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Abstract—The capacity of a wireless lattice network with local
interference is studied. In particular, the transport capacity under
a multiple unicast traffic pattern is studied for a network of
nodes placed on a hexagonal lattice. Different ways of handling
broadcast and superposition lead to various communication
models. In particular we consider models arising from the use
of compute-and-forward/physical layer network coding.

If neither broadcast nor superposition is exploited, the nor-
malized transport capacity was previously shown to be between
1/3 and 2/5. In this work it is shown that exploiting either
broadcast or superposition increases the capacity to at least 3/7,
hence providing a strict improvement.

I. INTRODUCTION

The classical means of operating a wireless network tries
to avoid interference and basically provides an abstraction
of the network as a set of reliable point-to-point bit pipes.
Compute-and-forward [1] makes use of the interference and
allows nodes in a wireless network to reliably obtain linear
combinations of messages transmitted by others in the network
as well as to broadcast messages to multiple nodes. We study
the resulting abstraction of the network, which is no longer a
set of point-to-point links. In particular we study the impact
of compute-and-forward on the transport capacity of wireless
networks.

We separate the effects of interference into broadcast and
superposition and study the impact on capacity of exploiting
each of these individually. In particular, we consider four
different communication models, that capture the abstractions
of the wireless medium resulting from different ways of
handling broadcast and superposition.

The four models, introduced in [2] are denoted by P/P, B/P,
P/M and B/M. The first position denotes whether symbols
are transmitted to a single neighbour (P) or broadcast to
all neighbours (B). The second position denotes whether
multiple transmissions to a node cause interference (P) or that
nodes receive the sum of all symbols that are transmitted by
neighbours (M). More precisely, we have

1) P/P: Neither broadcast nor superposition is exploited,
i.e., a single transmission can be received by at most
one device and multiple transmissions to the same device
result in a collision.

2) B/P: Transmissions are received by all neighbours. How-
ever, multiple transmissions to the same device lead to a
collision.

3) P/M: Nodes can decode the sum of all transmissions by
neighbouring nodes. However, a single transmission can
be received by at most one device.

4) B/M: A combination of the above two effects into a
model that involves both the broadcast and the super-
position effects.

We study the transport capacity of a network in which 1)
nodes are located on the hexagonal lattice and 2) there is
only local interference. Previous results provided lower and
upper bounds on the transport capacity for all four models [2].
The contribution of the current work consists of improved
lower bounds for the B/P and P/M models. These new lower
bounds are strictly larger than the upper bound for P/P,
hence exploiting broadcast or interference improves transport
capacity. Our previous bounds [2] are not tight enough to draw
this conclusion.

The method used to obtain the improved lower bounds is
to carefully construct a set of unicast sessions. For this set of
unicast sessions we construct a network code. This code has
the properties that 1) no intermediate node in the network can
recover the source symbols it is receiving in linear combina-
tions (as would be required in the COPE framework [3], for
instance), 2) source symbols are only retransmitted in linear
combinations by nodes that are on the shortest path between
source and destination, 3) destination nodes can decode the
required messages.

Note, finally, that our focus is not on designing the channel
codes that are required for compute-and-forward. We assume
that these are given and analyze the implications in large
networks. For an overview of results on channel coding for
compute-and-forward [1] and the related notions of physical-
layer/analog network coding [4], [5], see [6].

The outline of the remainder of this paper is as follows.
In Section II we give an exact formulation of the model and
problem statement. Section III provides an overview of the
results. The lower bounds for the P/M and B/P models are
given in Sections IV and V respectively.
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II. MODEL

A. Network topology

We consider a network of size (K+2)×(K+2), with nodes
located on the hexagonal lattice and edges between nearest
neighbours. We index nodes with a vector u ∈ N2, where we
write u = (u[1], u[2]). The location in R2 of u is uGΛ, with

GΛ =

[
1 0

1/2
√
3/2

]
. Now, we consider (V,E) with

V = {u ∈ N2 | 0 ≤ u[1] ≤ K + 1, 0 ≤ u[2] ≤ K + 1},

E = {(u, v) ⊂ V×V | ‖(u[1]− v[1], u[2]− v[2])GΛ‖2 = 1}.

Let e1 = (1, 0) and e2 = (0, 1).
Let

L = {u ∈ V |u[1] = 0, 1 ≤ u[2] ≤ K},
R = {u ∈ V |u[1] = K + 1, 1 ≤ u[2] ≤ K},
T = {u ∈ V |1 ≤ u[1] ≤ K,u[2] = K + 1},
B = {u ∈ V |1 ≤ u[1] ≤ K,u[2] = 0},
I = {u ∈ V |1 ≤ u[1] ≤ K, 1 ≤ u[2] ≤ K},

(1)

i.e., we have left, right, top and bottom boundary of V and its
interior. Let C = L ∪ R ∪ T ∪ B. Finally, we will denote by
ul ∈ L, ur ∈ R, ut ∈ T , ub ∈ B and ui ∈ I , arbitrary nodes
in these sets.

B. Communication Models

Time is slotted. Symbols are from the finite field F2, i.e., we
consider bits. In all four models each link can carry one bit per
time slot, i.e., links have unit capacity. Let X̃n(u) and Ỹn(u)
be the symbols transmitted and received respectively, by node
u in time slot n. Let Nu = {v ∈ V |(v, u) ∈ E} denote the
neighbourhood of u. The channel output Ỹn(v) depends only
on the channel inputs of neighbouring nodes in the same time
slot. All our models respect half-duplex constraints, meaning
that no node can simultaneously transmit and receive.

The functional relation between channel inputs and outputs
is now specified for the P/M and B/P models. To simplify
notation for the P/M model, we introduce variables A(u), u ∈
V , that denote the neighbour that u is transmitting to. The
models, as defined in [2], are as follows.

P/M: Superposition is exploited, but broadcast is not, i.e.,
Ỹn(u) =

∑
v∈Nu:A(v)=u X̃n(v), iff all nodes in u ∪

{v ∈ Nu : A(v) 6= u} remain silent.
B/P: Broadcast is exploited, but superposition is not, i.e.,

Ỹn(u) = X̃n(v), iff u ∈ Nv and all nodes in u ∪
Nu \ {v} remain silent.

If half-duplex or interference constraints are not satisfied, the
channel output is uniformly distributed and no information is
obtained about the channel inputs, see [2] for details.

C. Transport Capacity

The traffic pattern that we consider is multiple unicast.
For a set of M unicast sessions, let s(m) and r(m) denote
the source and destination, respectively, of the mth session,
and R(m) its throughput. Our measure of interest is the
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Fig. 1. Transport capacity of the hexagonal lattice under different models.
For each model lower and upper bounds on transport capacity are presented.
Labels next to arrows denote the range (lower and upper bounds) of the
multiplicative improvement obtained by moving from one model to the next.

transport capacity of a network which is defined as the
maximum, over all M , all configurations of unicast sessions
on a given network and all possible transmission strategies, of∑M
m=1 dist(s(m), r(m))R(m)/|V |, where dist(s(m), r(m))

is the number of hops on the shortest path from s(m) to
r(m). The transport capacity is the maximum number of bits
× hops per time slot, normalized by network size, that can
be transported in the network. Note that the transport capacity
can be interpreted as a projection of part of the boundary of
the (high-dimensional) capacity region of the network.

Our interest is in the transport capacity of the hexagonal
lattice in the limit of large number of nodes.

D. Notation

If f(x) = o(g(x)), then limx→∞ f(x)/g(x) = 0. For
integers a, b and p > 0, a ≡ b (mod p) iff a− b is divisible
by p.

III. RESULTS

In this work we present lower bounds on the transport
capacity of the hexagonal lattice under the P/M and B/P
models. These bounds provide an improvement over earlier
bounds given in [2].

Theorem 1. The transport capacity of the hexagonal lattice
under the P/M and B/P models is at least 3/7.

Upper bounds for all models and lower bounds for the P/P
and B/M models are given in [2]. An overview of the best
known lower and upper bounds for all models is given in
Figure 1. The previous lower bounds for the P/M and B/P
models are 2/5. Note that this corresponds to the best known
upper bound for the P/P model. Hence, previously, it was not
possible to claim that exploiting superposition or broadcast
would improve transport capacity.

IV. ACHIEVABLE STRATEGY UNDER P/M

The strategy is based on the network codes developed in [7].
An outline of the strategy is as follows:
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Fig. 2. Sessions for the P/M strategy for K = 3.

1) Construct 4K + 1 sessions, such that total length of all
sessions is 3K(K + 1).

2) Operate in rounds of 7 time slots.
3) In each round deliver, for each session, one symbol at

each destination.
The different elements of the strategy are covered in subse-
quent subsections.

A. Sessions
Remember that our interest is in the transport capacity,

which is defined in terms of a maximum over all possible
multiple unicast configurations. Therefore we can carefully
place unicast session and analyze the resulting performance.

In the current work we construct 4K + 1 unicast sessions.
These sessions are denoted by m1(i), m2(j) and m3(k), where
1 ≤ i ≤ K, 1 ≤ j ≤ K and 1 ≤ k ≤ 2K + 1. Session
md(i), d ∈ {1, 2, 3}, has the sequence of message symbols
md

0(i),m
d
1(i),m

d
2(i), . . . to be transferred. In the achievable

strategy session m3(K + 1) will be given throughput zero.
Hence, we put all its message symbols to zero, m3

t (K+1) = 0
for all t.

The source and destination of session md(i) are denoted
by sd(i) and rd(i) respectively. Sources and destinations are
positioned, as depicted in Figure 2, i.e., as

s1(i) = (0, i), r1(i) = (K + 1, i),
s2(j) = (j,K + 1), r2(j) = (j, 0),
s3(k) =

(
K + 1 +min{0,K + 1− k},
max{0,K + 1− k}

)
,

r3(k) =
(
max{0,K + 1− k},
K + 1 +min{0,K + 1− k}

)
.

Let λd(i) denote the number of hops on the shortest path
between the source and destination of session md(i). We have
λ1(i) = λ2(i) = K + 1 and

K∑
k=1

λ3(k) +

2K+1∑
k=K+2

λ3(k) = 2

K∑
k=1

k = K(K + 1).

(0,0) (1,0)

(0,1)

Fig. 3. Scheduling for P/M in 0-th time slot of a round. Square nodes denote
A0.

Therefore, the total number of hops, excluding m3(K+1), is
3K(K + 1).

For notational convenience later on, we introduce the func-
tions κ1 : V → {1, . . . ,K}, κ2 : V → {1, . . . ,K},
κ3 : V → {1, . . . , 2K + 1} that map a node in V to the
index of the session that has u on its shortest path between
source and destination. More precisely we have

κ1(u) = u[2],

κ2(u) = u[1],

κ3(u) = 2K + 2− u[1]− u[2].
(2)

Moreover we will use the functions δ1 : V → {0, 1, . . . },
δ2 : V → {0, 1, . . . }, δ3 : V → {0, 1, . . . } that map a node
to the number of hops from u to s1(κ1(u)), s2(κ2(u)) and
s3(κ3(u)) respectively. More precisely we have

δ1(u) = u[1],

δ2(u) = K + 1− u[2],

δ3(u) =

{
u[2], if u[1] + u[2] ≤ K + 1,

K + 1− u[1], if u[1] + u[2] > K + 1.

(3)

B. Scheduling

We use rounds of 7 time slots, counting time slots in a
round from 0 to 6. Scheduling in the i-th time slot of a round
is based on the set of nodes

Ai = {u ∈ V |i ≡ u[1]− 2u[2] (mod 7)}. (4)

Now from Ai we construct the set Bi defined as

Bi = {(u, v) ∈ V × V |(u, v) ∈ E, v ∈ Ai}. (5)

If (u, v) ∈ Bi, then in time slot i node u transmits to node v.
The schedule is illustrated in Figure 3.

It is readily verified that for any node u ∈ V :
1) In each round u is scheduled to transmit to each of its

neighbours once. If u ∈ C it will not use all its scheduled
slots.

2) In the remaining time slot that u is not transmitting it
is receiving. In that time slot all neighbours of u are
scheduled to transmit to u.

We denote by xt(u, v) the symbol transmitted by u to v in
round t and by yt(u) the symbol received by u in round t.
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C. Network code

In this section we present the network code that is employed.
We present details only for nodes in I and L, in part due to
space constraints, but also to avoid repetition.

The network code is such that nodes in the interior transmit
as follows:

xt(ui, ui − e1) = yt−2(ui) + xt−2(ui, ui − e1),

xt(ui, ui − e1 + e2) = yt−1(ui) + xt−1(ui, ui − e1 + e2),

xt(ui, ui + e2) = yt−2(ui) + xt−2(ui, ui + e2),

xt(ui, ui + e1) = yt−1(ui) + xt−1(ui, ui + e1),

xt(ui, ui + e1 − e2) = yt−2(ui) + xt−2(ui, ui + e1 − e2),

xt(ui, ui − e2) = yt−1(ui) + xt−1(ui, ui − e2)

and for nodes on the left border we have

xt(ul, ul + e2) = m1
t−1(κ

1(ul)),

xt(ul, ul + e1) = yt−1(ul)+

m1
t (κ

1(ul)) +m1
t−2(κ

1(ul)),

xt(ul, ul + e1 − e2) = yt−2(ul)+

m1
t−1(κ

1(ul)) +m1
t−3(κ

1(ul)),

xt(ul, ul − e2) = yt−1(ul) +m1
t−2(κ

1(ul)).

It follows, as stated in the following lemma, that by using
the code described above, message symbols are only retrans-
mitted by nodes that are on the shortest path between source
and destination.

Lemma 1. Let ui ∈ I , ul ∈ L. For all t ≥ 0, the transmitted
and received signals at these nodes satisfy

yt(ui) =

3∑
d=1

(
md
t+1−δd(ui)

(κd(ui))

+md
t−1−δd(ui)

(κd(ui))
)
,

yt(ul) = m1
t−1(κ

1(ul)) +m3
t+1−δ3(ul)

(κ3(ul)),

xt(ul, ul + e2) = m1
t−1(κ

1(ul)),

xt(ul, ul + e1) = m1
t (κ

1(ul)) +m3
t−δ3(ul)

(κ3(ul)),

xt(ul, ul + e1 − e2) = m1
t−1(κ

1(ul)) +m3
t−1−δ3(ul)

(κ3(ul)),

xt(ul, ul − e2) = m3
t−δ3(ul)

(κ3(ul)),

xt(ui, w) =

3∑
d=1

md
t−τ−δd(ui)

(κd(ui)),

where τ = 0 if w ∈ {ui + e1, ui− e1 + e2, ui− e2} and τ = 1
otherwise.

Proof: We use induction over t. At t = 0 the conditions
are obviously satisfied. Now suppose that the lemma holds
for all rounds before t. The induction step is tedious, but
straightforward and will be proven only for yt(u), u ∈ L, with
1 < u[2] < K. The last condition ensures that u + e2 ∈ L,
u − e2 ∈ L and u + e1 − e2 ∈ I . At round t, by using the

coding rules and the induction hypothesis, we have

yt(u) = xt(u+ e2, u) + xt(u+ e1, u)

+ xt(u+ e1 − e2, u) + xt(u− e2, u) (6)

= m3
t−δ3(u+e2)(κ(u+ e2))

+

3∑
d=1

md
t−1−δd(u+e1)(κ

d(u+ e1))

+

3∑
d=1

md
t−δd(u+e1−e2)(κ

d(u+ e1 − e2))

+m1
t−1−δ1(u−e2)(κ(u− e2)). (7)

Now, from δ1(u−e2) = 1+δ1(u+e1−e2) and κ1(u−e2) =
κ1(u+ e1 − e2) it follows that

m1
t−1−δ1(u−e2)(κ

1(u− e2)) =

m2
t−δ1(u+e1−e2)(κ

1(u+ e1 − e2)). (8)

Similarly

m2
t−1−δ2(u+e1)(κ

2(u+ e1)) =

m2
t−δ2(u+e1−e2)(κ

2(u+ e1 − e2)), (9)

and

m3
t−δ3(u+e2)(κ(u+e2)) = m3

t−1−δ3(u+e1)(κ
3(u+e1)). (10)

Hence

yt(u) = m1
t−1−δ1(u+e1)(κ

1(u+ e1))

+m3
t−δ3(u+e1−e2)(κ

3(u+ e1 − e2)). (11)

By using the properties of the κ and δ functions it follows that
yt(u) is of the correct form and the proof of the induction step
is finished.

The fact that destinations of sessions can successfully de-
code follows as a simple corollary to Lemma 1.

Corollary 1. At the end of time slot t node ul can decode
m3
t+1−δ3(ul)

(κ3(ut)) as

m3
t+1−δ3(ut)

(κ3(ut)) = yt(ut) +m1
t−1(κ

1(ut)).

D. Proof of Theorem 1, P/M model

From the construction in the previous subsections we have
achieved a throughput of 1/7 for 4K sessions, the total number
of hops of which is 3K(K + 1). The number of nodes in
the network is (K + 2)2. Therefore the achieved number of
bits×hops per time slot per node approaches 3/7 in the limit
of large K.

V. ACHIEVABLE STRATEGY UNDER B/P

The achievable strategy under the B/P is similar to the
strategy under P/M and again based on [7]. The crucial
element that needs to be addressed is that under the B/P model
sources and destinations will need to transmit twice, as is the
case for the strategy considered in [7].
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Fig. 4. The sets S(αh, αv , 0), i.e., αo = 0, for a value L = 2.

We assume that the network is of size (K + 2)× (K + 2),
where K+2 = (L+1)(L+3) for an integer L. The elements
of the strategy are:

1) Construct subsets of the network of size (L+2)×(L+2).
The number of such subsets is L3. This implies that some
sets overlap.

2) In each subset of size (L+2)× (L+2) construct 4L+1
sessions in the same way as was done for the P/M model
on the whole K ×K network, see Subsection IV-A.

3) Operate in rounds of 7L+ 4 time slots.
4) In each round deliver, for each session, one symbol at

each receiver.
Again the different elements are addressed in subsequent
subsections.

A. Definition of subsets

Let S0 = {u ∈ V |0 ≤ u[1] ≤ L + 1, 0 ≤ u[2] ≤ L + 1}.
We consider L3 different subsets of V , constructed from S0

by using an offset. The new subsets are indexed by the three
parameters αh, αv, αo, each chosen from the set {0, 1, . . . , L−
1}. The subsets are defined as

S(αh, αv, αo) = S0 + αhe1(L+ 3)+

αve2(L+ 3) + αo(e1 + e2). (12)

Some sets S(αh, αv, 0), i.e., with αo = 0, are depicted in
Figure 4. Let I0, I(αh, αv, αo) and the other components of
a subset be defined according to (1), w.r.t. the set S0 and
S(αh, αv, αo) respectively.

The subsets have been defined in such a way, that even
though each node is part of a number of subsets that grows
with L, it is at the border of at most 4 such subsets.

Lemma 2. For any u ∈ V

|{(αh, αv, αo)|u ∈ C(αh, αv, αo)}| ≤ 4. (13)

Proof: If u ∈ L(αh, αv, αo), then there is no
(α̃h, α̃v, α̃o) 6= (αh, αv, αo) for which u ∈ L(α̃h, α̃v, α̃o).
The same holds for the other border types.

B. Scheduling

We use rounds of 7(L+4) time slots. The schedule consists
of two parts. The first part assigns to each time slot a set of
nodes that are scheduled in that time slot. The second part
assigns to a scheduled node a set of parameters αh, αv and
αo.

In the ith time slot of a round node u transmits iff u ∈
Ai, as defined in (4). The resulting schedule has the property
that in each time slot, no node in the network has more than
one scheduled neighbour. Also, in each round, each node is
scheduled L+ 4 times.

Next, for each node u we assign it’s K +4 scheduled slots
to triples (αh, αv, αo). This is done by considering all triples
(αh, αv, αo). If u ∈ I(αh, αv, αo) one slot is assigned to
(αh, αv, αo), if u ∈ C(αh, αv, αo), two time slots are assigned
to (αh, αv, αo). By Lemma 2, K + 4 slots suffice.

The resulting scheduling is such that for each triple
(αh, αv, αo) we have:

1) All nodes in the interior of S(αh, αv, αo) transmit once.
2) All nodes at the border of S(αh, αv, αo) transmit twice.
3) All transmissions are successfully received by all neigh-

bours.
4) No nodes in S(αh, αv, αo) are receiving from nodes

outside S(αh, αv, αo).

C. Coding
Since, the scheduling defined above completely decouples

the different subsets, we can apply the coding scheme from [7]
to each of the subsets individually.

D. Proof of Theorem 1, B/P model
The achieved number of bit×hops per unit time is

L33L(L+ 1)

7(L+ 4)
=

3

7
L4 + o

(
L4
)
, (14)

which normalized by the network size of L4 + o(L4) is
approaching 3/7 in the limit of large L.
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