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Computation in Multicast Networks:
Function Alignment and Converse Theorems

Changho Suh, Naveen Goela and Michael Gastpar

Abstract—The classical problem in network coding theory con-
siders communication over multicast networks. Multiple trans-
mitters send independent messages to multiple receivers which
decode the same set of messages. In this work,computation
over multicast networks is considered: each receiver decodes
an identical function of the original messages. For a countably
infinite class of two-transmitter two-receiver single-hop linear
deterministic networks, the computing capacity is characterized
for a linear function (modulo-2 sum) of Bernoulli sources.
Inspired by the geometric concept of interference alignment
in networks, a new achievable coding scheme calledfunction
alignment is introduced. A new converse theorem is established
that is tighter than cut-set based and genie-aided bounds. Com-
putation (vs. communication) over multicast networks requires
additional analysis to account for multiple receivers sharing a
network’s computational resources. We also develop anetwork
decomposition theorem which identifies elementary parallel sub-
networks that can constitute an original network without loss of
optimality. The decomposition theorem provides a conceptually-
simpler algebraic proof of achievability that generalizesto L-
transmitter L-receiver networks.

Index Terms—Computing Capacity, Function Alignment, Net-
work Decomposition Theorem

I. I NTRODUCTION

Recently coding for computation in networks has received
considerable attention with applications in sensor networks [1]
and cloud computing scenarios [2], [3]. In a sensor network,
a fusion node may be interested in computing a relevant
function of the measurements from various data nodes. In a
cloud computing scenario, a client may download a function or
part of the original source information that is distributed(e.g.
using a maximum distance separable code) across multiple
data nodes.

The simplest setting for computation in networks consists
of multiple sources transmitting information to asingle re-
ceiver which computes a function of the original sources.
Appuswamyet al.study the fundamental limits of computation
for linear and general target function classes for single-
receiver networks [4]. While limited progress has been made
for general target functions, the problem of linear function
computation in single-receiver networks has been solved in
part due to a duality theorem establishing an equivalence
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to the classical problem of communication over multicast
networks [5]. As a consequence, it was shown that the cut-set
based bound is tight in the single-receiver case.

Several results over the past decade have contributed to
the understanding of classical communication in multicast
networks in which the task is to transmit raw messages from
transmitters to a set of receivers with identical message de-
mands. The celebrated work of Ahlswedeet al. [5] established
that the cut-set bound is tight for multicast communication.
Subsequent research developed practical linear network coding
strategies ranging from random linear codes to deterministic
polynomial-time code constructions [6], [7], [8], [9]. The
success of traditional multicast communication motivatesus to
explore the fundamental limits of multicasting a linear function
in multi-receivernetworks as a natural next step. For this open
problem, some facts are known based on example networks:
(a) Random codes are insufficient in achieving capacity limits,
and structured codes achieve higher computation rates [10]; (b)
Linear codes are insufficient in general for computation over
multi-receiver networks (cf. both [11] and [12]) and non-linear
codes may achieve higher computation rates.

To make progress on the problem of multicasting a function
in multi-receiver networks, we consider the simplest two-
transmitter two-receiver network in which both receivers com-
pute a linear function (modulo-2 sum) of two independent
Bernoulli sources generated at the transmitters. Specifically,
we consider the Avestimehr-Diggavi-Tse (ADT) deterministic
single-hop network model [13] which captures superposition
and broadcast properties of wireless Gaussian networks andis
a generalization of networks of orthogonal links. We develop
a new achievable coding scheme termedfunction alignment1,
inspired by the concept ofinterference alignment[15], [16].
We also derive a new converse theorem that is tighter than cut-
set based bounds and genie-aided bounds. As a consequence of
this capacity result, we find that unlike the single-receiver case,
the cut-set based bound is not achieved due to competition
for shared network resources that arise in satisfying function
demands at multiple receivers.

As a byproduct of our analysis, we develop anetwork
decomposition theoremto identify elementary parallel sub-
networks that can constitute an original network without
loss of optimality for in-network computation. The network
decomposition approach offers a conceptually simpler proof of
achievability which we use to establish the linear computing
capacity ofL-transmitterL-receiver single-hop networks. In

1Niesen-Nazer-Whiting [14] introduced a similar scheme in adifferent
context called computation alignment.
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Fig. 1. Two-transmitter two-receiver Avestimehr-Diggavi-Tse (ADT) deter-
ministic network

addition, the approach has potential for the design of structured
computation codes in larger multi-hop networks.

Related Work: In [17], [11], [18], the computing capac-
ity for multicasting a sum of sources is explored for arbi-
trary multiple-source multiple-destination networks. Rai and
Dey [11] proved that there exists a linear solvably equivalent
sum-network for any multiple-unicast network and vice-versa.
Ramamoorthy and Langberg [18] characterized necessary and
sufficient conditions for communicating sums of sources of
two-sourceL-destination (orL-source two-destination) net-
works, when the entropy of each source is limited by1. On
the other hand, our work considers sources without entropy
constraints and establishes the exact capacity of an ADT
multi-receiver network which is a generalization of traditional
network coding models with orthogonal links.

II. M ODEL

We focus on a two-transmitter two-receiver ADT determin-
istic network. Section VI includes our results forL-transmitter
L receiver networks. As shown in Fig. 1, this network is
described by four integer parametersnij which indicates the
number of signal bit levels from transmitteri (i = 1, 2) to
receiverj (j = 1, 2). Let Xℓ ∈ F

q
2 be transmitterℓ’s encoded

signal whereq = maxij nij . The received signals are then
given by

Y1 = G
q−n11X1 ⊕G

q−n21X2,

Y2 = G
q−n12X1 ⊕G

q−n22X2,
(1)

whereG is theq-by-q shift matrix, i.e.,[G]ij = 1{i = j+1}
(1 ≤ i ≤ q; 1 ≤ j ≤ q), and operations are performed inF2.

Each receiver wishes to compute modulo-2 sums of the
two Bernoulli sourcesSK

1 and SK
2 , generated at the two

transmitters, withN uses of the network. Here we use
shorthand notation to indicate the sequence up toK, e.g.,
SK
1 := (S11, · · · , S1K). We assume thatSK

1 and SK
2 are

independent and identically distributed withBern(12 ). Trans-
mitter ℓ uses its encoding function to mapSK

ℓ to a length-
N codewordXN

ℓ . Receiverℓ uses a decoding functiondℓ to
estimateSK

1 ⊕ SK
2 from its received signalY N

ℓ . An error
occurs wheneverdℓ 6= SK

1 ⊕SK
2 . The average probabilities of

error are given byλℓ = E
[

P (dℓ 6= SK
1 ⊕ SK

2 )
]

, ℓ = 1, 2.
We say that the computing rateRcomp = K

N
is achievable

if there exists a family of codebooks and encoder/decoder
functions such that the average decoding error probabilities
of λ1 and λ2 go to zero as code lengthN tends to infinity.
We will also need the notion of linear computing capacity
C lin

comp, where we restrict both the encoders and the decoders

to be linear mappings. In line with the standard network coding
literature, when referring to the linear computing capacity, we
will assume a zero-error framework rather than the framework
of negligible error we use in the context of the regular
computing capacity.

We classify networks into two classes, depending on a
reconstructability condition that will be specified in the sequel.
The reconstructability turns out to be the key property that
classifies networks. This will be clarified when we prove an
upper bound on the computing capacity in Theorem 1.

Definition 1: A network is said to bedegenerateif none of
G

q−nijXi can be reconstructed from(Y1, Y2) for all i, j. A
network is said to benon-degenerateif there exists(i, j) such
thatGq−nijXi can be reconstructed from(Y1, Y2).

Lemma 1:A network is degenerate if and only ifn11 −
n12 = n21 − n22. As a direct consequence, a network is non-
degenerate if and only ifn11 − n12 6= n21 − n22.

Proof: See Appendix A.

III. M AIN RESULTS

Theorem 1 (Upper Bound on Computing Capacity):The
computing capacity is upper-bounded by

Ccomp ≤ min {n11, n12, n22, n21} . (2)

For non-degenerate networks wheren11 − n12 6= n21 − n22,

Ccomp ≤
max(n11, n21) + max(n22, n12)

3
. (3)

Proof: See Section III-A.
We show the tightness of the above bounds for the following

two cases:(a) degenerate networks;(b) symmetric networks
characterized by two parameters ofn := n11 = n22 andm :=
n12 = n21.

Theorem 2 (Degenerate Networks):For degenerate
networks wheren11 − n12 = n21 − n22,

Ccomp = min{n11, n12, n22, n21}. (4)

Proof: The converse proof is immediate from Theorem 1.
See Section III-B for the achievability proof.

Theorem 3 (Symmetric Networks):For symmetric
networks wheren := n11 = n22 andm := n12 = n21,

Ccomp =

{

min
{

m,n, 2
3 max(m,n)

}

, m 6= n;
n, m = n.

(5)

Proof: The converse proof is immediate from Theorem 1.
See Section IV for the achievability proof.

Our results are interpreted with a focus on symmetric
networks. Specifically, it will be shown that our scheme out-
performs the separation scheme where both receivers decode
all of the sources and then compute modulo-2 sums of the
sources. It will also be revealed that in contrast to a single-
receiver function-unicasting case, the cut-set based bound is
not tight when multicasting linear functions.

For illustrative purpose, consider the normalized computing
capacity as follows:

Ccomp

q
=

{

min
{

α, 2
3

}

, α < 1;
1, α = 1,

(6)
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Fig. 2. Normalized computing capacity. Heren := n11 = n22 andm :=
n12 = n21. The parameterα in x-axis captures a signal-strength similarity
betweenm andn.

whereq = max(m,n) andα := min(m,n)
q

.
Remark 1 (Comparison to Separation Scheme):The com-

puting rate of the separation scheme can be derived from
the multicast capacity. Note that the multicast capacity isthe
intersection of the two individual MAC capacities: the setCmult

of (R1, R2) such thatR1 ≤ min(m,n), R2 ≤ min(m,n) and
R1 +R2 ≤ max(m,n). Therefore, this gives

Rsep

q
=

Csym

q
= min

{

α,
1

2

}

, (7)

whereCsym := sup{R : (R,R) ∈ Cmult}. While this separa-
tion approach provides the optimal strategy for0 ≤ α ≤ 1

2 ,
it is suboptimal for the other regime12 < α ≤ 1. Note that
for 1

2 < α ≤ 1, more-than-half of signal levels at receivers
naturally form the mod-sum function of our interest. It turns
out that this natural matching can provide higher computing
rates. Details will be explained in Section IV.�

Remark 2 (Comparison to a Single-Receiver Case):In a
single-receiver case, the computing capacity achieves the
cut-set based upper bound, which will be formally proven
to be min(m,n) in the next section. On the other hand,
the cut-set bound is not tight when multicasting a function.
Notice the non-zero gap between the function-unicasting
and function-multicasting capacities when23 ≤ α < 1 (see
Fig. 2). This comes from the tension that arises in satisfying
the same demand at multiple receivers. We will clarify this
while presenting our achievability in Section IV.�

A. Proof of Theorem 1

The proof of the bound (2) is based on the standard cut-set
argument. The main focus is to prove the second bound (3).

Proof of (2): Starting with Fano’s inequality, we get

N(Rcomp − ǫN) ≤ I(SK
1 ⊕ SK

2 ;Y N
1 )

≤ I(SK
1 ⊕ SK

2 ;Y N
1 , SK

2 )

(a)
= I(SK

1 ⊕ SK
2 ;Y N

1 |S
K
2 )

(b)
= I(SK

1 ⊕ SK
2 ;Y N

1 |S
K
2 , XN

2 )

= H(Y N
1 |S

K
2 , XN

2 )
(c)

≤
∑

H(Y1i|X2i) ≤ Nn11

where (a) follows from the fact thatSK
2 is independent of

SK
1 ⊕ SK

2 ; (b) follows from the fact thatXN
2 is a function

of SK
2 ; (c) follows from the fact that conditioning reduces

entropy. If Rcomp is achievable, thenǫN → 0 as N tends
to infinity. So we getRcomp ≤ n11. Similarly we can show
that Rcomp ≤ min{H(Y2|X2), H(Y1|X1), H(Y2|X1)} ≤
min{n12, n21, n22}.

Proof of (3): For non-degenerate networks, by defini-
tion, there exists(i, j) such thatGq−nijXi can be recon-
structed from(Y1, Y2). Without loss of generality, assume that
G

q−n12X1 is a function of(Y1, Y2).
Starting with Fano’s inequality, we get

N(3Rcomp − ǫN )

≤I(SK
1 ⊕ SK

2 ;Y N
1 ) + I(SK

1 ⊕ SK
2 ;Y N

2 ) + I(SK
1 ⊕ SK

2 ;Y N
2 )

(a)

≤ [H(Y N
1 )−H(Y N

1 |S
K
1 ⊕ SK

2 )]

+ [H(Y N
2 )−H(Y N

2 |S
K
1 ⊕ SK

2 , Y N
1 )] + I(SK

1 ⊕ SK
2 ;Y N

2 )

≤ H(Y N
1 ) +H(Y N

2 )

−H(Y N
1 , Y N

2 |S
K
1 ⊕ SK

2 ) + I(SK
1 ⊕ SK

2 ;Y N
2 , SK

2 )

(b)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 |S
K
1 ⊕ SK

2 ) + I(SK
1 ⊕ SK

2 ;Y N
2 |S

K
2 )

(c)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 |S
K
1 ⊕ SK

2 ) +H(T12X
N
1 |S

K
2 )

(d)
= H(Y N

1 ) +H(Y N
2 )

−H(Y N
1 , Y N

2 ,T12X
N
1 |S

K
1 ⊕ SK

2 ) +H(T12X
N
1 |S

K
2 )

≤ H(Y N
1 ) +H(Y N

2 )

−H(T12X
N
1 |S

K
1 ⊕ SK

2 ) +H(T12X
N
1 |S

K
2 )

(e)
= H(Y N

1 ) +H(Y N
2 )−H(T12X

N
1 ) +H(T12X

N
1 |S

K
2 )

(f)

≤
∑

[H(Y1i) +H(Y2i)]

≤ 2N [max(n11, n21) + max(n12, n22)]

where (a) follows from the fact that conditioning reduces
entropy;(b) follows from the fact thatSK

1 is independent of
SK
1 ⊕ SK

2 ; (c) follows from the fact thatXN
2 is a function

of SK
2 and thatT12 := IN ⊗ G

q−n12 ; (d) follows from
our hypothesis thatGq−n12X1 is a function of(Y1, Y2); (e)
follows from the fact thatXN

1 is a function ofSK
1 that is

independent ofSK
1 ⊕ SK

2 ; (f) follows from the fact that
conditioning reduces entropy. This completes the proof.

B. Proof of Theorem 2

Assume thatn11 − n12 = n21 − n22 ≥ 0. Then Y2 is a
degenerated version ofY1:

Y2 = G
q−n12X1 ⊕G

q−n22X2

= G
q−n11+n21−n22X1 ⊕G

q−n22X2

= G
n21−n22Y1.

This shows an equivalence to a single-receiver case which
concerns receiver 2’s demand only. Hence, in this case,
Rcomp = min{n12, n22}. Similarly for the other case of
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Fig. 3. [Case I: 1

2
≤ α ≤ 2

3
]: An achievable scheme for(m,n) = (3, 5)

and generalization to arbitrary values of(m, n).

n11 − n12 = n21 − n22 ≤ 0, one can show thatY1 is a
degenerated version ofY2 and therefore a network becomes
equivalent to a single-receiver case w.r.t receiver 1 where
Rcomp = min{n11, n21}.

IV. PROOF OFTHEOREM 3 VIA GEOMETRIC APPROACH

By symmetry, focus on the case ofm ≤ n. The other case
of m ≥ n is a mirror image in which transmitters 1 and 2 are
swapped. As mentioned in Remark 1, the separation scheme
can achieve the computing capacity for0 ≤ α ≤ 1

2 . The case
of α = 1 is a degenerate case where the channel forms the
mod-sum function by nature at both receivers. In this case,
uncoded transmission can yieldRcomp = n. Hence, our focus
is the following two non-degenerate cases.

A. Case I: 12 ≤ α ≤ 2
3

Let us explain achievability with the example(m,n) =
(3, 5) illustrated in Fig. 3. We will show that the cut-set
bound ofmin(m,n) = 3 can be achieved. First transmitter 1
sends the bits(a1, a2, a3) on the top3(= m) levels. Observe
that the 3rd level at receiver 1 marked with a green square
is connected with transmitter 1’s upperm levels as well as
transmitter 2’s upperm levels. The idea is to exploit this
overlapped level. Transmitter 2 sendsb3 on the top level
to achievea3 ⊕ b3 on the overlapped level at receiver 1.
In an arbitrary case, the number of overlapped levels is
N1 := n12+n21−n11 = 2m−n. On the other hand, the bitb3
is cleanly received at receiver 2 without being interfered with
by (a1, a2, a3), sinceN1+m ≤ n in the regime of12 ≤ α ≤ 2

3 .
Similarly letN2 := n12+n21−n22 = 2m−n be the number
of levels at receiver 2 which are connected with transmitter
1’s upperm levels as well as transmitter 2’s upperm levels.
In this example, level 3 at receiver 2 is the overlapped level.
Transmitter 2 then sendsb1 on the 3rd level so as to achieve
a1 ⊕ b1 on the level at receiver 2. Thisb1 is cleanly received
at receiver 1, sinceN2 +m ≤ n in the regime of12 ≤ α ≤ 2

3 .
Finally notice that level 2 at transmitter 2 is vacant among

the topm levels. In an arbitrary case, the number of these
vacant levels ism−(N1+N2). Transmitter 2 sends additional
symbols (b2 in this example) on the vacantm − (N1 + N2)
levels. Obviously these symbols are cleanly received at both
receivers. In summary, receiver 1 can computea1⊕b1, a2⊕b2,
and a3 ⊕ b3. In an arbitrary case, the total number of these

computable bits isN1+N2+{m−(N1+N2)} = m. Similarly
receiver 2 can computem bits. Therefore, we can achieve
Rcomp = m.

Remark 3 (Exploiting Channel Structure [10], [19]):In
the regime of 12 ≤ α ≤ 2

3 , more-than-half of signal levels
at receivers naturally form the mod-sum function. This
enables us to create a shared linear subspace. Note in the
above example that at receiver 2, the symbols(a1, b1) share
one-dimensional linear subspace spanned by[0, 0, 1, 0, 0]t,
where[·]t indicates a transpose. This enables us to outperform
the separation scheme where shared subspaces do not exist.
�

Remark 4 (Connection to Interference Alignment):Note
that the linear subspace with respect toa1 is aligned with
the subspace w.r.tb1. In this sense, it is an instance of the
important concept ofinterference alignment[15], [16] which
has shown great potential for a variety of applications such
as interference channels [16], cellular networks [20], [21],
distributed storage networks [22], [23], [24] and multiple
unicast networks [25], [26]. But the distinction w.r.t our
problem comes from the purpose of alignment. In our
problem, the aim of alignment is to form a desired function
while minimizing the signal subspace occupied by the source
symbols. To highlight this purpose, we call itfunction
alignment. �

B. [Case II: 2
3 ≤ α < 1]: Example

Unlike Case I, our achievability for this regime employs a
vector-coding scheme. We first explain our achievability idea
with the example(m,n) = (3, 4) illustrated in Fig. 4. We will
then invoke a geometric insight which helps generalizing to
arbitrary values of(m,n). The generalization will be explained
in the next section.

Our achievability idea is toalternatefunction alignment at
both receivers. See Fig. 4. We first achieve function alignment
a1⊕b1 at receiver 1. We next achievea2⊕b2 at receiver 2. We
repeat this until all of the resource levels are fully utilized. At
the end of time 1, receiver 1 can then compute all ofai⊕ bi’s
(i = 1, 2, 3). However, receiver 2 can compute onlya1 ⊕ b1,
a2⊕ b2 andb3. Since we start favoring receiver 1, we end up
with this asymmetry.

In order to make it symmetric, we invoke the idea of vector
coding. In time 2, we start by favoring receiver 2 instead and
repeat the same procedure as before. We can then obtain a
symmetric solution at the end of time 2. However, the solution
is still inefficient. Note thatb6 is missing at receiver 1, and
similarly a3 is missing at receiver 2. To improve, we use
another time slot. In time 3, we now have two purposes: (1)
sending fresh source symbols; (2) delivering theb6 anda3 to
receivers 1 and 2 respectively. We first multicast fresh symbols
a7⊕ b7 anda8⊕ b8 with alternating function alignment. Next
transmitter 1 sendsa3 (wanted by receiver 2) on the third
level. But this transmission causes interference tob8 which
was already received at receiver 1. Fortunately we can resolve
this conflict. Here the key observation is thata3 ⊕ b3 is
already obtained at receiver 1 in time 1. Hence, transmitter
2 sendingb3 on top of b8 in time 3, we can achieve the
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Fig. 4. [Case II: 2

3
≤ α < 1]: Alternating function alignment for(m,n) = (3, 4).

function alignmenta3 ⊕ b3 at receiver 1. Thea3 ⊕ b3 already
received in time 1 can then be exploited asside information
to decodeb8 from b8 ⊕ a3 ⊕ b3. As a result, transmitter 1
can deliver thea3 to receiver 2 without interfering withb8 at
receiver 1. Similarly transmitter 2 can deliver theb6 to receiver
1 without interfering witha7 at receiver 2. Both receivers can
now computeai ⊕ bi’s for i = 1, · · · , 8 during 3 time slots,
thus achievingRcomp = 8

3 .

Geometric Interpretation: To aid generalization to
arbitrary values of (m,n), we invoke geometric in-
sights from the (3, 4) example. In this example,v =
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]t can be viewed as a beamforming
vector fora1. Beamforming vector designs are closely associ-
ated with function alignment. To achieve function alignment
a1 ⊕ b1 at receiver 2, transmitter 2 designs its corresponding
vector asTv, whereT indicates the 3-time-slot equivalent
channel:T := I3 ⊗ G

4−3 = I3 ⊗ G. With this geometric
viewpoint, we can interpret the(3, 4) example solution as in
Fig. 5.

Let a := (a2, a4, a8, a6)
t and ā := (a1, a5, a7, a3)

t;
similarly b := (b2, b4, b8, b6)

t and b̄ := (b1, b5, b7, b3)
t. Let

V1 be a 12-by-4 beamforming matrix w.r.t.a. Let V2 be a
12-by-4 beamforming matrix w.r.t.̄b. According to the code
construction in Fig. 4, we have

V1 =









































1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









































,V2 =









































1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









































. (8)

To achieve function alignmenta⊕b at receiver 2, transmitter
2 sendsb along with TV1. Similarly to achieveā ⊕ b̄

at receiver 1, transmitter 1 sends̄a along with TV2. Re-
ceiver 2 then getsV2b̄ and (T2

V2)ā. One can verify that
rank([V1 TV2 T

2
V1]) = rank([V2 TV1 T

2
V2]) = 12.

This enables both receivers to computea⊕ b and ā⊕ b̄.

C. [Case II: 2
3 ≤ α < 1]: Generalization

We now provide a code construction ofV1 and V2 for
arbitrary values of(m,n). Let M1 be the column size ofV1,
i.e., the number of symbols that form function alignment at
receiver 2. Similarly, letM2 be the column size ofV2. In the
previous(3, 4) example,M1 = M2 = 4. Notice thatRcomp =
M1+M2

3 is achievable if the following matrices are full rank:

B1 := [V1, T
2
V1, TV2] ∈ F

3n×(2M1+M2)
2

B2 := [V2, T
2
V2, TV1] ∈ F

3n×(M1+2M2)
2 .

We choose appropriate values of(M1,M2) such thatM1+
M2 = 2n and thus can yieldRcomp = 2n

3 . Considering the
total dimension of the linear subspace at receiver 1, we get
2M1+M2 ≤ 3n. Similarly for receiver 2, we getM1+2M2 ≤
3n. This motivates us to chooseM1 = M2 = n.

We construct(V1,V2) such thatB1 andB2 are full rank.
The form ofV1 andV2 in (8) inspires our construction in
the general case. Note that the first three columns ofV1 and
V2 are the same, sayV. Inspecting more examples, we could
identify the dimension ofV as3n-by-3(n−m):

V1 = [V P1] ∈ F
3n×n
2

V2 = [V P2] ∈ F
3n×n
2

(9)

whereV ∈ F
3n×3(n−m)
2 and Pℓ ∈ F

3n×(3m−2n)
2 , ℓ = 1, 2.

The form of (8) inspires:

V = I3 ⊗ [e
(n)
1 · · · e

(n)
n−m], (10)

wheree(n)i ∈ F
n
2 indicates theith coordinate vector in ann-

dimensional space. Note in (8) thatP1 andP2 bear a strong
similarity: the (9th-12th) rows are identical; the (1st-4th) rows
of P2 are the same as the (5th-8th) rows ofP1. Inspecting
more examples, we could develop a construction:

P1 = e
(3)
3 ⊗ [e

(n)
(n−m)+1 · · · e

(n)
2m−n]

⊕ e
(3)
2 ⊗

{

[e
(n)
2(n−m)+1 · · · e

(n)
m ]⊕ [e

(n)
3(n−m)+1 · · · e

(n)
n ]

}

,

P2 = e
(3)
3 ⊗ [e

(n)
(n−m)+1 · · · e

(n)
2m−n]

⊕ e
(3)
1 ⊗

{

[e
(n)
2(n−m)+1 · · · e

(n)
m ]⊕ [e

(n)
3(n−m)+1 · · · e

(n)
n ]

}

.

(11)

The following lemma shows that this code ensures the full
rank ofB1 andB2. This completes the proof.
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Fig. 5. Geometric interpretation of an achievable scheme.

Lemma 2:

rank
[

V1, TV2, T
2
V1

]

= 3n,

rank
[

V2, TV1, T
2
V2

]

= 3n.
(12)

Proof: See Appendix B.

V. PROOF OFTHEOREM 3 VIA NETWORK DECOMPOSITION

In this section, we present a network decomposition the-
orem that permits to decompose a network into elementary
subnetworks. The decomposition theorem applies not only to
the two-user network discussed so far, but directly extends
to theL-user network, which will formally be introduced in
Section VI. Using this theorem for the case ofL = 2 users, we
will provide an alternative conceptually-simpler achievability
proof of Theorem 3 by coding separately over each elementary
subnetwork. Interestingly, this coding strategy is sufficient to
meet the converse bounds, and hence, to establish computation
capacity, thus establishing aseparation principleamong the
building blocks. This observation is somewhat surprising —in
general interference channel problems, coding separatelyover
parallel channels entails a significant loss in performance.

For the general case ofL users, we will evaluate the
performance of this coding approach in Section VI and show
that it matches the upper bound for linear coding strategies.

Theorem 4 (Network Decomposition):For the L-
transmitter L-receiver (m,n) network where m 6= n,
the following network decompositions hold:2

(1) For anyk ∈ Z
+,

(km, kn) = (m,n)k = (m,n)× (m,n)× . . .× (m,n).

(2) (2m+ 1, 2n+ 1) = (m,n)× (m+ 1, n+ 1)
(3) For the arbitrary(m,n) model,

(m,n) (13)

=

{

(r, r + 1)n−m−a × (r + 1, r + 2)a, m < n;
(r + 1, r)m−n−a × (r + 2, r + 1)a, m > n.

2We use the symbol× for the concatenation of orthogonal models, just
like in R

2 = R× R.

Rx 2

Tx 1

Tx 2

Rx 1

Rx 2

Tx 1

Tx 2

Rx 1

Rx 2

Tx 1

Tx 2

Rx 1

3

Rx 2

Tx 1

Tx 2

Rx 1

 

Fig. 6. A network decomposition example of an(m, n) = (2, 7) model.
From (13),r = 0 anda = 2; hence, the decomposition is given by(2, 7) =
(0, 1)3 × (1, 2)2.

where

r =

⌊

min{m,n}

|n−m|

⌋

,

a = min{m,n} mod |n−m|.

(14)

The proof is given in Appendix C. Here we provide a
proof idea with an(m,n, L) = (2, 7, 2) example, illustrated
in Fig. 6. The idea is to use graph coloring with|n−m| = 5
colors, identified by integers{0, 1, 2, 3, 4}. At transmitter 1,
assign to level1 and level6 (= 1 + |n − m|) the color 0
(blue color in this example). Use exactly the same rule to
color the levels of transmitter 2 and receivers 1 and 2. The
blue-colored graph represents an independent graph of model
(1, 2). Next we assign the color 1 (red color in this example)
to level 2 and level7 (= 2 + |n − m|), for all transmitters
and receivers. We then obtain another independent graph of
model (1, 2) and are left with model(0, 3). Obviously the
model (0, 3) is decomposed into(0, 1)3. Therefore, we get
(2, 7) = (1, 2)2 × (0, 1)3.

Remark 5:Unlike the L = 2 case, forL ≥ 3, the case
m < n is not symmetric withm > n. Nevertheless, the above
symmetric decomposition holds even whenL ≥ 3. �

Remark 6:The separation principle among these decom-
posed subnetworks is not generally true. It is well known
that for parallel interference channels, optimal performance
requires joint coding across orthogonal components.�
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Theorem 4 suggests that fundamental building blocks are of
form (r, r + 1) or (r + 1, r), that is, “gap-1” models. Hence,
we focus on the computing rates of the “gap-1” models.

Lemma 3 (L = 2): The following computing rates are
achievable:
(1) For the model(0, 1), Rcomp = 0.
(2) For the model(1, 2), Rcomp = 1.

(3a) For the model(r, r+1) with r ≥ 2, Rcomp =
2
3 (r+1).

(3b) For the model(r+1, r) with r ≥ 2, Rcomp = 2
3 (r+1).

(4) For the model(r, r), Rcomp = r.
This lemma can be proved via the geometric approach in

Section IV. We give a short explicit proof in Appendix D,
showing that explicit codes for the(3, 4) and (4, 5) models
(found, for example, via the method from Section IV) directly
imply the general proof of the lemma.

Achievability Proof of Theorem 3: By symmetry, we focus
on the case ofm < n. For the case of0 ≤ α ≤ 1

2 , r = 0
and a = m in (14); hence, the decomposition is given by
(m,n) = (0, 1)n−2m × (1, 2)m. Thus, using Lemma 3, the
computing rate isRcomp = 0 · (n − 2m) + 1 ·m = m. Next,
consider the case of12 ≤ α ≤ 2

3 . Applying the decomposi-
tion (13), we find that in this case,r = 1 anda = 2m − n:
(m,n) = (1, 2)2n−3m × (2, 3)2m−n. Thus, using Lemma 3,
the computing rate isRcomp = 1·(2n−3m)+2·(2m−n) = m.
Finally, consider the case ofα ≥ 2

3 . Applying the decompo-
sition (13), we find that in this case,r ≥ 2. So we get

Rcomp =
2

3
(r + 1)(n−m− a) +

2

3
(r + 2)a

=
2

3
{r(n−m) + a+ (n−m)}

(a)
=

2

3
{m+ (n−m)} =

2

3
n.

where(a) is due to (14). This completes the proof.
Remark 7:At first, it might seem that this proof is simpler

than our arguments in Section IV. However, we point out that
proving Lemma 3 is not straightforward, and hence, that there
is no clear ordering as to which proof is simpler. Both proofs
carry different intuitions and insights into the structureof the
problem.�

VI. L× L SYMMETRIC NETWORKS

We consider anL(≥ 3)-transmitterL-receiver network
where all of theL receivers want to compute a mod-2-sum of
all of the Bernoulli sources generated at the transmitters.We
consider a symmetric setting where the two integer parameters
of (m,n) describe the network. Heren indicates the number
of signal bit levels from transmitterℓ to receiverℓ; and m
denotes the number of signal bit levels from transmitterℓ to
receiverℓ′(6= ℓ). See Fig. 7 for an(m,n) = (3, 4) example
of the network. The received signal at receiverℓ is given by

Yℓ = G
q−nXℓ ⊕

⊕

j 6=ℓ

G
q−mXj , (15)

for ℓ = 1, 2, . . . , L.
Theorem 5:The linear computing capacity is

C lin
comp =

{

min
{

m,n, 12 max(n,m)
}

, m 6= n;
n, m = n.

a1

b1

c1

a1

b1

c1

b1 ⊕ c1

a1 ⊕ c1

a1 ⊕ b1

Rx 2

Tx 1

Tx 2

Rx 1

Tx 3 Rx 3

a2

b2

c2

b2 ⊕ c2

a2 ⊕ c2

a2 ⊕ b2

a2

b2

c2

k bits

 

Fig. 7. Achievable scheme for the(r − 1, r) model wherer = 2k.

The computing capacity is upper-bounded by

Ccomp ≤

{

min
{

m,n, L
2L−1 max(n,m)

}

, m 6= n;

n, m = n.

Proof: See Section VI-A for the achievability proof and
Section VI-B for the coverse proof under linear coding strate-
gies. See Section VI-C for the information-theoretic upper
bound.

Remark 8: In general networks, the linear capacity is often
not equal to the capacity and non-linear codes may achieve
higher rates [12]. In the limit ofL→∞, however, linear codes
show the optimality. Note that our information-theoretic upper
bound approaches the achievable rate asL tends to infinity,
thus establishing the asymptotic computing capacity.�

A. Achievability Proof

The idea is to combine the network decomposition in The-
orem 4 and achievability proof for elementary subnetworks.

Lemma 4 (L ≥ 3): The following computing rates are
achievable:

(1) For the model(0, 1) or (1, 0), Rcomp = 0.
(2a) For the model(r − 1, r) with r ≥ 2, Rcomp =

1
2r.

(2b) For the model(r, r − 1) with r ≥ 2, Rcomp =
1
2r.

(3) For the model(r, r), Rcomp = r.

Proof: The items(1) and(3) are straightforward. For the
(2a) model, we consider two cases:r = 2k and r = 2k + 1.
Fig. 7 shows an achievable scheme whenr = 2k = 2 · 2 and
L = 3. Each transmitter uses odd-numbered levels to sendk
symbols. The special structure of symmetric networks allows
each receiver to get clean symbols on odd-numbered levels
while receiving partially-satisfied functions on even-numbered
levels. For example, receiver 1 gets(a1, a2) on the first and
third levels;(b1⊕ c1, b2⊕ c2) on the second and fourth levels.
Note that two resource levels are consumed to compute one
desired function. Therefore, this givesRcomp = 1

2r. Obviously
this can be applied to an arbitrary value ofL as well as the
(2b) model.

Fig. 8 shows an achievable scheme for the case ofr =
2k + 1 = 2 · 2 + 1 and L = 3. If we followed the same
approach as in the case ofr = 2k, each receiver would end
up with having a resource hole in the last bottom level. In
this example, receiver 1 would get(a1, b1 ⊕ c1, a2, b2 ⊕ c2)
on the 1st, 2nd, and 3rd levels, while the last bottom level is
empty. In order to make an efficient resource utilization, we
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Fig. 8. Achievable scheme for the(r − 1, r) model wherer = 2k + 1.

again invoke the vector coding idea. At the end of time 1,
each transmitter sends an additional symbol on the lasteven-
numbered level. This transmission causes a conflict at each
receiver. For example,a3 has a conflict withb2⊕c2. However,
this can be resolved by using another time slot. In time 2,
using the first level, each transmitter re-sends the symbol that
was sent on the last even-numbered level in time 1. From the
second to last levels, we repeat the same procedure as in time
1 to send freshk symbols. Note thata3 is cleanly received at
receiver 1 in time 2. Thisa3 can now be used to decodeb2⊕c2,
which was interfered with bya3 in time 1. Also theb3⊕c3 that
was received at receiver 1 in time 1 can be used to decodea4
which is interfered with byb3⊕c3 on the second level in time
2. Therefore, we can achieveRcomp = k+1+k

2 = r
2 . The same

strategy can be applied to arbitrary values of(L, r = 2k + 1)
as well as the(2b) model.

Using Theorem 4 and Lemma 4, we can now prove the
achievability. We focus on the case ofm < n. The other
case ofm > n similarly follows. For 0 ≤ α ≤ 1

2 , (13)
gives r = 0 anda = m, thus the decomposition is given by
(m,n) = (0, 1)n−2m × (1, 2)m. Therefore, using Lemma 4,
we can achieveRcomp = 0 · (n − 2m) + 1 · m = m. Next,
consider the case of12 ≤ α ≤ 2

3 . Using (13), we find that
r = 1 anda = 2m− n, hence, the decomposition is given by
(m,n) = (1, 2)2n−3m× (2, 3)2m−n. Using Lemma 4, we can
achieveRcomp = 1 · (2n− 3m) + 3

2 · (2m− n) = 1
2n. Finally,

consider the case ofα ≥ 2
3 . From (13), we know thatr ≥ 2.

So we getRcomp = 1
2n.

B. Converse Proof under Linear Coding Strategies

Straightforward cut-set arguments giveRcomp ≤

min{m,n}; hence, it suffices to prove thatRlin
comp ≤

max(m,n)
2 .

Consider any vector linear code overN uses of the network.
Denoting the vector ofK successive bits of userℓ by SK

ℓ ,
this means that the transmitted signals can be written as

K
∑

i=1

vℓ,iSℓ,i = VℓS
K
ℓ ,

where vℓ,j are the “beamforming” vectors of
length N max(m,n) to be chosen optimally, and
Vℓ ∈ F

N max(m,n)×K
2 is the matrix composed of the

K beamforming vectors of transmitterℓ. Assuming
that K computation bits are successfully decoded by
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Fig. 9. Infeasible patterns of received signals forL = 3. Once perfect
function alignment is achieved at receiver 3, any vectors cannot be aligned at
the other receivers.

linear decoding at all receivers, our aim is to prove that
Rlin

comp :=
K
N
≤ max(m,n)

2 .
Our proof relies on a dimensionality argument, evaluated

from the receivers’ perspective. To formulate our argument,
we define the following space:

Wi,ℓ = span{Tv1,i, . . . ,Tvℓ−1,i,vℓ,i,Tvℓ+1,i, . . . ,TvL,i}.

Intuitively, this is the space taken up by theith computed bit
at receiverℓ. First, we observe the following fact:

Lemma 5:For every receiverℓ (ℓ = 1, 2, . . . , L), the sub-
spacesWi,ℓ, for i = 1, 2, . . . ,K, must be linearly independent,
i.e., for everyi, j and ℓ, we haveWi,ℓ ∩Wj,ℓ = 0, where0
is the all-zero vector.

Proof: This lemma can be proved by contradiction: sup-
pose there existsj 6= i such thatWj,ℓ andWi,ℓ are not linearly
independent subspaces. Then, it is not possible to guarantee
that the computed bitsi and j can be decoded without error.

The following lemma relates the dimensionality of the
variousWi,ℓ :

Lemma 6:For anyi, if there existsℓ such thatdim (Wi,ℓ) =
1, then for allm 6= ℓ, we must havedim (Wi,m) > 2.

Proof: See Appendix E.
This lemma says that for any biti for which function alignment
is perfectly achieved at some receiverℓ (i.e., dim(Wi,ℓ) = 1),
then for all other receivers, this same biti must take up at least
3 dimensions. For illustration, Fig. 9 shows some examples of
these infeasible patterns whenL = 3.

We can restate this lemma in the following way. For any
bit i, one of these two alternatives must apply:

(B) : There existsℓ such that dim(Wi,ℓ) = 1. Then,
dim(Wi,m) ≥ 3 for all m 6= ℓ.

(C) : There does not existℓ such thatdim(Wi,ℓ) = 1. Then,
dim(Wi,m) ≥ 2 for all m.

For illustration, Fig. 10 shows examples. Cases (B1)-(B3) are
the ones where the dimension for any other receiver (except
the perfect-alignment receiver) is exactly 3. Cases (C1)-(C3)
are the ones where the dimension is exactly 2 for all of the
receivers.

Let us introduce the setJ of those indicesi for which there
existsℓ such thatdim(Wi,ℓ) = 1. For everyi ∈ J , we have
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Fig. 10. Feasible patterns of received signals forL = 3. Cases (B1)-(B3) are the ones where the dimension of the linear subspace for any other receiver
(except for the perfect-alignment receiver) is exactly 3. Cases (C1)-(C3) are the ones where the dimension is exactly 2 for all of the receivers.

(by case (B) above)

L
∑

m=1

dim (Wi,m) ≥ 1 + 3(L− 1) = 3L− 2. (16)

Let us also denote the complement of the setJ (in the set of
integers between 1 andK) by J c. For everyi ∈ J c, we have
(by case (C) above)

L
∑

m=1

dim (Wi,m) ≥ 2L. (17)

Now, sinceK = |J | + |J c|, and by definition,Rlin
comp =

K/N, we can write

2LNRlin
comp = 2L (|J |+ |J c|)

≤ |J |(3L− 2) + |J c|2L

(a)

≤
∑

i∈J

L
∑

m=1

dim (Wi,m) +
∑

i∈J c

L
∑

m=1

dim (Wi,m)

=

L
∑

m=1

K
∑

i=1

dim (Wi,m)

(b)

≤

L
∑

m=1

N max(m,n) = LN max(m,n),

where(a) follows from Lemma 6 (rewritten as in Equations
(16) and (17)), and(b) follows because for each receiverℓ, the
subspacesWi,ℓ must be linearly independent (Lemma 5) and
their total dimensionality cannot exceed the total number of
dimensions available at receiverℓ overN channel uses, which
is N max(m,n). Therefore, we getRlin

comp ≤
max(m,n)

2 . This
concludes the proof.

C. Proof of Upper Bound

The following upper bound is a generalized version of the
2× 2 case bound (3). Starting with Fano’s inequality, we get

N((2L− 1)Rcomp − ǫN )

≤
L
∑

ℓ=1

I(
⊕

SK
i ;Y N

ℓ ) + (L− 1)I(
⊕

SK
i ;Y N

1 )

(a)

≤

L
∑

ℓ=1

[

H(Y N
ℓ )−H(Y N

ℓ |
⊕

SK
i , [Y N

j ]ℓ−1
j=1)

]

+ (L − 1)I(
⊕

SK
i ;Y N

1 )

(b)

≤

L
∑

ℓ=1

H(Y N
ℓ )−

{

H(Y|
⊕

SK
i ) +

L
∑

ℓ=2

I(
⊕

SK
i ;Y N

1 , S̄ℓ)

}

(c)
=

L
∑

ℓ=1

H(Y N
ℓ )−

{

H(Y|
⊕

SK
i ) +

L
∑

ℓ=2

H(Tℓ1X
N
ℓ |S̄ℓ)

}

(d)
=

L
∑

ℓ=1

H(Y N
ℓ )

−

{

H(Y, [Tℓ1X
N
ℓ ]Lℓ=2|

⊕

SK
i ) +

L
∑

ℓ=2

H(Tℓ1X
N
ℓ |S̄ℓ)

}

(e)

≤

L
∑

ℓ=1

H(Y N
ℓ )−

{

H([Tℓ1X
N
ℓ ]Lℓ=2) +

L
∑

ℓ=2

H(Tℓ1X
N
ℓ |S̄ℓ)

}

(f)
=

L
∑

ℓ=1

H(Y N
ℓ )−

{

L
∑

ℓ=2

H(Tℓ1X
N
ℓ ) +

L
∑

ℓ=2

H(Tℓ1X
N
ℓ |S̄ℓ)

}

≤

L
∑

ℓ=1

H(Y N
ℓ ) ≤ NLmax(m,n)

where(a) follows from the fact that conditioning reduces en-
tropy; (b) follows from non-negativity of mutual information,
Y := [Y N

j ]Lj=1, andS̄ℓ := [SK
i ]Li=1 \S

K
ℓ ; (c) follows from the

fact thatSK
ℓ ’s are mutually independent;(d) follows from the

fact thatXℓ is a function ofY (see Claim 1 below);(e) follows
from the fact that(SK

2 , · · · , SK
L ) is independent of

⊕

i S
K
i ;

(f) follows from the fact thatSK
ℓ ’s are mutually independent;

Claim 1: For m 6= n, Xℓ is a function of [Yi]
L
i=1, ℓ =

1, · · · , L.
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Proof: Consider the case ofm < n. From (15), we get

L
⊕

i=1

Yi =
{

I⊕ (1⊕ L)Gn−m
}

L
⊕

i=1

Xi

L
⊕

i=2

Yi =
(

I⊕G
n−m

)

L
⊕

i=2

Xi ⊕
{

(L− 1)Gn−m
}

L
⊕

i=1

Xi.

Straightforward computation gives

X1 = A
−1

L
⊕

i=1

Yi

⊕B
−1

[

L
⊕

i=2

Yi ⊕
{

(L− 1)Gn−m
}

{

A
−1

L
⊕

i=1

Yi

}]

,

whereA := {I⊕ (1 ⊕ L)Gn−m} and B := (I⊕G
n−m),

both of which are invertible sincem 6= n. Hence,X1 is a
function of [Yi]

L
i=1. By symmetry,Xℓ is a function of[Yi]

L
i=1,

ℓ = 2, · · · , L. Similarly we can show this for the case of
m > n.

VII. D ISCUSSION

A. Multi-hop Networks

In [17], [11], [18], function multicasting has been explored
in the context of multi-hop networks. While some interesting
relationship between sum-network and multiple-unicast net-
works was found in [11], determining the computing capacity
in general has been open. For two-sourceL-destination or
L-source two-destination networks, the computing capacity
was established only when the entropy of each source is
constrained to be 1 [18].

While in this work we remove the entropy constraint of
sources, the network model we consider here is somewhat
specialized and also restricted to a single-hop network. But
we expect that our results will shed some lights on arbitrary
multi-hop networks. One natural next step is exploiting the
insights developed in this work, to characterize necessaryand
sufficient conditions of two-source two-destination multi-hop
networks when the entropy of each source is limited by 2.

B. Role of Feedback for Computation

The role of feedback for function computation has initially
been studied in [27] where it is shown that feedback can
increase the computing rate. Interestingly the feedback gain is
shown to be significant - qualitatively similar to the gain inthe
two-user Gaussian interference channel [28], which revealed
an unbounded feedback gain: the gap between nonfeedback
and feedback capacities can be arbitrarily large as the signal-
to-noise ratio of each link increases. However, the result
of [27] relies on a separation approach that naturally comes
in the course of characterizing feedback multicast capacity.

Our future work is characterizing the feedback comput-
ing capacity of the networks considered herein to explore
whether we can do better than the separation approach. This
will provide a deeper understanding of the feedback gain.
Moreover it would be more interesting to explore this feed-
back gain under more realistic scenarios where feedback is

offered through rate-limited bit-piped links [29] or through
the corresponding backward communication network [30].
Furthermore, we are interested in extending to more general
multi-hop networks [31].

VIII. C ONCLUSION

We have established the computing capacity of a two-
transmitter two-receiver ADT symmetric network where each
receiver wishes to compute a modulo-2-sum function of two
Bernoulli sources generated at the two transmitters. We also
characterized the linear computing capacity of anL-transmitter
L-receiver symmetric network. We developed a new achiev-
able scheme and derive new upper bounds. Furthermore we
established a network decomposition theorem that provides
an alternative but conceptually-simpler achievability proof.
We expect that the network-decomposition-based framework
would play a role in extending to arbitrary multi-hop networks.

APPENDIX A
PROOF OFLEMMA 1

A. Direct Part→

Without loss of generality, assume thatn11 − n12 = n21 −
n22 ≥ 0. We can then get:

G
n21−n22Y1 ⊕ Y2 = (Gq−n11+n21−n22 ⊕G

q−n12)X1.

For the obvious reason,X1 ∈ F
q
2 contains nontrivial values

only on the topn11 levels:

X1 =

[

X̃1

0q−n11

]

∈ F
q
2,

whereX̃1 ∈ F
n11

2 . Using this expression, we can rewrite the
above as:

G
n21−n22Y1 ⊕ Y2 =

[

0q−n11

(Gn21−n22

n11
⊕G

n11−n12

n11
)X̃1

]

.

whereGn11
indicates ann11-by-n11 shift matrix. Sincen11−

n12 = n21 − n22, we haveGn21−n22

n11
⊕G

n11−n12

n11
= 0, and

therefore anyGq−n1jX1 cannot be reconstructed. Similarly
one can show that anyGq−n2jX2 cannot be reconstructed from
(Y1, Y2) by consideringGn11−n12Y1 ⊕ Y2. Hence, a network
is degenerate.

B. Converse Part←

We will show that ifn11−n12 6= n21−n22, then a network
is non-degenerate. Consider the following four cases:

Case I:n12 ≤ n11, n21 ≤ n22

Case II:n12 ≥ n11, n21 ≥ n22

Case III:n12 ≤ n11, n21 ≥ n22

Case IV:n12 ≥ n11, n21 ≤ n22.

Note that Case I and Case II are symmetric, so are Case III
and Case IV. Hence, we focus on Case I and III.

Case I (n12 ≤ n11, n21 ≤ n22): Consider

Y1 ⊕G
n22−n21Y2 = (Gq−n11 ⊕G

q+n22−n21−n12)X1

=

[

0q−n11

(In11
⊕G

n11+n22−n21−n12

n11
)X̃1

]

.
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Sincen11 − n12 6= n21 − n22, Gn11+n22−n21−n12

n11
6= In11

and
thereforeIn11

⊕G
n11+n22−n21−n12

n11
is invertible. This implies

that X1 is a function of(Y1, Y2). Hence, a network is non-
degenerate.

Case III (n12 ≤ n11, n21 ≥ n22): First consider the case of
n21 − n22 > n11 − n12. We then get

G
n21−n22Y1 ⊕ Y2 = (Gq−n11+n21−n22 ⊕G

q−n12)X1

=

[

0q−n11

(Gn21−n22

n11
⊕G

n11−n12

n11
)X̃1

]

.

Sincen11−n12 6= n21−n22, Gn21−n22

n11
6= G

n11−n12

n11
. This im-

plies thatGn11−n12

n11
X̃1 is decodable and thereforeGq−n12X1

is decodable. Hence, the network is non-degenerate. We now
consider the other case ofn21 − n22 < n11 − n12. We then
get

G
n11−n12Y1 ⊕ Y2 = (Gq−n21+n11−n12 ⊕G

q−n22)X2

=

[

0q−n21

(Gn11−n12

n21
⊕G

n21−n22

n21
)X̃2

]

.

Sincen11−n12 6= n21−n22, Gn11−n12

n21
6= G

n21−n22

n21
. This im-

plies thatGn21−n22

n21
X̃2 is decodable and thereforeGq−n22X2

is decodable. Hence, the network is non-degenerate.

APPENDIX B
PROOF OFLEMMA 2

Using (9), (10) and (11), we compute:

TV = I3 ⊗ [e
(n)
(n−m)+1 · · · e

(n)
2(n−m)]

T
2
V = I3 ⊗ [e

(n)
2(n−m)+1 · · · e

(n)
3(n−m)]

TP1 = e
(3)
3 ⊗ [e

(n)
2(n−m)+1 · · · e

(n)
m ]

⊕ e
(3)
2 ⊗

{

[e
(n)
3(n−m)+1 · · · e

(n)
n ]⊕ [e

(n)
4(n−m)+1 · · · 0]

}

T
2
P1 = e

(3)
3 ⊗ [e

(n)
3(n−m)+1 · · · e

(n)
n ]

⊕ e
(3)
2 ⊗ [e

(n)
4(n−m)+1 · · · 0]

TP2 = e
(3)
3 ⊗ [e

(n)
2(n−m)+1 · · · e

(n)
m ]

⊕ e
(3)
1 ⊗

{

[e
(n)
3(n−m)+1 · · · e

(n)
n ]⊕ [e

(n)
4(n−m)+1 · · · 0]

}

T
2
P2 = e

(3)
3 ⊗ [e

(n)
3(n−m)+1 · · · e

(n)
n ]

⊕ e
(3)
1 ⊗ [e

(n)
4(n−m)+1 · · · 0].

With the Gaussian elimination method, we can show that

span
[

V1, TV2, T
2
V1

]

= span
[

V,TV,T2
V,P1,T

2
P1,TP2

]

= span [I3 ⊗ In] .

Hence, rank
[

V1, TV2, T
2
V1

]

= 3n. Similarly we can
show thatrank

[

V2, TV1, T
2
V2

]

= 3n.

APPENDIX C
PROOF OFTHEOREM 4

For Part (1), consider the(km, kn) model. The proof
uses graph coloring withk colors, identified by integers
{0, 1, . . . , k − 1}. At transmitter 1, assign to levelp (for

p = 1, 2, . . . , kmax(m,n)) the color (p − 1) mod k. Use
exactly the same rule to color the vertices of receiver 1 as
well as the transmitters and receivers of the remaining(L−1)
users. It is seen by inspection that each color represents an
independent graph. Moreover, each color represents precisely
an (m,n) model.

For Part (2), we use graph coloring with 2 colors. At
all transmitters and receivers, assign one color to the even-
numbered levels and the other color to the odd-numbered
levels. By inspection, it can be verified that each color rep-
resents an independent graph. Moreover, one color represents
an (m,n) model and the other represents an(m + 1, n + 1)
model.

For Part(3), we use graph coloring with|n − m| colors,
identified by integers{0, 1, . . . , |n−m|−1}. At transmitter 1,
assign to levelp (for p = 1, 2, . . . ,max(m,n)) the color(p−
1) mod |n−m|. Use exactly the same rule to color the levels
of receiver 1 as well as the transmitters and receivers of the
remaining(L−1) users. It is seen by inspection that each color
represents an independent graph. A tedious but straightforward
calculation shows that of the resulting|n − m| independent
graphs, there area number of models(r + 1, r + 2) andn−
m− a number of models(r, r + 1), with the claimed values
for r anda.

APPENDIX D
PROOF OFLEMMA 3

We note that Items (1), (2) and (4) are obvious, and Item
(3b) follows from Item (3a), since without loss of generality,
for the multicast problem withL = 2 users considered here,
the case(m,n) and the case(n,m) are mirror images of each
other in which the roles of transmitters 1 and 2 are swapped.
We here provide an explicit proof of Item (3a), split into
three cases. For notation, we will find it convenient to denote
the vector of (binary) channel inputs used by transmitter 1
as (X1,1, X1,2, . . .)

t and the one used by transmitter 2 as
(X2,1, X2,2, . . .)

t.
(i) The caser = 3ℓ − 1, for any integerℓ ≥ 1. For

ℓ = 1 (hence, r = 2), an explicit code is as follows:
X1,1 = a1, X1,2 = a2, X1,3 = 0 and X2,1 = b2, X2,2 =
b1, X2,3 = 0. It is straightforward to verify that both receivers
can reconstructa1 ⊕ b1 and a2 ⊕ b2, hence, a computa-
tion rate of 2 is attained. For the general case, we set
X1,3k−2 = a2k−1, X1,3k−1 = a2k, X1,3k = 0 andX2,3k−2 =
b2k, X2,3k−1 = b2k−1, X2,3k = 0, for k = 1, 2, . . . , ℓ. Each
receiver can reconstruct all2ℓ sumsak ⊕ bk and thus, the
computation rate is2ℓ = 2

3 (r + 1).
(ii) The caser = 3ℓ, for any integerℓ ≥ 1, derives easily

once we have an explicit code forℓ = 1, i.e., for the(3, 4)
model. For the(3, 4) model, consider coding over3 channel
uses, which corresponds (by network decomposition) to the
(9, 12) model. An explicit code can be found for example
via the construction (9), (10), (11) in Section IV, leading to 8
computations. Forℓ ≥ 2, we consider a vector linear code over
3 channel uses, and thus, the(9ℓ, 9ℓ+3) model. For this model,
we set X1,9k−8 = a6k−5, X1,9k−7 = a6k−3, X1,9k−6 =
a6k−1, X1,9k−5 = a6k−4, X1,9k−4 = a6k−2, X1,9k−6 =
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a6k, X1,9k−2 = X1,9k−1 = X1,9k = 0 and X2,9k−8 =
a6k−4, X2,9k−7 = a6k−2, X2,9k−6 = a6k, X2,9k−5 =
a6k−5, X2,9k−3 = a6k−3, X2,9k−6 = a6k−1, X2,9k−2 =
X2,9k−1 = X2,9k = 0 for k = 1, 2, . . . , ℓ − 1. It is
easily verified by inspection that each receiver can recover
all 6(ℓ − 1) modulo sums. Additionally, we observe that this
code does not involve or affect any of the last 12 positions
at transmitters or receivers. These last 12 positions constitute
exactly a(9, 12) model, for which we already know that an
additional 8 computations are achievable. This gives a total of
6(ℓ−1)+8 = 2(3ℓ+1) computations. Thus, per channel use,
the computation rate is23 (3ℓ+ 1) = 2

3 (r + 1).

(iii) The caser = 3ℓ + 1, for any integerℓ ≥ 1, derives
easily once we have an explicit code forℓ = 1, i.e., for the
(4, 5) model. For the(4, 5) model, consider coding over3
channel uses, which corresponds (by network decomposition)
to the (12, 15) model. An explicit code can be found for
example via the construction (9), (10), (11) in Section IV,
leading to10 computations. Forℓ ≥ 2,, we consider a vector
linear code over3 channel uses, and thus, the(9ℓ+3, 9ℓ+6)
model. For this model, we setX1,9k−8 = a6k−5, X1,9k−7 =
a6k−3, X1,9k−6 = a6k−1, X1,9k−5 = a6k−4, X1,9k−4 =
a6k−2, X1,9k−6 = a6k, X1,9k−2 = X1,9k−1 = X1,9k =
0 and X2,9k−8 = a6k−4, X2,9k−7 = a6k−2, X2,9k−6 =
a6k, X2,9k−5 = a6k−5, X2,9k−3 = a6k−3, X2,9k−6 =
a6k−1, X2,9k−2 = X2,9k−1 = X2,9k = 0 for k = 1, 2, . . . , ℓ−
1. It is easily verified by inspection that each receiver can
recover all6(ℓ − 1) modulo sums. Additionally, we observe
that this code does not involve or affect any of the last 15
positions at transmitters or receivers. These last 15 positions
constitute exactly a(12, 15) model, for which we already know
that an additional 10 computations are achievable. This gives
a total of6(ℓ− 1) + 10 = 2(3ℓ+ 2) computations. Thus, per
channel use, the computation rate is2

3 (3ℓ+ 2) = 2
3 (r + 1).

APPENDIX E
PROOF OFLEMMA 6

We focus on the case ofm < n. The other case similarly
follows. By assumption, for the consideredi, we have that
there existsℓ such that

dim (Wi,ℓ) = 1.

To simplify notation, and without loss of generality, let us
suppose that this holds for the last receiver, that is, forℓ = L.
But this also trivially implies that

span(vL,i) = span(Tv1,i) = · · · = span(TvL−1,i), (18)

whereT := IN ⊗G
n−m. Now, consider the subspaceWi,1

at receiver 1. We have that

Wi,1 = span[v1,i, Tv2,i, · · · ,TvL−1,i, TvL,i]

= span[v1,i, Tv1,i, T
2
v1,i]

where the last equality is due to (18). Since we assume that
⊕

ℓ Sℓi is decodable at all receivers, any individual symbol

must appear at all receivers. This implies that

dim(span(v1,i))

= dim(span(Tv1,i))

= dim(span(T2
v1,i))

= 1.

The key observation here is that form 6= n, these subspaces
are linearly independent:

dim
(

span[v1,i, Tv1,i, T
2
v1,i]

)

= 3.

We can apply the same argument for the other receivers to
complete the proof.
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