Low-Cost Multi-Robot Localization

Amanda Prorok, Alexander Bahr and Alcherio Martinoli

Abstract Localization is an enabling technology, and a prerequiisita wide range
of robotic tasks. Despite the large amount of work alreadyedio this domain, to
date, the solution to the localization problem for fully datralized, large-scale
multi-robot systems is still an open question. In this cegpte contribute to this
particular problem outline by proposing a low-cost methed:describe a fully de-
centralized algorithm, particularly designed for resedlimited robotic platforms
in large-scale systems. In the following sections, we alateothe components of
our method, and demonstrate the utility of our low-cost liegedion algorithm on
groups of up to ten real mobile robots. This chapter is rodrafeby bringing our
approach into a larger perspective, and by discussing tengial as well as its lim-
itations.

1 Introduction

A variety of tasks performed by multi-robot systems such earch and res-
cue ,], environmental monitorina [EZS], and congftiien of real struc-
tures ] need accurate localization to succeed. Dtleetntrinsic nature of
such tasks, the individual agents are often confined to d simaland weight, which
sets hard limits on on-board resources. Simultaneousdyge portion of the robot’s
resources may be dedicated to the task at hand, especiadly thifs task requires
high-frequency perception-to-action loops, leavinddittoom for solving the lo-
calization problem. These compounding problems pose thkeciye of designing
systems and algorithms that can flexibly accommodate giestmictions, without
compromising performance.
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This chapter presents a concise solution to the localizatioblem for a collabo-
rative team of mobile robots. Various strategies have bekovied in past works on
collaborative localization—our work distinguishes ifd®} respecting the following
design goals:

Low-cost: The time/energy spent on the localization algorithm musinberior
to that spent on the actual task at hand. Thus, we try to maerttie over-
all complexity of our algorithm, and simultaneously relae tommunication
requirements.

Full decentralization: Each robot carries responsibility for its own localization
and runs an independent localization algorithm on-board.

Any-time relative observations:Robot-to-robot observations can be made asyn-
chronously, at any given time. This simultaneously meaas tilere are no
connectivity constraints on the robot team, and that thepegational time of
fusing relative observations with proprioceptive sensiigounded.

Mobility: Since our system is decoupled and decentralized, we do netran
mobility by making use of any methods that rely on motion agrents among
the robots.

Independence of the environmentin order for our method to be equally suited
for indoor and outdoor applications, in structured as weliastructured envi-
ronments, it should be self-contained and robust. Thus.elyeanly on inter-
robot relative sensing, and on the possibility of an initiedalization (of one
of the robots).

Given its efficiency in solving localization problems forkumown initial condi-
tions and its efficiency in accommodating arbitrary probgbdensity functions,
our method of choice is the particle filter. We thus build oa ¢feneral probabilis-
tic framework of Monte-Carlo Localization (MCL) present'ﬂsd[lﬂ]. In particular,
our collaboration strategy exploits associated, int&oetoelative range and bearing
observations. In order to accommodate the noise charstitsrof typical relative
range and bearing measurements, we develop a robot detestidel, which is
introduced into our localization algorithm. This combinatforms the basis of our
collaborative paradigm. Given this foundation, the keyradat of our approach con-
sists of an additional routine, namelyexiprocal particle sampling routine, mainly
designed to accelerate the convergence of a robot’'s posgttmate (to the cor-
rect value), and to mitigate overconfidence. A collabogatdcalization algorithm
composed of the aforementioned robot detection modellyoirith the reciprocal
sampling routine is very efficient with respect to its norladzorative counterpart.
However, due to the computational overhead induced by tteetien model and the
reciprocal sampling routine (which scale to the square efrthmber of particles),
such an algorithm may run into real-time running constgiithis can turn out to
be particularly prohibitive for platforms with hard limits available resources. For
this reason, we further extend our approach withaaticle clusteringmethod that
reduces the complexity of the overall localization alduritand also reduces the
amount of data to be communicated. This clustering rousirespecially designed
to accommodate the characteristics of the range and beatiog detection model,
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and does not impose an additional computational burden eiottalization algo-
rithm as a whole.

1.1 Related Work

A synopsis of currently available work on multi-robot loieattion promotes a di-
vision of the various approaches into two main categorigauti-centralizedap-
proach, and decentralizegpproach. Thenulti-centralizedapproach distinguishes
itself formally from thedecentralizecapproach by imposing that each robot in the
team maintains a state vector containing the poses of atitsebin other words,
each robot maintains a full-system state estimate, versastamate of only its own
pose.

The muIti—centraIizec{Iﬁ] approach is indeed the more popular (and classical)
approach, as it enables the robots to directly take accdunter-robot dependen-
cies and to estimate correlations. However, it entails soroenveniences. In an
early work, Roumeliotis et al]__[_$O] enable the distributioha Kalman estima-
tion scheme by constructing communicating filters, whidoved team-members
to propagate their state and covariance estimates indeptwndyret, as covariance
matrix updates occur during each update step and requaeniation exchange be-
tween all robots and a centralized processor, the methattieplarly vulnerable to
single-point failures. In particular, the requirement tlate the information in all
robots after a single observation of an individual robotia®ss a communication in-
frastructure without any packet loss. The method scal€¢N?) with respect to the
number of robots, and thus limits its scalability due to tighttcomputational cost.
In [IE], Martinelli et al. propose an extension [30], wihielaxes the assumptions
on relative observations, but without further improving tilgorithm’s scalability
and cost. Howard et a|:[_|10] propose an algorithm based ommuam likelihood es-
timation, and validate it on a team of four real robots. Theéthod relies on period-
ical information broadcasts, and it is unclear how the méttwales and how sensi-
tive itis to local minima. In a recent work, Nerurkar et IAddress the reduction
of computational complexity and single-point failures byplementing a maximum
a posteriori estimation method. Nevertheless,@i?) computational cost is sig-
nificant. Also, the proposed method requires synchronoosmanication among
the robots, and its feasibility still remains to be validht real robots. Mourikis
et al. Ei] consider the problem of resource-constraindidlocorative localization
with the goal of deriving optimal sensing frequencies. ¥stexteroceptive data is
dealt with in a centralized way, the sensing frequenciegtalely decrease with an
increasing number of robots, thus limiting the scalabitifythe approach. Cristo-
faro et al. [6] present a localization algorithm that argyateviates the problems
described above. The approach is based on an extended atfonnfilter, whose
implementation is distributed over the robot team membdosvever, its compu-
tational cost increases for each new observation made asduimes bidirectional
synchronous communication, the feasibility of which remsato be evaluated on
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Fig. 1 System of two robots T/ Ae \
Fn and %, at positionsx, \
andxn, respectively, sharing y Xn ~ P Fm
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real robots. Finally, Leung et aﬂlS] develop a framewoakéd on ‘checkpoints’

which facilitates decentralization of a given localizatialgorithm. Their method,

however, still aims to maintain full-system state estiraate all robots, and remains
to be evaluated on real robots.

The category of work representing tecentralizegpproach has an alternative
take on the collaborative localization problem: each rabaintains an estimate of
only its own pose, and fuses relative observations in an ippistic fashion. Fox et
al. ﬁ] first introduced a multi-robot Monte-Carlo localtin algorithm forglobal
localization, that also relaxes noise assumptions as \geithter-robot dependen-
cies. They propose a method in which robots mutually syndheotheir position
beliefs upon detection, and show successful global loatdin on two real robots.
However, the method has limited scalability due to overdmfce occurring upon
multiple robot detections, and no analysis is provided efdlgorithm’s process-
ing requirements. Bahr et al] [1] develop a decentralizedllpation algorithm,
based on the extended Kalman filter framework, that is eafpgeiell suited for
autonomous underwater vehicles with very low data rateis ifiethod, however,
allows cyclic updates and, thus, may suffer from overconfige In an addition to
this work ﬂ], the authors remedy the overconfidence problamat the cost of a
computationally expensive solution (in particular for ganumber of robots and a
high frequency of relative observations).

1.2 Problem Formulation

Let us consider a multi-robot system WNfrobots%1, %>, ..., %N, in a 2D space,
where the numbeX does not necessarily need to be known by the robots (see Fig-
ure[d for a schematic illustration of a two-robot system). &oobot#,, at timet,

the pose&n is given by the Cartesian coordinai@g, ynt and orientatiorgh. Also,
attimet, arobot%n is in the set of neighborsgi ; of robot %, if robot % is able to

take a range measuremeph¢ and bearing measuremefint of robotZ%,. Thus,

at every moment in time, the neighborhood topology is definetthe physical con-
straints given by the relative observation sensors deplayethe robots. Also, if

Pm € M, we make the assumption that the robé can communicate with the
robotZ,. Apart from a sensing modality that enables the robots teesinter-
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robot range and bearing (including a unique robot idenjifteey are also equipped
with a dead-reckoning self-localization module (e.g., métry), but do not make
use of any exteroceptive sensors capable of feature regmgni

As introduced earlier in this text, every robot runs its osglf-contained, collab-
orative particle filter, with the goal of localizing itselfitiout any prior knowledge
of the initial state or previous measurements. In practieeassume that one of the
robots is localized at the start of an exercise. It turns bat, tas time evolves, our
method ‘propagates’ the correct position belief from raleatobot with help of the
relative positioning sensors, and that at some point in titheobots are localized
(with respect to an upper error bound). The belief of a rabjpd'se is formulated as

Bel(Xnt) ~ { (X, W) i = 1,...,M} = Xy (1)

whereM is the number of particlexﬂ]t is a sample of the random variablg; (the
pose), an(sivp,],t is its weight (or importance factor). The symbGl; refers to the set

of particles(x,[ﬂt,w,[ﬂg at timet belonging to robo#,. This context formalizes the
scope of this chapter: the method that we detail in the fatigusections solves the
localization problem for large robot teams by exploitindjaiooration.

We note that the nature of this problem scenario relatestavelirrent real-world
scenarios. In particular, in environments where it is haréwen impossible to get
a GPS position update, such as underwater or inside buddinig always possible
to exploit the mobility of one of the team mates to move intoRSJriendly envi-
ronment. In underwater robot tearhs [1], arobot can surfageta GPS update. Or
similarly, in search and rescue robot teams [12], a robohesigate to the exit of a
building. Several authors also comment on the advantagestefogeneity in robot
teams. Bahr et all:|[1] note that for optimal localizatiorisibdvantageous to have
a few team members that are able to maintain an accurateagstohtheir position
through sophisticated dead-reckoning sensors, thusiagablmuch larger group
of robots with less sophisticated sensors to maintain aorate position. In the
same line of thought, Madhavan et ﬂ[lB] argue that whemtiadity of the mea-
surements from absolute positioning sensors deteriofatesertain robots in the
team, or if some of the team members do not possess absokit@ping capabil-
ities, those robots can take advantage of other team memitersomplementary
positioning capabilities.

1.3 Case Study

To give the reader a feel for our algorithms, we perform savexperiments on a
team of Khepera lll robcﬂs[ﬁ]. The Khepera Il robot (see Figuré 2) has a diam-
eter of 12 cm, making it appropriate for multi-robot expegims in controlled envi-
ronments. It has a KoreBot extension board providing a stahdmbedded Linux

1 http://www.k-team.com/
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Fig. 2 Fleet of ten Khepera
Il robots. The robots are all
equipped with an inter-robot
relative range and bearing
module, which is composed
of a ring of 16 infrared light
emitting diodes (LEDs).

operating system on an Intel XSCALE PXA-255 processor mgrt 400 MHz,
and uses a communication infrastructure enabled througdkBE 802.11b wire-
less card which is installed in a built-in CompactFlash.slotorder to measure
the ground truth positioning to evaluate our algorithms,imsalled an overhead
camera system as detailed E[Z?], in combination with thenogource tracking
software SwisTracHﬂ?]. This system allows us to monitor @bots in real-time
with a mean error of about 1 cm and a maximum error below 3 cra.rohots are
equipped with wheel encoders and use odometry for selfimatan. Each robot
also uses a relative range and bearing module [29], whichiges the relative ob-
servations used by the robot detection model. Fiflire 2 siemvsobots equipped
with a relative positioning module. In our experimentalepdhe boards have a pro-
portional, additive Gaussian range noise with a standaridtien of g; = 0.15- ryp,

a bearing noise ofig = 0.15 rad. In the following, we will discuss the localization
performance in terms of the mean positioning error of altiplas in the robots’ be-
liefs with respect to the ground truth positions obtainexhfithe overhead camera
system. This metric implicitly includes the spread of thetipke positions, and thus
also represents the uncertainty of the position estimate.

2 Collaborative Localization

In this section, we elaborate our collaborative local@matalgorithm , which,
together with the Monte-Carlo Localization (MCL) methoegpented in [7], forms
the baseline for our work. For convenience, the completaliation algorithm is
shown in Algorithnid.

2.1 Multi-Robot Monte Carlo Localization

Letus from here on consider a rola@} that is detected by robe#,, and simultane-
ously receives localization information from rob@t;,. If we make the assumption
that individual robot positions are independent, we camfdate the update of the
belief of robot#, at timet with
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Bel(Xnt)=p (Xnt |Un,0..t) : / p (Xn,t |Xm,t7 Imnt, emnt)Bel (Xmt) dxm.,t (2)

whereun o+ is the sequence of motion control actions up to timé&or such a
collaboration to take place, robef, needs to communicate its range and bear-
ing measurementsnn, émm andBel(xmt) to robotZ,. Thus a communication
message is composed @t = <me, émm,xm,t>. If several robots in a neighbor-
hood.#,t communicate with robo#,, the received information is the set of all
relative observations made by those robots of raBgat timet, as well as the be-
lief representationXm; of all detecting robotsZm, € 457:. We denote this data set
asDnt = {dmnt|%Zm € 1 }. We note that the collaborative aspect of this formal-
ism lies in the integration of roba%y's belief into that of robot%, (this update
step is shown in Algorithrl1 in linEl5). As previously discedsn [7], there are
certain limitations to this approach. Due to the fact thaota7,,, integrates its posi-
tion belief into that of robo#,, upon detection, subsequent detections would induce
multiple integrations of this belief, ultimately leading&n overconfident (and pos-
sibly erroneous) belief of the actual pose. Fox et al. renmtbadyshortcoming by
considering two ruleg(i) their approach does not consider negative sights (no de-
tection) of other robots, and) they define a minimum travel distance which a robot
has to complete before detecting a same robot again. Althaug(i) is a practical
consideration, ruléii) limits the scalability and robustness of the approach. ¢t fa

it does not respect our design goals of full mobility and &ime observations (see
Sec[1). We will see in the following sections how our apploiackles this problem
by exploiting a reciprocal sampling method.

Algorithm 1 MultiRob Recip MCL(Xnt-1,Unt,Znt, Dny)
1: Yn,t = X;u =0

2: fori=1toM do )

3: an,t — Motion_Model(un,t,XL'}[_:L)

WHL — Measurement_Model(Xg]t)

WHL < Detection_Model(Dnt, th , wﬁk)

4
5
6:  Xnt+ Xnt+ <thawmt>
.
8

. end for
: fori=1toM do
9 r~(0,1)
10:  ifr<(1—a)then
11: X\ + Sampling(Xny)
12:  else
13: Xm[ < Reciprocal_Sampling(Dnt,Xnt)
14:  endif ) )
150 Xop <+ Xt + <Xmuwmt>
16: end for

17: returnX
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Fig. 3 Example application of the detection model for multipleai¢ing robots (a) for two robots
and (b) for three robots. Here, a set of 20 particles is shoepresented by oriented triangles
superimposed over the detecting robats, #», and #3. The detected robot is shown in white.
The model’s probability density is superimposed on the aeterobot. The dotted line and the
orientation of the robots show the actual relative range lzeating. The particle positions were
generated randomly from a normal distributiary & oy = 0.2 m, andg, = 0.2 rad), and range
values are perturbed by an additive Gaussian noiseayith 0.15 and for the bearing values with
0g = 0.15 rad.

2.2 Range and Bearing Detection Model

The detection moded(x,|dmn) describes the probability that rob@t, detects robot
Zn at posexn = [Xn,Yn, ¢h] T, given the detection datd,n. This probability density
function is applied to the ensemble of particles in the lhelfaobot %y, in order
to adjust their weights to current relative observationse@ the nature of relative
observations, we make use of a locally defined polar cootelsystem. Hence, we
define the transformation from Euclidean to polar coordis@g (xq, Xp) as

T8 (Xg,Xp) = [re(;,;] Q)

where
Fap = \/ (Xp— —Yq)? 4)
Bqp = atanZ(y p—Yq)a( p—xq))—% (5)

andxq defines the center of the local polar coordinate system., Btsssiming Gaus-
sian noise and knowledge of the range and bearing standeiatidas (©; and oy,
respectively), and the independence of range and bearingurements, the detec-
tion model is

P(Xn|dmn) =1 - ‘D( vaxn) H, Z) H (6)
XI],W|L|,J|>
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where ®(-; 4, %) is a multivariate normal probability density function withean
MU = [Fnt, émm]T and where) is a normalization constant. The covariance matrix
is 5 = diag([0?, 0Z]) (the work in [8] provides experimental evidence for our plat
form showing that a range and bearing measurement beh&edsvth independent
Gaussian variables). As seen |E|[26], the detection modekeasily be augmented
by an additional component in case robét reciprocally detects roba#,. Here,
for the purpose of our case-study, we use a simple Gauss#aibdtion in polar co-
ordinates, but all reasonings are valid for completelyteaiby distributions. Indeed,
since we use a particle filter, we can keep the same framewodanfy possible un-
derlying range and bearing hardware not fulfilling the Gaursaoise assumption.
Finally, the detection model incorporating the detectiatadrom multiple de-
tecting robots can be formulated as the update equationrshomgorithm[2. Fig-
urel3 illustrates the probability density function resudtirom the detection model,
(a) for two detecting robots, and (b) for three detectingptebWe notice that when
detection data from multiple robots is integrated into thege and bearing model,
the detection precision increases.

Algorithm 2 Detection_Model(Dn,t,Xt[i], tm)

L1 W W Tgppenn PO )
2: returnw

2.3 Reciprocal Sampling

In addition to using a robot detection model for updating ltkeéef representation
Bel(xnt), our approach relies onraciprocal sampling method. Let us refer to the
iterative process described in Algoritfith 1: instead of siamgga new particle pose
xmt from Bel(xmtfl) in line[1], the reciprocal MCL routine in liie 13 samples from
the detection modqj(xn|dmn), according to EQ.l6. Thus, samples are drawn at poses
which are probable given reciprocal robot observationd velnich are independent
of the previous belieBel(xn;-1). By defining a reciprocal sampling proportion
particles are sampled from the robot’s own belief with a pility 1 — o, and with

a probability ofa from the probability density function proposed by the détec
model. The advantages of this procedure are twofold. fii@sl the reciprocal sam-
pling method exploits the information available in a whad®aot team, it continu-
ously creates particles in areas of the pose space whickkahgto be significant,
and thus it allows for very small particle set sizes (alsaxshim [26]). Secondly, by
sampling new particles from the detection model, the methtvdduces a variance
proportional to that of the relative detection sensors thebelief of the detected
robot (this proportion can be tuned by varyiog, and effectively mitigates over-
confidence. Algorithni]3 shows the routine where [ihe 4 regmesthe sampling
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step. There are a multitude of methods which can be appliedrple from a given
distribution. In our particular case (multi-modal Gaussig sampling from the de-
tection modelp(xn|dmn) is cheap. For more complex probability density functions,
sophisticated and efficient methods such as slice sam@]g:{an be employed.

The idea of extending standard MCL with additional sampiimgthods was first
shown in ]. The resulting algorithm namitixture MCL was shown to increase
the robustness of single-robot global localization. Outtrod differs from that one
in that it extends to collaborative multi-robot localizatialgorithms by sampling
from the detection model of one or several mobile robots &ehmositions are ini-
tially unknown) as opposed to sampling from the detectionlehof a potentially
large set of static environmental features (whose posititave to be known or
mapped a priori). Indeed, for complex environments, thehobin ] must be
preceded by a fingerprinting process.

Algorithm 3 Reciprocal Sampling(Dng,Xnt)
. if Dny = 0then

1
2: X< Sampling(Xny)
3: else

4 X rldmnEDn.t p(X‘dmn)
5: end if

6: returnx

We illustrate the effect of reciprocal robot detections leyfprming a short ex-
perimentinvolving two Kheperal lll robots, one of which itially localized. Figure
[4 shows the localization error for the second, initiallyagalized robot: In compar-
ison to the standard sampling algorithm (Algorithin 1 with= 0), we see that the
reciprocal sampling algorithm (Algorithid 1 withh > 0) reduces the localization
error by taking better advantage of information availahbhetloe localized team-
member. Additionally, in this case where the first robot idlVeealized during this
short time span, an increased reciprocal sampling prapuoatis more efficient due
to the higher probability of drawing accurate reciprocahpées.

Figure[® shows results obtained in an experiment of 3.5 regduration in-
volving ten robots (with one of the robots initially locatid). The plots discuss the
sensitivity of our algorithm with respect to the number oftfzdes M, as well as its
robustness with respect to communication failures. Fif{e§ shows the localiza-
tion performance (averaged over time and robots) for a bkriaumber of particles.
Larger particle sets contribute to an improved localizatecuracy. Yet, an 8-fold
increase in the number of particles produces a reductiomlgf26% of the local-
ization error. This result coincides with the conclusioreda in EB], where it was
shown that by increasing the number of particles, the perdmice converges to that
of an ideal localization filter with an infinity of particleBigure[5(B) shows the lo-
calization performance for variable message failure rdteseasing failure rates
induce a graceful degradation of the localization perfarcea This result confirms
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the algorithm’s robustness with respect to communicagdoifes, which ultimately
reinforces the underlying asynchronous nature of our boHative paradigm.

—o— Standard Sampling

T —o— Reciprocal Samplingy = 0.1

‘ i ’ I T —— Reciprocal Samplingy = 0.5
lNTT : :
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Fig. 4 (a) Schematic illustration of two robots driving past eatea Three detections are made.
(b) Localization error for an initially unlocalized robdtdetects a localized robot three times along
its path. The standard and reciprocal sampling algorittemg(oying 50 particles) are tested 1000
times on the data set. The times at which the observationmade are marked by dotted lines
(11.2s, 13.6s, 16s).

—o—0.1

0 25 50 100 200 400 06 56 160 260
Number of particles Time [s]
(@ (b)

Fig. 5 Localization error for 100 evaluations of the reciprocahpéing algorithm, employing 100
particles per robot and a reciprocal sampling iate 0.06. (a) Boxplots show the 25th, 50th and
75th percentile, with whiskers containing 85% of the date &l robots and time). The algorithm
is tested employing25, 50, 100, 200, 400particles per robot. (b) Average error over all robots.
Detection data messages are corrupted by a failure rgt@. df 0.2, 0.4. The errorbars show 95%
confidence intervals.
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3 Particle Clustering

The algorithm complexity of the detection mog#kn|dmn) (Eq.[8) leads t@(M?)
for Algorithm[d. This cost can be prohibitive for a large nugnbf particleM (i.e.,
large with respect to available computational resour@dsh, a multi-robot system
may have communication constraints that make sending |eagticle sets infea-
sible. Hence, even though the method applied in this papawvsifor very small
particle setleG], we resort to a clustering method to frrtieduce the computa-
tional and communication overhead.

Let us consider a case where rob3gt, detects robot%Z,. For better clarity in
the following derivations, we will assume that;¢| = 1. The goal of the clustering
method is to reduce the number of operations needed to centipeitprobability
density functiorp(xp|dmn). Thus, for every detection that it makes, roly resorts
to a clustering method which summarizes its Xgtcomposed oM particles to
a setXy composed oK cluster abstractions (or centroids), reducing the overall
computational cost t®(MK) (this clustering routine is detailed later, in Algorithm
[ of Sectio’311). The resulting partition of the particlé sedenotedsy,, with

|ém| = K. An individual clustercﬁﬁ] € %mis defined as the set of particles

o = {xhlwll | £ (ol il ) =K. @

wheref is a function mapping a particle to a cluster index. Also, wﬁrﬂsém as

the data abstraction of clustqih], representing all particles in its set by the tuple

ol = i wi SRy ®)

where [ftHﬁ] is a two dimensional vector anﬁ#f] is a covariance matrix. Thus,

X = {Cﬁﬂ |ch] € %m} is the set ofK cluster abstractions. Finally, we denote the
clustered detection data dﬁn: (Fmnt émm,)A(m>, which is sent in place of the un-
clustered detection dath,,. Formally, given the notation introduced above, finding
an optimal particle clustering is equivalent to solving folowing optimization
problem .

mMin D(p(Xa|dmn) || P(Xn|dmn)), 9)

dmn
wherep'is an approximated detection model, abda distance measure between
two probability density functions. Jain et dﬂll] pointtd@lat in a typical cluster-
ing task, the actual grouping (or clustering) and clusteéa @é@straction (or cluster
representation) are separate components of the task amdraraonly treated se-
quentially. Hence, we deal with our problem by dividing itarthe two following
sub-problems(i) we consider the set of particle§, and find an optimal way to

create a partitiorsm, and(ii) we consider an arbitrary cluste,@ﬁ] in ¢m and find

an optimal way to determine its cluster abstracﬁjéﬁ’n For a gjven seXq, these
two steps together ultimately lead to a set of cluster abistmasXm, which, instead
of Xm, is included into the detection data tumlg, for every new detection made.
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Fig. 6 The detection model (here with range and bearing ngjse 0.15 andog = 0.15) is pro-
jected on the detected robot (in white). Final cluster parts are superimposed on the particles
of the detecting robot. From left to right, top to bottom, thember of cluster& employed by the
clustering algorithm is: 100, 32, 8, 4, 2, 1, for a total numdsieparticlesM = 100.

The following paragraphs detail our low-cost clusteringmach that aims to meet
these specifications.

Algorithm 4 Cluster(Xmt,K)

P Xm0

L o X

D Cm— cﬂ

:fork=1toK—1do

Kmax, dim <— find_highest_variance_cluster(%m)
Clnkmaﬂ,cmﬂ] — split_cluster(CLn a"],dim)
G = Gt

: end for

. for k=1toK do

Cm assign_data_abstraction(c[mk])
Kin ¢ X+ T

: end for.

. returnXy,

SooN o arwn R

PR e
wN P
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3.1 Clustering Algorithm

The optimal, combinatorial solution to the clustering gdesb of Equatiof P requires
the evaluation of a very large number of partitions (the nend§ ways to partition
a set ofM data points intd non-empty clusters is given by Stirling number of the
second kind). Even though efficient approaches have beg@oged|[14], combina-
torial solutions still remain prohibitively expensive M@n the usefulness of cluster-
ing in a large range of disciplines, many non-combinatariiastering approaches
have been proposeE{ll]. Yet, since our goal is to reduce nlaé domplexity of
our algorithm, the complexity of the actual clustering altfon must be at most
equal toO(MK). One of the most commonly used low-cost clustering metheds i
the k-means aIgorithnEiZO]. It starts off with a random miitcluster assignment
and iteratively reassigns clusters until a convergenterah is met or a maximum
number of iterationd. is attained. Although the algorithm has a low time com-
plexity O(MKL), its main disadvantage is that it is sensitive to the initialster
assignment. The variant ISODATA algorithB [3] is also amdtwve clustering algo-
rithm with a time complexity o©O(MKL), with the additional capability to split and
merge clusters according to predefined threshold valuisshiérefore more flexible
than the k-means and able to find the optimal partition, pledithat the user is able
to define correct threshold values. Non-iterative, incnetaleclustering algorithms
have the advantage that they are even less time consumimgeheative algorithms.
The leader algorithnﬂg] is the simplest of that kind. Datanp®are incrementally
assigned to existing clusters based on a distance mettic,ngiv clusters being
created if all distance measures exceed a predefined entéfet, given the algo-
rithms incremental nature, the final clustering result jsat@ent on the order of the
assignments made.

We take inspiration from the methods described above toldpeenon-iterative,
order-independent, non-parametric approach that predueeedefined number of
K clusters. Our solution is inspired by the construction oftidimensional binary
trees |ﬂ4], and consists of a 2-dimensional sorting algoritthich repetitively sep-
arates the particle set along the mean of the dimension pirogithe highest vari-
ance, until the predefined maximum number of cluskeis attained. We note that
splitting along the median instead of the mean incurs a mighmplexity. A de-
scription of this algorithm is shown in Algorithid 4. The fuian in line[  has a
complexityO(M), the function in liné6 has a c:omplexi@(|c£n - ), and function
in line[I0 has a complexitp(|c£ﬁ]|). Hence, the total algorithm cost @(MK).
Figure[® shows examples of final cluster partitions for sikedént total numbers
of clusters, performed on an identical set of 100 partidlgs.note that, even for
maximal clusteringi = 1), the detection model is well approximated.
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3.2 Cluster Abstraction

For an arbitrary cIustec,qﬁ], we have the non-summarized detection dﬂﬁéz

(Fmnts émm,c%. The problem of finding an optimal cluster abstract't&hcan, thus,
be formalized as

e ¥
Dk (p116)= | p(xalc log 2O (10)
o P(Xn|dmn)

whereDg_ is the Kullback-Leibler divergence, anﬂﬂn = <me,émm,c[mk]> is the

summarized detection data. 28], we showed the followBigen a poinb‘(gﬁ] =

[X%],y[mk}, q&[r'f]]T, and the probability density function

BOxnldin) = @ (TR xn): Al 5 ). (11)

the Kullback-Leibler divergence betweerandp'is minimal if

- 1 -
B = g 3 v (12)
|Cm | xpnecw
. 1 a QT
5= 3 (i) (v - )
|Cm | B 1xH]ecH§]
(13)

are the mean and covarianca/&‘” = TQ()“(@,)“(EJ.), with

Xm = xm + rmn€oY Bmn+ qu‘J) (14)
i = VM + TnSin(Bmn -+ @). (15)
We note that the above equations do not take into accountitertainty of the
range and bearing observations. Thus, we propose a vagsettibn modep {cf.
Equatiori6) that explicitly takes into account noise. Weehav

B(Xn|dmn) = 1- Z ) (Tg(fdﬁ ) g S z) K (16)
M eXm

where [fl,[ﬁ and fr[][f] -+ 2 approximate the true mean and covariance, respectively,

in the presence of noise (we remind the reader Fatdiag[0?,03])). Indeed,

finding a closed form solution for the true values is intratgaHowever, if the set

of particlescﬁﬁ] is densely populated, our approximation is very good. Meegeo

if the particle positions coincide, and if for a given clusmgﬁ] the pointf(ﬁﬁ] is its

center of mass, the solution is optimal. Hence, we completedata abstraction



16 Amanda Prorok, Alexander Bahr and Alcherio Martinoli

o = M Wi 5Ky (cf. EquatioriB) withk[¥ as the weighted center of mass,

andv@rﬁ] the cumulative weight

01 1l ]
X[mk] =W Wr[‘lrjn[ r[‘lrla r[‘lrjnmw]-r (17)
M (i) echy
=Y whl (18)
(xh whn) €cit

Finally, we note that the constraints given by our approx@daletection modegb ~
motivate the choice of a clustering algorithm which clustdensely located parti-
cles into common clusters (a condition which is satisfied lyo#ithm([4).

Figure[7(d) shows the Kullback-Leibler divergence betwienfull and the ap-
proximated detection mode[sand p, calculated from a data set gathered by ten
robots. The more clusters we employ in the clustering metthe@dsmaller the diver-
gence to the true probability density function. This shdwe bur clustering method
produces a valid representation of the original probahdénsity functions. Figure
[7(B) shows the localization performance when employingthstering method for
a variable number of clusteks We note that the difference of performance between
maximal clusteringi = 1) and modest clustering{(= 32) is very small. Finally,
to illustrate the localization process, Figlile 8 shows teiglapshots based on real
data from an experiment performed over an interval of 12@mduwvhich one robot
(in red) is initially localized. Each robot employed 100 fades with a recipro-
cal proportiona = 0.06, and used the clustering routine with maximal clustgri
(K = 1). This experiment concludes the validation of our appndacshowing how
ten robots are able to converge to correct position estsnai@ nevertheless simple,
but effective demonstration scenario.

0.8 ——1

—o0—4
——8
—16

0.6 1 —A—32
E s \
W \
0.4 2} \
S 06 g
0: : N
0.4
0.2 \ e e

16 » o 50 100 150 200
Number of clusters Time [s]

(@ (b)

Kullback-Leibler divergence

1 4 8

Fig. 7 (a) The Kullback-Leibler divergence between the full angragimated detection models,
as a function of the number of clusters employed by the alungtenethod. (b) Average localization
error over 100 evaluations. The localization algorithmestéd, employing the clustering method
using{1,4,8,16,32 clusters. The errorbars show 95% confidence intervals.
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Fig. 8 The figure shows eight snapshots with 18s intervals of anrerpatal run on the team of
ten Khepera Il robots. Each robot employed 100 particlél wireciprocal proportioor = 0.06,
and used the clustering routine with= 1. The black lines show the trajectories completed in the
time intervals between snapshots, with the filled black depsesenting the robot positions at the
end of the previous snapshots. The red robot was initiatlgllzed.

4 Conclusion

In this chapter, we presented a fully scalable, probalmishulti-robot localiza-
tion algorithm based on the Monte Carlo method. Its maximatall complexity is
O(|-#'|MK), where|./"| is the number of neighboring robots (at a given time, for a
given robotin the systeml] the number of particles, aidan adjustable number of
clusters produced by the clustering algorithm. This chiis¢temethod has shown to
produce increasingly accurate probability density fuorctiepresentations for large
K, and when employed in practice, has shown to perform wel évevery small
K. Furthermore, given the asynchronous paradigm of ourlootktion strategy, the
algorithm’s update rate is much higher than the inter-rohessage communication
rate. Thus, the number of detected neighHof§ is in practice no higher than 1,
and the complete routine complexity is reduce®(@K). Thus, the algorithm is
fully scalable with respect to the number of robots in theeys In addition, the
algorithm poses no communication constraints and showseefyl performance
degradation in case of message failures. Our approach \pasiementally validated
on a team of ten real robots.

Finally, we note that a continuation of this work should ddesthe following
aspects in particular. We evaluated our approach on a hasetperimental setup,
where the belief of a robot’s position is well representedsingle particle cluster.
Hence, more complex scenarios, including obstacles anti-mabal sensor mod-
els, may exhibit a significant spread of performance whestefing. In such cases,
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a trade-off between the number of clust&sand accuracy must be determined.
Also, in severely multi-modal distributions, the constian of the cluster centroid
must be revisited. In the same line of thought, more work s¢ede done to ex-
plore arbitrarily distributed, non-Gaussian detectiondele as an extension to our
generalizable framework.
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