
Hybrid Algorithms for the Minimum-Weight

Rooted Arborescence Problem

Sergi Mateo1, Christian Blum1, Pascal Fua2, and Engin Türetgen2

1 ALBCOM Research Group, Universitat Politécnica de Catalunya, Barcelona, Spain
sergi.mateo.bellido@est.fib.upc.edu, cblum@lsi.upc.edu

2 Computer Vision Lab, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{pascal.fua@,engin.turetken}@epfl.ch

Abstract. Minimum-weight arborescence problems have recently
enjoyed an increased attention due to their relation to imporant prob-
lems in computer vision. A prominent example is the automated recon-
struction of consistent tree structures from noisy images. In this paper,
we first propose a heuristic for tackling the minimum-weight rooted ar-
borescence problem. Moreover, we propose an ant colony optimization
algorithm. Both approaches are strongly based on dynamic program-
ming, and can therefore be regarded as hybrid techniques. An extensive
experimental evaluation shows that both algorithms generally improve
over an exisiting heuristic from the literature.

1 Introduction

The minimum-weight rooted arborescence (MWRA) problem, which is consid-
ered in this work, is a generalization of the problem proposed by Venkata Rao
and Sridharan in [10]. It can technically be described as follows. Given is a di-
rected acyclic graph G = (V,A) with integer weights on the arcs, that is, for
each a ∈ A exists a corresponding weight w(a) ∈ Z. Moreover, a vertex vr ∈ V
is designated as the root node. Let A be the set of all arborescences in G that
are rooted in vr. In this context, note that an arborescence is a directed, rooted
tree in which all arcs point away from the root vertex (see also [9]). Moreover,
note that A contains all arborescences, not only the ones with maximal size. The
objective function value (that is, the weight) f(T) of an arboresence T ∈ A is
defined as follows:

f(T) :=
∑

a∈T

w(a) . (1)

The goal of the MWRA problem is to find an arboresence T ∗ ∈ A such that
the weight of T ∗ is smaller or equal to all other arborescences in A. In other
words, the goal is to minimize objective function f(·). An example of the MWRA
problem is shown in Figure 1.

The differences to the problem proposed in [10] are as follows. The authors
of [10] require the root vr to have only one single outgoing arc. Moreover, num-
bering the vertices from 1 to |V |, the given acyclic graphG is restricted to contain

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 S. Mateo et al.

vr

5 6 -4

-2 3

-2 -3 1

-1 3 -4

6 -6

-12
(a) Example input graph

vr

-4

-3 1

-1

-12
(b) Optimal solution. Value: -19

Fig. 1. (a) shows an input DAG with eight vertices and 14 arcs. The uppermost vertex
is the root vertex vr. (b) shows the optimal solution, that is, the arborescence rooted
in vr which has the minimum weight among all arborescence rooted in vr that can be
found in the input graph.

only arcs ai,j such that i < j. These restrictions do not apply to the MWRA
problem. Nevertheless, as a generalization of the problem proposed in [10], the
MWRA problem is NP -hard. Concerning existing work, the literature only of-
fers the heuristic proposed in [10], which can also be applied to the more general
MWRA problem.

The definition of the MWRA problem as outlined above is inspired by a novel
method which was recently proposed in [8] for the automated reconstruction of
consistent tree structures from noisy images, which is an important problem,
for example, in Neuroscience. Tree-like structures, such as dendritic, vascular, or
bronchial networks, are pervasive in biological systems. Examples are 2D retinal
fundus images and 3D optical micrographs of neurons. The approach proposed
in [8] builds a set of candidate arborescences over many different subsets of
points likely to belong to the optimal delineation and then chooses the best
one according to a global objective function that combines image evidence with
geometric priors (see Figure 2 for an example). The solution of the MWRA
problem (with additional hard and soft constraints) plays an important role in
this process. Therefore, developing better algorithms for the MWRA problem
may help in composing better techniques for the problem of the automated
reconstruction of consistent tree structures from noisy images.

The contribution of this work is as follows. First, a new heuristic for the
MWRA problem is presented which is based on the deterministic construction
of an arborescence of maximal size, and the subsequent application of dynamic
programming for finding the best solution within this constructed arborescence.
The second contribution is to be found in the application of ant colony opti-
mization (ACO) [4] to the MWRA problem. As both the heuristic and the ACO
approach are based on a sub-ordinate dynamic programming procedure, both

Hybrid Algorithms for the MWRA Problem 63

(a) Original 2D retinal image (b) Reconstruction of the vascu-
lar structure

Fig. 2. (a) shows a 2D image of the retina of a human eye. The problem consists in
the automatic reconstruction (or delineation) of the vascular structure. (b) shows the
reconstruction of the vascular structure as produced by the algorithm proposed in [8].

algorithms can be seen as hybrid (meta-)heuristics [3]. An extensive experimen-
tal evalution of both algorithms shows their superiority to the only exisiting
heuristic proposed in [10].

The outline of this paper is as follows. Section 2 is dedicated to the new heuris-
tic proposed in this work. Furthermore, in Section 3 our ant colony optimiza-
tion approach is outlined. Finally, an extensive experimental study is described
in Section 4 and conclusions as well as an outlook to future work is given in
Section 5.

2 A New Heuristic Approach

In the following we describe a new heuristic approach for solving the MWRA
problem. First, starting from root vertex vr, an arborescence T ′ of maximal size
in G is constructed as outlined in lines 2–9 of Algorithm 1. Second, a dynamic
programming (DP) algorithm is applied to T ′ in order to obtain the minimum-
weight arborescence T that is contained in T ′ and rooted in vr. The DP algo-
rithm from [1] is used for this purpose. Given an undirected tree T = (VT , ET)
with vertex and/or edge weights, and any integer number k ∈ [0, |VT | − 1],
this DP algorithm provides—among all trees with exactly k edges in T—the
minimum-weight tree T ∗. The first step of the DP algorithm consists in arti-
ficially converting the input tree T into a rooted arborescence. Therefore, the
DP algorithm can directly be applied to arborescences. Morever, as a side prod-
uct, the DP algorithm also provides the minimum-weight arborescences for all
l with 0 ≤ l ≤ k, as well as the minimum-weight arborescences rooted in vr
for all l with 0 ≤ l ≤ k. Therefore, given an arborescence of maximal size T ′,
which has t ≤ |V | − 1 arcs (where V is the vertex set of the input graph G),
the DP algorithm is applied with k = t. Then, among all the minimum-weight

64 S. Mateo et al.

Algorithm 1. Heuristic DP-Heur for the MWRA problem

1: input: a DAG G = (V,A), and a root node vr
2: T ′ := (V ′ = {vr}, A′ = ∅)
3: Apos := {a = (vi, vj) ∈ A | vi ∈ V ′, vj /∈ V ′}
4: while Apos �= ∅ do
5: a∗ = (vi, vj) := argmin{w(a) | a ∈ Apos}
6: A′ := A′ ∪ {a∗}
7: V ′ := V ′ ∪ {vj}
8: Apos := {a = (vi, vj) ∈ A | vi ∈ V ′, vj /∈ V ′}
9: end while
10: T := Dynamic Programming(T ′, k = |V | − 1)
11: output: arborescence T

arborescences rooted in vr for l ≤ t, the one with minimum weight is chosen as
the output of the DP algorithm. In this way, the DP algorithm is able to gen-
erate the minimum-weight arborescence T (rooted in vr) which can be found in
arborescence T ′. The heuristic described above is henceforth labelled DP-Heur.

3 Ant Colony Optimization for the MWRA Problem

The ant colony optimization (ACO) approach for the MWRA problem which is
described in the following is a MAX–MIN Ant System (MMAS) [6] imple-
mented in the Hyper-Cube Framework (HCF) [2]. The algorithm, whose pseudo-
code can be found in Algorithm 2, works roughly as follows. At each iteration, a
number of na solutions to the problem is probabilistically constructed based both
on pheromone and heuristic information. Each solution construction consists of
a first phase in which a rooted arborescence of maximal size T ′ in input graph
G is probabilistically constructed, starting from the root vertex vr. Moreover, in
a second phase, the minimum-weight arborescence T rooted in vr which exists
in T ′ is obtained by dynamic programming. The second algorithmic component
which is executed at each iteration is the pheromone update. Hereby, some of the
constructed solutions—that is, the iteration-best solution T ib, the restart-best
solution T rb, and the best-so-far solution T bs—are used for a modification of the
pheromone values. This is done with the goal of focusing the search over time
on high-quality areas of the search space. Just like any other MMAS algorithm,
our approach employs restarts consisting of a re-initialization of the pheromone
values. Restarts are controlled by the so-called convergence factor (cf) and a
Boolean control variable called bs update. The main functions of our approach
are outlined in detail in the following.

Construct Arborescence Of Maximal Size(G, vr): This function contructs a solu-
tion in the way which is shown in lines 2–9 of Algorithm 1. The only difference
is in the choice of the next arc to be added to the current arborescence T ′ at
each step (line 5 of Algorithm 1). Instead of deterministically choosing from Apos

the arc which has the smallest weight value, the choice is done probabilistically,

Hybrid Algorithms for the MWRA Problem 65

Algorithm 2. Ant Colony Optimization for the MWRA Problem

1: input: a DAG G = (V,A), and a root node vr
2: T bs := ({vr}, ∅), T rb := ({vr}, ∅), cf := 0, bs update := false
3: τa := 0.5 for all a ∈ A
4: while termination conditions not met do
5: for i = 1, · · · , na do
6: T ′ := Construct Arborescence Of Maximal Size(G, vr)
7: Ti := Dynamic Programming(T ′, k = |V | − 1)
8: end for
9: T ib := argmin{f(Ti) | T1, . . . , Tna}
10: if T ib < T rb then T rb := T ib

11: if T ib < T bs then T bs := T ib

12: ApplyPheromoneUpdate(cf ,bs update ,T ,T ib,T rb,T bs)
13: cf := ComputeConvergenceFactor(T)
14: if cf > 0.99 then
15: if bs update = true then
16: τa := 0.5 for all a ∈ A
17: T rb := ({vr}, ∅)
18: bs update := false
19: else
20: bs update := true
21: end if
22: end if
23: end while
24: output: T bs, the best solution found by the algorithm

based on pheromone and heuristic information. The pheromone model T that
is used for this purpose contains a pheromone value τa for each arc a ∈ A. The
heuristic information η(a) of an arc a is computed as follows. First, let

wmax := max{w(a) | a ∈ A}. (2)

Based on this maximal weight of all arcs in G, the heuristic information is defined
as follows:

η(a) := wmax + 1− w(a) (3)

In this way, the heuristic information of all arcs is a positive number. Moreover,
the arc with minimal weight will have the heighest value concerning the heuristic
information. Given an arborescence T ′, and the non-empty set of arcs Apos that
may be used for extending T ′, the probability for choosing arc a ∈ Apos is defined
as follows:

p(a | T ′) :=
τa · η(a)∑

â∈Apos
τâ · η(â)

(4)

However, instead of choosing an arc from Apos always in a probabilistic way, the
following scheme is applied at each construction step. First, a value r ∈ [0, 1] is
chosen uniformly at random. Second, r is compared to a so-called determinism

66 S. Mateo et al.

Table 1. Setting of κib, κrb, κbs, and ρ depending on the convergence factor cf and
the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.1 0.1 0.1 0.1 0.1

rate δ ∈ [0, 1], which is a fixed parameter of the algorithm. If r ≤ δ, arc a∗ ∈ Apos

is chosen to be the one with the maximum probability, that is:

a∗ := argmax{p(a | T ′) | a ∈ Apos} (5)

Otherwise, that is, when r > δ, arc a∗ ∈ Apos is chosen probabilistically accord-
ing to the probability values.

ApplyPheromoneUpdate(cf ,bs update,T ,T ib,T rb,T bs): The pheromone update is
performed in the same way as in all MMAS algorithms implemented in the
HCF. The three solutions T ib, T rb, and T bs (as described at the beginning of
this section) are used for the pheromone update. The influence of these three
solutions on the pheromone update is determined by the current value of the
convergence factor cf, which is defined later. Each pheromone value τa ∈ T is
updated as follows:

τa := τa + ρ · (ξa − τa) , (6)

where

ξa := κib ·Δ(T ib, a) + κrb ·Δ(T rb, a) + κbs ·Δ(T bs, a) , (7)

where κib is the weight of solution T ib, κrb the one of solution T rb, and κbs

the one of solution T bs. Moreover, Δ(T, a) evaluates to 1 if and only if arc a
is a component of arborescence T . Otherwise, the function evaluates to 0. Note
also that the three weights must be chosen such that κib + κrb + κbs = 1. After
the application of Equation 6, pheromone values that exceed τmax = 0.99 are
set back to τmax, and pheromone values that have fallen below τmin = 0.01 are
set back to τmin. This prevents the algorithm from reaching a state of complete
convergence. Finally, note that the exact values of the weights depends on the
convergence factor cf and on the value of the Boolean control variable bs update.
The standard schedule as shown in Table 1 has been adopted for our algorithm.

ComputeConvergenceFactor(T): The convergence factor cf is computed on the
basis of the pheromone values:

cf := 2

⎛

⎝

⎛

⎝

∑
τa∈T

max{τmax − τa, τa − τmin}

|T | · (τmax − τmin)

⎞

⎠− 0.5

⎞

⎠

Hybrid Algorithms for the MWRA Problem 67

This results in cf = 0 when all pheromone values are set to 0.5. On the other
side, when all pheromone values have either value τmin or τmax, then cf = 1.
In all other cases, cf has a value in (0, 1). This completes the description of all
components of the proposed algorithm, which is henceforth labelled Aco.

4 Experimental Evaluation

The algorithms proposed in this work—that is, DP-Heur and Aco—were im-
plemented in ANSI C++ using GCC 4.4 for compiling the software. Moreover,
we reimplemented the heuristic proposed in [10]. As mentioned in the introduc-
tion, this heuristic—henceforth labelled VenSri—is the only existing algorithm
which can directly be applied to the MWRA problem. All three algorithms were
experimentally evaluated on a cluster of PCs equipped with Intel Xeon X3350
processors with 2667 MHz and 8 Gigabyte of memory. In the following, we first
describe the set of benchmark instances that have been used to test the three
algorithms. Afterwards, the experimental results are described in detail.

4.1 Benchmark Instances

Due to the lack of a publicly availabe set of benchmark instances, a benchmark
set was generated. The construction of each DAG G(V,A) from this benchmark
set was based on a pre-defined number of vertices (n) and a pre-defined number
of arcs (m). First, a random arborescence T with n vertices was generated. The
root node of T is called vr. Each one of the remainingm−n+1 arcs was generated
by randomly choosing two vertices vi and vj , and adding the corresponding arc
a = (vi, vj) to T . In this context, a = (vi, vj) may be added to T , if and only
if by its addition no directed cycle is produced, and neither (vi, vj) nor (vj , vi)
form already part of the graph. In order to generate a diverse set of benchmark
instances we considered n ∈ {20, 50, 100, 500, 1000, 5000} and m ∈ {2n, 4n, 6n}.
A total of 10 problem instances was generated for each combination of n and
m. This resulted in a total of 180 problem instances. The arc weights for all
instances were chosen uniformly at random from [−100, 100].

4.2 Results

The three algorithms considered for the comparison were applied exactly once
to each of the 180 problem instances of the benchmark set. Although Aco is a
stochastic search algorithm, this is a valid choice, because results are averaged
over groups of instances that were generated with the same parameters.Aco was
applied with na = 10—that is, 10 solution constructions per iteration—, with
a determinism rate of δ = 0.9, and with a stopping criterion of 10.000 solution
evaluations per run. Table 2 presents the results of each algorithm averaged over
the 10 instances for each combination of n and m (as indicated in the first two
table columns). Four table columns are used for presenting the results of each
algorithm. The column with heading value provides the average of the objective

68 S. Mateo et al.

T
a
b
le

2
.
E
x
p
er
im

en
ta
l
re
su
lt
s.

A
c
o

is
co
m
p
a
re
d

to
th
e
h
eu

ri
st
ic

p
ro
p
o
se
d

in
th
is

w
o
rk

(D
P
-H

e
u
r
),

a
n
d

th
e
a
lg
o
ri
th
m

fr
o
m

[1
0
]

(V
e
n
S
r
i)
.

n
m

D
P
-H

e
u
r

V
e
n
S
r
i

A
c
o

v
a
lu
e

st
d

si
z
e
ti
m
e
(s
)

v
a
lu
e

st
d

si
z
e
ti
m
e
(s
)

v
a
lu
e

st
d

si
z
e

e
v
a
ls

ti
m
e
(s
)

2
0

2
n

-5
2
4
.5
0

(1
3
4
.1
6
)

1
2
.6
0

<
0
.0
1

-5
6
9
.1
0

(1
5
6
.6
9
)

1
4
.9
0

<
0
.0
1

-6
0
5
.2
0

(1
6
2
.6
1
)

1
4
.3
0

3
9
4
.8
0

1
.1
0

4
n

-8
3
1
.6
0

(2
3
0
.6
8
)

1
5
.9
0

<
0
.0
1

-8
0
6
.3
0

(1
0
8
.1
4
)

1
7
.4
0

<
0
.0
1

-9
9
6
.6
0

(1
5
3
.1
2
)

1
7
.3
0
5
2
4
3
.8
0

1
.1
3

6
n

-1
0
3
1
.1
0

(1
9
7
.5
0
)

1
7
.7
0

<
0
.0
1

-9
4
7
.1
0

(1
5
1
.0
5
)

1
7
.8
0

<
0
.0
1

-1
1
9
6
.5
0

(1
5
1
.6
3
)

1
7
.9
0
2
6
6
6
.2
0

1
.2
6

5
0

2
n

-1
2
4
6
.3
0

(2
7
3
.8
8
)

3
3
.6
0

<
0
.0
1

-1
4
7
6
.7
0

(2
9
5
.1
1
)

3
8
.5
0

<
0
.0
1

-1
5
7
1
.0
0

(2
8
8
.5
2
)

3
8
.9
0
4
6
3
5
.0
0

4
.4
1

4
n

-1
9
1
2
.3
0

(4
3
2
.7
9
)

3
9
.7
0

<
0
.0
1

-1
8
1
2
.3
0

(2
0
8
.4
3
)

4
3
.8
0

<
0
.0
1

-2
4
0
4
.6
0

(3
1
2
.1
8
)

4
3
.4
0
7
0
9
3
.4
0

4
.8
6

6
n

-2
3
7
2
.7
0

(3
6
8
.0
3
)

4
3
.6
0

<
0
.0
1

-2
1
6
6
.1
0

(3
0
7
.7
5
)

4
5
.7
0

<
0
.0
1

-2
8
8
4
.9
0

(2
5
1
.0
8
)

4
4
.7
0
7
4
7
4
.4
0

5
.0
0

1
0
0

2
n

-2
5
2
3
.1
0

(4
4
2
.9
1
)

6
7
.1
0

<
0
.0
1

-2
8
2
8
.7
0

(4
0
9
.7
3
)

7
6
.2
0

0
.0
1

-3
1
3
0
.4
0

(4
4
5
.6
2
)

7
5
.0
0
5
7
1
4
.7
0

1
9
.2
1

4
n

-3
9
0
3
.0
0

(6
5
9
.6
9
)

8
2
.3
0

<
0
.0
1

-3
8
7
1
.7
0

(3
0
5
.2
9
)

8
9
.9
0

0
.0
2

-4
9
5
5
.9
0

(3
2
1
.7
5
)

8
8
.9
0
8
2
0
4
.4
0

1
7
.6
8

6
n

-4
8
1
9
.4
0

(5
8
2
.1
8
)

8
7
.3
0

<
0
.0
1

-4
0
5
9
.7
0

(3
7
4
.2
2
)

9
3
.1
0

0
.0
2

-5
7
8
2
.7
0

(3
9
1
.2
2
)

9
0
.6
0
7
6
4
2
.7
0

1
8
.1
4

5
0
0

2
n

-1
2
4
0
4
.5
0

(1
3
0
8
.7
4
)

3
4
8
.9
0

0
.0
6

-1
4
0
8
5
.5
0

(6
0
8
.5
9
)

3
9
8
.7
0

2
.1
2

-1
5
4
8
9
.0
0

(6
3
7
.2
6
)

3
7
8
.0
0
8
5
3
6
.6
0

4
6
0
.2
5

4
n

-1
8
3
2
1
.8
0

(2
2
2
2
.1
9
)

4
0
2
.0
0

0
.0
6

-1
7
2
5
6
.0
0

(7
0
3
.4
6
)

4
4
9
.2
0

2
.2
8

-2
2
6
4
4
.8
0
(1
5
3
7
.4
9
)

4
3
7
.9
0
8
9
0
2
.2
0

6
7
5
.3
7

6
n

-2
2
3
8
6
.6
0

(2
2
0
2
.2
3
)

4
3
4
.9
0

0
.0
6

-1
8
8
9
6
.4
0

(7
3
9
.6
5
)

4
7
1
.6
0

2
.3
8

-2
7
2
7
9
.5
0

(4
4
6
.9
2
)

4
5
8
.1
0
8
6
2
0
.7
0

6
8
8
.3
0

1
0
0
0

2
n

-2
4
4
9
3
.8
0

(1
5
7
7
.3
0
)

6
7
1
.6
0

0
.2
3

-2
6
9
9
5
.8
0

(9
9
5
.4
0
)

7
7
0
.1
0

1
7
.4
0

-2
9
9
1
5
.4
0
(1
2
6
8
.6
4
)

7
4
2
.9
0
9
4
5
1
.9
0

3
0
1
6
.3
4

4
n

-3
7
7
1
5
.4
0

(3
0
3
0
.5
9
)

8
1
1
.8
0

0
.2
3

-3
4
3
1
7
.5
0
(1
4
6
1
.8
9
)

9
0
5
.1
0

1
8
.6
9

-4
5
4
8
9
.8
0
(1
4
6
3
.9
1
)

8
7
6
.8
0
8
3
3
2
.5
0

4
9
4
8
.0
0

6
n

-4
5
2
8
0
.1
0

(2
3
7
6
.7
6
)

8
7
5
.0
0

0
.2
7

-3
6
7
9
0
.5
0

(8
4
6
.7
8
)

9
4
1
.4
0

1
9
.4
1

-5
4
3
5
2
.1
0
(1
0
0
1
.7
7
)

9
2
0
.0
0
7
4
0
9
.3
0

4
7
2
6
.8
1

5
0
0
0

2
n

-1
1
9
1
2
2
.9
0

(4
9
8
0
.7
4
)
3
3
7
1
.6
0

5
.2
3

-1
3
5
3
3
3
.8
0
(2
2
9
6
.5
6
)
3
9
2
1
.1
0

2
4
4
0
.7
0

-1
4
6
0
8
1
.8
0
(2
3
7
7
.7
9
)
3
7
5
8
.5
0
8
5
3
2
.8
0
1
7
4
3
2
9
.9
0

4
n

-1
7
7
6
0
5
.6
0

(7
3
8
8
.5
3
)
4
0
4
5
.1
0

6
.4
2

-1
6
3
3
8
5
.6
0
(2
1
5
3
.9
2
)
4
5
5
0
.0
0

2
5
8
5
.6
5

-2
1
6
5
6
4
.2
0
(4
4
2
5
.3
8
)
4
3
7
2
.5
0
8
5
9
2
.4
0
3
2
1
0
9
9
.2
0

6
n

-2
1
7
1
1
2
.0
0
(1
2
6
6
7
.3
7
)
4
3
2
5
.6
0

7
.2
9

-1
7
1
4
8
3
.7
0
(2
8
3
9
.8
1
)
4
7
0
7
.2
0

2
6
7
9
.9
9

-2
5
8
9
6
5
.2
0
(3
9
4
7
.9
1
)
4
5
6
6
.7
0
8
1
7
6
.8
0
3
5
4
7
1
8
.9
0

Hybrid Algorithms for the MWRA Problem 69

Fig. 3. Average improvement (in %) of Aco and DP-Heur over VenSri. Positive
values correspond to an improvement, while negative values indicate that the respective
algorithm is inferior to VenSri. The improvement is shown for the three different arc-
densities that are considered in the benchmark set, that is, m = 2n, m = 4n, and
m = 6n.

function values of the best solutions found by the respective algorithm for the
10 instances of each combination of n and m. The second column (with heading
std) contains the corresponding standard deviation. The third column (with
heading size) indicates the average size (in terms of the number or arcs) of the
best solutions found by the respective algorithm.1 Finally, the fourth column
(with heading time (s)) contains the average compution time (in seconds). For
all three algorithms, the computation time indicates the time of the algorithm
termination. In the case of Aco, an additional table column (with heading evals)
indicates at which solution evaluation, on average, the best solution of a run was
found. Finally, for each combination of n andm, the result of the best-performing
algorithm is indicated in bold font.

The results allow to make the following observations. First, Aco is for all com-
binations of n and m the best-performing algorithm. Averaged over all problem
instances Aco obtains an improvement of 31.9% over VenSri. Figure 3 shows
the average improvement of Aco overVenSri for three groups of input instances
concerning the different arc-densities. It is interesting to observe that the advan-
tage of Aco over VenSri seems to grow when the arc-density increases. On
the downside, these improvements are obtained at the cost of a significantly in-
creased computation time. Concerning heuristic DP-Heur, we can observe that
it improves in all 12 combinations of n and m where m ∈ {4n, 6n} over VenSri.
Interestingly, however,DP-Heur is inferior to VenSri for all combinations with
m = 2n. In other words, DP-Heur seems to be inferior to VenSri when rather
sparse input graphs are concerned, whereas the opposite is the case for more

1 Remember that solutions—that is, arborescences—may have any number of arcs
between 0 and |V | − 1, where |V | is the number of the input DAG G = (V,A).

70 S. Mateo et al.

dense input graphs. Averaged over all problem instances, DP-Heur obtains an
improvement of 8.87% over VenSri. The average improvement of DP-Heur
over VenSri is shown for the three groups of input instances concerning the
different arc-densities in Figure 3. Concerning a comparison of the computation
times, we can state thatDP-Heur has a clear advantage overVenSri especially
for large-size problem instances.

Figure 4 presents the information which is contained in the columns of Table 2
that have headings size and evals. Concerning the average size of the solutions

(a) Average solution size

(b) Average number of solution evaluations at which the best solution of an
Aco run is found

Fig. 4. (a) shows, for each combination of n and m, information about the average
size—in terms of the number of arcs—of the solutions produced by DP-Heur, Aco,
and VenSri. (b) shows for each combination of n and m the average number of solution
evaluations at which the best solution of a run of Aco is found.

Hybrid Algorithms for the MWRA Problem 71

produced by the three algorithms (as shown in Figure 4(a)) it is interesting to
observe that the solutions produced by DP-Heur consistently seem to be the
smallest ones, while the solutions produced by VenSri seem generally to be the
largest ones. The size of the solutions produced by Aco is generally inbetween
these two extremes. We currently have no explanation for this aspect, which
certainly deserves further examination.

Finally, Figure 4(b) presents the average number of solution evaluations at
which the best solution of a run of Aco is found. Not surprisingly, when large
graphs are concerned, significantly more solution evaluations are necessary for
reaching the best solutions than when rather small graphs are tackled. Con-
cerning a comparison between the groups of graphs characterized by different
arc-densities, it can be observed that when rather small graphs are concerned
Aco seems to faster in obtaining good solutions for sparse graphs. However,
when the size of the input graph grows, this difference disappears.

5 Conclusions and Future Work

In this work we have proposed a heuristic and an ant colony optimization ap-
proach for the minimum-weight rooted arboresence problem. Both algorithms
make use of dynamic programming as sub-ordinate procedure. Therefore, they
may be regarded as hybrid algorithms. The experimental results show that both
approaches improve (on average) over an existing heuristic from the literature.
Interestingly, the advantage of the proposed algorithm over the existing heuristic
grows with increasing arc-density of the input graph.

Concerning future work, we plan to apply both approaches to other types of
problem instances. For example, we plan to generate problem instances in which
the number of arcs with negative weights is significantly higher than the number
of arcs with positive weights, or vice versa. Moreover, we plan to implement an
integer programming model for the tackled problem—in the line of the model
proposed in [5] for a related problem—and to solve the model with an efficient
integer programming solver. In [7] we already proposed an extension of this
model for the problem of reconstructing tree structures.

Acknowledgments. This work was supported by grant TIN2007-66523
(FORMALISM) of the Spanish government.

References

1. Blum, C.: Revisiting dynamic programming for finding optimal subtrees in trees.
European Journal of Operational Research 177(1), 102–114 (2007)

2. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man and Cybernetics – Part B 34(2), 1161–1172
(2004)

3. Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)

72 S. Mateo et al.

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
5. Duhamel, C., Gouveia, L., Moura, P., Souza, M.: Models and heuristics for a min-

imum arborescence problem. Networks 51(1), 34–47 (2008)
6. Stützle, T., Hoos, H.H.: MAX −MIN Ant System. Future Generation Computer

Systems 16(8), 889–914 (2000)
7. Türetken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures

using path classifiers and mixed integer programming. In: Proceedings of CVPR
2012 – 25th IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Press (in press, 2012)

8. Türetken, E., González, G., Blum, C., Fua, P.: Automated reconstruction of den-
dritic and axonal trees by global optimization with geometric priors. Neuroinfor-
matics 9(2-3), 279–302 (2011)

9. Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (2001)
10. Venkata Rao, V., Sridharan, R.: Minimum-weight rooted not-necessarily-spanning

arborescence problem. Networks 39(2), 77–87 (2002)

	Hybrid Algorithms for the Minimum-Weight Rooted Arborescence Problem

	Introduction
	A New Heuristic Approach
	Ant Colony Optimization for the MWRA Problem
	Experimental Evaluation
	Benchmark Instances
	Results

	Conclusions and Future Work
	References

