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Abstract

We present an a posteriori error analysis in quantities of interest for elliptic homogenization
problems discretized by the finite element heterogeneous multiscale method. The multiscale method
is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in
a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using
the solutions of corresponding microscopic problems. We propose a new framework that allows to
follow the concept of the (single-scale) dual-weighted residual method at the macroscopic level in
order to derive a posteriori error estimates in quantities of interests for multiscale problems. Local
error indicators, derived in the macroscopic domain, can be used for adaptive goal-oriented mesh
refinement. These error indicators rely only on available macroscopic and microscopic solutions. We
further provide a detailed analysis of the data approximation error, including the quadrature errors.
Numerical experiments confirm the efficiency of the adaptive method and the effectivity of our error
estimates in the quantities of interest.
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1 Introduction

Multiscale models are nowadays found in many areas of science and engineering. They are for example
crucial for the adequate simulation of groundwater pollution through infiltration of a fluid in a porous
medium, or for finding the effective properties of composite materials important for various engineering
applications. Multiscale models are also increasingly used in medicine for example to find the mechanical
properties of heterogeneous tissues such as bones that are important to understand failure or diseases.

For such problems standard numerical approximation only converges if we can resolve the finest length
scale (the microscopic length scale) of the multiscale problem. If this microscopic length scale is small in
comparison to the macroscopic length scale of the multiscale problem, then the discrete approximation
leads to a problem with very large degrees of freedom (DOF) and the computational complexity becomes
often overwhelming. Simply ignoring the fine-scale microscopic structure leads to numerical results that
do not appropriately reflect the true physical problem, as the microscopic structure significantly influences
the macroscopic behavior.

In recent years there has therefore been a considerable effort put into the design of multiscale methods
for elliptic PDEs that take into account the scale separation between macroscopic and microscopic models.
Babuška and Osborn [1] developed the pioneering work for multiscale FEM for elliptic problems using
multiscale basis functions. We further mention the multiscale finite element method (MsFEM) developed
by Hou et al. [2] (see also the book by Efendiev and Hou [3]), the two-scale FEM proposed by Matache,
Babuška and Schwab [4], the variational multiscale method by Hughes et al. [5], and the sparse FEM
introduced by Hoang and Schwab [6]. In this work we use the framework of the heterogeneous multiscale
method (HMM) proposed by E and Engquist [7, 8]. In the HMM framework, one assumes that a
macroscopic description of the multiscale problem exists, even though it may not be known explicitly.
This macroscopic problem is solved on a coarse mesh using a macroscopic FEM. As the data of the
effective problem (e.g., the conductivity tensor) is not known it is reconstructed on-the-fly by solving
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microscopic problems on sampling domains located within the respective macroscopic elements. The
HMM is related to numerical homogenization methods, where the fine scales are averaged out in order
to obtain effective (homogenized) equations. For elliptic problems, a semi-discrete a priori analysis for
the FE-HMM was given in [9, 10] and a fully discrete analysis was obtained in [11, 12, 13]. Furthermore,
discontinuous Galerkin FE-HMM was developed in [14, 15] and problems in elasticity were studied in
[16]. See also [17] for a thorough overview.

A crucial issue when using a numerical scheme is that of estimating the error or the reliability of an
actual computed solution. Such estimation are usually obtained from a posteriori error analysis. The goal
of a posteriori error estimates is not only to offer a criterion that indicates whether a certain prescribed
accuracy is met, but also to give local error indicators, which can be used to drive an adaptive mesh
refinement that equi-distributes the approximation error among the elements and therefore minimizes
the total computational effort. Since the pioneering work of Babuška and Rheinboldt [18], numerous
results on this research topic have been obtained and a vast literature on a posteriori error analysis for
(single scale) elliptic PDEs is nowadays available (see for example [19], Verfürth [20] and Babuška and
Strouboulis [21] and the references therein). In practical applications, scientists and engineers are however
often more interested in errors in a certain quantity of interest that is needed for an engineering design
decision than in errors in the energy norm. Such quantities of interests can for example be an average
heat flux through a certain boundary, local averages of the solution in a particular region of interest, etc.
In turn, goal-oriented error estimates in quantities of interest have been developed in the late 1990s. The
general approach is as follows. Assuming that the quantity of interest can be represented by a linear
bounded functional J : V → R of the solution, the task is then to estimate J

(
u− uH

)
, where u is the

exact solution of the considered PDE and uH is its FE approximation. Expressing J
(
u− uH

)
in terms

of an exact representation of local error estimators and higher order terms (using so-called primal and
dual problems), one can implement the following cycle

Solve→ Estimate→ Mark→ Refine

using suitable local error estimators, until the error
∣∣J (u− uH)∣∣ in the estimate step is smaller than

a predefined tolerance. Among the different strategies for error estimates in quantitates of interest,
we mention the work of Prudhomme and Oden [22, 23], the review of Giles and Süli [24], Bangerth and
Rannacher [25] and Becker and Rannacher [26]. The latter developed the so-called dual-weighted residual
(DWR) method. The reliability of the DWR method was further investigated by Nochetto et al. [27]
and Ainsworth and Rankin [28]. Finally, a goal-oriented method aiming at adaptively controlling various
models of a multiscale problem has been developed by Oden and co-worker [29].

We briefly review a few contributions related to adaptivity for multiscale problems. We first mention
the approach based on the variational multiscale method by Hughes et al. [30, 5], which decomposes the
solution into a coarse-scale and a fine-scale part. The solution of the fine-scale equation is formulated
in dependence of the residual of the macro solution. A posteriori error estimates in the energy norm
(upper bounds) were derived by Larson and Målqvist in [31]. Finally we mention the general framework
for adaptive methods developed Nolen, Papanicolaou and Pironneau [32]. Algorithms and analysis for
residual-based estimators (which estimates the error of the energy norm) for the FE-HMM have been
obtained by Ohlberger [33] for linear elliptic problems and by Henning and Ohlberger for monotone
operators [34]. These a posteriori error estimates are based on a reformulation of the FE-HMM in a two-
scale framework [35]. First a posteriori error estimates for the FE-HMM in the physical energy-norm have
been obtained in [36, 37]. The improvement in computational efficiency that is obtained by introducing
adaptivity is significant as solutions of the problems on the microscopic scale (the main computational
cost of the FE-HMM) may be re-used in an adaptive mesh refinement strategy [37].

The modeling and analysis of a posteriori error estimates in quantities of interest have not yet been
developed for numerical homogenization methods to the best of the authors’ knowledge. In this work we
propose goal-oriented a posteriori error estimates for the FE-HMM. Although our strategy follows the
DWR method for single-scale problems, several non-trivial issues need to be addressed for its extension
to multiscale methods as

• variational crimes are inherent to the formulation of the macroscopic bilinear form of the FE-HMM
that is based on numerical quadrature;

• the FE-HMM is not consistent (due to the use of numerical quadrature and approximated effective
data);

• the interior and jump residuals, ingredients of the local error estimator in the DWR method are
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not available in our multiscale strategy (as the data of the effective problem are not available) and
need to be modeled based solely on the micro solutions available in the sampling domains.

Variational crimes and non-consistency that seem not to have been addressed for a posteriori error
estimates in quantities of interest, already for single scale problems, will be discussed here. We will
derive an exact representation for the error in a quantity of interest in term of error estimators and
data approximation terms for general multiscale elliptic problems without any specific assumption on the
small scale structure (e.g., such as periodicity). For locally periodic tensor (with possible discontinuities
across macro elements), we will show that our approach is consistent with the DWR method of Becker
and Rannacher [26] in the following sense: when the micro solver is exact we will recover the estimator
and similar data approximation terms as in the classic DWR method. We notice that most of the
multiscale methods developed for general multiscale problems are usually analyzed in the periodic setting
as this allows to rely on quantitative bounds for the effective solution and so-called correctors (see [3, 8]
and the references therein). The DWR method developed in [26] relies on the assumption that the data
approximation terms (so-called higher order term) are negligible. This was later questioned by Nochetto et
al. [27] that showed that neglecting the higher order terms can cause a severe underestimation of the error
and suggested safeguarded DWR method. Finally Ainsworth and Rankin [28] developed guaranteed and
fully computable bounds on the error in quantities of interest. We close this introduction by mentioning
that including the recent finding of Ainsworth and Rankin [28] in our multiscale DWR method is of great
interest. As our contribution constitutes the first DWR method for multiscale problems we concentrate
here on the issues mentioned above (variational crimes, non-consistency, modeling of multiscale interior
and jump residuals) and we leave the investigation of the data approximation term in the spirit of [28]
for future research.

The outline of this article is as follows. In Section 2 we briefly review the FE-HMM and the residual-
based adaptive FE-HMM. In Section 3 we present the main results for the goal-oriented adaptive FE-HMM
that are proved in Section 4. We show the efficiency and reliability of the method in various numerical
experiments in Section 5. A summary of our main findings and outlook are given in the conclusion in
Section 6.

Notation. In what follows, C > 0 denotes a generic constant, independent of ε, whose value can
change at any occurrence but depends only on the quantities which are indicated explicitely. For r =
(r1, . . . , rd) ∈ Nd, we denote |r| = r1 + . . . + rd, D

r = ∂r11 . . . ∂rdd . We will consider the usual Sobolev
space H1(Ω) = {u ∈ L2(Ω);Dru ∈ L2(Ω), |r| ≤ 1}, with norm ‖u‖H1(Ω) = (

∑
|r|≤1 ‖Dru‖2L2(Ω))

1/2.

We will also consider H1
0 (Ω) the closure of C∞0 (Ω) for the ‖ · ‖H1(Ω) norm and the spaces W l,∞(Ω) =

{u ∈ L∞(Ω);Dru ∈ L∞(Ω), |r| ≤ l}. For the unit cube Y = (0, 1)d, we will consider W 1
per(Y ) =

{v ∈ H1
per(Y );

∫
Y
vdx = 0}, where H1

per(Y ) is defined as the closure of C∞per(Y ) (the subset of C∞(Rd)
of periodic functions in Y ) in the H1 norm. Finally, we will use the Frobenius matrix norm ‖a‖F :=√∑

i

∑
j |aij |

2
.

2 Model problem and homogenization

We consider the elliptic problem with oscillatory coefficients in a domain Ω ⊂ Rd

−∇ · (aε∇uε) = f in Ω,

uε = gD on ∂Ω,
(1)

where we impose Dirichlet boundary conditions gD ∈ L2 (∂Ω) and f ∈ L2 (Ω). We emphasize the
multiscale nature of the problem by using the superscript ε. We assume that aε is symmetric, satisfies
aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and bounded, i.e.,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2, ∀ξ ∈ Rd and ∀ε. (2)

An application of the Lax-Milgram theorem ensures the existence of a family of solutions {uε} that is
bounded in H1

D (Ω) . From homogenization theory we know that there exists a symmetric tensor a0 (x)
and a subsequence of {uε} that weakly converges to the so-called homogenized solution u0 ∈ H1

D (Ω)
(we refer the reader to [38, 39] and references therein). The proof relies on G-convergence [40] (or H-
convergence [41]) and no further assumptions on the spatial structure of aε (x) are needed for the weak
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convergence of a subsequence of {uε}. The homogenized solution u0 solves a homogenized problem given
by

−∇ ·
(
a0∇u0

)
= f in Ω,

u0 = gD on ∂ΩD,
(3)

where the homogenized tensor a0 (x) is again symmetric and uniformly elliptic and bounded. Under the
assumption that aε (x) = a (x, x/ε) is periodic in its second argument, it can be shown that the whole
sequence {uε} weakly converges to u0 ∈ H1

D (Ω). In this case, we can also express the homogenized tensor
a0 (x) at a point x ∈ Ω in terms of solutions of d bounday value problems, the so-called cell problems.
We remark that in general there are infinitely many cell problems to solve. For more general tensors aε,
an explicit equation to compute the homogenized tensor at a point x ∈ Ω is not available. We therefore
follow a numerical strategy, here the Finite Element Heterogeneous Multiscale Method (FE-HMM), in
order to compute a numerically homogenized solution.

2.1 The Finite Element Heterogeneous Multiscale Method (FE-HMM)

We use the finite element heterogeneous multiscale method (FE-HMM) to obtain an approximation
uHMM to the homogenized (coarse) solution u0 of (3) without computing the homogenized tensor a0 (x)
explicitly. We only need the oscillatory data aε (x) to be given on sampling domains. The basic framework
of the FE-HMM consists in a coupling of a macro problem and a micro problem, described below. For
simplicity of presentation we will take zero Dirichlet boundary conditions in (1) and set gD = 0.
Macro finite element space. We consider

V p(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ Pp(K), ∀K ∈ TH}, (4)

with macro elements K ∈ TH , where TH is assumed to be shape regular. For simplicity, we only consider
simplicial (triangular, tetrahedral) elements, but emphasize that other elements could also be used. Here
Pp is the space of piecewise polynomials on the element K of total degree p, and H is the size of the
macro triangulation (notice that H can be much larger than ε).
Quadrature formulas. We consider for each macro element K ∈ TH a C1 -diffeomorphism FK such
that K = FK(K̂), where K̂ is a simplicial reference element. We consider a given quadrature formula

(QF) {x̂`, ω̂`}L`=1 on the reference element K̂; the corresponding integration points on an element K ∈ TH
are given by xK` = FK (x̂`), ` = 1, ...,L and the corresponding quadrature weights on K are given by
ωK` = ω̂` |det (∂FK)|, ` = 1, ...,L. We make the following assumptions on the quadrature formulas (see
[42]):

(Q) ω̂` > 0, ` = 1, . . . ,L,
∫
K̂
p̂(x̂)dx̂ =

∑L
`=1 ω̂`p̂(x̂`), ∀p̂(x̂) ∈ Pσ(K̂), where σ = max(2p− 2, p).

Remark 1. We notice here that the condition σ = 1 for P1 is needed in the FE-HMM for optimal macro
L2 bounds (see [17]). Such bounds will not be discussed here and in the sequel assumption (Q2) can be
taken with σ = 2p− 2.

Macro bilinear form. For a discretization in the macro FE space (4) we define the FE-HMM bilinear
form with vH , wH ∈ V pD(Ω, TH) as

BHMM (vH , wH) =
∑
K∈TH

L∑
`=1

ωK`
|Kδ` |

∫
Kδ`

aε(x)∇vhKδ` · ∇w
h
Kδ`

dx, (5)

where vhK` , w
h
K`

are appropriate micro functions defined on sampling domains Kδ` (see below) and the
factor |Kδ` | gives the appropriate weight for the contribution of the integrals defined on Kδ` instead of
K. The FE-HMM bilinear form (5) is based by construction on numerical quadrature. Therefore, in our
a posteriori analysis, we need to specially take care of the corresponding variational crimes.
Micro functions. For every macro elementK we compute the solutions vhK` (and whK`) of micro problems
on sampling domains Kδ` , ` = 1, . . . ,L within K. The contributions to the macro stiffness matrix are
constructed from the micro functions given as follows: find vhK` such that (vhK` − vHlin,K`) ∈ Sq(Kδ` , Th)
and ∫

Kδ`

aε(x)∇vhK` · ∇zhdx = 0 ∀zh ∈ Sq(Kδ` , Th), (6)
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where
vHlin,K`(x) = vH(xK`) + (x− xK`) · ∇vH(xK`) (7)

is a linearization of the macro function vH at the integration point xK` (see [10, 17] for details). The FE
space is defined as

Sq(Kδ` , Th) = {zh ∈W (Kδ`); z
h|T ∈ Pq(T ), T ∈ Th}, (8)

where W (Kδ`) determines the coupling condition or boundary conditions used for computing the micro
functions vhK` (or whK`).

Coupling micro and macro solvers. Several choices are possible for the coupling condition (vhK` −
vH
lin,K`

) ∈ Sq(Kδ` , Th) and we will consider Sq(Kδ` , Th) ⊂W (Kδ`) with

W (Kδ`) = W 1
per(Kδ`) (9)

for the periodic coupling and
W (Kδ`) = H1

0 (Kδ`) (10)

for the Dirichlet coupling.
Variational problem. The macro solution of the FE-HMM is defined by the following variational
problem: find uHMM ∈ V p(Ω, TH) such that

BHMM (uHMM , vH) =

∫
Ω

fvHdx ∀vH ∈ V p(Ω, TH). (11)

The main goal of the FE-HMM is to find a solution uHMM that converges to the homogenized solution
u0. Remember that the FE-HMM also depends on a micro mesh, thus h going to zero is also necessary
for convergence (see below). It can be shown that the FE-HMM bilinear form (5) is elliptic and bounded,
i.e., it satisfies

BHMM

(
vH , vH

)
≥ C

∥∥vH∥∥2

H1(Ω)
,
∣∣BHMM

(
vH , wH

)∣∣ ≤ C ∥∥vH∥∥
H1(Ω)

∥∥wH∥∥
H1(Ω)

,

for all vH , wH ∈ V p (Ω, TH) with a constant C that only depends on the quadrature formula, the domain
Ω, the constant in (2). From the Lax-Milgram Theorem, existence and uniqueness of the solution uHMM

of problem (11) immediately follows (we refer to [11, 17, 10] for details).
A priori estimates. The sources of errors for the FE-HMM approximation to the homogenized solution
can be decomposed as follows [11, 17, 43, 10]∥∥u0 − uHMM

∥∥ ≤ ∥∥u0 − u0,H
∥∥+

∥∥u0,H − ūHMM
∥∥+

∥∥ūHMM − uHMM
∥∥, (12)

where the first term on the right-hand side of the above inequality represents the macro error, the second
term represents the modeling error and the last term represents the micro error. Here, u0 is the solution
of (3), uHMM is the FE-HMM solution of (11), u0,H is the FEM solution of the homogenized problem
with numerical quadrature of (3) in the space V p (Ω, TH) (using the same QF as for the FE-HMM) and
ūHMM is the FE-HMM solution of (11) with exact micro functions (in W (Kδ`)). The general form of
the a priori error estimate in the H1-norm under the appropriate assumptions of aε (x) is∥∥u0 − uHMM

∥∥
H1(Ω)

≤ C (Hp + rMIC + rMOD) , (13)

where rMIC , rMOD are further described below. For the macro error CHp, appropriate regularity of the
homogenized tensor and homogenized solution is needed. For the micro error appropriate regularity of
the tensor aε is needed. We briefly recall the assumption on the micro problem as this will be needed in
this paper. Consider ψi,hKδ`

, the solution of the following micro problem on the sampling domain Kδ`∫
Kδ`

aε(x)∇ψi,hKδ` · ∇z
hdx = −

∫
Kδ`

aε(x)ei · ∇zhdx ∀zh ∈ Sq (Kδ` , Th) , (14)

where ei, i = 1, . . . , d, denote the canonical basis of Rd.
We define on every macro quadrature point a numerically homogenized tensor denoted as a0

K (xK`),

a0
K (xK`) =

1

|Kδ` |

∫
Kδ`

aε(x)

(
I + JTψhKδ`

(x)

)
dx, (15)
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where JψhKδ`
(x) is a d × d matrix whose entries are given by

(
JψhKδ`

(x)

)
ij

= (∂ψi,hKδ`
)/(∂xj). Next, we

introduce the tensor ā0
K (xK`), which is defined as a0

K (xK`) given in (15), but where the corresponding
functions ψiKδ`

are found in the exact Sobolev space W (Kδ`) instead of its FE approximation Sq (Kδ` , Th).

Finally we will also consider for a sufficiently regular homogenized problem (see (3)), the homogenized
tensor a0 (xK`) evaluated at the integration point xK` . We can then express rMIC and rMOD in terms
of the above tensors as follows [43, 15, 8]

rMIC := sup
K∈TH

max
1≤`≤L

∥∥ā0
K (xK`)− a0

K (xK`)
∥∥
F
, (16)

rMOD := sup
K∈TH

max
1≤`≤L

∥∥a0 (xK`)− ā0
K (xK`)

∥∥
F
. (17)

To estimate the micro error, we will need the following regularity assumption

(H1) Given q ∈ N, the cell functions ψiK` satisfy

|ψiK` |Hq+1(Kδ` )
≤ Cε−q

√
|Kδ` |,

with C independent of i = 1 . . . d, ε, the quadrature point xK` and the domain Kδ` .

We note that if aεij |K ∈ W 1,∞(K) ∀K ∈ TH and |aεij |W 1,∞(K) ≤ Cε−1, then classical H2 regularity

results ([44, Chap. 2.6]) imply that |ψiK` |H2(Kδ` )
≤ Cε−1

√
|Kδ` | when Dirichlet boundary conditions

W (Kδ`) = H1
0 (Kδ`) are used. If a(x, x/ε) = a(x, y) is periodic in the y variable, then we can also

use periodic boundary conditions W (Kδ`) = H1
per (Kδ`), and higher regularity for ψiK` can be shown,

provided a(x, ·) is smooth enough and δ/ε ∈ N (see [45, Chap. 3]). We refer to [17, 43] for details.
Under assumption (H1), the following estimate is valid [11, 43, 15]

rMIC ≤ C
(
h

ε

)2q

, (18)

where C is independent of H,h. Finally to estimate the modeling error, structure assumptions on the
coefficients aε are needed.

(H2) aε(x) = a(x, x/ε) = a(x, y) is Y -periodic in y,

aij(x, y) ∈ C
(
Ω̄;W 1,∞

per (Y )
)
, for all i, j = 1, . . . , d.

Now if (H2) holds and if (6) is solved in Sq(Kδ` , Th) ⊂ H1
0 (Kδ`) with δ > ε, then [10]

rMOD ≤ C
(ε
δ

+ δ
)
, (19)

where C is independent of H and h. If furthermore the micro problems (6) are solved in Sq(Kδ` , Th)
⊂W 1

per(Kδ`) with δ/ε ∈ N, the slow variable of the tensor a(x, x/ε) is collocated at the quadrature points
xK` , i.e., a(xK` , x/ε) in the problem (6) and in the bilinear form (5) then it can be shown that [9]

rMOD = 0. (20)

3 Goal-oriented error estimation for the FE-HMM

In this Section we developed goal oriented macroscopic error estimators to drive a mesh refinement
towards the approximation of a given quantity of interest. Suppose that we are interested in a quantity
J
(
u0
)
, where J denotes a linear bounded functional and u0 is the homogenized solution. The question

is now: is it possible to refine the numerical solution of the FE-HMM, to have an approximation of the
quantity of interest J (uH) ' J

(
u0
)

?
To answer this question we will use the framework of the dual-weighted residual (DWR) method

that relies on a primal and a dual problem to extract the solution in the quantity of interest. Localized
macroscopic refinement indicators will be designed and used to drive an adaptive mesh refinement.
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3.1 Single-scale DWR FEM

We start by recalling the single scale DWR method. The primal problem for the homogenized solution
u0 is given by (3), which reads in weak form

B0

(
u0, v

)
=

∫
Ω

fv dx ∀v ∈ H1
0 (Ω) . (21)

Let uH ∈ V p (Ω, TH) be the FEM solution (without quadrature) of

B0

(
uH , vH

)
=

∫
Ω

fvH dx ∀vH ∈ V p (Ω, TH) . (22)

By defining the dual solution z0 ∈ H1
0 (Ω) given by

B0

(
ϕ, z0

)
= J (ϕ) ∀ϕ ∈ H1

0 (Ω) , (23)

we obtain that
J
(
u0 − uH

)
= B0

(
u0 − uH , z0

)
. (24)

As z0 ∈ H1
0 (Ω) however is not available, we compute an approximation zH ∈ VH , where VH is yet to be

determined. Then we have that

J
(
u0 − uH

)
= B0

(
u0 − uH , z0

)
= B0

(
u0 − uH , zH )︸ ︷︷ ︸

=ηH(Ω)

−B0

(
u0 − uH , zH − z0

)︸ ︷︷ ︸
=ξH(Ω)

, (25)

where ηH (Ω) is the error estimator, ξH (Ω) is the data approximation error. We note that one can
further introduce an arbitrary function ψH ∈ V p (Ω, TH) in the right-hand side of (25), i.e., replace it
with B0

(
u0 − uH , zH − ψH

)
+ B0

(
u0 − uH , zH − z0

)
due to the Galerkin orthogonality. This freedom

can be used to try to increase the accuracy of the estimator or reduce the computational cost of the error
estimator (see [25]). As mentioned earlier, in our multiscale framework, Galerkin orthogonality does not
hold and we will suppose that ψH = 0.

We can further decompose the error estimator as

ηH (Ω) =
∑
K∈TH

ηH(K) =

∫
K

RI,H (x) zH dx+

∫
∂K

RJ,H (x) zH ds, (26)

where the interior and jump residual are given by

RI,H |K := fH +∇ · (a0∇uH), RJ,H |K := −1

2
Ja0∇uHKe. (27)

The flux term Ja0∇uHKe is defined by

Ja0∇uHKe :=

{
(a0∇uH,+ − a0∇uH,−) · ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(28)

where e is the interface between elements K+ and K− with unit outward normals n+, n−, respectively and
ne := n+. We also used fH , an approximation of f in the space {g ∈ L2(Ω); g|K ∈ Pm (K) , ∀K ∈ TH}
for m ≥ 0. Due to Galerkin orthogonality, simply replacing z0 by its discrete solution zH in V p (Ω, TH)
and using the discrete primal solution uH will lead to B0

(
u0 − uH , zH

)
= 0. Therefore an other type of

approximation zH of z0 is needed. Different strategies are discussed in the literature [25, 27, 46]

• Approximate the dual solution z0 by the FEM solution zH in a higher order polynomial space
VH := V p̃ (Ω, TH) with p̃ > p.

• Approximate the dual solution z0 by higher-order interpolation based on the solution zH ∈ V p (Ω, TH).

• Follow the h-approach and compute zH in VH := V p(Ω, TH̃), where the triangulation TH̃ is obtained
from TH by a suitable refinement of each element K ∈ TH̃ into finer subelements.

As mentioned in the introduction, the computable quantity ηH gives a realistic bound of the quantity
of interest J

(
u0 − uH

)
only if the so-called higher order term ξH is negligible. We refer to [27] and [28]

were this issue is discussed and guaranteed and fully computable bounds on the error in quantities of
interest are developed. As mentioned in the

Finally, we remark that variational crimes, introduced by e.g., choosing the dual solution in the finite
dimensional space VH and using a bilinear form based on numerical quadrature are typically disregarded
in the literature, even for the single-scale DWR FEM. As the FE-HMM is based by construction on
numerical quadrature, we will have to analyze the corresponding variational crimes.



Error in quantities of interest for the FE-HMM 8

3.2 DWR FE-HMM

In order to develop a DWR FE-HMM, we have to address the issues of variational crimes (inherent to
the the FE-HMM that is based on numerical quadrature), non-consistency of the FE-HMM solution and
model appropriately interior and jump residuals based on the micro solutions available in the sampling
domains.
Primal problem. We approximate u0 by the FE-HMM solution uHMM ∈ V p (Ω, TH), where uHMM is
the solution of

BHMM

(
uHMM , vH

)
=

∫
Ω

fvH dx ∀vH ∈ V p (Ω, TH) ,

and where BHMM (·, ·) refers to the FE-HMM bilinear form (5).
Dual problem. We choose the dual solution to be in the richer space

VH := V p̃ (Ω, TH) , (29)

the FE space of piecewise polynomials of degree p̃ > p. The discretized dual problem (using the FE-HMM)
is then

BHMM

(
ϕH , zHMM

)
= J

(
ϕH ) ∀ϕH ∈ V p̃ (Ω, TH) , (30)

where BHMM (·, ·) is the FE-HMM bilinear form (5) with a quadrature scheme satisfying (Q) with σ =
2p̃− 2. We recall that we use the same family of triangulation TH for the primal and dual problems. The
micro and modeling errors defined in (16), (17) will be denoted by rMIC , rMOD for the dual solution.

Remark 2. It is readily seen that the a priori estimates (13) for the macro error, (18) for the micro
error and (19) for the modeling error are also valid (with p replaced by p̃) for the dual solution zHMM

under similar assumptions as for the primal solution uHMM. In what follows, we assume that the same
micro space Sq (Kδ` , Th), the same family of micromeshes, and the same sampling domains size are used
for the primal and dual solutions. Thus the estimates (18),(19) (independent of the quadrature points)
will be identical for uHMM and zHMM .

3.3 Main results

Our goal is to find an exact representation of the error in the quantity of interest J
(
u0 − uHMM

)
, where

J is a linear functional, u0 the solution of the problem (3), and uHMM the solution of Problem (11).
As the FE-HMM solution uHMM only relies on input data of the original multiscale problem (1), terms
like ∇ · (a0∇uH) or J∇ · (a0∇uH)Ke (see (27)) involved in the interior and jump of the single-scale DWR
method (for the homogenized problem) are not available and need to be modeled by expressions involving
only the data of the problem (1).

3.3.1 Jumps of multiscale fluxes for higher order polynomials.

A key ingredient to model interior and jump residuals is the jump of multiscale fluxes first defined in
[37, 15] in the context of discontinuous Galerkin FE-HMM. Consider the higher order macro FE space

V p (Ω, TH). Then, for a given QF {xK` , ωK`}L`=1 that satisfies condition (Q) (see Section 2.1), we have
the following relation between the order of the FE space p and the number L of nodes of the QF (see for
example [47, Section 1])

L ≥ 1

2
p (p+ 1) for d = 2, L ≥ 1

6
p (p+ 1) (p+ 2) for d = 3.

We consider quadrature formulae which minimize these inequalities in the following sense:{
L = 1

2 p (p+ 1) for d = 2,

L = 1
6 p (p+ 1) (p+ 2) for d = 3.

(31)

For a QF satisfying (31), we consider the following interpolation problem: for v ∈ C0 (K) find Πv (x) ∈
Pp−1 (K) s.t.

Πv (xK`) = v (xK`) , ` = 1, ...,L, (32)

where the interpolation nodes xK` are given by the quadrature nodes of the QF {xK` , ωK`}L`=1. We then
have the following lemma which is easy to prove (see [48] for details)
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Lemma 3. Assume that (Q) and (31) hold. Then, the interpolation problem (32) has a unique solution.

We emphasize that condition (31) is satisfied by various well-known QF. (see for example [49]). We
refer the reader to [47] for a general discussion on the condition (31) and to [50] for an overview of the
construction of cubature formulae. For the FE-HMM, it is strongly advised to choose such a QF, as it
minimizes the number of quadrature points and therefore the number of micro problems needed to be
solved for each macro element.

To motivate the construction of the multiscale fluxes we recall the following result (see [15, Corollary
5]). Let vhK` be the solution of (6) constrained by vH

lin,K`
(x), then

1

|Kδ` |

∫
Kδ`

aε (x)∇vhK`dx = a0
K (xK`)∇vH (xK`) , ` = 1, ...,L, (33)

where a0
K (xK`) is the numerically homogenized tensor defined in (15) for each sampling domain. On

every macro element K we then define the interpolating polynomial Πaε∇vhK
(x) in

(
Pp−1 (K)

)d
, which

satisfies

Πaε∇vhK
(xK`) =

1

|Kδ` |

∫
Kδ`

aε (x)∇vhK`dx, ` = 1, ...,L. (34)

Assuming that (Q) and (31) hold, then the interpolation problem (34) is well defined by Lemma 3. We
will refer to the interpolating polynomial Πaε∇vhK

(x) as the higher order multiscale flux . Using (33) we
see that

Πaε∇vhK
(xK`) = a0

K (xK`)∇vH(xK`), ` = 1, ...,L. (35)

We further introduce for each interior interface e of two elements K+ and K− (with unit outward normals
n+, n−, respectively) the following jump of higher order multiscale fluxes

JΠaε∇vhK
Ke (s) :=

{(
Πaε∇vh

K+
(s)−Πaε∇vh

K−
(s)
)
· ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω,
(36)

where the unit outward normal ne is chosen to be ne = n+.

Remark 4. When the simplicial macro FE space is poiecewise linear, L = 1 and we have only one
quadrature point per macro element (36) can be defined as [15])

Jaε∇uhKKe :=

{ (
1
|K+
δ |

∫
K+
δ
aε(x)∇vhK+(x)dx− 1

|K−δ |

∫
K−δ

aε(x)∇vhK−(x)dx
)
· ne for e 6⊂ ∂Ω,

0 for e ⊂ ∂Ω.
(37)

3.3.2 Exact error representation and error estimator for the DWR-FE-HMM

Our first main result is an exact representation of the error in a quantity of interest that is valid without
specific assumptions (e.g. as periodicity or stationarity) on the small scales aε (recall that the FE-HMM
relies solely on this problem). The proof of this DWR FE-HMM error representation theorem will be
given in Section 4.

Theorem 5 (Exact DWR FE-HMM error representation). Let u0 be the solution of the problem (3),
and uHMM the solution of Problem (11). Let J : H1

0 (Ω)→ R be a bounded linear functional and assume
that (Q) and (31) hold. Then the error in quantities of interest is given by the exact representation

J
(
u0 − uHMM

)
=
∑
K∈TH

ηH (K) + ξH (K) ,

where

ηH (K) :=

∫
K

RI,H (x) zHMM dx+

∫
∂K

RJ,H (x) zHMM ds, (38)

and

RI,H (x) |K = fH +∇ ·
(

Πaε∇uhK
(x)
)
, RJ,H (s) |e = −1

2
JΠaε∇uhK

Ke (s) .
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The data approximation error ξH (K) is given by

ξH (K) =

∫
K

(
Πaε∇uhK

(x)− a0 (x)∇uHMM
)
· ∇zHMM dx (39a)

+B0,K

(
u0 − uHMM, z0 − zHMM

)
(39b)

−
∫
K

(
fH − f

)
zHMM dx, (39c)

where the subscript K in B0,K (·, ·) indicates the restriction of B0 (·, ·) onto the element K and where fH

is an approximation of f in the space {g ∈ L2(Ω); g|K ∈ Pm (K) , ∀K ∈ TH} for m ≥ 0.

The components of the data approximation error (39) can be understood as follows: (39a) is the
approximation error caused by using an inaccurate tensor (implicitly computed within the micro problem)
and numerical quadrature instead of using the exact continuous a0 (x) in the estimator; (39b) is the
approximation error for using zHMM instead of z0; finally, (39c) is the approximation error caused by
approximating the right-hand side f (x) in the estimator.

The DWR FE-HMM allows for cancelation of errors among elements; we therefore need to distinguish
between the (global) signed error representation with local error estimators ηH (K) (see Theorem 5), used
to estimate the global error of the approximation with the unsigned local refinement indicators η̄H (K)

η̄H (K) :=

∣∣∣∣∫
K

RI,H (x)
(

zHMM
)
dx+

∫
∂K

RJ,H (s)
(

zHMM
)
ds

∣∣∣∣ ,
used to drive the adaptive mesh refinement procedure (see the Algorithm below). Obviously we have∣∣J (u0 − uHMM

)∣∣ ≤ ∑
K∈TH

η̄H (K) + |ξH (K)| . (40)

Remark 6. As the refinement indicators η̄H (K) are always positive we cannot, in general, find the
optimal mesh which would take error cancelation among different elements into account. We remark that
finding the optimal mesh is also not possible for the single-scale DWR FEM. While being not optimal,
the mesh found using positive refinement indicators still leads to good convergence rates. However, the
convergence curves might be very jagged instead of being a straight line.

Our next main result (again proved in Section 4) gives an error bound on the data approximation
error.

Theorem 7 (Error bound for data approximation error). Assume that (Q) holds with σ = 2p−2 (primal
solution) and σ = 2p̃ − 2 (dual solution). Assume in addition that (31) holds for QF used for the primal
solution, that the family of triangulation is shape regular and that (H1) and (H2) hold. Assume further,
that a(·, y)|K , is constant for any K ∈ TH . Then, the data approximation error ξH (Ω) can be estimated
as follows

|ξH (Ω)| ≤ C
(
Hp+p̃ +

(
h

ε

)2q

+ ‖f − fH‖L2(K) + rMOD

)
, (41)

where
rMOD = 0 if Sq(Kδ` , Th) ⊂W 1

per(Kδ`) and δ
ε ∈ N,

rMOD ≤ C
(
ε+

(
ε
δ

))
if Sq(Kδ` , Th) ⊂ H1

0 (Kδ`) (δ > ε).
(42)

and where the constants C are independent of H,h and ε.

Remark 3.1. We notice that the the additional assumption a(·, y)|K , is constant is convenient to estimate
the multiscale fluxes and can be removed for p = 1. In that case, we obtain

|ξH (Ω)| ≤ C
(
H +

(
h

ε

)2q

+ ‖f − fH‖L2(K) + rMOD

)
. (43)

We emphasize that the error estimator of the DWR-FE-HMM method exploits cancelation of errors over
different elements and we therefore expect the above estimates to significantly overestimate the real data
approximation error.



Error in quantities of interest for the FE-HMM 11

Corollary 8 (Consistency with single scale DWR). In addition to the assumptions of Theorem 7, assume
that the micro problems (6) are solved exactly (i.e. in W 1

per(Kδ`) and that δ/ε ∈ N, then

RI,H |K := f +∇ · (a0∇uH), RJ,H |K := −(1/2)Ja0∇uHKe. (44)

and the data approximation error ξH (Ω) can be estimated as

|ξH (Ω)| ≤ CHp+p̃ + C‖f − fH‖L2(K). (45)

We see from this corollary, that we obtain exactly the same interior and jump residual than in the
single-scale DWR method (see (27)) for periodic problems (if no micro error due to the FE discretization
of the problem (6) occur). The error bound for the data approximation term is also the same as in the
classical DWR method. This corollary constitute the motivation for modeling the multiscale fluxes and
defining the related interpolation polynomials.

We next give a detailed description of the adaptive DWR FE-HMM that consists of loops of the form

Solve → Estimate → Mark → Refine.

The detailed step-by-step procedure is given below.

[Adaptive DWR-FE-HMM]

Solve. For the macro and micro meshes obtained by REFINE, compute the micro solutions (only for
the refined macro elements) and the macro solutions uHMM and zHMM for the primal and the dual
problem, respectively. Compute the micro function ϕhK` solution of (6) constrained by the FE basis

functions ϕH ∈ V p (Ω, TH) and compute and store the higher-order multiscale fluxes Πaε∇ϕhK
(xK`).

Estimate. Reconstruct the full multiscale fluxes Πaε∇uhK
(x) and jumps JΠaε∇uhK

Ke (s) (once uHMM is

known). Estimate the error in the quantity of interest J
(
u0 − uHMM

)
by computing the estimate∑

K∈TH ηH (K) (this estimate can serve as a stopping criterion using
∣∣∑

K∈TH ηH (K)
∣∣ < tol, for

a prescribed tolerance tol).

Mark. Mark the elements on a subset T̃H of TH based on the refinement indicators η̄H (K) .

Refine. Refine the marked elements (and some neighbors for mesh conformity) and update the mesh for
the primal and the dual problem. Update the micro meshes of the sampling domains corresponding
to the refined macro elements (see below for a discussion about an optimal coupling).

Remark 9. If a macro element is not marked for refinement, we carry over the solution of the corre-
sponding microproblems from the current iteration to the next. This allows to significantly reduce the
number of microproblems that need to be computed. We refer to [37, Section 4.1] for details.

In the residual-based adaptive FE-HMM case, the optimal coupling between the macro and micro
mesh sizes for the data approximation error of the estimator is given – under appropriate assumptions

– by hK ∝ ε (HK)
p
2q . Here p and q refer to the polynomial degree of the (primal) macro and micro FE

spaces, respectively [37]. Such a priori coupling conditions can be derived if we fix the way we measure the
error (e.g., the energy norm for the residual-based adaptive FE-HMM). For error in quantities of interest,
such coupling will depend on J (·), that is arbitrary (except for being linear and bounded). It would
therefore be beneficial to introduce an a posteriori error estimator on the micro problems and couple the
macro and micro refinement based on the experimental convergence rate of these error estimators.

As an alternative, a reduced basis technique could be used. There, a few representative basis functions
with a large information content are computed once at an offline stage using a highly refined micro mesh.
Typically, only a few reduced basis functions are needed if there is appropriate regularity with respect to
the slow parameter. In the online stage, the reduced basis functions are used to approximate the solution
of the micro problems with high accuracy, which renders an adaptive refinement of the micro meshes
needless. We refer the reader to [51], where reduced basis combined with DWR-FE-HMM is studied.
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4 Proofs of the main results

In this section we give the proof of our main results described in Section 3.3.
Proof of Theorem 5 (Exact DWR FE-HMM error representation). We proceed in two steps.
First, we use duality arguments to state the error in a quantity of interest that still depends on the
unknown dual function z0. Second, we replace all numerically unavailable quantities, such as z0, a0 or f ,
by their computable, discrete approximations.
Step I. We want to find the exact error representation for the error eH := u0 − uHMM in the quantity of
interest J (·), i.e.,

J
(
eH
)

= J
(
u0
)
− J

(
uHMM

)
.

The dual problem (23)
B0

(
ϕ, z0

)
= J (ϕ)

holds for all ϕ ∈ H1
0 (Ω). We therefore choose ϕ = eH to obtain

J
(
eH
)

= B0

(
eH , z0

)
. (46)

We next make the estimate computable. In (46), the dual solution z0 is the exact solution of (23).
Furthermore, the bilinear form B0 (·, ·) involves the exact homogenized tensor, and the primal solution
u0 of (21) depends on the exact right hand side f . As these quantities can in general not be evaluated
exactly in the a posteriori error estimate, we replace them by computable quantities as follows. We start
by replacing the exact dual solution z0 by the computable FE-HMM dual solution zHMM in (21). We
obtain

J
(
u0 − uHMM

)
= B0

(
u0 − uHMM , zHMM

)
+B0

(
u0 − uHMM , z0 − zHMM

)
. (47)

The second and third terms of the right-hand side of (47) will be a contribution to the data approximation
error. The first term of the right-hand side of (47) is further split into three parts,

B0

(
u0 − uHMM , zHMM

)
=

∫
Ω

fHzHMM dx−
∫

Ω

(
fH − f

)
zHMM dx−B0

(
uHMM , zHMM

)
, (48)

where fH is a a computable approximation of f the right-hand side of problem (3).
Step II. We then substitute the flux a0∇uHMM (x) involving the exact homogenized tensor a0 (x) by the
computable multiscale flux (34) in the third term of the right-hand of (48) and obtain

B0

(
uHMM , zHMM

)
=
∑
K∈TH

∫
K

(
a0 (x)∇uHMM

)
· ∇zHMM dx =

∑
K∈TH

∫
K

(
Πaε∇uhK

(x)
)
· ∇zHMM dx

−
∑
K∈TH

∫
K

(
Πaε∇uhK

(x)− a0 (x)∇uHMM
)
· ∇zHMM dx. (49)

Finally, by integrating (49) by part we can separate the estimate into interior element terms and jump
terms

B0

(
uHMM , zHMM

)
= −

∑
K∈TH

∫
K

∇ ·
(

Πaε∇uhK
(x)
)

zHMM dx+
1

2

∑
K∈TH

∑
e⊂∂K

∫
e

JΠaε∇uhK
Ke (s) zHMM ds

(50)

−
∑
K∈TH

∫
K

(
Πaε∇uhK

(x)− a0 (x)∇uHMM
)
· ∇zHMM dx,

where we used the definition of the jump of multiscale fluxes (36). Finally, we plug (48) and (50) into
(47) and obtain the error representation formula

J
(
u0 − uHMM

)
=
∑
K∈TH

ηH (K) + ξH (K) ,

where ηH (K) and ξH (K) are defined in (38) and (39), respectively, and the proof is complete. �

Up to this point we did not assume specific regularity on the oscillating tensor, aε or make any
spatial assumptions such as periodicity in the micro scale, to derive our error estimates. Furthermore, we
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kept both sampling domain size and boundary conditions of the micro problem for the FE-HMM rather
general. We now find estimates of the data approximation error (39). Notice first that (see (35))∥∥∥a0 (x)∇vH(x)−Πaε∇vhK

(x)
∥∥∥
L2(K)

=
∥∥∥a0 (x)∇vH (x)−Πa0K∇vH (x)

∥∥∥
L2(K)

.

Recalling the tensors a0, ā0
K introduced in Section 2.1, we then consider the decomposition∥∥∥a0 (x)∇vH (x)−Πa0K∇vH (x)

∥∥∥
L2(K)

≤
∥∥∥a0 (x)∇vH (x)−Πa0∇vHK (x)

∥∥∥
L2(K)︸ ︷︷ ︸

eI

+
∥∥∥Πa0∇vHK (x)−Πā0K∇vHK (x)

∥∥∥
L2(K)︸ ︷︷ ︸

eII

+
∥∥∥Πā0K∇vHK (x)−Πa0K∇vHK (x)

∥∥∥
L2(K)︸ ︷︷ ︸

eIII

,

where Πa0∇vHK (x) and Πā0K∇vHK (x) are the interpolating polynomials based on the quadrature nodes

xK` ∈ K with function values given by a0 (xK`)∇vH (xK`) and ā0
K (xK`)∇vH (xK`), respectively. The

task is now to estimate eI , eII , eIII .

Lemma 10. Assume that (Q) and (H2) hold and that a(·, y)|K , is constant for any K ∈ TH . Then

eI = 0.

Proof. Under the assumptions (H2) and a(·, y)|K , constant, the homogenized tensor a0(x) is constant
in each K ∈ TH and the interpolation (34) is exact, i.e. Πa0∇vHK (x) ≡ a0 (x)∇vH (x) for x ∈ K and

vH ∈ V p (Ω, TH).

We notice that for piecewise linear elements, defining Πa0∇vHK (x) = a0(xK)∇vHK , where xK ∈ K, we

obtain eI ≤ CH (using appropriate smoothness of a0(x)). Using this estimate in the proof of Theorem
7 (see below) proves Remark 43.

To estimate eII and eIII we need to relate the error of two interpolating polynomials to the error of
the function values at the corresponding interpolation nodes. This relation will allow us to find similar
estimates of the data approximation error as obtained in [37].

Lemma 11. For v, ṽ ∈ C0 (K) we consider the interpolation polynomials Πv (x) ∈ Pp−1 (K) and Πṽ (x) ∈
Pp−1 (K), respectively, defined by (32) based on the nodes of a QF {xK` , ωK`}L`=1 that satisfies (Q) and
(31). Then

‖Πv (x)−Πṽ (x)‖L2(K) ≤ C
√
|K| max

1≤`≤L
|v` − ṽ`| ,

where |K| denotes the measure of the macro element K, the constant C only depends on the dimensionality
d, the polynomial degree p, the shape regularity constant γ and the quadrature formula.

Proof. Using (32) we can introduce an interpolating polynomial Πv−ṽ (x) ∈ Pp−1 (K) s.t. Πv−ṽ (xK`) =
v (xK`)− ṽ (xK`) , ` = 1, ...,L. We use the C1− diffeomorphism FK between K and the reference element

K̂ and define Π̂v−ṽ (x̂) := Πv−ṽ (FK (x̂)) = Πv−ṽ (x) . It is well-known that (see for example [21])

‖Πv−ṽ (x)‖L2(K) ≤ C |det (∂FK)|1/2
∥∥∥Π̂v−ṽ (x̂)

∥∥∥
L2(K̂)

. (51)

Given a basis {q̂j}Lj=1 of Pp−1
(
K̂
)

we expand Π̂v−ṽ (x̂) =
∑L
j=1 β̂j q̂j (x̂) , with coefficients β̂j ∈ R,

j = 1, ...,L. Evaluating the above formula at x̂` = F−1
K (xK`) we obtain Π̂v−ṽ (x̂`) =

∑L
j=1 Â`j β̂j , where

Â`j = q̂j (x̂`). This last relation read in vector form Âβ̂ = δv, where (Â)`j = Â`j , (β̂)j = β̂j and

(δv)` = v (xK`) − ṽ (xK`). From Lemma 3 it follows that Â is invertible. Then we can estimate (51)
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further as follows

‖Πv−ṽ (x)‖L2(K) ≤ C |det (∂FK)|1/2
∥∥∥Π̂v−ṽ (x̂)

∥∥∥
L2(K̂)

≤ C
√
|K|

∥∥∥∥∥
L∑
`=1

β̂`q̂` (x̂)

∥∥∥∥∥
L2(K̂)

≤ C
√
|K|

L∑
`=1

‖q̂` (x̂)‖L2(K̂)

∥∥∥β̂∥∥∥
∞

≤ C
√
|K|

∥∥∥Â−1 (δv)
∥∥∥
∞
≤ C

√
|K| max

1≤`≤L
|v (xK`)− ṽ (xK`)| ,

where ‖·‖∞ is the supremum matrix and vector norm, respectively, and the constant C only depends on
the dimensionality d, the polynomial degree p, the shape regularity constant γ, the quadrature formula

{x̂`, ω̂`}L`=1 and the basis {q̂j}Lj=1 of Pp−1
d

(
K̂
)

.

We can next relate the modeling and the micro errors to the various numerically homogenized tensors.

Lemma 12. Assume that (Q) holds, then we have

eII ≤ C max
1≤`≤L

∥∥a0 (xK`)− ā0
K (xK`)

∥∥
F

∥∥∇vH (x)
∥∥
L2(K)

, (52)

and
eIII ≤ C max

1≤`≤L

∥∥ā0
K (xK`)− a0

K (xK`)
∥∥
F

∥∥∇vH (x)
∥∥
L2(K)

, (53)

where the constant C only depends on the dimensionality d, the polynomial degree p of the FEM for uH ,
the shape regularity constant and the quadrature formula.

Proof. Both estimates use Lemma 11. For example for eII we have

eII =
∥∥∥Πa0∇vHK (x)−Πā0K∇vHK (x)

∥∥∥
L2(K)

≤C
√
|K| max

1≤`≤L

∥∥(a0 (xK)− ā0
K (xK`)

)
∇vH (xK`)

∥∥
∞

≤C
(

max
1≤`≤L

∥∥(a0 (xK`)− ā0
K (xK`)

)∥∥
F

) L∑
`=1

√
|K|

∑
j

∂jv
H(xK`)

2

1/2

≤C
(

max
1≤`≤L

∥∥a0 (xK`)− ā0
K (xK`)

∥∥
F

)∥∥∇vH (x)
∥∥
L2(K)

, (54)

where we used that

L∑
`=1

√
|K|

∑
j

∂jv
H(xK`)

2

1/2

≤ C

 L∑
`=1

ωK`
∑
j

∂jv
H(xK`)

2

1/2

(55)

≤ C
∥∥∇vH (x)

∥∥
L2(K)

. (56)

This last inequalities are obtained using the assumption (Q), a scaling argument as well as the equivalence
of norms on a finite dimensional space (see for example [52, Lemma 5]). The proof of (53) is obtained
similarly.

Proof of Theorem 7 (Error bound for data approximation error). Summing over the local data
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approximation error defined in (39) gives∑
K∈TH

ξH (K) =
∑
K∈TH

∫
K

[
Πaε∇uhK

(x)− a0 (x)∇uHMM
]
· ∇zHMM dx︸ ︷︷ ︸

I

+
∑
K∈TH

B0,K

(
u0 − uHMM , z0 − zHMM

)
︸ ︷︷ ︸

II

+
∑
K∈TH

∫
K

(
f − fH

)
zHMM dx︸ ︷︷ ︸

III

. (57)

In view of the definitions (16) and (17) for rMIC and rMOD, respectively, we have

|I| ≤ C (rMIC + rMOD)

where we used Lemmas 10 and 12 and the Cauchy-Schwarz inequality. We note that both
∥∥∇uH∥∥

L2(Ω)

and
∥∥∇zHMM

∥∥
L2(Ω)

can be bounded by C̃‖f‖L2(Ω) ≤ C. Using Cauchy-Schwarz inequality we obtain

|II| ≤ C
∥∥∇u0 −∇uHMM

∥∥
L2(Ω)

∥∥∥∇z0 −∇zHMM
∥∥∥
L2(Ω)

≤ C (Hp + rMIC + rMOD)
(
H p̃ + rMIC + rMOD

)
.

and similarly

|III| ≤ C
∥∥f − fH∥∥

L2(Ω)
.

By noting that both rMIC and rMIC can be estimated by C(hε )2q under assumption (H1) and that

both rMOD and rMOD are equal to zero if Sq(Kδ` , Th) ⊂ W 1
per(Kδ`) and δ

ε ∈ N or can be estimated by

C
(
ε+

(
ε
δ

))
if Sq(Kδ` , Th) ⊂ H1

0 (Kδ`) (δ > ε) we conclude the proof. �

Proof of Corollary 7 (Consistency with single scale DWR). Under assumption (H2) and if
a(·, y)|K , is constant for any K ∈ TH , assuming further exact micro functions, we have a0 = ā0

K = a0
K in

each K ∈ TH . It then follows that a0 (x)∇vH(x) = Πaε∇vhK
(x) and thus (26) and (38) are equal. Next

for exact micro functions the term C(hε )2q vanishes in the data approximation error and finally if δ
ε ∈ N

rMOD = 0 and the proof of the corollary is complete. �

5 Numerical experiments

In this section we will show numerical experiments that confirm the efficiency of the goal-oriented, adap-
tive FE-HMM and the effectivity of the estimated error in a quantity of interest. Our numerical experi-
ments were carried out using an implementation in Matlab; this implementation is based on the FE-HMM
code presented in in [53]. The code for the mesh bisection is based in part on iFEM (see [54]) and the code
for higher-order FEM is based in part on [55]. We will also compare our goal oriented adaptive strategy
with the residual based adaptivity in the energy norm developed earlier for the FE-HMM [36, 37]. There
we have proved a posteriori upper and lower bounds for the error between the macroscopic FE-HMM
solution uHMM and the homogenized solution u0 be the solution of the problem (3). These estimates
read as follow ∥∥u0 − uHMM

∥∥2

H1(Ω)
≤ C

(
ηH,Residual (Ω)

2
+ ξH (Ω)

2
)
.

ηH,Residual (K)
2 ≤ C

(∥∥u0 − uHMM
∥∥2

H1(ωK)
+ ξH (ΩK)

2
)
,

where the domain ΩK consists of all elements sharing at least one side with K. We refer to [36, 37] for
a precise definition of ηH,Residual (Ω) and ξH,Residual (Ω). We emphasize that ηH,Residual (Ω) is different
from ηH (Ω) defined in (38). We consider a problem (which is chosen similarly to the one-dimensional
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problems presented in [22]) where we are interested in the pointwise error and the pointwise directional
derivative error at a certain point x?. We consider the equation

−∇ · (aε (x)∇uε) = f in Ω,

uε = gD on ΓD = ∂Ω,

on a domain Ω̄ = (0, 1)
2
. We choose ε = 10−5 and set the tensor to

a
(
x,
x

ε

)
:= ãε

(x
ε

)
a0 (x) ,

where the exact homogenized tensor a0 (x) is given as

a0 (x) :=
(

9e−1000(x1−0.5)2−1000(x2−0.5)2 + 1
)
I2. (58)

Here

ãε (x) :=
16

15

(
sin
(

2π
x1

ε

)
+

5

4

)(
cos
(

2π
x2

ε

)
+

5

4

)
,

whose coefficients are chosen in such a way that they give the unit tensor when homogenized. We define
the exact solution as

u0 (x) := 100(1− x1)2x1(1− x2)2x2e
−20(x1− 1

3 )
2−(x2− 1

4 )
2

,

which determines the Dirichlet boundary conditions as gD = u0 on ∂Ω, and choose the right hand side f
accordingly. An illustration of the exact solution and the homogenized tensor are given in Figure 1. We

(a) Exact homogenized solution u0 (x). We are interested
in the pointwise error and the directional derivative error
at the point x? = (0.3, 0.3), which is marked in green.

(b) Exact homogenized tensor a0 (x).

Figure 1: Exact solution and tensor of the goal-oriented problems of Section 5.

use piecewise linear macro FE for the solution uHMM of the primal problem and piecewise quadratic FE
for the solution zHMM of the macro dual problem. The micro problems are solved with piecewise linear
FE.

As a measure of the quality of our error estimator, we define the effectivity index

Eff :=

∣∣∣∣ ηH (Ω)

J (u0 − uHMM )

∣∣∣∣ , (59)

which ideally should be equal to one. We denote by ĥ := (Nmic)
−1/d

the scaled (i.e. independent of ε)
micro mesh size, where Nmic refers to the degrees of freedom of the micro problems in one micro sampling
domain corresponding to a certain macro element.

For the macro mesh we start for both problems from a mesh with 441 DOF. We do not choose a
uniform grid but one where the points are slightly distorted compared to uniform mesh, see Figure 7.
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The distortion will resemble to more realistic meshes originating from practical applications and reduce
effects of cancelation. We use an initial mesh size for the micro mesh of ĥ = 1

8 and δ = ε = 10−5 with
periodic boundary conditions for the micro problems.

For the marking strategy we will follow the maximum marking strategy [22] for the quantity of interest
J
(
u0 − uHMM

)
. An element K of the mesh is refined if

η̃H (K)

maxK̃∈TH η̃H

(
K̃
) ≥ ϑ,

where 0 < ϑ < 1 is a user-defined parameter. We choose ϑ = 0.25. The mesh is refined using the newest
vertex bisection in its implementation of iFEM [54].

We choose a coupling of ĥ ∝ Hk for both the solution of the primal and dual problem and for the
evaluation of the a posteriori estimator. For numerical experiments with different coupling schemes, we
refer to [48]. We recall that for macro elements that were not refined, the solution of the microproblems
from the previous iteration should be re-used (see Remark 9).

5.1 Pointwise error

In our first experiment, we choose the quantity of interest to be the pointwise error at the point x? =
(0.3, 0.3); the quantity of interest is

J (u) := u (x?) .

The point x? coincides with a node of the mesh and the exact quantity of interest is given by J (u) ≈
2.10813. In Figure 2 we compare the error for the uniform refinement, the global residual-based refinement
and the goal-oriented refinement of the FE-HMM. The error of all three methods shows an asymptotic
convergence rate of O

(
N−1
mac

)
. The pointwise error is smaller for the uniform or residual-based adaptivity
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(a) Error for uniform, global residual-based and goal-
oriented refinement.

Figure 2: Errors for the goal-oriented problem described in Section 5.1.

than it is for the goal-oriented adaptivity. But the DWR FE-HMM also provides an estimation of the
actual error in the quantitity of interest, which serves as a stopping criterion. In Figure 3 we present

the effectivity index
ηH,Residual(Ω)
|J(eH)| and ηH(Ω)

|J(eH)| for the residual-based and the goal-oriented adaptivity,

respectively. While the effectivity index for goal-oriented adaptivity is close to one, the residual-based
estimate approximates the error in the energy norm and therefore gives an effectivity index which is
not suitable as a stopping criterion; the residual-based error estimate further depends on an unspecific
constant. In the first two iterations for the DWR FE-HMM, the error is underestimated, leading to an
effectivity index smaller than one. Additional a posteriori error estimates on the different components of
the data approximation error can be used to avoid the underestimation of the error, we refer to [28, 27]
and to the comment at the end of Section 3.3.
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Finally, we compare in Figure 4 the mesh of the goal-oriented and the residual-based adaptivity after
4 iterations. We see that the mesh is highly refined around x? and the “peak” of the tensor for the goal-
oriented adaptivity, whereas the residual-based adaptivity obviously does not especially refine around x?.
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(a) Effectivity index for the global residual-based adap-
tivity.
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(b) Effectivity index for the goal-oriented adaptivity.

Figure 3: Effectivity index (residual based and goal-oriented adaptivity) for the problem described in
Section 5.1.

5.2 Pointwise directional derivative error

We choose our quantity of interest to be the directional derivative error at the point x? = (0.3, 0.3)
(slightly off the peak of the “bump”) in direction n =

(
1/
√

2, 1/
√

2
)
, such that

J (u) := ∇u (x?) · n. (60)

The exact solution is given by J ≈ 3.25819. As the pointwise derivatives of FE solutions are in general
not defined on edges of elements, we approximate the functional (60) at point x? ∈ Ω with a regularized
output functional J (u) = 1

|Sε|
∫
Sε
∇u · ndx, where the small domain Sε is an ε-ball centered around the

point x?, see [25]. In Figure 5(a) we compare the error when using a uniform, a global residual-based
(as in [37]) and the DWR FE-HMM goal-oriented approach. We see that the pointwise derivative error

J
(
eH
)

converges with an order of O
(
N
−1/2
mac

)
for the uniform refinement and for the adaptive, residual-

based refinement scheme. For the DWR FE-HMM we obtain a (mean) convergence rate of approximately

O
(
N
−3/2
mac

)
, which varies between O

(
N−1
mac

)
and O

(
N−2
mac

)
. We notice that the convergence rate is much

faster than the O
(
N
−1/2
mac

)
we would have in the global energy-norm. In Figure 5(b) we see that the

effectivity index for the DWR FE-HMM varies between 0.5 and 8. The residual-based estimate in the
energy norm involves an unspecific constant, varies between 7 and 120 and is not suitable for estimating
the error in the quantity of interest. Therefore the residual-based estimate is also unsuitable as a reliable
stopping criterion. The jagged line for the error and efficiency of the DWR FE-HMM is caused by the
cancelation of errors; the jaggedness can also be seen in the single-scale DWR FEM case.

We illustrate in Figure 6 how the dual-weighted residual error estimates can be used to evaluate
the quality of the numerical solution. As the exact error representation does not involve an unspecific
constant, we have the possibility to specify – solely based on the error estimate – a confidence interval
where we expect the exact quantity of interest to be. If the data approximation error is much smaller
than the error estimator ηH (Ω), we can set J

(
uHMM

)
− |ηH (Ω)| and J

(
uHMM

)
+ |ηH (Ω)| to be our

confidence interval. We see in Figure 6 that except for iteration 1, the exact solution lies within the
confidence interval.
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Figure 4: Mesh after 4 iterations for global residual-based and goal-oriented refinement for the pointwise
directional derivative problem.
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Figure 5: Errors and effectivity index for the goal-oriented problem described in Section 5.2.

Finally we show in Figure 7 the meshes after 4 iterations for both the goal-oriented and the residual-
based adaptive FE-HMM. While the residual-based scheme mostly refines around the peak of the con-
ductivity tensor, the goal-oriented additionally refines around the point of interest x?.

6 Conclusion

We have presented an a posteriori error analysis in quantities of interest for the FE-HMM and generalized
the DWR approach for homogenization problems. An exact error representation has been derived and
effective error indicators have been modeled based solely on micro computations on sampling domains
within the physical computational domain. Rigorous upper bound on the data approximation errors
have been established. These errors also take into account the variational crimes committed by our



Error in quantities of interest for the FE-HMM 20

æ

æ æ
æ æ

æ æ æ æ æ æ æ

à

à

à

à

à
à

à à à à à àìì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò

ò

ò
ò

ò ò ò ò ò ò

1000 2000 5000 1´104 2´104 5´104 1´105

2.8

2.9

3.0

3.1

3.2

Macro DOF

Q
O

I

confidence interval

exact�

�

�

�

|ηH (Ω)|

|ηH (Ω)|

Figure 6: The use of duality-based goal-oriented FE-HMM allows to specify – solely based on the a
posteriori error estimate – a confidence interval (shown in shaded blue) where we expect the exact
quantity of interest to be within. From iteration 2 on, the prediction is correct.
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Figure 7: Mesh after 4 iterations for global residual-based and goal-oriented refinement for the pointwise
directional derivative problem.
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computational strategy relying on numerical integration. Numerical experiments presented in the present
paper confirm the efficiency of the proposed (multiscale) adaptive method in quantity of interests. We
note that even for single scale problems, the DWR for FEM with numerical integration has not yet been
analyzed. While we have provided an a priori upper bound for the data approximation error we did not
provide an a posteriori error estimate for these quantities. This could be addressed by designing also an
a posteriori error procedure for the micro solution in the sampling domains. For single scale problems, in
the conforming case, a posteriori bounds for the data approximation errors were recently derived in [28].
For multiscale problems as considered here and with the proposed micro-to-macro approach, quantifying
the modeling error and the error arising from variational crimes would also be required. This is a topic for
future research. An alternative, to extend the framework proposed in this paper without using a posteriori
error estimates for the micro solutions is to use reduced basis techniques (RB) for the micro solver. As
shown in [56], a combination of the FE-HMM with RB permits to avoid simultaneous refinement as the
RB space for the micro-solutions is computed very accurately in an offline stage independently of the
macro mesh and then re-used in the macro adaptivity cycles.
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