jump-Diffusions
	Complexity Theorem for Jump-Diffusions

	Numerical Examples
	The Merton and the Kou Model
	Two Variance Reduction Techniques
	Antithetic Variates
	Control Variates

	Numerical Results

	Conclusion

