From Bits to Images: Inversion of Local Binary Descriptors

Local Binary Descriptors are becoming more and more popular for image matching tasks, especially when going mobile. While they are extensively studied in this context, their ability to carry enough information in order to infer the original image is seldom addressed. In this work, we leverage an inverse problem approach to show that it is possible to directly reconstruct the image content from Local Binary Descriptors. This process relies on very broad assumptions besides the knowledge of the pattern of the descriptor at hand. This generalizes previous results that required either a prior learning database or non-binarized features. Furthermore, our reconstruction scheme reveals differences in the way different Local Binary Descriptors capture and encode image information. Hence, the potential applications of our work are multiple, ranging from privacy issues caused by eavesdropping image keypoints streamed by mobile devices to the design of better descriptors through the visualization and the analysis of their geometric content.


Published in:
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 5, 874-887
Year:
2014
Publisher:
Los Alamitos, Institute of Electrical and Electronics Engineers
ISSN:
0162-8828
Keywords:
Laboratories:




 Record created 2012-11-07, last modified 2018-12-03

Preprint:
Download fulltextPDF
Teaser picture:
Download fulltextJPG
n/a:
Download fulltextJPG
External link:
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)