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Definition

Explicit stabilized Runge-Kutta (RK) methods are explicit one-step methods with ex-

tended stability domains along the negative real axis. These methods are intended

for large systems of ordinary differential equations originating mainly from semi-

discretization in space of parabolic or hyperbolic-parabolic equations. The methods

do not need the solution of large linear systems at each step size (as e.g., implicit

methods). At the same time due to their extended stability domains along the negative

real axis, they have less severe step size restriction than classical explicit methods when

solving stiff problems.
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Overview

For solving time-dependent partial differential equations (PDEs) a widely-used ap-

proach is to first discretize the space variables to obtain a system of ordinary differential

equations (ODEs) of the form

y′ = f(t, y), y(t0) = y0, (1)

where y, y0 ∈ Rn, t ≥ 0 and f(t, y) has value in Rn. The class of problems of interest for

explicit stabilized RK methods are problems for which the eigenvalues of the Jacobian

matrix ∂f
∂y

are known to lie in a long narrow strip along the negative real axis. This

situation typically arises when discretizing parabolic equations or hyperbolic-parabolic

equations such as advection-diffusion-reaction equations (with dominating diffusion).

Solving large stiff systems

ODEs arising from semi-discretization of parabolic or hyperbolic-parabolic PDEs are

usually large, as the dimension n of the system is proportional to 1/∆x, where ∆x is

the spatial discretization length. Classical explicit one-step methods, as for example

the explicit Euler method

yk+1 = yk +∆tf(tk, yk),

must satisfy the stringent so-called Courant-Friedrich-Lewy (CFL) condition [11] ∆t ≤

C(∆x)2 in order for the numerical solution {yk}k≥0 to remain bounded. The above

CFL condition leads to a numerical method with a huge number of steps, with step

size usually much smaller than required for accuracy reasons. Classes of implicit one-

step methods such as the implicit Euler method

yk+1 = yk +∆tf(tk+1, yk+1)

are known to be stable for ODEs arising from the semi-discretization of hyperbolic-

parabolic PDEs. But the good stability properties of implicit methods are obtained
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at the cost of solving nonlinear equations at each step. Although efficient in many

situations, this approach can be expensive especially for large systems.

Linear stability analysis of one-step methods

The linear stability analysis for one-step methods is based on the following transfor-

mations. By linearizing the ODE (1) a system w′(t) = A(t)w(t) is obtained, where

A(t) represents the Jacobian matrix of the original system. Next, freezing the time

parameter in A(t) and finally transforming the linear equation into diagonal or Jordan

form one is lead to consider the Dahlquist test equation [12]

y′ = λy, λ ∈ C. (2)

Applying an RK to (2) gives yk = R(z)ky0, where R(z) is a rational function and

z = ∆tλ. This rational function is called the stability function of the method. As an

example, for the explicit or implicit Euler method, we have

yk = (1 + z)yk−1 = (1 + z)ky0, (3)

yk =

(
1

1− z

)k
y0, (4)

respectively. The condition |R(z)| ≤ 1 ensures that {yk}k≥0 remains bounded and leads

to the definition of the stability domain of a numerical method

S := {z ∈ C; |R(z)| ≤ 1}. (5)

For example, the stability domain of the explicit Euler method is a disk of radius 1

in the complex plane centered in −1, while the stability domain of the implicit Euler

method is the complementary set of a disk of radius 1 centered in 1.

As the Jacobian of the system of ODEs obtained from spatial discretization

of parabolic problems has eigenvalues distributed along the negative real axis with a

spectral radius growing proportional to 1/(∆x)2 [11], the stability condition for the
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explicit Euler method reads ∆t ≤ C(∆x)2. The implicit Euler is unconditionally stable

for this problem, but this comes at the price of solving large linear systems of size pro-

portional to (1/(∆x))d (d is the spatial dimension) at each step size. Explicit stabilized

Runge-Kutta methods are a compromise between the two aforementioned methods in

the following sense: the explicitness of the methods allows to avoid to solve (possibly

large) linear systems at each step size, the extended stability domains along the neg-

ative real axis allow to avoid the usual step size restriction encountered with classical

explicit methods. Such methods have been pioneered by Saul’ev [30], Guillou and Lago

[15] Gentsch and Schlüter [14]. Recent developments include the methods based on

recurrence relation [34; 35], the methods based on composition [24; 20; 22; 27; 33] and

the methods combining recurrence relation and composition [7; 3]. We also mention

the extension of these methods to stiff stochastic problems [5; 6].

Basic Methodology

Explicit stabilized Runge-Kutta methods are constructed in two steps. First, stability

polynomials bounded in a long strip around the negative real axis are constructed.

Second, numerical methods with such favorable stability functions are constructed.

Optimal stability polynomials on the negative real axis

The basic idea Saul’ev [30], Guillou and Lago [15] Gentsch and Schlüter [14] to over-

come the step size restriction for classical explicit methods is to consider a compo-

sition of (classical) explicit methods with a super step size. Consider for example a

sequence of explicit Euler methods gh1 , . . . , ghs with a corresponding sequence of step

sizes h1, . . . , hs and define a one-step method as the composition

y1 = (ghs ◦ . . . ◦ gh1)(y0), (6)
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with step size ∆t = h1 + . . . + hs. Applied to (2), this methods yields the stability

function Rs(z) =
∏s

i=1(1 + hiz). Next, given s, optimize the sequence {hi}si=1, so that

Rs(z) = 1 + z +O(∆z2), |Rs(z)| ≤ 1 for z ∈ [−ls, 0], (7)

with ls > 0 as large as possible. The first condition is necessary for Method (6) to have

first order accuracy, the second condition ensures an optimal stability region along

the negative real axis. Problem (7) can be reformulated in the following way: find

α2, . . . , αs ∈ R such that Rs(z) = 1+z+
∑s

i=2 αiz
i satisfies |Rs(z)| ≤ 1 for z ∈ [−ls, 0]

with ls > 0 as large as possible. We recall that a Runge-Kutta method is said to be

accurate with order p if and only if

‖y(t0 +∆t)− y1‖ = O
(
(∆t)p+1) . (8)

Condition (8) implies that the stability function of a Runge-Kutta method of order p

satisfies

Rs(z) = 1 + z +
z2

2!
+ . . .+

zp

p!
+O

(
zp+1

)
. (9)

We notice that for p ≤ 2, (9) implies (8) [17, Sect. II.1].

As noticed in [26; 37; 13; 15], the solution of problem (7) is given by shifted

Chebyshev polynomials Rs(z) = Ts(1 + z/s2) where Ts(·), the Chebyshev polynomial

of degree s, is given by

T0(z) = 1, T1(z) = z, Tj(z) = 2zTj−1(z)− Tj−2(z), j ≥ 2. (10)

The equi-oscillation property of Rs(x), i.e., the existence of s points 0 > x1 > x2 >

. . . > xs such that |Rs(xi)| = 1 for i = 1, . . . , s and Rs(xi+1) = −Rs(xi) for i =

1, . . . , s−1, is used to show that Rs(z) = Ts(1+z/s2) is indeed the solution of Problem

(7). We notice that these properties are inherited from corresponding properties of the

Chebyshev polynomials. As a consequence, the optimal sequence of {hi}si=1 is given by

hi = −1/zi, where zi are the zeros of Rs(z) and we have |Rs(z)| ≤ 1 for z ∈ [−ls, 0]
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Fig. 1. Shifted Chebyshev polynomial of degree 5, R5(z), z ∈ R (upper Figure). Stability domain of

S := {z ∈ C; |R5(z)| ≤ 1} (lower Figure).

with ls = 2s2 (see Figure 1). The fact that the maximal stability domain on the negative

real axis increases quadratically with the number of stages s is crucial to the success

of stabilized Runge-Kutta methods.

Complexity and cost reduction

Assume that the accuracy requirement dictates a step size of ∆t and that the Jacobian

of Problem (1) has eigenvalues close to the real negative axis with a spectral radius

given by Λ (possibly large). For a classical explicit Runge-Kutta method the stability

constraint forces to take a step size h ' C/Λ which leads to N = ∆tΛ/C function

evaluations per step size ∆t. For example, for the explicit Euler method, this cost

reads N = ∆tΛ/2. For an explicit stabilized Runge-Kutta method with a stability

interval along the negative real axis given by ls = C · s2 we choose ∆tΛ = C · s2 which

gives s =
√
∆tΛ/C. For the first order method stabilized Runge-Kutta method, with

a stability function given by Rs(z) = Ts(1 + z/s2), we obtain s =
√
∆tΛ/2, the square

root of the cost of the explicit Euler method.
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Construction of explicit stabilized Runge-Kutta methods

Given a stability polynomial with optimal stability around the negative real axis, the

goal is now to construct corresponding Runge-Kutta methods. There are two main

strategies to realize such Runge-Kutta methods. The first idea (and also the oldest)

is, as already seen, by composition of Euler steps. The second idea exploits the three-

term recurrence relation of the Chebyshev polynomials. For simplicity we consider

autonomous ODEs, e.g., y′ = f(y), but emphasize that the methods described below

can be applied to general ODEs by appending the differential equation t′ = 1 to the

autonomous differential equation.

Methods by composition

This approach first proposed by Saul’ev [30] and Guillou & Lago [15] is based on a

composition of Euler steps (6)

gi = gi−1 + hif(gi−1), i = 1, . . . , s, y1 = gs, (11)

where g0 = y0, hi = γi∆t, γi = −1/zi and zi are the zeros of the shifted Chebyshev

polynomials. The gi are called the internal stages of the method. Without special

ordering of the step sizes, internal instabilities such as round-off error can propagate

within a single integration step ∆t in such a way that makes the numerical method

useless [18] (recall that we aim at using a large number of internal stages, e.g., s ≥ 100).

A strategy to improve the internal stability of the method (11) based on a combination

of large and small Euler steps has been proposed in [14].

Methods by recurrence

First proposed by van der Houwen and Sommeijer [34], this approach uses the three-

term recurrence relation (10) of the Chebyshev polynomials to define a numerical

method given by
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g1 = g0 +
∆t

s2
f(g0), gi =

2∆t

s2
f(gi−1) + 2gi−1 − gi−2, i = 2, . . . , s, y1 = gs, (12)

where g0 = y0. One verifies that applied to the test problem y′ = λy, this method gives

for the internal stages

gi = Ti(1 +∆tλ/m2)y0, i = 0, . . . , s, (13)

and produces after one step y1 = gs = Ts(1 + x/s2)y0. Propagation of rounding errors

within a single step is reasonable for this method even for large values of s such as used

in practical computation [34].

Damping

It was first observed by Guillou & Lago [15] that one should replace the stability

requirement |Rs(z)| ≤ 1, z ∈ [−ls, 0] by |Rs(z)| ≤ η < 1, z ∈ [−ls,η,−δη], where

δη a small positive parameter depending on η. Indeed, for the points xi ∈ R− where

R(xi) = Ts(1 + xi/s
2) = ±1, the stability domain has zero width (see Figure 2). If one

sets

Rs(z) =
1

Ts(ω0)
Ts(ω0 + ω1z), ω0 = 1 +

η

s2
, ω1 =

Ts(ω0)

T ′s(ω0)
, (14)

then the polynomials (14) oscillate approximately between −1 + η and 1 − η (this

property is called “damping”). The stability domain along the negative real axis is

a bit shorter, but the damping ensures that a strip around the negative real axis is

included in the stability domain (see Figure 2). Damping techniques also allow to

consider hyperbolic-parabolic problems. By increasing the value of η, a larger strip

around the negative real axis can be included in the stability domains. This has been

considered for explicit stabilized Runge-Kutta methods in [33; 36]. Recently damping

techniques have also been used to extend stabilized Runge-Kutta methods for stiff

stochastic problems [4; 6].
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Fig. 2. Stability domain for shifted Chebyshev polynomials of degree 6. Undamped polynomial (upper

Figure) and damped polynomial with η = 0.95 (lower Figure).

Higher-order methods

Both problems, constructing optimal stability polynomials and deriving related Runge-

Kutta methods are considerably more difficult for higher order. First, we have to find

a polynomial of order p, i.e. R(z) = 1 + z + . . .+ zp

p!
+O(zp+1), and degree s such that

Rs(z) = 1 + z + . . .+
zp

p!
+ αp+1z

p+1 + . . .+ αsz
s, |Rs(z)| ≤ 1 for z ∈ [−lps , 0], (15)

with lps as large as possible. The existence and uniqueness of such polynomials with

maximal real negative stability interval, called optimal stability polynomials, for ar-

bitrary values of p and s has been proved by Riha [29]. No elementary analytical

solutions are known for these polynomials for p > 1. Lebedev [23] found analytic ex-

pressions for second order optimal polynomials in terms of elliptic functions related

to Zolotarev polynomials. Abdulle [1] gave a classification of the number of complex

and reals zeros of the optimal stability polynomials as well as bounds for the error

constant Cp
s = 1/(p + 1)! − αp+1. In particular, optimal stability polynomials of or-

der p have exactly p complex zeros for even values of p and exactly p − 1 complex

zeros for odd values of p. In practice such polynomials are approximated numerically

[2; 19; 18; 21; 25; 28]. As for first order optimal stability polynomials, higher order
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optimal stability polynomials enjoy a quadratic growth (with s) of the stability region

along the negative real axis

lps ' cp · s2, c2 = 0.82, c3 = 0.49, c4 = 0.34. (16)

Approximations of lps up to order p = 11 can be found in [2].

Several strategies for approximating the optimal stability polynomials have been

proposed. The three main algorithms correspond to the the DUMKA methods (optimal

polynomials without recurrence relation), the Runge-Kutta-Chebyshev (RKC) methods

(non optimal polynomials with recurrence relation) and the orthogonal Runge-Kutta-

Chebyshev (ROCK) methods (near optimal polynomials with recurrence relation). The

construction of explicit stabilized Runge-Kutta-Chebyshev methods is then based on

composition (DUMKA type methods), recurrence formulas (RKC type methods) and

a combination of composition and recurrence formulas (ROCK type methods). An

additional difficulty for methods of order p > 2 is that the structure of the stability

functions 1 + z + . . . + zp

p!
+ O(zp+1) guaranties the order p only for linear problems.

Additional order conditions have to be built in the method to have order p also for

nonlinear problems. Only DUMKA and ROCK type methods exist for p > 2.

DUMKA methods

DUMKA methods are based on the zeros of the optimal stability polynomials, com-

puted through an iterative procedure [21]. Then, as suggested by Lebedev in [20; 22],

one groups the zeros by pairs (if a zero is complex it should be grouped with its complex

conjugate), considers quadratic polynomials of the form (1− z
zi

)(1− z
zj

) = 1+2αiz+βiz
2

and represents them as
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gi := gi−1 +∆tαif(gi−1)

g∗i+1 := gi +∆tαif(gi)

gi+1 := g∗i+1 −∆t(αi −
βi
αi

)(f(gi)− f(gi−1)).

(17)

One step of the method consists of a collection of two-stage schemes (17). The above

procedure allows to represent complex zeros and almost halves the largest Euler step.

As for first order explicit stabilized RK methods, special ordering of the zeros is needed

to ensure internal stability. This ordering is done “experimentally” and depends on the

degree of the stability polynomial [24]. An extension for higher order has been proposed

by Medovikov [27] (order 3 and 4).

RKC methods

RKC methods rely on introducing a correction to the first order shifted Chebyshev

polynomial to allow for second order polynomials. These polynomials, introduced by

Bakker [8] are defined by

Rs(z) = as + bsTs(w0 + w1z), (18)

where

as = 1− bsTs(w0), bs =
T

′′
s (w0)

(T ′
s(w0))2

, w1 =
T

′
s(w0)

T ′′
s (w0)

, w0 = 1 +
ε

s2
, ε ' 0.15.

!60 !50 !40 !30 !20 !10 0

1

0

1

!60 !50 !40 !30 !20 !10 0

1

0

1

Fig. 3. Second order RKC polynomial of degree 9 (bold line). All internal stages are drawn (thin

lines).
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Polynomials (18) remain bounded by η ' 1 − ε/3 on their stability interval

(except for a small interval near the origin). The stability intervals are approximately

given by −0.65 · s2 and cover about 80% of the stability intervals of the optimal second

order stability polynomials. For the internal stages, the polynomials

Rj(z) = aj + bjTj(w0 + w1z), j = 0, . . . , s− 1,

can be used. To have consistent internal stages one must have Rj(0) = 1 and thus

aj = 1− bjTj(w0). It remains to determine b0, . . . , bs−1. If one requires the polynomials

Rj(z) for j ≥ 2 to be of second order at nodes t0 + ci∆t in the interval [t0, t0 + ∆t],

i.e., Rj(0) = 1, (R′j(0))2 = R′′j (0), then Rj(z) = 1 + bj(Tj(w0 + w1z) − Tj(w0)), with

bj =
T

′′
j (w0)

(T
′
j (w0))2

for j ≥ 2. The parameters b0, b1 are free parameters (only first order is

possible for R1(z) and R0(z) is constant) and the values b0 = b1 = b2 are suggested in

[31]. Using the recurrence formula of the Chebyshev polynomials the RKC method as

defined by van der Houwen and Sommeijer [34] reads

g1 = g0 + b1w1∆tf(g0)

gi = g0 + µi∆t(f(gi−1)− ai−1f(g0)) + νi(gi−1 − y0) + κi(gi−2 − y0), i = 2, . . . , s

y1 = gs, (19)

where

µi =
2biw1

bi−1
, νi =

2biw0

bi−1
, κi =

−bi
bi−2

, i = 2, . . . , s.

ROCK methods

The orthogonal Runge-Kutta Chebyshev methods (ROCK) [2; 3; 7] are obtained

through a combination of the approaches of Lebedev (DUMKA) and van der Houwen

and Sommeijer (RKC). These methods possess nearly optimal stability polynomials,

are build on recurrence relation and have been obtained for order p = 2, 4. As the
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optimal stability polynomials of even order have exactly p complex zeros [1], the idea

is to search, for a given p, an approximation of (15) of the form

Rs(x) = wp(x)Ps−p(x), (20)

where Ps−p(x) is a member of a family of polynomials {Pj(x)}j≥0 orthogonal with

respect to the weight function wp(x)2√
1−x2 . The function wp(x) is a positive polynomial of

degree p. By an iterative process one constructs wp(x) such that

• the zeros of wp(x) are close to the p complex zeros of (15);

• the polynomial Rs(x) satisfies the p−th order condition, i.e.,

Rs(x) = wp(x)Ps−p(x) = 1 + z + . . .+
zp

p!
+O(zp+1).

The theoretical foundation of such an approximation is a theorem of Bernstein [9],

which generalizes the property of minimality and orthogonality of Chebyshev poly-

nomials to more general weight functions. For p = 2, 4 such families of polynomials

(depending on s) can be constructed with nearly optimal stability domains. Thanks to

the recurrence relation of the orthogonal polynomials {Pj(x)}j≥0, a method based on

recurrence formula can be constructed.

Fig. 4. Second order ROCK polynomial of degree 9 (thin line) with damping η = 0.95. All internal

stages are drawn (bold lines). The optimal stability polynomial is displayed in dotted line.

Second order ROCK2 methods. We consider the polynomials (20) for p = 2. The

three-term recurrence formula associated with the polynomials {Pj(x)}j≥0

Pj(x) = (αjx− βj)Pj−1(x)− γjPj−2(x),
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Fig. 5. Fourth order ROCK polynomial of degree 9 (thin line) with damping η = 0.95. All internal

stages are drawn (bold lines). The optimal stability polynomial is displayed in dotted line.

is used to define the internal stages of the method

g1 = y0 + α1∆f(g0), gi = y0 + αi∆f(gi−1)− βigi−1 − γigi−2, i = 2, . . . , s− 2. (21)

Then, the quadratic factor w2(z) = 1+2σz+τz2 is represented by a two-stage “finishing

procedure” similarly as in [22]

gs−1 := gs−2 + hσf(gs−2)

g?s := gs−1 + hσf(gs−1)

gs := g?s − hσ(1− τ
σ2 )
(
f(gs−1)− f(gs−2)

)
.

(22)

For y′ = λy we obtain

gj = Pj(z)g0 j = 0, . . . , s− 2

gs = w2(z)Ps−2(z) = Rs(z)y0,

(23)

where z = hλ.

Fourth order ROCK4 methods. We consider the polynomials (20) for p = 4. Simi-

larly to (21), we use the three-term recurrence formula associated with the polynomials

{Pj(x)}j≥0 to define the internal stages of the method g1, . . . , gs−4.

For the finishing procedure, simply implementing successively two steps like

(22) will only guarantee the method to be of fourth order for linear problems. For

nonlinear problem there are four additional order conditions that are not encoded in

the fourth order stability polynomials [17, Sect. II.1]. This issue is overcome by using

a composition of a s − 4 stage method (based on recurrence relation) with a general
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fourth order method having w4(z) as stability function such that the resulting one-step

method has fourth order accuracy for general problems. The Butcher group theory

[10] is the fundamental tool to achieve this construction. An interesting feature of the

ROCK4 methods is that their stability functions include a strip around the imaginary

axis near the origin. Such a property (important for hyperbolic-parabolic equations)

does not hold for second order stabilized Runge-Kutta methods [3].

Implementation and example

Explicit stabilized RK methods are usually implemented with variable step sizes, vari-

able stage orders, a local estimator of the error and an automatic estimation of the

Jacobian of the differential equation to be solved [7; 3; 27; 32]. A code based on stabi-

lized Runge-Kutta methods typically comprises the following steps.

Algorithm.

1. Selection of the stage number.

Given ∆tn, the current step size, compute an approximation of the spectral radius

ρ of the Jacobian of (1) and choose the stage number s such s '
√

ρ·∆tn
cp

, where cp

is given by (16).

2. Integration with current stage number and step size.

Perform an integration step from yn → yn+1.

3. Error estimate and step size adjustment.

Compute the local error errn+1. If errn ≤ Tol accept the step size and up-

date the integration time t → t + ∆tn, compute a new step size ∆tn+1 =

ξ(errn, errn+1, ∆tn−1, ∆tn) and go back to 1. If errn > Tol reject the step size,

compute a new step size ∆tn,new = ξ(errn, errn+1, ∆tn−1, ∆tn) and go back to 1.
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The function ξ is a step size controller “with memory” developed for stiff problems [16]

and Tol is a weighted average of atol (absolute tolerance) and rtol (relative tolerance).

If the spectral radius Jacobian is not constant or cannot be easily approximated, it is

estimated numerically during the integration process through a power like method that

takes advantage of the large number of internal stages used for stabilized Runge-Kutta

methods.

Example. We consider a chemical reaction, the Brusselator, introduced by Prigogine,

Lefever and Nicolis (see for example [17, I.1] for a description), given by the following

reaction diffusion equations involving the concentration of two species u(x, t), v(x, t) :

Ω × (0, T ) −→ R

∂u

∂t
= a+ u2v − (b+ 1)u+ α∆u

∂v

∂t
= bu− u2v + α∆v.

A spatial discretization (e.g., by finite differences) of the diffusion operator leads to

Fig. 6. Integration of the Brusselator problem with the Dorman-Prince method of order 5 (DOPRI5),

(left Fig) and the ROCK4 method (right Fig). A few intermediate stages are also displayed for the

ROCK4 method.

a large system of ODEs. For illustration purpose, we take Ω = (0, 1) and t ∈ (0, 10).

We choose to compare the ROCK4 method with a classical efficient high order explicit
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Runge-Kutta method, namely the fifth order method based on Dorman and Prince

formulas (DOPRI5). We integrate the problem with the same tolerance for ROCK4

and DOPRI5 and check that we get the same accuracy at the end. The cost of solving

the problem is as follows. Number of step sizes: 406 (DOPRI5), 16 (ROCK4), number

of function evaluations: 2438 (DOPRI5), 283 (ROCK4).
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