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Solving transport equations in heterogeneous flows might give rise to scale dependent transport
behavior with effective large scale transport parameters differing from those found on smaller
scales. For incompressible velocity fields, homogenization methods have proven to be powerful in
describing the effective transport parameters. In this paper, we aim at studying the effective drift of
transport problems in heterogeneous compressible flows. Such a study was done by Vergassola and
Avellaneda in Physica D 106, 148 (1997). There, it was shown that for static compressible flow
without mean drift, impacts on the large scale drift do not occur. We will first discuss the impact of
a mean drift and show that static compressible flow with mean drift can produce a heterogeneity
driven large scale drift (or ballistic transport). For the case of Gaussian stationary random processes,
we derive explicit results for the large scale drift. Moreover, we show that the large scale or effective
drift depends on the small scale diffusion coefficients and thus on the molecular weights of the
particles. This study could be applied to weight-based particle separation. Numerical simulations are

presented to illustrate these phenomena. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2827584]
I. INTRODUCTION

The large-scale behavior of solute transport in heteroge-
neous media is a basic problem of high interest, for example,
in subsurface hydrology, petroleum engineering, chemical
and biomedical engineering to mention but a few. In its most
general case, the velocity field in which the solute is released
is taken to be incompressible, irrotational or a combination
of both. Incompressible fluid flows are governed for ex-
ample, in fluid dynamics by the Navier—Stokes equations or
in porous media flow by the Darcian equations. Compress-
ible flows, which might be written in form of a potential or
irrotational vector fields, can arise along energy gradients in
complex energy landscapes (gradient flows) or in flows with
external source or sink terms.

Due to the inhomogeneities in the local flow field, the
large scale transport properties are generally very different
from those found on the smaller scales. A central aim is to
understand the large scale behavior of transport problems
governed by local inhomogeneities, for example by replacing
the heterogeneous medium by an equivalent homogeneous
medium with similar large scale properties. There are con-
ceptually different methods to derive so-called homogenized
system’s properties as for example the homogenization
theory, the stochastic modeling approach and the volume av-
eraging approach. The idea of an equivalent homogeneous
medium can be explained best by introducing the concept of
a control volume (CV) or representative volume (RV). The
CV is chosen large enough so that a process averaged over
the CV can be characterized by properties that are constant at
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various locations of the domain. Moreover, the CV has to be
small enough to still resolve characteristic features of the
process behavior in the domain. Closest to this concept is the
volume averaging approach pioneered by Whitaker.! Ho-
mogenization theory introduces two length scales, the small
one corresponding to the length scale of the control volume,
the large one related to the observation scale. The homog-
enized medium in this approach follows by asymptotic ex-
pansion. The stochastic modeling approach is first of all free
of the definition of any control volume because it is based on
probability theoretical concepts. Starting from a statistical
description of the system behavior on a local scale with a
fixed time-independent structure of the heterogeneities, the
objective of the method is to derive appropriate averaged
quantities characteristic for the system on length and time
scales larger than the small scales. If the medium is ergodic,
expectations can be replaced by averages over a representa-
tive volume over the heterogeneity, which compares with an
average over the control volume. The stochastic approach is
well known in solid state physics and fluid mechanics where
it is used to model systems with “quenched disorder,” see,
e.g., the reviews by Haus and Kehr” and Bouchaud and
Georges.3 The stochastic approach has also been successfully
applied to many problems in groundwater hydrology. Ex-
amples can be found in the textbooks by Dagan4 and Gelhar,”
to mention only a few prominent textbooks in this area.
The large scale transport behavior for solutes moving in
incompressible flows has been studied by many authors. In
the case of zero or weak mean divergence free flow, the large
scale behavior is well understood and has been rigorously
analyzed in the framework of homogenization by McLaugh-
lin, Papanicolaou, Pironneau,6 Avellaneda and Majda,7 Ma-
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jda and Kramer,® E,” and many others. We refer to Ref. 8 for
further references. The case of transport in divergence free
flows with strong mean has been less studied and we men-
tion Majda and MacLaughlin,10 Pavliotis,11 Lunati, Attinger,
and Kinzelbach,12 Abdulle and Attinger.13 We refer to Ref. 11
for further references. Only a few works have investigated
solute transport in compressible flow fields (see Refs. 14-16,
and the references therein).

The problem of describing the large-scale transport be-
havior in heterogeneous compressible flows with nonvanish-
ing mean drift is to a large extend open and is the central
focus of this paper. Using the stochastic modeling approach,
we will discuss a fundamental difference between the large
scale transport behavior in incompressible and compressible
flows with mean drift. We study the impact of a mean drift
on the effective large scale transport behavior, and show that
static compressible flows can produce heterogeneity driven
large scale drifts. This extends the results of Ref. 14, where
is was shown that static compressible flows with a vanishing
mean drift do not produce heterogeneity induced large scale
drifts (or ballistic effects). Furthermore, the techniques used
in this paper are different. While homogenization by multiple
scale expansion was used in Ref. 14, we derive an exact
formula for the large drift by means of the Green functions
and Fourier techniques. Making use of perturbation theory,
we present then explicit results for the effective transport
velocities in compressible flows. We show that the effective
drift depends on the small scale diffusion and thus on the
molecular weight of the particles. This effect might be used
in applications as for example for the construction of effi-
cient sorting devices for separating macromolecules. Such
devices have been proposed in Refs. 17 and 18 and are of
high interest.

The paper is organized as follows: In Sec. II we formu-
late the transport model problem and the class of flow fields
considered. In Sec. III we derive an exact theory for large
scale drift and draw the correspondence with homogeniza-
tion results. In Sec. IV, a perturbation expansion is given in
order to obtain explicit results for the large scale drift. A
qualitative study of the influence of the flow field correlation
lengths and the mean velocities on the effective drifts is
given. Finally in Sec. V we present numerical results illus-
trating the effects of the flow field correlation lengths and the
mean velocities on the particle trajectories.

Il. THE TRANSPORT MODEL

The solutes are being transported by two physical
mechanisms: They are passively carried along with the fluid
while spreading due to diffusion. Consequently, the time
evolution of the solute concentration is described by an
advection-diffusion equation with a heterogeneous flow field
u(x),

%dm0+vJﬁ@k@Jﬂ—V[DVc@Jﬂ:O, (1)

C|t=0 = p(X), (2)
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where c(x,1) is the particle concentration and D is the diffu-
sion tensor. We assume x € R%, d=2,3 and vanishing con-
centrations at infinity as boundary conditions. We decompose
the velocity field into a constant mean value u and a fluctu-
ating part u(x) around this mean value,

u(x) =u+u(x). (3)

In its most general form, any flow field T(x) is composed of
an incompressible and an irrotational part,

u(x) =v(x) + w(x), (4)

with V-v(x)=0 and V X w(x)=0, respectively. Both parts,
the incompressible as well as the irrotational one, may be
generated by so-called potentials. Any incompressible veloc-
ity field has a vector potential A(x) such that

v(x)=V X A(x). (3)

Note that an incompressible field cannot be described as hav-
ing a scalar potential in general. This is only the case for any
irrotational field which can always be expressed (for a sim-
ply connected domain as we consider here) by some poten-
tial ¢ such that

w(x) == Ve(x). (6)

A. Transport parameters

In uniform flow fields, the transport velocity u;(¢) and
the dispersion coefficients D;,(¢) are given by

d
%sz%W& (7)
_1d. o Wy, (1)
Dij(t) ) dt[mij (1) —m; (t)mj ], (8)

where m;.])(t) and mgf)(t) are the first two moments of the
properly normalized spatial concentration distribution in d
dimensions,

rﬁ%hj&%wm& (9)

with a density p(x,1),
c(x,1)
Jdye(y,n’

Since the total mass [d%yc(y,?) is conserved for all times and
equal to a constant, in the following we will set it to one, and
thus identify density p(x,7) with concentration c(x,?).

For heterogeneous flow fields, transport properties are
generally very different from those found in uniform flows.
In the following, we describe the stochastic approach for the
study of such flow fields. Starting from a statistical descrip-
tion of the system behavior on a local scale with a fixed
time-independent structure of the heterogeneities, the objec-
tive is to derive equivalent quantities, characteristic for the

p(x,1) = (11)
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system on larger length and time scales. In the stochastic
modeling approach, the given heterogenecous medium is
identified as one particular typical realization of a spatial
stochastic process. The basic assumption of the approach is
that the transport coefficients can be expressed as averages
over the ensemble of all possible mediums realizations de-
noted by the overbar in the following expression:

d
w0 = <m0, (12)
. 1d
D50 = Lm0 =m0 (13)

By construction, such averages represent properties charac-
teristic for the whole ensemble of all possible mediums real-
izations. On the first sight, the stochastic approach might
seem to be of limited value to predict transport properties for
a single given medium. The reason why the stochastic
method does have predictive power also for the individual
medium lies in the fact that for appropriate quantities, the
fluctuations from realization to realization become small af-
ter the concentration distribution has sampled a sufficiently
large representative part of the given medium. The charac-
teristic transport properties found in different realizations of
the medium then fluctuate only weakly around the ensemble
averages constructed in the stochastic approach, so the afore-
mentioned properties represent realistic values typically
found at large-scales in one given heterogeneous medium. In
the limit — o0, the ensemble averaged quantities converge to
the large scale quantities of the single realization.*” These
asymptotic transport parameters are called effective param-
eters in the following:

us'" = U™ =), (14)

D = D= ). (15)

They are equivalent to transport parameters derivable in ho-
mogenization theory, when this latter theory applies.

B. Fourier transform

To study the transport parameters—transport velocity
and dispersion coefficients—it is preferable to transform the
transport equation (1) into Fourier variables. We define

é(q,t):fddxc(x,t)exp(+ iqx) and
(16)
c(x,1) = f é(q, texp(- igx),
q

where ¢(q,7) denotes the Fourier transform of ¢ and where
q.x € R? are d-dimensional vectors and gx denotes the cor-
responding scalar product. For the d-dimensional
q-integration over the whole space here and in the following
we employ the short-hand notation:
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dd
Jq... = (Z:)d'“' (17)

The transport Eq. (1) then reads in Fourier variables

Jd R R A . 2 INAL o
Ec(q,t) + (—iqu +qDq)é(q,1) - J iqu(q-q')é(q’,1)
q/

= d(1)p(q). (18)
For short hand notation, we define the following operators:
R(g.q') =iq-U(q-q"), (19)
9 o
L(q:t): = PR (—iqu+qDq) - . (20)

We denote by ¢éy(q,f) the solution of the problem
L(q;1)éo(q,)=48(). Tt is given by

¢o(q,1) = O(r)exp[- (qDq - iuq)z]. (21)

Here and in what follows, we denote by ©(-) the Heaviside
function [@(r)=1 if =0, 0 otherwise]. For simplicity we
assume a point-like injection as an initial concentration in
Eq. (2), i.e., p(x)=4&(x), which reduces to p(k)=1 in Fourier
variables. We can then rewrite Eq. (18) as an integral equa-
tion,

o

(q.1) = ¢o(q.0) + J

—o0

dt’éo(q,t—t’)j R(q.q")é(q".1").
qI

(22)

From the definitions of transport velocity and the disper-
sion coefficients in one single realization as given by Egs. (7)
and (8), one gets the following equivalent representation in
the Fourier space:

d
() = 3 (= i0,) [1n &(@.0 g0 (23)

ld . , A
D;(t) = 55(— 1(9‘1,')(_ zo’qu) [In &(q.1)]l4=0 (24)
where Oy, denotes the partial derivative with respect to the
gq-component in the i-direction. The ensemble averaged
quantities defined by Egs. (12) and (13) now read

] d
u.;?nh(t) = a‘(_ iﬁqj) [In é(q,l)]|q:0, (25)
1d . A
DM () = 55(— id,)(- it?qj) [in é(q,1)]|g=0- (26)

C. The flow field

We consider the velocity field as introduced in Eq. (3)
and define the fluctuating field @ as a zero mean Gaussian
stationary random process with a correlation function given
by
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in(x)igy(x") = Cyy(x,x'). (27)

Owing to the stationarity assumption, the correlations are
translation invariant and depend only on the difference be-
tween their arguments. Then, the correlation functions of the
Fourier transformed velocity fluctuations read

i(qQ)iiq') = 2m)IC (@) dq+q'). (28)

By employing the velocity decomposition (4), the velocity
correlations consist of the two parts,

Cila) = CiP@) + €y (a), (29)

where the upper index refer to the contribution originating
from the incompressible and the irrotational velocity fields v
and w, respectively.

Our main interest is in studying the influence of irrota-
tional flows upon large scale transport. Thus, we neglect in
the following the incompressible part in the flow field and
assume

Cy@)=C"(q). (30)

For the correlation function of the irrotational flow fields, we
choose

Cii(@) = - q:9,7(a), 31)

where y(q) is given by a Gauss-shaped function

d
yq) = 22w P[] 1; exp[- (¢:1)*/2]. (32)
i=1

The length scales [/; are the correlation lengths in the
i-direction (with i=1...d in a d-dimensional system) and o”
is the variance.

lll. EXACT THEORY FOR LARGE SCALE DRIFT

In the following, we will concentrate on the large scale
drift. The calculation of large scale dispersion coefficients is
beyond the scope of this paper. Starting from the transport
equation (1) we first introduce the Green function and its
adjoint. By making use of the translation invariance of the
averaged Green function and its adjoint, we derive an exact
and closed formula for the ensemble averaged concentration
distribution and for the large scale transport velocity.

A. Green function and its adjoint

The Green function of the transport equation (1) is de-
fined as the function which solves

J
a—tg(x,x',t) + V[u(x)g(x,x’,)]- VDV g(x,x’,1)

=&x-x")0), (33)
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where the delta functions &(x—x')&(f) represent an instan-
taneous injection at =0 for x=x'.

The equivalent integral equation in the Fourier space
then reads

0

$(q.q',1) = 2m*8(q +q")80(q.1) +J dr'go(q,t—1")

—oo

X f R(9.98(q".q".1"), (34)
qH

where gg=c as defined previously. We will need in the fol-
lowing the adjoint Green function g*(x,x’,7), defined as the
function which solves the adjoint equation

%g*(x,x’,t) —u(x) Vg*(x,x',t) - VD V g*(x,x’,1)
=&x-x")0). (35)

Its corresponding integral equation in the Fourier space reads

8*(q.q",0) = 2m*5(q+q')g5(q.1) +f dr'gi(q.r—1")

XJ R*(q.9"¢"(q".q",1"), (36)
q//

where R*(q.q") =—iq”ﬁ(q—q”). With the aid of the general-
ized Green theorem, the Green function and its adjoint are
related by (see Ref. 20, Chap. 7)

g (x,x',1) =g(x',x,1), (37)

which reads in Fourier space

¢'(a.q".0)=2(q".q.0) = (- q'.— q.1). (38)

According to Ref. 22 the ensemble averaged Green function
and its adjoint are translation invariant,

grx.x" 1) =g(x" . x,1) = g(x" = x,1), (39)

where g(x’—x,7)=g(x’—x,0,t). From this last relation, we
derive in Fourier space

$(q.q',0) = 2m)*8(q +q")8(q.1). (40)

The relations between the Green function and its adjoint
will be used for the derivation of the closed formula of the
ensemble averaged concentration distribution in the next
subsection.
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B. Ensemble averaged concentration distribution

In order to derive the ensemble averaged concentration
distribution, we start from the ensemble averaged Fourier
transformed Green function,

8(q.q".0)=(2m)*8(q+q')g(q.1) +f dr'go(q.t—1")

X f iqu(q-q")g(q".q",t"). (41)
qll

Phys. Fluids 20, 016102 (2008)

The Fourier transformed concentration ¢(q,7) follows from
the Green function (33) by

é(q,1) = f / 8(q.q'.1). (42)
q

Since the ensemble averaged Green function is translation
invariant, according to Eq. (40) the right-hand side has to be
proportional to 8(q+q’) and we obtain

@D = éola )+ j at' gt~ 1) j iqtia—q" f St
% q" q

—0

=Co(q.1) + f dr'go(q.t—1") f iqu(q - q") f (g’
q!/ qI

’,—q,t’)

=éolq,1) + f dr'go(q.r—1") J iqu(q-q") f g (-
qH qf

-0

q'.-q"1). (43)

We identified g(q’,q",") with the Fourier transformed adjoint Green function, ¢*(—q"”,—q’,#’) according to Eq. (38). Finally
we replace the adjoint Green function by its integral equation (36) and get

C/‘(q’t) = CAO(q’t) + f dtlf dt,,go(q,t_ t/)gf‘o(q’t/ _ t//)J< J’ qui(q _ q//)i(qlll)ﬁ(q/ + qlll)f g/‘+(q///,_ q”,t”)
_o _% q// q/l! qI

= Co(q.1) + f dr’ f dr"go(q.1=1")go(q.t" = 1) f f iqu(q")i(q +q™)u(q") f §a-q".-q-9q".1"). (44)
—0 —0 qH qHI q/

C. Large scale drift

We can now derive the exact large scale drift defined as
the limit of u® [see Eq. (25)] when 1— oo,

e
"= tim () = (=id,) [0 (=) qmo (45)

t—

By using Eq. (44), we obtain

uf-ff=b7j+J dt’f f ui(q)iqu(q")g(-q' .- q".1"),
—0 q/ qH
(46)

where we changed the variables in Eq. (46) according to "
_>t,,q”,_>q",q”_)q,. -

If the flow field is incompressible, u;?“ reduces to it I since
the assumption V-u=0 translates in Fourier space into q-u
=2,qu;=0 and the integrand in the integral in Eq. (45) van-
ishes. Thus, the incompressible parts of heterogeneous flow
fields show no impact on the effective large scale drift of the

particles. Only the irrotational parts of a flow field can con-
tribute to an effective drift. Since the Green function g de-
pends on small scale diffusive movements of the particles,
the effective drift 4" becomes a function of the small scale
diffusion as well, i.e., uf"=us"(D).

D. Comparison with homogenization theory results

In the following, we show that the velocity components
can be represented by

uj.ffzﬁﬁf dr'u (x)x,1'), (47)

—0

where the auxiliary function #(x,r) is the solution of the
equation

%(ﬁ(x,t) +V - [uE)¥x0)]- Y [DV ¢(x.0)]

=-Vu(x)dr). (48)

The solvability conditions Vii=0 is satisfied, so that Eq. (48)
has a solution (see Ref. 14). To impose unicity we require
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#(x,t)=0. This type of representation is known in homog-
enization theory and can be derived by a two-scale
analysis.14 Here we give a different derivation for Eq. (47).
With the aid of the Green function (33) we can write the ¢ as

-q.1)=- f iq"u(q")é(- q4.-q".1), (49)
qH
since the Fourier back-transform of 12/(q,t) is given by

(x,1) =—fddx’ vV -ax’)g(x,x’,1). (50)

With help of the above representation of ¢, the ensemble
velocity components (45) read

ff_ — ’ ~ nJ oy =
uje =uj+J dtfuj(q)t,b(—q,t)—uj
—00 q

+r de'i(x)P(x, ). (51)

Using this equation, expression (46) can be rewritten as Eq.
(47).
To establish the link to results of Ref. 14 we add to ¢ the

constant value one defined as i,

Y=g+ l=y+i (52)

Making use of the new variable ¢’ we can write Eq. (48) as
J
5 ¥ 0+ V¥ 0] -VDV ¢/ (x.1)=0 (53)

with ' (x,)=1. An exact solution for this differential equa-
tion without mean drift is given by the normalized Boltz-
mann distribution'*

' =exp(— ¢/D)/exp(— ¢/D), (54)

where —V ¢(x)=u(x). Making use of this solution, Vergas-
sola and Avellaneda'* showed that static potential flows can-
not produce any heterogeneity induced large scale drift com-
ponents, and that the large scale drift equals the local drift
value. The assumption of a vanishing mean drift is crucial
for this statement to hold. In this latter case, the normalized
Boltzmann distribution solves Eq. (53). For heterogeneous
static potential flows with local mean drift, the normalized
Boltzmann distribution (54) does not solve Eq. (53) which
can be checked by inserting Eq. (54) into Eq. (53). We wish
to emphasize that in Ref. 14 the hypothesis of stationarity for
the velocity field has to be made after the Galilean transfor-
mation is performed and thus the discussion in Ref. 14 is
restricted to velocity field without mean drift. Our aim in the
next sections is to give explicit results for the large scale drift
components of transport in potential flows with nonvanishing
mean drift. We will demonstrate that in this case, nontrivial
heterogeneities induced large scale drift appears.

Phys. Fluids 20, 016102 (2008)

IV. PERTURBATION THEORY FOR LARGE SCALE
DRIFT

Generally, there is no closed solution for Eq. (44) and
therefore, for the transport parameter ufff for a given flow
field u. To derive explicit results for the effective drift, we
employ perturbation theory. Such techniques, pioneered by
Kraichnan®® and Roberts** for turbulent diffusion, have been
widely used by many authors. We construct an approxima-
tion of Eq. (44) by inserting the implicit solution and iterat-
ing the procedure. We truncate the obtained expression after
the two first terms and insert it in Eq. (12) (see for example,
Ref. 5 for more details on perturbation theory). Eventually,
one performs the ensemble averages using the correlation
functions (27). One ends up with explicit integral expres-
sions for the quantities under consideration,

uS'(1) = ity + Su™(t = o), (55)

where i; is the local value and 5u§“s(t=00) is a perturbation,
reflecting the influence of the spatial heterogeneities.

In second order approximation, the integral expressions
for the heterogeneity induced transport velocity components

5ujff are derived as follows:

6uf-ff=f dt’f,f” u/(q")iq"u(q")g(-q',~ q".t")

=—Ef dt'f iq}éij(Q')éo(—Q',t'), (56)
i Jo q

where we used the correlation function (31) and replaced [,
with [ since g, vanishes for ' <0 [see Eq. (21)].

As in the exact theory, 6u® vanishes for purely incom-
pressible velocity fields since 2ig; Ci7'(q) is zero for incom-
pressible velocities and the integral in Eq. (56) vanishes. Our
main interest in the following is in studying the influence of
irrotational flows upon large scale transport.

A. Results

The effective drift depends on the small scale diffusion
coefficient (since the Green function does) and thus on the
molecular weights of the particles. This effect might be used
to construct efficient sorting devices that separate macromol-
ecules according to their molecular weights. Such devices
have been proposed in Refs. 17 and 18 and are of high in-
terest.

Advective and diffusive movement of the particles might
be compared by introducing a quantity called Peclet number,
Pe=ul/D, where u is the absolute value of a typical velocity,
[ is a typical system length (in our case the correlation
length), and D is the diffusion coefficient.

In the sequel we study the effect of the heterogeneities
on the effective drift behavior. We will see that transport is
strongly influenced by the heterogeneous structure of the me-
dium resulting in a deviation of particles from the mean
streamline # and thus in an effective drift term 5u?ff.

Remark 1: Evaluating the integrals in Eq. (56) for diffu-
sion dominated transport, 5I/tj-ff turns out to be proportional
to 1/D and, thus, the impact of the heterogeneities decreases
with increasing diffusion coefficients. In the limit of vanish-
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ing Peclet numbers, the effective drift and effective mixing
coefficients reduce to their local values. This finding is con-
sistent with the results of Vergassola and Avellaneda," who
found that transport in compressible flows with vanishing
mean drift do not induce large scale velocities. Notice that
vanishing Peclet numbers is equivalent to the assumption of
a neglectible mean drift.

B. Large scale velocity components

Inserting the explicit form of the velocity correlation
function (32) in Eq. (56), we get

d o0
f_ an N 2
si'=am T4 [ o | iaa exol- @
i= q
Xexp[— (Dq* - itq)t'].
. J

¥ (57)

We perform the integration over the Fourier variables fol-
lowed by the time integration. However, the time integration
can not be carried out explicitly. Therefore, we choose a
twofold approach. We first evaluate the integral numerically
and secondly we expand the integrals in orders of small in-
verse Peclet numbers. The latter assumption is limited to
advectively dominated transport regimes.
In the sequel, we will use the following notations:

o
aizjﬂ, B=0bL/l,, a=ipli, (58)
Uyl

where /; and o2 are the correlation lengths and the variance
of the function (32), respectively, and u; are the mean drift
defined in Eq. (45). In the discussion which follows, we will

keep the variables [,=/ and if,=i fixed. In order to be con-
sistent with our previous expansion in small inverse Peclet
numbers, we assume [,=/, and u,=iu; so that D/(i,l,)
<D/(i,1,).

1. Numerical evaluation

The results of the numerical evaluation of Eq. (57) are
plotted for 6uS" and duS™ with a=1 and different parameters
B in Fig. 1.

The smaller B, the larger is SuS™/u,. On the other hand,
the smaller S, the smaller is &fff/ u;. In particular, for 8
smaller than 1, the 5u?ff/u1 show a local maximum and the
same &fl’ﬁc/ u; might be caused by particles with different
diffusion coefficients. This is a situation one might avoid for
particle separation. Therefore, we restrict the further analysis
to values of B8 which are equal to or larger than one. For
small inverse Peclet numbers the curve for duS"/u; shows an
almost linear dependence on & which is demonstrated in
more detail in Fig. 2.

Making use of the results of the numerical evaluation we
now choose a transport velocity large enough for the trans-
port to be in the regime of large Peclet numbers. The as-
sumption of large Peclet numbers allows us to expand 5u]e~ff
in orders of small inverse Peclet numbers, e =D/ (i1;l,),
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FIG. 1. 5uf“/u | (a) and 5u;“/u2 (b) vs inverse Peclet number for different 8
and a=1.
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FIG. 2. Comparison of numerical integration of du"/u, and the analytical

result for small inverse Peclet numbers vs inverse Peclet number for S=1.

Downloaded 30 Apr 2008 to 129.215.0.187. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



016102-8 S. Attinger and A. Abdulle

sus™ = suS™ + e uS™ + 0(e7). (59)

We therefore first expand the integrand f with respect to
small inverse Peclet number f(g)=f£(0)+ef (0)+O(e?),

where £=D/(ul) and ir=[ti| denotes the norm of ui. We define
i:=if, and [:={,. This series reads
f(S) — e(sq 2_juq/il)ult’ — e(iﬁq)t’ + S(QZﬁTI’)e(iﬁq)t, + 0(82).
(60)
Inserting this expression in the equation for 5u;ff(00) reads
6uj-ff= 5uje»ff’0(00) + s&u;ff’l(w) +O(e?). (61)
This latter series is then truncated after the two first terms
and integrated explicitly. The explicit results are compared

with results obtained from numerical evaluation of the time
integration.

2. Infinite Peclet numbers, =0

In case of infinite Peclet numbers, we obtain the zero
order term of the expansion (60) and we evaluate for d=2,
j=1,2 the integral

effO 0’2(277)d/21_[ dl f lq,q

Xexp(— (qili)z/ 2)exp{(iuq)t'}.

We obtain
G0 _ 52 B - +3p%a’+ B
ou T ) (62)
2 g3 4 Bl
b = g, C B 3B e (63)

2( a,2 + BZ)Z B2

We next discuss the influence of the parameters (corre-

lation lengths and mean velocities) defining the “zeros” order

effective velocity corrections, on the effective drifts. Choos-

ing the parameter S equal to one, the medium becomes iso-
tropic and the velocity components reduce to

1 1
T - iy 1) (64)
Adding 1@ and the zero order correction term du®™" together
gives an effective drift which is parallel to the mean drift. No
deviation due to the heterogeneity are induced. We will find
an analogous result adding the higher order term Su®™!. It
demonstrates that in an isotropic medium, an irrotational
flow does not induce a modification of the direction of the
effective velocity field.

On the other hand, for largely anisotropic media, [
— we find

Su effO 0,2'41 Su effO

u
Sus™O = — 0231, sus™ =0. (65)
In this situation we have a perfectly layered medium in
which the particles move only parallel to the layers. For «
— o the velocity coefficients 5ueff0 tend to zero and we have
again a layered medium. We w111 exclude these limit case

Phys. Fluids 20, 016102 (2008)

and study 1=<a,B=<M. To study more deeply the influences
of the heterogeneities (the correlations length of the medium)

on the effective velocity, we fix the mean drift i, =u,, i.e.,
we set a=1 and further set M =2,
ST 02—34_1*'4:82
201+ 85?7
(66)
SStt — 0,221‘:84"'4:32‘
201+ 8B

In Fig. 4.2.2, the velocity components 5ueff0 are plotted for

different 8 ranging from 1 to 2 with a variance 5>=0.5. We
recall that the variation of 8 means a variation of /,, since [,
is kept fixed. We see that due to the zero order terms 5ue“°
the effective drift ueft will be decreased against the local
mean drift ;.

3. First order correction, O(¢)

We integrate 5ue'ff" given in Eq. (61) for d=2, j=1,2,
ef” 02(477)‘1/21_[ dt f iq;q

Xexp(- (gil)")exp{+ iugt'}qult’,

and we get for the velocity components

5 em_% T 60’ B —4a' +5a' B> + B7 - 4a?
iy Nmo B (B +a?)'" )
(67)
3 4B - 6a*-5+4a*B - at
ff,1 202 [ —
duy () =——= 4 \7702,3 (B2t a))”?

(68)

Again, we discuss the influence of the parameters (cor-
relation lengths and mean velocities) defining the first order
effective velocity corrections, on the effective drifts. In ex-
tremely anisotropic media, S— o, both first order velocity
components approach zero. In isotropic media, S=1, the re-
sults of the first order velocity components reduce to

Ai
514?“’1 = %\/7_752(1 +a?)72, (69)

S = 22 (1 + a?) 32, (70)

indicating again that no deviation in transverse direction oc-
curs since all particles stay on the same flow line. However,
the particles move with different velocities depending on
their molecular weights or diffusion coefficients. To this end,
isotropic medium may separate particles in time. In such
medium, larger particles will be less retarded than smaller
ones.

Choosing the parameter « equal to one, the expressions
for the first order drift components simplify to
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w1 3 —_, 12878
&tlff’l:T\*wol,BW, (71)
3 867 - 12
£f,1 _ 2 [ =2p°FP — "=
Susy =— : \rwalﬁ(ﬂ2+ N (72)

which are plotted in Fig. 2, for different 8 ranging from 1 to
2, while holding iz, and [, fixed. The variance &~ is again set
to 0.5. We see that in this situation, the effective drifts u?ff‘i
can induce a deviation in transverse direction. Owing to Eq.
(61) it is therefore possible to obtain effective velocities
whose directions depend on the diffusion constants (or mo-

lecular weights).

V. NUMERICAL STUDY

In Sec. IV, we have seen that the effective drifts depend
on the small scale diffusion coefficient in compressible flows
[see Eq. (61)]. In this section we perform numerical experi-
ments to illustrate the aformentioned effects. We consider a
transport problem (advection-diffusion) with heterogeneous
compressible velocities and study numerically the large scale
effective drift. Taking an initial point-like solute, we com-
pare the trajectories when varying the diffusion constants.
We emphasize that in compressible flows the center of mass
of the solute does not depend on the diffusion coefficient (see
Ref. 13 for similar numerical computation in this latter case).

We consider the transport equation in a reference domain
Q=(0,1)%,

% + V[u()e] = DVe(x.1) € QX [0.7], (73)

c(x,0) = co(x), clx,1)=0 for x € 9, (74)

where the velocity field is split in u=u+u, where u is a
constant mean and where we suppose that the random com-
pressible velocity field U is defined by a zero mean random
Gaussian correlation function according to Eq. (32),

- 2 N2
W,(x)),(x,) = 6,9,0%(2m) "2 eXp[_ > (= xa0) ]

= 2%
= Cij(Xl’XZ)’ (75)

where [;,k=1,2 are the correlation lengths in the x;,x,
e R? directions, respectively, and o? is the variance.

Such a potential can be generated by a superposition of
randomly chosen cosine modes® as follows. Define

SN
u = o\/iz K cos(k/x + w;),
N*
J=1

where each component of k/ =(kj ,k-é) obeys a Gaussian dis-
tribution with zero mean and variance given by 1/17. Due to
the central limit theorem, ui=limNquf’ is Gaussian and it
can be shown (see, for example, Ref. 21, and the references
therein) that the limit correlation function is given by Eq.
(75), or by Eq. (32) in Fourier space.

For the simulation, we transform the transport equation
(73) by the method of lines in a system of ordinary differen-
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FIG. 3. 8u$™/u, (a) and u™/u, (b) vs B.

tial equations which are solved using the orthogonal Runge—
Kutta Chebyshev method ROCK4.%%” We discretize ) with
mesh-size 1/400 in each spatial direction X;,X,. To minimize
the influence of artificial boundaries conditions (which we
take as zero Dirichlet), we perform the transport simulation
on a subdomain (,=[0.0650,0.9375]%[0.0650,0.9375].
For all the simulations, the initial concentration and the final
time are the same. The initial concentration at time 7=0 is
given by c¢y(x)=xp(x), where xp(x)=1 for x € D and zero for
xe Q\D where D=[0.0650,0.090]%[0.0650,0.090]. The
transport simulations are stopped at time =0.9.

In the following we study three situations: We fix a ref-

erence correlation length /;=/=1/10, set =1 and consider
B=1, =143 and B=2. In all the simulations we set i
=iu,=0.2 and 6=0.5. Thus, the variance of the correlation
function (75) is 62=0.01. We simulate the transport equation
(73) with two different diffusion constants D=0.001 and D
=0.005. The Peclet numbers satisfy 4 <Pe=<20 and we are
therefore in the advection dominated regime.
Our theoretical results predict a ratio a=us"/u" of

a=1.18, B=143, Pe=4,

a=131, B=143, Pe=20,
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FIG. 4. 8uS™/u, (a) and 6uS™ /u, (b) vs B.
a=132, =200, Pe=4,
a=139, B=2.00, Pe=20.

For two different Peclet numbers the ratio a differs mostly
for B=1.43. In other words, separation is highest for S
=1.43 compared with S=1 and S=2. This is confirmed by
numerical simulations.

In the first simulation, we choose /,=/; and we see in
Fig. 3 that the effective velocity is the same for the two
different diffusion constants. This agrees with the results ob-
tained in Sec. IV B 2.

In the second simulation, we choose /,=1[,/0.7, i.e., B
=1.43. According to the results of Sec. IV B 3 we should
observe an effective drift depending on the diffusion con-
stant. Indeed, we observe in Fig. 4 that molecules with dif-
ferent diffusion constants migrate to different locations of the
medium and thus are separated.

Finally, we perform a simulation with /,=2-/,, i.e.,, 8
=2. According to the results of Sec. IV B 3 this situation is
less favorable for a weight-based separation of particles since
for large B both, the first order effective velocities
5uiff’i(00)i =1,2 tend to zeros. We see in Fig. 5 that no de-
flection of the center of mass of the particles can be ob-
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FIG. 5. (Color online) Transport simulation in isotropic medium (8=1) with
D=0.001 (a) and D=0.005 (b).

served. But compared to the isotropic situation (Fig. 3), we
see that the strong heterogeneities chosen in this case in-
crease the mixing of the particles (see Figs. 6 and 7).

VI. CONCLUSIONS

We have studied the large scale or effective transport
velocity for particles in heterogeneous compressible flows
with mean drift. We have shown that such flows can substan-
tially modify the transport behavior generating a large scale
drift which differs from the local mean drift. This result im-
plies a major difference between transport in compressible
and incompressible flows with mean drift. For transport in
incompressible flows the large scale drift of the dissolved
particles equals the local mean drift. Heterogeneous fluid ve-
locities have an impact on large scale mixing only. For trans-
port in compressible flows, however, large scale drift as well
as large scale dispersion coefficients are modified against
their local values. Moreover, we completed the work of Ver-
gassola and Avellaneda.' There, Vergassola and Avellaneda
proved that heterogeneously distributed compressible flows
with vanishing mean drift do not generate any heterogeneity
induced large scale drift (or ballistic transport). Our paper
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FIG. 6. (Color online) Transport simulation in anisotropic medium (8
=1.43) with D=0.001 (a) and D=0.005 (b).

demonstrates that ballistic transport might be generated but
only in the case of particle transport in compressible flows
with nonvanishing mean drift.

For a class of flow fields given by Gaussian stationary
random processes, we derived explicit formulas for the large
scale drift making use of perturbation theory. These explicit
results allow us to quantify the influence of the heterogene-
ities upon the effective transport velocity. In the case of ad-
vection dominated transport, the effective drift is decreased
against the local mean drift. Moreover, its value depends on
the local diffusion coefficients and thus on the molecular
weights of the transported particles. This result might be of
interest for the realization of efficient weight-based separa-
tion devices.'™" To quantify the efficiency of such a device
the large scale dispersive movement in particular the in-
creased transverse mixing of particles might impact and
eventually hinder the separation of particles. The quality of
particle separation is determined by the distance between
two neighboring particles clouds with different diffusion co-
efficient or molecular weights, Ax=Aut=u*™'es, and the
spreading width of the particle cloud y2D*t. For long times
or times much larger than the dispersive time scale I?/D, Ax
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FIG. 7. (Color online) Transport simulation in anisotropic medium (8=2)
with D=0.001 (a) and D=0.005 (b).

dominates the dispersive spreading V2Dt since the first
scales proportional to time, whereas the second grows only
proportional to the square root of time. To this end, particle
separation will always take place in the long time limit or ¢
>[?/D. Designing a sorting device, however, requires de-
vices of finite size and thus the consideration of preasymp-
totic effects as well. For times smaller than /2/D, the effec-
tive dispersion coefficient can be approximated by its local
value as known from Dentz and co—workers.zﬂ this case,
separation  requires Ax=Aut~u‘Ter>\2Dr or ¢
> u/u™2/D. To this end, u°™! has to be chosen to be much
larger than u to provide good sorting conditions. The design
and optimization of a sorting device and testing its perfor-
mance under realistic conditions will be studied in the future.
In this paper, we give the general proof of our concept.
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