Conor Slater

Introduction Test Vehicle System Model Results

Conclusions

Test vehicle for studying thermal conductivity of die attach adhesives for high temperature electronics

<u>Conor Slater</u>, Fabrizio Vecchio, Thomas Maeder, Peter Ryser

> Ecole Polytechnique Federale de Lausanne Laboratoire de Production Microtechnique

> > 27th October 2011

Outline

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

2 Test Vehicle

3 System Model

4 Results

Outline

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

1 Introduction

2 Test Vehicle

3 System Model

4 Results

6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conor Slater

Introduction

- Test Vehicle
- System Mode
- Results
- Conclusions

All Electric Aircraft Concept

- Removal of all Aircraft hydraulic and Pneumatic systems
- All are replaced with Electro-Mechanical Actuators (EMAs)
- Engines to supply Propulsion and Electricity only

- Necessity for high temperature electronics
- High reliability, high temperature packaging

(日)、

Outline

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

2 Test Vehicle

3 System Model

4 Results

6 Conclusions

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへで

Mock Dies

Test vehicle for studying thermal conductivity

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

Assembling Test Vehicle

Test vehicle for studying thermal conductivity

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

Outline

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

2 Test Vehicle

3 System Model

4 Results

6 Conclusions

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへで

Conor Slater

Introduction

Test Vehicle

System Model

Results

Conclusions

- Heat capacity of die
- Thermal conductivity of die attach
- Dynamic model describing temperature decay
- Describes a system that decays exponentially

 $\Delta T = \frac{Q}{S} \tag{1}$

System model

$$\Delta T = \frac{-L}{kA}q \qquad (2)$$

$$\frac{-L}{kA}q - \frac{Q}{S} = 0 \qquad (3)$$

$$\Delta T = \Delta T_0 e^{\frac{-kA}{LS}t} \qquad (4)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

Conor Slater

Introduction Test Vehicle System Mode Results Conclusions

1 Introduction

2 Test Vehicle

3 System Model

4 Results

6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Output

Test vehicle for studying

thermal

Introduction Test Vehicle System Mode

Conclusions

 Shows good agreement with the model

 Time constants measured (0.55, 0.72, 0.62, 0.61, and 0.66 seconds) for each die

Conor Slater

Test Vehicle System Mo

Results

Conclusions

Thermal Conductivity Estimation

$$\tau = \frac{kA}{LS}$$
(5) $L = 50 \ \mu m$
 $A = 16 \ mm^2$
 $k = \frac{LS\tau}{A}$ (6) $S = 27.2 \times 10^{-3} \ \frac{J}{K}$

• Thermal conductivity calculated (0.15, 0.12, 0.14, 0.14 and $0.13\frac{W}{mK}$) for each die

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• STYCAST 2741 — 0.33 $\frac{W}{mK}$

. .

Shear Strength

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle

Results

Conclusions

- Shear strength test can be used in conjunction with this method
- Here decreased time constant has an increased shear strength

(日)、

э

Visual Inspection

イロト 不得 トイヨト イヨト

ъ

- Test vehicle for studying thermal conductivity
- Conor Slater
- Introduction Test Vehicle System Mode Results
- Conclusions

- Shows that voids were present under the die
- Leading to a reduction in thermal conductivity

Outline

Conor Slater

Introduction Test Vehicle System Model Results Conclusions

1 Introduction

2 Test Vehicle

3 System Model

4 Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle System Mode Results

- Thermal conductivity measurement method presented
 - Test Vehicle and Test Rig constructed
 - Model developed showing good correlation with output
 - Thermal conductivity could be estimated
 - Shear strength test and inspection under microscope performed

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle System Mode Results

- Thermal conductivity measurement method presented
- Test Vehicle and Test Rig constructed
- Model developed showing good correlation with output
- Thermal conductivity could be estimated
- Shear strength test and inspection under microscope performed

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle System Mod Results

- Thermal conductivity measurement method presented
- Test Vehicle and Test Rig constructed
- Model developed showing good correlation with output
- Thermal conductivity could be estimated
- Shear strength test and inspection under microscope performed

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle System Mode Results

- Thermal conductivity measurement method presented
- Test Vehicle and Test Rig constructed
- Model developed showing good correlation with output
- Thermal conductivity could be estimated
- Shear strength test and inspection under microscope performed

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

conductivity Conor Slater

Test vehicle for studying

thermal

Introduction Test Vehicle System Mod Results

- Thermal conductivity measurement method presented
- Test Vehicle and Test Rig constructed
- Model developed showing good correlation with output
- Thermal conductivity could be estimated
- Shear strength test and inspection under microscope performed

Conor Slater

Introduction Test Vehicle System Mod

Conclusions

The research in this project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement ACP8-GA-2009-243119 "CREAM".