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The equilibrium and linear fluid Magnetohydrodynamic (MHD) stability in an inward-shifted large

helical device heliotron configuration are investigated with the 3D ANIMEC and TERPSICHORE

codes, respectively. A modified slowing-down distribution function is invoked to study anisotropic

pressure conditions. An appropriate choice of coefficients and exponents allows the simulation of

neutral beam injection in which the angle of injection is varied from parallel to perpendicular. The

fluid stability analysis concentrates on the application of the Johnson-Kulsrud-Weimer energy

principle. The growth rates are maximum at hbi � 2%, decrease significantly at hbi � 4:5%, do

not vary significantly with variations of the injection angle and are similar to those predicted with a

bi-Maxwellian hot particle distribution function model. Stability is predicted at hbi � 2:5% with a

sufficiently peaked energetic particle pressure profile. Electrostatic potential forms from the MHD

instability necessary for guiding centre orbit following are calculated.

[http://dx.doi.org/10.1063/1.4757635]

I. INTRODUCTION

The principal methods to heat ions in stellarator mag-

netic confinement systems involve the application of either

neutral beam injection (NBI) or ion cyclotron heating

(ICRH). The large helical device (LHD) has both types of

heating mechanisms,1 but most of the input power relies on

10 MW tangential NBI system with 180 keV per beam ion.

The volume averaged hbi achieved exceeds 4%.2 The ratio

of stored energy in the parallel direction (to the magnetic

field lines) compared with the perpendicular direction can

reach a level of 4 at low plasma density ð1� 1019m�3Þ.3
Magnetohydrodynamic (MHD) equilibrium solvers for

isotropic pressure plasmas are very common, but anisotropic

pressure models have not been widely explored. Neverthe-

less, four axisymmetric tokamak equilibrium codes have been

previously developed,4–7 as well as another for helically sym-

metric stellarators.8 For general three-dimensional (3D) mag-

netic confinement configurations, analytic developments9,10

have contributed to foster extensions of the 3D VMEC code11

with imposed nested magnetic flux surfaces under fixed12 and

free13 boundary conditions using a modified slowing-down

beam particle distribution function for perpendicular14 and

parallel15 injection in which fixed boundary applications were

investigated. Subsequently, a bi-Maxwellian particle distribu-

tion function model was considered and implemented in the

VMEC code.16 The free boundary extension, named ANI-

MEC, has employed the bi-Maxwellian form and was applied

to a two-field period quasiaxisymmetric stellarator.17 In this

work, we shall explore a combination of the slowing-down

distributions treated in Refs. 14 and 15 and demonstrate that

we can model neutral beam injection angles that span the

range from the direction parallel to that perpendicular with

respect to the magnetic field lines. This model is implemented

as an option in the ANIMEC code.

There are currently three linear MHD stability codes

adapted to 3D magnetic confinement configurations. The

ideal code CAS3D,18 the extended ideal code TERPSICH-

ORE19,20 that includes anisotropic pressure models16,21 and

the resistive SPECTOR3D code.22 Two fluid anisotropic

pressure MHD stability models have been implemented in

the 3D TERPSICHORE code. The energy principle derived

by Kruskal and Oberman (KO)23 retains the full interaction

of pressure gradients and current density in the instability

drive mechanisms. An alternative energy principle proposed

by Johnson, Kulsrud, and Weimer (JKW)24 considers the hot

particle pressure gradients and current density associated

with the fast species to be weakly interacting. This model

may have very useful applications for modeling the LHD

experiment.2 We examine the fluid MHD stability of the ani-

sotropic pressure equilibria generated with the slowing-down

distribution function pressure moments modules imple-

mented in the ANIMEC code, concentrating mostly on the

predictions of the JKW stability model in an inward-shifted

LHD heliotron configuration. The kinetic energy in the

TERPSICHORE code has been extended to allow for a more

physical kinetic energy normalisation.

In Sec. II, we briefly describe the 3D MHD equilibrium

approach used in the ANIMEC code. In Sec. III, we present

the slowing-down distribution function model we invoke for

balanced neutral beam injection simulations. In Sec. IV,

applications to the LHD heliotron with the ANIMEC code

are outlined. The linear fluid MHD stability description and

the kinetic energy normalisation developed are considered ina)e-mail: wilfred.cooper@epfl.ch.
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Sec. V. The stability computations of the anisotropic equilib-

rium states obtained with ANIMEC in Sec. IV are investi-

gated in Sec. VI. Two different models for the determination

of the electrostatic potential associated with MHD instabil-

ities are compared in Sec. VII. Summary and conclusions are

discussed in Sec. VIII.

II. 3D MAGNETOHYDRODYNAMIC EQUILIBRIA

MHD equilibrium states with nested magnetic flux

surfaces and anisotropic pressure are computed with the

ANIMEC code,17 and extended version of the VMEC

code.11–13 This formulation minimises the total energy

l0W ¼
ð ð ð

d3x
B2

2
þ

l0pjjðs;BÞ
C� 1

� �
; (1)

where B is the magnetic field strength, l0 is the permeability

of free space (l0 ¼ 4p� 10�7H=m), the total pressure paral-

lel to the magnetic field is

pjjðs;BÞ ¼ MðsÞ½U0ðsÞ�C
1þ phðsÞHðs;BÞ
h1þ phðsÞHðs;BÞiC

; (2)

withMðsÞ the plasma mass, and UðsÞ the toroidal magnetic

flux function. The radial variable s (0 � s � 1) is propor-

tional to U. The amplitude factor phðsÞ controls the hot parti-

cle contribution to the parallel pressure, H(s, B) describes the

variation of the pressure around a magnetic flux surface, C is

the adiabatic index, hAi identifies the flux surface average of

A, and the symbol prime ð0Þ denotes a derivative with respect

to the s. A steepest descent energy minimisation procedure is

applied to generate the equilibrium state coupled with a Fou-

rier decomposition in the poloidal and toroidal angular varia-

bles. A preconditioner suppresses the residual force errors

down to machine level precision. Invoking Ampere’s law,

the current density is expressed as l0K ¼ $� ðrBÞ, where

r ¼ 1� l0ðpjj � p?Þ=B2 corresponds to the firehose stability

parameter.9

III. A MODIFIED SLOWING-DOWN FAST ION
DISTRIBUTION FUNCTION

We attempt to determine the fast particle contribution to

the pressures by evaluating the corresponding moments of a

distribution function. Typically, a bi-Maxwellian distribution

function for the energetic species has formed the foundation

of fixed and free boundary equilibrium investigations in the

past.16,17 This form was particularly useful and relevant for

ICRH simulations. Alternatively, a modified slowing-down

distribution given by

Fhðs; E; kÞ ¼
1

2p
IhssSðsÞ
v3 þ v3

c

½kBmðsÞ�N; (3)

has been proposed and evaluated for perpendicular pressure

anisotropy.14 The amplitude that multiplies the term in

brackets constitutes the standard slowing-down distribution

function,25 where Ih is the fast particle beam current, ss is the

slowing-down time, S is the source profile, v, E, and k are the

particle velocity, energy, and pitch angle, respectively. Bm is

usually the minimum value of B on a flux surface and vc is

defined as the critical velocity.25 Subsequently, a similar

model for balanced tangential beam injection was exam-

ined,15 where the distribution function was expressed as

Fhðs; E; kÞ ¼
1

2p
IhssSðsÞ
v3 þ v3

c

½1� kBmðsÞ�L: (4)

We propose in this work a combination of the forms

described by Eqs. (3) and (4), which allows the modeling of

balanced neutral beam injection. Different angles of injec-

tion can be simulated with the appropriate addition and sub-

traction of terms with different exponents L and N. In

particular, we write

Fhðs;E;kÞ ¼
1=2pXL

0
a
jj
‘ þ

PN
0 a?n

IhssSðsÞ
v3 þ v3

c

�
XL

‘¼0

a
jj
‘P‘
0 fk

½1� kBmðsÞ�‘ þ
XN

n¼0

a?n
qn
½kBmðsÞ�n

#
;

"

(5)

where a
jj
‘ ða?n Þ correspond to coefficients associated with the

injection of beam ions parallel (perpendicular) to the equilib-

rium field lines. We define

qn �
3� 2nn!

½2ðnþ 1Þ þ 1�!!

fk �
3� ð�2Þk‘!

½2ðk þ 1Þ þ 1�!!ð‘� kÞ! :

The calculations undertaken in this paper concentrate on

three specific cases. The choices a
jj
0 ¼ 0:01; a

jj
7 ¼ 1 a

jj
8 ¼

�0:88 yield the distribution function in the v? versus vjj
space in Fig. 1, which corresponds to an injection angle hb �
18� with respect to the direction of the B-lines. The remain-

ing coefficients a
jj
j ¼ 0; a?j ¼ 0. For an injection angle

hb � 43:5�, the following choice is required: a
jj
0 ¼ 0:08;

a
jj
1 ¼ 1, and a

jj
2 ¼ �0:7 (the remaining coefficients vanish).

This is shown in Fig. 2. Finally, for a more nearly perpen-

dicular injection angle, we chose a?0 ¼ 0:1; a?4 ¼ 1, and

a?5 ¼ �0:75, which yields an injection angle hb � 68� with

respect to the direction of B, as pictured in Fig. 3.

The parallel pressure is given by the equation

pjjðs;BÞ ¼ pthðsÞ½1þ phðsÞHðs;BÞ�, where the shaping factor

of the hot particle pressure around the flux surfaces is

FIG. 1. Hot particle distribution function obtained with coefficients

a
jj
0 ¼ 0:01; a

jj
7 ¼ 1, and a

jj
8 ¼ �0:88 in the v? versus vjj space. All other

coefficients a?j ¼ 0; a
jj
j ¼ 0. The function is evaluated at B ¼ Bm. The beam

injection angle is hb � 18�.
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Hðs;BÞ ¼ 1XL

0
a
jj
‘ þ

XN

0
a?n

XL

‘¼0

a
jj
‘X‘

0
fk

X‘
k¼0

BmðsÞ
B

� �k
8<
:

þ
XN

n¼0

a?n
BmðsÞ

B

� �n
)
:

(6)

For the computation of equilibria, we must prescribe the

plasma mass MðsÞ (which corresponds directly to the ther-

mal pressure pthðsÞ when C ¼ 0), the hot particle pressure

profiles is controlled with input values to phðsÞ, and the toroi-

dal current profile (or the rotational transform). The pressure

anisotropy due to the energetic particle species is varied with

choices for the exponents L and N and the coefficients a
jj
‘ and

a?n . Once pjjðs;BÞ is determined, parallel force balance is

invoked to obtain p?ðs;BÞ and consequently the firehose sta-

bility criterion parameter r.9 For diagnostic purposes, we

have to calculate
ffiffiffi
g
p

@pjj=@sjB and the mirror stability crite-

rion parameter 1þ ðl0=BÞ@p?=@sjB.9 Finally, for MHD sta-

bility analysis, we derive also
ffiffiffi
g
p

@p?=@sjB.

IV. EQUILIBRIUM COMPUTATIONS IN A 10-FIELD
PERIOD HELIOTRON

The 3D ANIMEC equilibrium code, which has been

adapted to include the anisotropic pressure model described

in Sec. III, is employed to compute MHD equilibrium states

in a 10 field period heliotron configuration to simulate

the LHD device. We specifically select a strongly inward-

shifted configuration in which the magnetic axis is located at

Rax ¼ 3:55 m in the vacuum state. As this configuration does

not have a vacuum magnetic well, it is susceptible to MHD

instabilities even at very low hbi, which we shall verify in

Sec. VI. For simplicity, we choose vanishing net toroidal

current within each flux surface, namely 2pJðsÞ ¼ 0. With

C ¼ 0, the thermal pressure is prescribed as pðsÞ ¼ pthðsÞ
¼ pð0Þð1� sÞð1� s4Þ. This is close to the measured profiles

extracted from experimental observations in LHD. For most

of the calculations in this paper, the hot particle pressure fac-

tor phðsÞ is prescribed as 0:5ð1� sÞ þ 0:5ð1� sÞ2. The ther-

mal pressure profiles and the flux surface averaged hot

particle pressure profiles that result from the choices of

pthðsÞ and phðsÞ are summarised in Fig. 4 for the three

different anisotropic cases (hb � 18�; hb � 43:5�, and

hb � 68�) under consideration at hbi ¼ 4:45%. Here, we

define hbi �
Ð Ð Ð

d3xl0ðpjj þ p?Þ=B2. The fast particle

hbhi � hbi=3 for all computations presented in this article.

The rotational transform profiles for zero toroidal current at

hbi ¼ 4:45% for the 3 different injection angles are dis-

played in Fig. 5. They do not vary significantly with respect

to changes in hb.

V. LINEAR FLUID MHD STABILITY THEORY

The energy principles with anisotropic that are imple-

mented in the TERPSICHORE code include a fully interac-

tive model proposed by KO23 and a rigid hot particle model

devised by JKW.24 All of the calculations presented in this

article (except for that corresponding to the curve with black

FIG. 2. Hot particle distribution function obtained with coefficients

a
jj
0 ¼ 0:08; a

jj
1 ¼ 1, and a

jj
2 ¼ �0:7 in the v? versus vjj space. All other coef-

ficients a?j ¼ 0; a
jj
j ¼ 0. The function is evaluated at B ¼ Bm. The beam

injection angle is hb � 43:5�.

FIG. 3. Hot particle distribution function obtained with coefficients

a?0 ¼ 0:1; a?4 ¼ 1, and a?5 ¼ �0:75 in the v? versus vjj space. All other

coefficients a?j ¼ 0; a
jj
j ¼ 0. The function is evaluated at B ¼ Bm. The beam

injection angle is hb � 68�.

FIG. 4. The pressure profiles as a function of
ffiffi
s
p

for an inward-shifted LHD

configuration at hbi ¼ 4:45% for injection angles of hb � 18�; hb � 43:5�,
and hb � 68� with respect to the field lines. The solid lines correspond to

hph
jji, the flux surface averaged component of the hot particle parallel pres-

sure, the dashed lines correspond to hph
?i, and the flux surface averaged

component of the hot particle perpendicular pressure. The broader profile

corresponds to the thermal pressure. All pressures are mulitplied by l0.
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squares in Fig. 8) are based on the JKW energy principle

because experimental observations on the LHD device sug-

gest that this energy principle more accurately reflects the

measurements.2 The stability code evaluates

dWp þ dWV � x2dWK; (7)

where dWp is the internal plasma potential energy, dWV is

the vacuum energy, and �x2dWK represents the kinetic

energy. The kinetic energy term dWK is given by

l0dWK ¼
1

2

ð2p=Ls

0

d/
ð2p

0

dh
ð1

0

ds
ffiffiffi
g
p

l0ðn 	 qM 	 nÞ; (8)

where Ls is the number of equilibrium field periods per sta-

bility period, h and / are the Boozer coordinate poloidal and

toroidal angles, respectively, qM is the plasma mass tensor

and the displacement vector under the plasma incompressi-

bility assumption is

n ¼ ffiffiffi
g
p

ns$h� $/þ B� $s

B2
g: (9)

Previous applications of the TERPSICHORE code19

invoked a mass tensor dyadic expressed as

qM ¼ $s$sþ
½ ffiffiffigp B� ð$h� $/Þ�½ ffiffiffigp B� ð$h� $/Þ�

½2U0ðsÞ�2
;

(10)

which yields the simplified kinetic energy integrand

l0n 	 qM 	 n ¼ ðnsÞ2 þ 1

½2U0ðsÞ�2
g2: (11)

A more physical kinetic energy requires the mass tensor

to be qM ¼ qMI, proportional to the identity tensor. Under

these circumstances, the kinetic energy integrand acquires the

form

l0n 	 qM 	 n ¼ l0qM

"
gssðnsÞ2 � 2

r
ffiffiffi
g
p

B2
½IðsÞgsh

þ JðsÞgs/�nsgþ j$sj2

B2
g2

#
; (12)

where gij represents a lower metric element while the poloi-

dal and toroidal current flux functions are I and J, respec-

tively. The computations in this work adopt this more

physically relevant kinetic energy norm. The fixed and free

boundary mode structures and growth rates of a benchmark

calculation involving a number of different MHD stability

codes26 have been successfully recovered with this upgraded

kinetic energy normalisation.

We investigate free boundary stability of LHD configu-

rations by prescribing a conducting wall far from the plasma

of similar shape but much smoother than the vacuum vessel

in the device. The specific shape at various cross sections is

displayed in Fig. 6.

VI. LINEAR FLUID MHD STABILITY APPLICATIONS
TO LHD

The linear fluid MHD stability of the ANIMEC equili-

bria described in Sec. IV with respect to the n¼ 2 family

of modes27–29 is investigated with the TERPSICHORE

code19,30 for the inward-shifted LHD configuration. We

compare the growth rate of the case with a slowing-down

distribution with injection angle hb � 18� with that of a bi-

Maxwellian distribution, shown in Fig. 7, with the same ratio

hbh
jji=hb

h
?i � 5. The growth rates are normalised to the

FIG. 5. The rotational transform profiles as a function of
ffiffi
s
p

for an inward-

shifted LHD configuration at hbi ¼ 4:45% for injection angles of

hb � 18� ; hb � 43:5� , and hb � 68� with respect to the field lines. The

rotational transform profiles are almost the same regardless of injection angle.

FIG. 6. The conducting wall prescribed for free boundary terpsichore fluid MHD stability simulations that enclose the plasma at five different cross sections

spanning half of a field period in an inward-shifted LHD configuration. The perturbed radial magnetic field distribution within the plasma is plotted at each

cut.

FIG. 7. Bi-Maxwellian distribution function with a parallel to perpendicular

temperature ratio Tjj=T? � 5, which yields an equilibrium state with the

same ratio hbh
jji=hbh

?i � 5 as in Fig. 1.
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toroidal Alfv�en frequency xAt ¼ B0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0qMR2

0

p
. The growth

rates as a function of hbi in Fig. 8 shows that the results with

the slowing-down model (blue solid curve with circles) are

very similar to those of the bi-Maxwellian (red dashed curve

with diamonds) according to the JKW energy principle. The

normalised growth rate peaks at x=xAt ¼ 0:1 at hbi ¼ 2%

and decreases by 60% when hbi reaches 4.5%. As a point of

reference, we also plot the results of the slowing-down distri-

bution function model with hb � 18� according to the KO

energy principle (solid black curve with squares). The maxi-

mum growth rate from the KO model is x=xAt ¼ 0:3 at

hbi � 3% and decreases by about 30% when hbi ¼ 4:45%.

The normalised growth rates as a function of hbi for injec-

tion angles of hb � 18�; hb � 43:5�, and hb � 68� are plot-

ted in Fig. 9. The growth rates decrease slightly from parallel

to perpendicular injection, but remain of the same order of

magnitude and display the same trend as hbi is varied.

As a final application of the slowing-down distribution

function model at hb � 18� with ANIMEC and TERPSICH-

ORE, we investigate the fluid MHD stability according to

the JKW energy principle as a function of the peakedness

of the hot particle pressure. For this study, we prescribe

phðsÞ ¼ phð0Þð1� sÞk and vary k. For larger k, the hot parti-

cle contribution to the pressure becomes more peaked. We

fix total hbi ¼ 2:55% and hbthi ¼ 1:7%. Marginal stability is

achieved when k > 4 as illustrated in Fig. 10.

VII. THE ELECTROSTATIC POTENTIAL

Future investigations of fast particle guiding centre

orbits and energetic particle stability in the presence of

unstable MHD fields require the identification of the electro-

static and electromagnetic potentials in terms of the per-

turbed MHD displacement vector components. Typically in

guiding center codes, the perturbed vector potential is

assumed to have only a finite component along the equilib-

rium magnetic field lines.31 In our notation, this corresponds

to dAjj ¼ r!B, where ! represents the perturbed field ampli-

tude. Evaluating the radial component of the perturbed MHD

magnetic field dB 	 $s ¼ $� ðn� BÞ, we can obtain a valid

albeit nonunique relation between ! and ns. The invocation

of Faraday’s law relates the electrostatic potential UE to !,

which then reads in Fourier space, as described in Ref. 32, as

UEmnðsÞ ¼ �
x
l0

r
ffiffiffi
g
p

B2

mIðsÞ � nJðsÞ

� �
ns

mnðsÞ: (13)

A more precise alternative is to consider the full dA
model, thus including the dBjj terms that are neglected in the

dAjj only reduced model.32–34 This entails the application of

the gauge transformation dAs ¼ 0,32 from which we get

UEmnðsÞ ¼ x
ðs

0

dsgmnðsÞ: (14)

In real space,

UEðs; h;/; tÞ ¼
X
mn

UEmnðsÞsinðmh� n/þ D� xtÞ; (15)

where D is a phase parameter.30 The electrostatic potential of

the n¼ 2 instability structure in LHD we have computed

0 0.01 0.02 0.03 0.04
0

0.1

0.2

0.3

< β >

ω
 / 

ω
A

t

FIG. 8. Growth rate normalised to the toroidal Alfv�en frequency for an

inward-shifted LHD configuration with nearly parallel beam injection pres-

sures as a function of hbi from a modified slowing-down distribution func-

tion according to the KO energy principle (squares) and the JKW energy

principle (circles). The dashed curve (diamonds) corresponds to the JKW so-

lution for a bi-Maxwellian distribution function model.
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FIG. 9. Growth rate normalised to the toroidal Alfv�en frequency for an

inward-shifted LHD configuration as a function of hbi from a modified

slowing-down distribution function with balanced beam injection angles of

hb � 18� (squares), hb � 43:5� , (circles) and hb � 68� (diamonds) with

respect to the direction of the magnetic field lines according to the JKW

energy principle.
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FIG. 10. Growth rate normalised to the toroidal Alfv�en frequency for an

inward-shifted LHD configuration as a function of the hot particle pressure

peakedness factor k at fixed hbi ¼ 2:55% from a modified slowing-down

distribution function with balanced beam injection angle of hb � 18�. The

hot particle pressure factor is phðsÞ ¼ phð0Þð1� sÞk .
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with the JKW model at hbi ’ 4:45% demonstrates that

retaining only finite dAjj effects may constitute an adequate

approximation for UE in guiding center computations.

However, detailed numerical simulations will be necessary

to verify this conjecture. Fig. 11 shows the toroidal structure

of UE on the flux surface for which
ffiffi
s
p ’ 0:962. This reveals

that the reduced model with finite dAjj only is slightly more

extended toroidally compared to the full model which

retains the finite dBjj contribution (the compressional Alfv�en

waves).

VIII. SUMMARY AND CONCLUSIONS

The MHD equilibrium and fluid stability of a 10-field

period inward-shifted heliotron configuration (vacuum mag-

netic axis Rax � 3:55 m) that models the LHD device is

investigated with the ANIMEC code and the TERPSICH-

ORE code, respectively. A modified slowing-down distribu-

tion function has been adopted to generate anisotropic

pressure equilibrium states in 3D geometry. This form is an

alternative to a bi-Maxwellian distribution function studied

extensively in the past that allows to model neutral beam

injected ions with different angles of injection. The ANI-

MEC code has been extended to include this hot particle dis-

tribution function model for the computation of anisotropic

pressure equilibrium states. We adjust the input parameters

of the distribution function to obtain fixed boundary aniso-

tropic equilibria with injection angles hb� 18� ðhph
jji> hph

?iÞ,
hb� 43:5� ðhph

jji � hph
?iÞ, and hb� 68� ðhph

jji< hph
?iÞ. Under

zero toroidal current condition, the rotational transform is

insensitive to injection angle up to hbi¼ 4:5%. The fast

particle contribution to hbi in the calculations performed

is 1/3, and the thermal pressure profiles applied are con-

sistent with the experimental observation. The hot particle

profiles are chosen to be more peaked than their thermal

counterparts.

The linear fluid MHD stability with respect to the n¼ 2

family of modes of the equilibrium states is determined with

the TERPSICHORE code. We specifically concentrate on

the rigid hot particle model proposed by JKW24 because this

model may reflect more accurately the experimental observa-

tions in the LHD heliotron device.2 The kinetic energy mod-

ule in the TERPSICHORE code has been extended to

investigate a more physical kinetic energy than has been pre-

viously considered. The stability studies as a function hbi
indicate that for near tangential neutral beam injection

(hb � 18�), the slowing-down distribution function model

yields very similar growth rates to that of the bi-Maxwellian

model according to the predictions of the JKW energy prin-

ciple approximation. The growth rate peaks at x=xAt ¼ 0:1
when hbi � 2% and decreases to below 0.04 at hbi � 4:5%.

The fully interacting hot particle approach associated with

the KO energy principle predicts growth rates peaking at

hbi � 3% at a growth rate x=xAt ¼ 0:3, which decreases

somewhat for higher hbi. A comparative study of the linear

growth rates of the n¼ 2 family of MHD instability as a

function of hbi shows a similar trend that is only weakly de-

pendent on beam injection angle, with the more nearly paral-

lel injection of hb � 18� being slighly more unstable than

that at hb � 43:5�, while the more perpendicular injection of

hb � 68� is the least unstable. But the differences are small.

Finally, a variation of the radial width of the fast particle

pressure profile demonstrates that the plasma becomes MHD

stable at hbi ¼ 2:55% according to the JKW energy principle

when the profile is sufficiently peaked.

The electrostatic potential associated with the n¼ 2 insta-

bility family at hbi ’ 4:45% we compute remains weakly sen-

sitive to finite compressional Alfv�en wave dBjj contributions.

Previously, we have developed and applied a linear gyro-

kinetic model to obtain a diamagnetic- drift-corrected baloon-

ing mode equation in the limit that the mode frequency is

much smaller than the energetic particle drift frequency.35,36

As a result, the hot particle pressure gradients do not contrib-

ute to the instability drive. In the JKW model we have consid-

ered, the fast particle current density and pressure gradients

contribute neither to the mode stabilization nor its destabiliza-

tion. This yields a subtle but small difference in the structure

of the equations.20

Future research will concentrate on detailed compari-

sons of the fluid MHD stability with experimental observa-

tions and measurements. Drift kinetic theory simulations are

expected to provide detailed information on the kinetic mod-

ifications of the fluid stability properties that we have com-

puted with TERPSICHORE.

FIG. 11. The electrostatic potential Ue=x associated with an n¼ 2 mode family fluid MHD instability calculated with the JKW model in LHD at hbi ’ 4:45%

with fast particles injected at an angle of hb � 18� on a toroidal flux surface
ffiffi
s
p ’ 0:962 near the edge of the plasma is plotted when only dAjj contributions

are retained (left) and when the full electromagnetic field is computed (right).
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