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Motivated by the wide range of physical parameters characterizing the scrape-off layer (SOL)

of existing tokamaks, the regimes of low-frequency linear instabilities in the SOL are

identified by numerical and analytical calculations based on the linear, drift-reduced Braginskii

equations, with cold ions. The focus is put on ballooning modes and drift wave instabilities,

i.e., their resistive, inertial, and ideal branches. A systematic study of each instability is

performed, and the parameter space region where they dominate is identified. It is found that

the drift waves dominate at high R=Ln, while the ballooning modes at low R=Ln; the relative

influence of resistive and inertial effects is discussed. Electromagnetic effects suppress the drift

waves and, when the threshold for ideal stability is overcome, the ideal ballooning mode

develops. Our analysis is a first stage tool for the understanding of turbulence in the tokamak

SOL, necessary to interpret the results of non-linear simulations. [http://dx.doi.org/10.1063/

1.4758809]

I. INTRODUCTION

Heat and particle transport in the edge and scrape-off

layer (SOL) regions of tokamak plays a fundamental role in

determining the overall confinement of a fusion device.1,2 It

is believed that the transport level observed in these regions

results from the low-frequency turbulent plasma dynamics.

Since turbulence develops due to the presence of free energy

sources, which lead to a number of linearly unstable modes

that saturate due to non-linear effects, it is crucial to have a

deep insight of the linear properties of the instabilities that

develop in these regions in order to understand the observed

transport level.

In particular, ballooning modes (BM) and drift waves

(DW) are thought to be the instabilities that play the major

role in the edge and SOL dynamics. The linear and non-

linear properties of BM and DW have been studied exten-

sively (see, for example, Refs. 3–23). Ballooning modes

are driven unstable in the bad curvature region,7–12 in the

presence of resistivity or finite electron mass, or, in their

absence, if the plasma b is sufficiently high. Drift waves,

on the other hand, arise from E� B convection of the elec-

tron density profile, and they become destabilized in the

presence of a non-adiabatic electron response, due to, e.g.,

resistivity or finite electron mass.19–23 As a matter of fact,

in agreement with experimental results, low-frequency

non-linear electromagnetic models (both fluid and gyro-

fluid) have identified the edge turbulent regimes,3–6,24

showing that DW and BM instabilities determine the

plasma turbulent dynamics. The relative importance of

each mode, however, is still unclear, and non-linear simu-

lations of edge and SOL turbulent dynamics have

addressed both instabilities. The SOL region, in particular,

is characterized by a wide range of density gradients and

resistivities,24–32 allowing the interplay between E� B

convection and curvature effects to change considerably,

depending on the plasma scenario.

The goal of the present paper is to clarify the relative

importance of DW and BM, and of their branches, by

defining the linear-mode regimes in the SOL parameter

space, i.e., pointing out the fastest growing linear instabil-

ity given the parameters that characterize a SOL scenario.

Our study provides a simple way of identifying the under-

lying instabilities for a given set of parameters, and

it is a starting point for the interpretation of non-linear

simulations.

Our stability study is based on a linearization of the

drift-reduced Braginskii fluid equations33 in s� a geometry

with cold ions, and a toroidal limiter placed on the tokamak

high-field side. The relative simplicity of the model chosen

allows to capture the fundamental properties of both BM and

DW by retaining density and temperature gradients, mag-

netic field curvature, magnetic shear, resistivity, electron

inertia, and finite b effects. Within this linear fluid frame-

work, we remark that the main parameters characterizing the

SOL are: the typical gradient scale length, Ln, the ratio

between the density and the temperature gradient length,

g ¼ Ln=LT , the plasma b, the parallel resistivity, �, the mag-

netic shear, ŝ, the tokamak major and minor radii, R and a,

and the safety factor q.

It is noted that modes other than BM and DW could

become unstable in the edge and SOL regions of tokamak

plasmas. Among those, we mention peeling-ballooning

modes, external kinks, and sheath modes.34–36 We remark

that in the cold-ion regime considered here, ion temperature

gradient modes6,14 are excluded, while trapped electron

modes are also stable in the SOL due to the fact that the

bounce frequency of trapped electrons is smaller than thea)annamaria.mosetto@epfl.ch.
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collision frequency. The description of these modes goes

beyond the purpose of the present study.

The paper is organized as follows: in Sec. II, we intro-

duce the model that is at the basis of our study. In Secs. III

and IV, we present the main characteristics of BM and DW,

respectively. Section V is focused on the transition among

the different instabilities, in order to define the linear-mode

regimes in the SOL parameter space, while Sec. VI demon-

strates how our analysis can be used to interpret the results

of SOL studies. Finally, we draw our conclusions in

Sec. VII. Appendix A presents a description of the numerical

methods used.

II. THE MODEL

To study the plasma instabilities present in the SOL, we

consider the linearized Braginskii equations (Ref. 33) in the

drift-reduced limit, therefore assuming for the perpendicular

velocities V?i ¼ VE�B þ V�i þ Vpol and V?e ¼ VE�B þ V�e,

where VE�B ¼ ð�rU� BÞ=B2 is the E� B drift velocity,

V�i;e is the ion/electron diamagnetic drift velocity, and Vpol is

the ion polarization velocity (see, e.g., Ref. 37). In the limit

Ti � Te, assuming infinite aspect ratio and neglecting the stress

tensor, the radially local linearized equations for the perturbed

density, n, potential, U, magnetic vector potential, w ¼ �Ak,
electron temperature, Te, and the ion parallel velocity, Vki, are

@n

@t
¼ R

Ln

@U
@y
þ ĈðTe þ n� UÞ þ rkr2

?w�rkVki;

@r2
?Ut

@t
¼ Ĉðnþ TeÞ þ rkr2

?w;

@w
@t

b
2
� me

mi

@

@t
r2
?w ¼ �r2

?wþrkðU� n� 1:71TeÞ þ ð1þ 1:71gÞ b
2

R

Ln
r2
?w;

@Te

@t
¼ g

R

Ln

@U
@y
þ 2

3
Ĉ

7

2
Te þ n� U

� �
þ 2

3
1:71rkr2

?w�
2

3
rkVki;

@Vki
@t
¼ �rkðnþ TeÞ þ

b
2

R

Ln
ð1þ gÞr2

?w:

(1)

Here, R is the tokamak major radius, Ln and LT are the

radial scale lenghts of the background density and tempera-

ture, b ¼ 2pe0l0=B2 is the ratio between the equilibrium

electron kinetic and the magnetic pressure, g ¼ Ln=LT is the

ratio between the density and the electron temperature gra-

dients length, � ¼ e2n0=ðmirkÞ is the normalized parallel re-

sistivity, being rk ¼ 1:96n0e2se=me, the parallel Spitzer

conductivity. Background E� B flow is ignored, i.e., the

equilibrium U is supposed independent of the radial coordi-

nate. The coordinate y is the poloidal coordinate corre-

sponding, in the infinite aspect ratio approximation, to

y ¼ ha, where h is the poloidal angle and a is the minor ra-

dius. In particular 0 < y < 2pa, with y¼ 0 and y ¼ 2pa
located at the inner mid plane. We normalize n to the equi-

librium density n0, Te to the SOL background temperature

Te0, U to Te0=e, w to cs0mib=2e, Vki to cs0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te0=mi

p
, and

the time t to R=cs0. Lengths in the perpendicular direction

are normalized to qs0 ¼ cs0=Xci and in the parallel direction

to R.

According to non-local, linear studies of BM and

DW (see Refs. 38 and 39), the scale length in the radial

direction is larger than in the poloidal direction, i.e.,

ky=kr �
ffiffiffiffiffiffiffiffiffi
kyLp

p
� 1. Therefore, we ignore the radial mode

dependence and assume ky � kr. As a consequence, the cur-

vature operator is defined as

Ĉ ¼�2 cos
y

a
þ ŝ

y

a
�p

� �
sin

y

a

h i @
@y
; (2)

where the magnetic shear is ŝ ¼ ða=qÞdq=dr, q¼ aB/=ðRBhÞ
is the safety factor, and the gradients evaluated in the perpen-

dicular direction, lying in the poloidal plane, are

r2
? ¼ 1þ y

a
ŝ � pŝ

� �2
� �

@2

@y2
: (3)

System (1) is considered in the SOL region, around

r¼ a, where the open magnetic field lines end on a toroidal

limiter located at the high-field equatorial mid plane (y¼ 0

and y ¼ 2pa).

In general, the perturbed quantitites can be written in the

form fn ¼ fnðyÞexpðin/þ ctÞ, where n is the toroidal mode

number, / is the toroidal angle, and c is the linear growth rate

of the mode. This allows to reduce the system (1) to a one-

dimensional eigenvalue problem in the y direction for c, as the

parallel derivative can be evaluated as a combination of the

poloidal derivative and the toroidal mode number, as rkfn ¼
½ða=qÞ@fn=@y þin fn� expðin/þ ctÞ. As described in Appen-

dix A, we have developed a toroidal modes decomposition

code that solves this eigenvalue problem, whose results are

discussed in Sec. VI.

In order to describe the basic properties of the BM and

DW (Secs. III and IV), we have also considered the field line

following approach to Eqs. (1) in which we assume

@=@y! iky, considering a solution in the form fky
¼ fky
ðzÞ

expðikyyþ ctÞ, where z is the parallel coordinate,

0 < z < 2pq. Within this approach, the laplacian operator is
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r2
? ¼ �k2

? ¼ �k2
y 1þ z

q
ŝ � pŝ

� �2
" #

; (4)

and the curvature operator is defined as Ĉ ¼ ikyC, where

C ¼ �2½cosðz=qÞ þ ŝðz=q� pÞsinðz=qÞ�. More details are

given in Appendix A.

In the following two sections, Secs. III and IV, we concen-

trate our attention on the unstable modes described by the sys-

tem of Eqs. (1), the BM and DW, using the field line following

approach and describing separately their main properties. This

is fundamental in order to identify the parameter regime where

those modes dominate, which is the subject of Sec. V.

III. BALLOONING INSTABILITIES

Ballooning modes are interchange-like modes driven by

the curvature of the magnetic field lines and plasma pressure

gradient, unstable in the presence of collisions or finite elec-

tron mass, or, in their absence, if the plasma b is sufficiently

high to allow magnetic field lines bending.

For the study of BM, we simplify the system of Eqs. (1),

avoiding the coupling with sound waves, i.e., by considering

the limit kk � c, and therefore neglecting the Vki dynamics.

We also drop the compressibility terms due to magnetic curva-

ture, ascribed to VE�B and V�e convection, in the continuity

and temperature equations, because they are much smaller than

the R=Ln terms. Finally, we neglect the rk terms in the conti-

nuity and in temperature equations and the diamagnetic term,

rkðnþ 1:71TeÞ, in Ohm’s law, to avoid coupling with DW,

therefore assuming x� < c, where x� ¼ kyR=Ln is the diamag-

netic frequency. In the fluxtube geometry, Eqs. (1) reduce to

cn ¼ R

Ln
ikyU;

� k2
?cU ¼ Ĉðnþ TeÞ � k2

?rkw;

cw
b
2
þ k2

?
me

mi
cw ¼ �k2

?�wþrkUþ ik?ð1þ 1:71gÞb
2

R

Ln
w;

cTe ¼ g
R

Ln
ikyU: (5)

In the following subsections, we detail the main charac-

teristics of the resistive, the inertial, and the ideal branches of

the BM (RBM, InBM, and IdBM, respectively). We find that

in all cases, the maximum growth rate is cmax
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R=Lp

p
.

The RBM and InBM have c! cmax
B for kk ! 0, therefore the

fastest growing mode has the smallest possible kk, approach-

ing the minimum allowed value kk � 1=q. The poloidal mode

number ky can vary within a range set by the competition

between parallel and perpendicular dynamics (lower ky limit)

and by the plasma compressibility (upper ky limit). On the

other hand, the IdBM is a global instability that develops with

the maximum growth rate at smallest possible ky.

A. Resistive ballooning mode

The resistive branch of the ballooning mode is destabi-

lized by finite parallel resistivity. If electron inertia and elec-

tromagnetic effects are neglected, the system of Eqs. (5) can

be reduced to the following equation for U:

ĉU 1þ ½ðẑ � pÞŝ�2
n o

¼ rR
@2U

@ẑ2
þ C

2ĉ
U; (6)

where we define ẑ ¼ z=q (0 	 ẑ 	 2p), ĉ ¼ c=cmax
B , and

rR ¼ 1=ðcmax
B k2

y q2�Þ, which describes the damping of the

mode due to the resistive parallel spread.

Figure 1 shows the growth rate as a function of the mag-

netic shear ŝ and the rR parameter obtained solving the

eigenvalue problem of Eq. (6). We observe that the peak of

the growth rate is at ŝ ’ 0:5 and it decreases asymmetrically

moving away from this value. This result agrees with the

observations reported in Refs. 6 and 40: for curvature driven

modes, positive magnetic shear has a destabilizing effect,

while negative shear reduces the region in which the instabil-

ity can be driven. Moreover, in agreement with our findings,

in Ref. 10, it was found that a branch of the resistive balloon-

ing instability was highly unstable up to ŝ ¼ 1. Negative

shear stabilization of RBM has been invoked as one of the

possible mechanisms behind the formation of transport bar-

riers in the L-H transition (see Ref. 41) as it reduces the

fluxes of particles,3,15 globally enhancing plasma confine-

ment. The reduction of the growth rate for high values of the

rR parameter is due to the competition between the parallel

dynamics and the ballooning drive, i.e., the two terms

appearing on the right hand side of Eq. (6). The ballooning

drive prevails on the parallel dynamics for k2
krR�1, leading

to an estimate of the value of ky below which the growth rate

is reduced by the parallel dynamics, given by kmin
y ¼

1=ð2pq
ffiffiffiffiffiffiffiffiffiffiffi
cmax

B �
p

Þ (see Ref. 6).

An analytical estimate for the eigenvalues of Eq. (6) can

be calculated in the strong ballooning regime (see, e.g., Refs. 6

and 10). Assuming strong ballooning character of the mode,

i.e., a strong localization of the solution near the outer mid

plane, we can Taylor expand the curvature operator around that

location and derive a Weber-type equation for U, of the form

a
d2U
dz2
þ ðbþ cz2ÞU ¼ 0; (7)

FIG. 1. The normalized growth rate of the resistive ballooning mode,

c=cmax
B , solution of Eq. (6), is plotted as a function of ŝ and rR; the black line

shows the analytical solution given by Eq. (8) for c=cmax
B ¼ 0:7.
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where a ¼ rRĉ, b ¼ 1� ĉ2, and c ¼ �ĉ2ŝ2 þ ŝ � 1=2. The

solution of Eq. (7) is U ¼ expð�k2z2=2Þ, where k2 ¼ �c=b,

for k2 > 0. Since the coefficients a, b, and c have to satisfy

b2 þ ac ¼ 0, the relation between ĉ, ŝ, and rR is

rR ¼
2ĉ2 � ĉ4 � 1

ĉŝ � ĉ=2� ĉ3ŝ2
: (8)

The accuracy of Eq. (8) is higher for localized modes,

i.e., with large k, which is the case at strong positive and

strong negative shear. In Fig. 1, the black line shows the rela-

tion between rR and ŝ evaluated from Eq. (8) for ĉ ¼ 0:7.

Compared to the numerical solution of Eq. (6), one sees that

Eq. (8) is able to describe the effect of magnetic shear on the

RBM for ŝ � 0 and for ŝ � 2. In fact for 0 � ŝ � 2, the strong

ballooning assumptions are not satisfied and the analytical

solution is not accurate. We remark that, according to

Eq. (8), the system is unstable even for rR ! 0.

According to the evaluation of the eigenvalues of Eq. (6),

c! cmax
B for ky !1. However, the solution of Eqs. (1)

shows that c! 0 for ky !1. We find that this is due to

magnetic curvature induced plasma compressibility, which is

not included in the symplified system (5). This effect can be

understood by considering a relatively simple model, Eqs. (1)

in the kk ¼ 0 limit and assuming constant curvature evaluated

at the outer mid plane. The linear dispersion relation associ-

ated to such a system is18 b0 þ b1cþ b2c2 þ b3c3 ¼ 0, where

b0 ¼ 20ik3
yð2� R=LnÞ=3, b1 ¼ 20ðk2

y � 1Þk2
y=3þ 2ð1þ gÞk2

y

R=Ln, b2 ¼ 20ik3
y=3, and b3 ¼ �k2

y . The solution of this dis-

persion relation shows reduction of the growth rate for

ky�0:3cmax
B ; our numerical tests show that this reduction is due

to the compressibility terms in the density and temperature

equations. In conclusion, the RBM grows for kmin
y < ky < kmax

y ,

being kmin
y ¼ 1=ð2pq

ffiffiffiffiffiffiffiffiffiffiffi
cmax

B �
p

Þ and kmax
y ¼ 0:3cmax

B .

In a previous study (see Ref. 6), BM analysis demon-

strated that their growth rate is reduced by diamagnetic

effects when aD ¼ Rkmin
y =ðLncmax

B Þ > 1. We observe a reduc-

tion of the growth rate at high ky due to compressibility

effects, ascribed to both the diamagnetic terms (ĈTe and Ĉn)

and the potential term (Ĉ/) in the density and temperature

equations. Our approach separates the compressibility damp-

ing from the diamagnetic effects in Ohm’s law, while in

Ref. 6, the two contributions were not clearly separated.

B. Inertial ballooning mode

In the limit of negligible resistivity and negligible elec-

tromagnetic effects, one finds the inertial branch of the BM

instability. In this limit, Eqs. (5) can be reduced to the fol-

lowing equation for U:

ĉU 1þ ½ðẑ � pÞŝ�2
n o

¼ r2
Inĉ
@2U

@ẑ2
þ C

2ĉ
U; (9)

where rIn ¼
ffiffiffiffiffi
mi
p

=ðcmax
B kyq

ffiffiffiffiffiffi
me
p Þ, which describes the damp-

ing of the mode due to the inertial parallel spread.

In Fig. 2, we show the growth rate as a function of ŝ and

rIn, solution of the eigenvalue problem of Eq. (9). We

observe that the reduction of c due to the magnetic shear is

asymmetric with respect to the peak value occurring at

ŝ ’ 0:5. As for the RBM, we remark that the diminution of

the growth rate with rIn is due to the competition between

the ballooning drive and the parallel dynamics terms appear-

ing on the right hand side of Eq. (9). By comparing the two

terms on the right hand side of Eq. (9), we find the minimum

value of ky, below which we have a considerable suppression

of the growth rate, which is kmin
y ¼ ffiffiffiffiffi

mi
p

=ð2pqcmax
B

ffiffiffiffiffiffi
me
p Þ.

As in the case of RBM, it is possible to solve Eq. (9)

within the strong ballooning limit (see Refs. 6 and 10). In

this case, the coefficients of the Weber equation, Eq. (7), are

a ¼ r2
In, b ¼ �ĉ2 þ 1, and c ¼ �ĉ2ŝ2 þ ŝ � 1=2 and the

relation between rIn, ŝ, and ĉ is given by

rIn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ĉ2 � ĉ4 � 1

ŝ � 1=2� ĉ2ŝ2

s
: (10)

In Fig. 2, the black line shows the relation between rIn

and ŝ given by Eq. (10) for ĉ ¼ 0:7 compared to the numeri-

cal solution of Eq. (9), as in the RBM case. We notice that

the agreement between the analytical and the numerical solu-

tion is good for ŝ�0 and for ŝ�2. In fact for 0�ŝ�2, the

strong ballooning assumption is not valid and the analytical

solution, Eq. (10), is not accurate. We remark that, according

to Eq. (10), the system is unstable even for rIn ! 0. As

stated for the RBM case, also for the InBM, the compressi-

bility reduces the growth rate for ky�0:3cmax
B .18

C. Ideal ballooning mode

The ideal ballooning instability persists in the absence

of plasma resistivity and electron inertia, and it is character-

ized by magnetic field lines bending outward in the bad cur-

vature region due to interchange drive. In the limit of

negligible resistivity, �, and negligible electron mass, me, the

system of Eqs. (5) can be reduced to the following equation

for U

FIG. 2. The normalized growth rate of the inertial ballooning mode, c=cmax
B ,

solution of Eq. (9), is plotted as a function of ŝ and rIn; the black line shows

the analytical solution given by Eq. (10) for c=cmax
B ¼ 0:7.

112103-4 Mosetto et al. Phys. Plasmas 19, 112103 (2012)

Downloaded 06 Nov 2012 to 128.178.125.98. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



�ĉU

	
1þ ½ðẑ� pÞŝ�2



¼�

1þ ½ðẑ� pÞŝ�2
n o

aMHDĉ
@2U

@ẑ2
� C

2ĉ
U;

(11)

where aMHD ¼ q2bð1þ gÞR=Ln. The growth rate as a func-

tion of ŝ and aMHD is shown in Fig. 3, as a solution of the

eigenvalue problem of Eq. (11). When the parallel stabiliza-

tion is overcome, i.e., for aMHD � 1, the IdBM is unstable in-

dependently of ky (see Ref. 6), since aMHD is independent of

ky. The magnetic shear has a stabilizing effect that is not

symmetric with respect to the peak value occurring at

ŝ ’ 0:5, the damping of the growth rate for ŝ < 0 being

more effective than for ŝ > 0. In the strong ballooning re-

gime, the coefficients of the Weber equation, Eq. (7), associ-

ated with Eq. (11) are: a ¼ 1, b ¼ aMHDð1� c2Þ, and

c ¼ aMHDð�ŝ2 þ ŝ � 1=2Þ. For the IdBM case, the analytical

solution in the strong ballooning limit leads to the relation

among aMHD, ŝ, and ĉ given by

aMHD ¼
ŝ � 1=2� ŝ2

2ĉ2 � ĉ4 � 1
: (12)

The black continuous line in Fig. 3 shows the relation

between aMHD and ŝ, Eq. (12), for ĉ ¼ 0 (marginal ideal sta-

bility), while the dotted line shows the same relation for

ĉ ¼ 0:5, compared to the numerical solution of Eq. (11). The

numerical solution of Eq. (11) shows good agreement with

the solid curve in Fig. 1 of Ref. 7, which was obtained fol-

lowing the hypothesis described in Ref. 42. In that case, the

marginal ideal stability was computed from the ideal MHD

energy principles, imposing zero boundary conditions in the

poloidal direction. We remark that, according to Eq. (12),

the system is stable for aMHD ! 0, showing the existence of

a pressure threshold for the destabilization of the IdBM. As

in the RBM and InBM cases, when compressibility effects

are retained in Eqs. (1), we verified a reduction of the growth

rate with increasing ky that becomes important for

ky�0:3cmax
B .18 Therefore, the maximum growth rate of the

IdBM develops for ky ! 0.

IV. DRIFT WAVE INSTABILITY

The DW instability is caused by E� B convection of

the plasma pressure accompanied by the breaking of the

electron adiabaticity in Ohm’s law, which is due to resistiv-

ity or finite electron mass.17,18 Electromagnetic effects stabi-

lize the DW instability, as shown in Sec. V E. For DW,

typically c � x�, ky � 1, while kk takes a finite value. In

order to model the DW instability we simplify Eqs. (1) by

neglecting the sound waves coupling, i.e., by assuming

c� kk. Moreover, we turn off the ballooning drive, i.e., the

curvature terms in the vorticity equation, in order to exclude

BM from the system. We also neglect the compressibility

terms in the continuity and temperature equations, since they

have a stabilizing effect that we ignore for sake of simplicity.

The reduced system of equations able to take into account

the fundamental elements of the DW is

FIG. 4. The normalized growth rate of the resistive drift wave, cLn=R, maximized over ky, (a) and ky of the maximum growth rate (b), solution of Eq. (14), are

plotted as a function of ŝ and aR. ŝ > 0 is represented since Eq. (14) is invariant for ŝ ! �ŝ transformation.

FIG. 3. The normalized growth rate of the ideal ballooning mode,

c=cmax
B , solution of Eq. (11), is plotted as a function of ŝ and aMHD; the

dotted black line shows the analytical solution for c=cmax
B ¼ 0:5, while

the continuous black line shows the ideal marginal stability, c ¼ 0, both

given by Eq. (12).

112103-5 Mosetto et al. Phys. Plasmas 19, 112103 (2012)

Downloaded 06 Nov 2012 to 128.178.125.98. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



cn ¼ iky
R

Ln
U� k2

?rkw; �k2
?cU ¼ �k2

?rkw;

cw
b
2
þ me

mi
ck2
?w ¼ �k2

?�wþrkðU� n� 1:71TeÞ

þ ik?ð1þ 1:71gÞb
2

R

Ln
w;

cTe ¼ ikyg
R

Ln
U� k2

?
2

3
1:71rkw:

(13)

We analyze this system in more detail by separating the

resistive and the inertial branches of the DW.

A. Resistive drift waves

In the case of resistive DW (RDW), the adiabaticity is

broken by the presence of a finite parallel resistivity. Neglect-

ing electron inertia and electromagnetic effects, the system of

Eqs. (13) is reduced to the following equation for U:

�ck2
?U ¼

@2U

@�z2
þ 2:94

@2ðk2
?UÞ

@�z2
� 1

�c
½ikyð1þ 1:71gÞ� @

2U

@�z2
;

(14)

where �z ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�R=Ln

p
, �c ¼ cLn=R, k2

? ¼ k2
y ½1þð�zaRŝ�pŝÞ2�,

and aR ¼
ffiffiffiffiffi
Ln

p
=ðq

ffiffiffiffiffiffi
�R
p
Þ.

In Fig. 4, the growth rate of the fastest growing mode,

found from Eq. (14), and the corresponding ky are shown as

a function of ŝ and aR, assuming g ¼ 1. Magnetic shear

damps the instability almost independently of aR in the

observed range of values, with the maximum growth rate at

ŝ ¼ 0. The typical wavenumber of the fastest growing mode

is in the range 0:2 < ky < 0:8. We remark that for ŝ ¼ 0,

with the substitution @=@z! ikk, Eq. (14) can be reduced to

an algebraic equation, �k2
yc

2þ k2
kð1þ 2:94k2

yÞcþð1þ
1:71gÞik2

kky R=Ln ¼ 0, with a maximum growth rate of

cmax
RDW ’ 0:085 ð1þ 1:71gÞR=Ln at ky ’ 0:57 and

kk ’ 0:24
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�R=Lp

p
.18

We note that the influence of magnetic shear on the

RDW has been discussed, for example, in Ref. 43, in the col-

lisionless limit, and in Ref. 44, with the inclusion of resistiv-

ity. For a constant value of R=Ln, in both cases it has been

found that the DW instability in a sheared slab geometry is

unconditionally stable. We find that the growth rate of DW

is suppressed by shear effects, but the instability is not

unconditionally stable for ŝ 6¼ 0. In Refs. 43 and 44, the radi-

ally non-local DW dispersion relation is studied, neglecting

the electron temperature dynamics and assuming kk ¼ 0 at

the center of the flux tube. In our approach, we allow kk 6¼ 0,

leading to the development of an unstable DW instability,

even in the presence of magnetic shear.

B. Inertial drift waves

In the inertial branch of the DW (InDW), the electron

adiabaticity is broken by the presence of a finite electron mass.

Neglecting resistivity and electromagnetic effects, the system

of Eqs. (13) can be reduced to the following equation for U:

�c2k2
?U ¼

@2U
@�z2
þ 2:94

@2ðk2
?UÞ

@�z2
� 1

�c
ikyð1þ 1:71gÞ
� � @2U

@�z2
;

(15)

where �z ¼ zR
ffiffiffiffiffiffi
me
p

=ðLn
ffiffiffiffiffi
mi
p Þ, k2

? ¼ k2
y ½1þ ð�zaI ŝ � pŝÞ2�, and

aI ¼ Ln
ffiffiffiffiffi
mi
p

=ðqR
ffiffiffiffiffiffi
me
p Þ.

In Fig. 5, the solution of Eq. (15) and the ky related to the

maximum growth rate are shown as a function of ŝ and aI,

assuming g ¼ 1. As for the RDW, the maximum growth rate is

reached for ŝ ¼ 0 and magnetic shear causes a damping of the

instability, almost independently of aI in the observed range of

values. We note that the magnetic shear damps more effi-

ciently the RDW instability than the InDW instability. For

example, the growth rate of the InDW is reduced approxi-

mately to 30% of the shearless value at ŝ ¼ 63 while, in the

RDW case, the growth rate is reduced to approximately 10%.

The typical wavenumber of the fastest growing mode is in

the range 0:35 < ky < 0:6. For the ŝ ¼ 0 case, Eq. (15)

can be reduced to an algebraic equation, me=mik
2
yc

3

þk2
kð1þ 2:94k2

yÞcþ ð1þ 1:71gÞik2
kkyR=Ln ¼ 0, with a maxi-

mum growth rate given by cmax
InDW ’ 0:17ð1þ 1:71gÞR=Ln, at

ky ’ 0:57 and kk ’ 02R
ffiffiffiffiffiffi
me
p

=ðLp
ffiffiffiffiffi
mi
p Þ.18 The maximum

growth rate is double the value obtained for RDW.

FIG. 5. The normalized growth rate of the inertial drift wave, cLn=R, maximized over ky, (a) and ky of the maximum growth rate (b), solution of Eq. (15), are

plotted as a function of ŝ and aI . ŝ > 0 is represented since Eq. (15) is invariant for ŝ ! �ŝ transformation.
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V. PARAMETER SPACE OF THE LINEAR
INSTABILITIES

We now identify the parameter space of the previously

described linear instabilities. Our goal is to provide a frame-

work according to which, given the set of parameters neces-

sary to characterize the SOL, it is possible to state which is

the dominant linear mode, i.e., the one that has the fastest

growth rate. Within our model, the parameters necessary to

characterize the SOL are: R=Ln; �; me=mi; b; ŝ, and q. In

Fig. 6, the different regimes of linear instabilities are sche-

matically identified in the parameter space. Our analysis

starts from the electrostatic limit, b ¼ 0, represented in

Fig. 6(a). Since DW have a growth rate of the order

c � x� � R=Ln, while BM growth rate scales as
ffiffiffiffiffiffiffiffiffiffi
R=Ln

p
, we

expect the DW to overcome the BM growth rate for suffi-

ciently steep density gradients. In fact, four regimes can be

distinguished: at high values of R=Ln, the DW is the domi-

nant instability, the resistive branch prevailing at high resis-

tivity, and the inertial branch at low resistivity. For low

values of R=Ln BM dominate, in particular, the resistive

branch at high resistivity and inertial branch at low resistiv-

ity. Finite b effects are described in Fig. 6(b). At high values

of R=Ln, for increasing values of b, first DW suppression due

to electromagnetic effects is observed and then the IdBM

becomes unstable, once the aMHD threshold is overcome. For

small values of R=Ln, the RBM and the InBM dominate at

small b and the IdBM at high b.

In the following paragraph, we first provide a descrip-

tion of the transition among the different instabilities in the

electrostatic case. We then discuss the role of electromag-

netic effects.

A. Transition between resistive ballooning mode
and resistive drift wave

An estimate of the transition between the RDW and

RBM can be obtained by comparing their maximum growth

rates. In the shearless case, a very simple estimate can be

obtained by equating the maximum growth rate for RDW,

cmax
RDW , defined in Sec. IV A, to the maximum growth rate for

RBM, cmax
B , defined in Sec. III. One obtains a transition value

of R=Ln, which is R=Ln ¼ 2ð1þ gÞ=½0085ð1þ 1:71gÞ�2 ’
75:2 at g ¼ 1.

In the general case, the threshold value of R=Ln depends

on ŝ; rR and aR and is obtained by comparing the solutions

of Eqs. (6) and (14), namely cRBM and cRDW , respectively.

We identify the R=Ln threshold in correspondence to

cRDW=cRBM ¼ 1. In the following analysis, we fix aR ¼ 0:35,

since the DW depend weakly on this parameter. In Fig. 7, we

show the R=Ln threshold as a function of ŝ and rR. The R=Ln

threshold decreases for increasing rR, since the RBM is sup-

pressed by the parallel dynamics. For ŝ ¼ 0, while at rR ’ 0,

the transition between RDW and RBM occurs at R=Ln ’ 75

(in agreement with our analytical estimate), at rR ’ 0:5, the

RDW grows faster than the RBM for R=Ln�45. The R=Ln

threshold decreases to R=Ln ’ 15 for ŝ ¼ 0 at rR ’ 3. The

decrease of the R=Ln threshold is more noticeable for ŝ < 0,

as the RBM is more efficiently suppressed by negative shear

(see Fig. 1) and the asymmetry with respect to ŝ ¼ 0

becomes evident at high values of rR. In the white region,

the R=Ln threshold is at values greater than 300 and the

RBM always prevails on the RDW.

B. Transition between inertial ballooning mode
and inertial drift waves

In order to estimate the threshold value of R=Ln above

which the InDW grows faster than the InBM, we can pro-

ceed as for the resistive case. For ŝ ¼ 0, a simple analyti-

cal estimate of the threshold can be obtained by equating

the maximum growth rate for InDW, cmax
InDW , defined in

FIG. 6. Sketch of the linear instability

regimes in the parameter space: electro-

static limit (a) and full electromagnetic

analysis (b). Different colours identify

the parameter space of the different

instabilities: resistive ballooning (pink),

inertial ballooning (orange), resistive

drift wave (light blue), inertial drift

wave (dark blue), ideal ballooning (vio-

let), and region of suppression of drift

waves (green).

FIG. 7. Transition between resistive drift waves and resistive ballooning

mode. The R=Ln value for which the growth rate of the RDW, solution of

Eq. (14), and of the RBM, solution of Eq. (6), are equal, cRDW ¼ cRB, is plot-

ted as a function of ŝ and rR. In the white region, the RBM always prevails

on the RDW for R=Ln > 300.
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Sec. IV B, to the maximum growth rate for InBM, cmax
B ,

defined in Sec. III. The normalized gradient below which

the InBM growth rate is larger than the one for the InDW

is R=Ln ¼ 2ð1þ gÞ=½017ð1þ 1:71gÞ�2 ’ 18:8 at g ¼ 1. In

general, the threshold depends on ŝ, rIn, and aI and can be

evaluated comparing the solution of Eqs. (9) and (15),

cInBM and cInDW , respectively, identifying the R=Ln thresh-

old in correspondence to cInDW=cInBM ¼ 1. In Fig. 8, we

show the R=Ln threshold as a function of ŝ and rIn, for

aI ¼ 0:30. The R=Ln threshold decreases for increasing rIn,

since the InBM is suppressed by the parallel dynamics. As

for the RBM, the decrease is more evident for ŝ < 0. For

rIn ’ 0, we observe that the R=Ln threshold is very close

to the analytical estimate previously calculated for ŝ ¼ 0

and that, because of the shear damping of the InDW, at

ŝ ¼ 61, the transition occurs at R=Ln ’ 55. The threshold

decreases to R=Ln ’ 10, due to the smaller growth rate of

the InBM at rIn ’ 0:5 and ŝ ¼ 0. In the white region of

Fig. 8, the InDW always prevails on the InBM.

C. Transition between resistive drift wave and inertial
drift wave

In the parameter space region where R=Ln is sufficiently

high, and therefore the DW are the dominant instability, the

relative influence of the resistive term with respect to the in-

ertial term governs the transition between the RDW and the

InDW. The threshold value of resistivity for the transition

between these two branches of the DW can be roughly esti-

mated by balancing the resistive term and the inertial term in

Ohm’s law: if � > cme=mi, resistive effect dominates, lead-

ing therefore to the development of the RDW instability, oth-

erwise inertial effects do, i.e., the InDW prevail.

A more precise estimate of the transition value of the re-

sistivity can be obtained by studying the behaviour of the

system of Eqs. (13), considering the b ¼ 0 limit, as a func-

tion of d ¼ �Lnmi=ðRmeÞ, which defines the ratio between

the resistive and inertial effects. In Fig. 9(a), we plot the

growth rate of DW as a function of d, for different values of

ŝ. From low to high values of d, one observes the transition

from the InDW to the RDW region. The maximum RDW

growth rate is half the one for the InDW for ŝ ¼ 0. In gen-

eral, it is always smaller than the one for InDW, even for

ŝ 6¼ 0. Therefore, one can obtain the value of d at which the

transistion takes place, by evaluating the value of d at which

the growth rate is the average of the growth rates for RDW

and InDW. We observe that, for increasing ŝ, the value of d
at which the transition from InDW to RDW occurs

decreases. This is plotted in Fig. 9(b): the d threshold passes

from d � 3:55 for ŝ ¼ 0 to d � 1:12 for ŝ ¼ 5.

D. Transition between resistive ballooning mode
and inertial ballooning mode

The threshold between RBM and InBM has been calcu-

lated by comparing the growth rate of the two linear modes,

solutions of Eqs. (6) and (9), cRBM and cInBM, respectively. In

the resistive limit, c is a function of ŝ and rR and, in the iner-

tial limit, it depends on ŝ and rIn, therefore the ratio

cInBM=cRBM has to be evaluated as a function of rR, rIn, and

ŝ. We observe that the ratio is larger or smaller than 1, inde-

pendently of ŝ, in a wide region of the plane ðrR; rInÞ. In

FIG. 8. Transition between inertial drift waves and inertial ballooning mode.

The R=Ln value for which the growth rate of the InDW, solution of Eq. (15),

and of the InBM, solution of Eq. (9), are equal, cInDW ¼ cInB, is plotted as a

function of ŝ and rIn. In the white region, the InDW always prevail on the

InBM.

FIG. 9. The transition between inertial and resistive drift waves. The drift wave instability growth rate, c, solution of Eq. (13) is plotted as a function of

d ¼ �Lnmi=ðRmeÞ and ŝ (a) and the value of d at the transition is plotted as a function of ŝ (b) [in (a) the bullets indicate the threshold between the two modes].
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Fig. 10, the red surface identifies the region in which the ra-

tio cInBM=cRBM is bigger than 1 for all values of ŝ, i.e., the

InBM prevails, while the blue surfaces identify the region

where the ratio cInBM=cRBM is smaller than 1, i.e., the RBM

prevails, independently of ŝ. The narrow regions of the

plane ðrR; rIÞ in which the threshold depends on ŝ are col-

ored in white. The value of rR for which we observe the

transition depends on rIn as rR ’ 0:56r1:82
In , which provides,

therefore, a simple estimate of the transition between RBM

and InBM.

E. The role of electromagnetic effects

We extend the analysis of the linear instability regime to

finite b plasmas and therefore we consider the effect of the

electromagnetic terms on the system of Eqs. (1). Two main

phenomena are observed related to finite b: suppression of

the DW instability, and the appearance of the IdBM, when

the ideal limit is overcome.

In order to describe the effect of the electromagnetic

terms, the simplest model to consider consists of the system

of Eqs. (1), excluding the coupling with sound waves, i.e.,

kk � c and analyzing the resistive ðme=mi ¼ 0Þ and inertial

ð� ¼ 0Þ limits. The system can be reduced to the following

eigenvalue equation for U:

ck2
?U ¼� Ĉ A0 þ

1

A1

A0

Ĉ

1:71
� 1

 !
þ A2

" #( )
U

þ k2
?

A3

1� A0 �
1:71

A1

A0

Ĉ

1:71
� 1

 !
þ A2

" #( )
@2U

@ẑ2
;

(16)

where A0 ¼ Riky=ðcLnÞ� k2
? � Ĉ=c, A1 ¼ 0:88c� 2:05þ Ĉ,

and A3 ¼ cXþ k2
? þ k2

?Xð1þ 1:71gÞ. In the resistive case,

X¼ b=ð2�Þ and 0< ẑ < 2pq
ffiffiffi
�
p

, while in the inertial case

X¼ bmi=ð2meÞ and 0< ẑ < 2pq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
.

In order to illustrate the role of electromagnetic effects,

we consider two specific cases, which reflect the typical impact

of b 6¼ 0 on the instabilities. The maximum growth rate of the

instability, solution of Eq. (16), is plotted in Fig. 11 in the resis-

tive limit for � ¼ 0:01 and q ¼ 4, and in Fig. 12, in the inertial

limit, for me=mi ¼ 2:72� 10�4 and q ¼ 4. In both cases,

g ¼ 1. Focusing on the resistive case, a number of observa-

tions can be made. For ŝ ¼ 0 [Fig. 11(a)], at high values of

R=Ln, the RDW is suppressed. As it will be demonstated in the

following, this occurs for b=ð2�Þ ’ 1:17Ln=½Rð1þ 171gÞ�.

FIG. 10. The transition between resistive and inertial ballooning modes. The

ratio cInBM=cRBM between the growth rate of RBM, solution of Eq. (6), and

of the InBM, solution of Eq. (9), is plotted as a function of rIn and rR; in the

red area, cInBM=cRBM > 1, in the blue area, cInBM=cRBM < 1, while the white

area shows the region where the ratio depends on ŝ.

FIG. 11. Role of electromagnetic effects on the resistive instabilities. The

normalized growth rate c=cmax
B , solution of Eq. (16), is plotted as a function

of b=ð2�Þ and R=Ln for ŝ ¼ 0 (a), ŝ ¼ 1 (b), and ŝ ¼ �1 (c).
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We also observe the appearance of the IdBM instability, once

the aMHD threshold is overcome. Since aMHD is proportional to

bR=Ln, the b threshold for IdBM is inversely proportional to

R=Ln, i.e., the IdBM develops at lower b for higher values of

R=Ln. For ŝ 6¼ 0, the suppression of the RDW and the appear-

ance of the IdBM is also observed [see Figs. 11(b) and 11(c),

which consider ŝ ¼ 1 and ŝ ¼ �1, respectively]. With respect

to the ŝ ¼ 0 case, we also point out: (i) a reduction of the

RDW growth rate (high R=Ln) to half of the shearless value, as

expected from Fig. 4; (ii) an increase of the RBM growth rate

for ŝ ¼ 1 and a decrease for ŝ ¼ �1 with respect to the shear-

less value, as expected from Fig. 1; (iii) an increase of the

IdBM growth rate for ŝ ¼ 1 and a decrease for ŝ ¼ �1 with

respect to the shearless value, as expected from Fig. 2. We

finally note that for ŝ < 0, IdBM is less suppressed by mag-

netic shear than RBM. This is due to the fact that for the char-

acteristic values of aMHD in Fig. 11, the ŝ damping is

minimum: for example, for b ¼ 2� 10�3, R=Ln ¼ 50, we

have aMHD ¼ 3:2, consequently the mode is highly unstable

for any value of the magnetic shear (see Fig. 3). On the other

hand, we are considering the RBM instability at high values of

rR where the dependence of the growth rate on the shear is

more evident: for the same set of parameters rR ¼ 1:77 and ŝ
strongly reduces the growth rate (see Fig. 1).

In the inertial case (Fig. 12), similar observations as in

the resistive case can be made. For ŝ ¼ 0 [see Fig. 12(a)], at

high values of R=Ln, the InDW instability is dominant for

bmi=ð2meÞ�0:17, as it is shown in the following. We also

observe the appearance of the IdBM instability, at b value

that is inversely proportional to R=Ln. For ŝ ¼ 61, the

remarks made for the resistive case remain valid.

Now, we analyze in details the suppression of the DW

instability due to the electromagnetic effects by considering a

relatively simple model. We reduce the system of Eqs. (13) to

an algebraic dispersion relation by considering the ŝ ¼ 0 case

and substituting @=@z! ikk, and we consider electromagnetic

effects acting on both the InDW (by setting � ¼ 0) and the

RDW (with me=mi ¼ 0). Within these hypothesis, the disper-

sion relation has the form �c3b3 þ �c2b2 þ �cb1 þ b0 ¼ 0, where

�c ¼ c=½ð1þ 171gÞR=Ln�. In the resistive case, the coefficients

in the dispersion relation are: b3 ¼ �iX, b2 ¼ ik2
y þ Xky,

b1 ¼ iZ2½ð1þ 295Þk2
y �, b0 ¼ Z2ky, being X ¼ ð1þ

1:71gÞbR=ð2�LnÞ and Z ¼ kk
ffiffiffiffiffi
Ln

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Rð1þ 1:71gÞ

p
. In

Fig. 13(a), we show the maximum growth rate over ky and kk
as a function of X. Numerically, we verify that the growth

rate is reduced to half of the maximum for X > 1:17, i.e.,

the RDW is suppressed by electromagnetic effects for

b > 2:34�Ln=½Rð1þ 1:71gÞ�. On the other hand, in the iner-

tial case, b3 ¼ ik2
y þ iX, b2 ¼ Xky, b1 ¼ iZ2ð1þ 295k2

yÞ,
b0 ¼ Z2ky, with X ¼ bmi=ð2meÞ and Z ¼ kkLn

ffiffiffiffiffi
mi
p

=
½R ffiffiffiffiffiffi

me
p ð1þ 1:71gÞ�. In Fig. 13(b), we show the maximum

growth rate over ky and kk as a function of X: the growth rate

is reduced to the half of the maximum for X > 0:17, i.e., the

InDW is suppressed for b > 0:34me=mi.

To summarize, with the introduction of electromagnetic

effects, we observe two main phenomena in our system. At high

values of R=Ln, the RDW and the InDW are suppressed at b >
2:34�Ln=½Rð1þ 1:71gÞ� and b > 0:34me=mi, respectively.

When the aMHD threshold is overcome, then the IdBM starts to

play a role and we expect the shift of the fastest growing insta-

bility from finite ky values to the smallest allowed ky value.

VI. EXAMPLES OF LINEAR STABILITY ANALYSIS

In this section, we use the framework built in Sec. V to

identify and analyse the linear instability present in three

typical SOL scenarios. For this purpose, we use a linear code

that solves the system of Eqs. (1) as a function of the toroidal

mode number n (see Appendix A for details) and we identify

the dominant instability according to our parameter space,

testing the reliability of our analysis by exploring the

FIG. 12. Role of electromagnetic effects on the inertial case. The normalized

growth rate c=cmax
B , solution of Eq. (16), is plotted as a function of

bmi=ð2meÞ and R=Ln for ŝ ¼ 0 (a), ŝ ¼ 1 (b), and ŝ ¼ �1 (c).
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dependence of the instability on ŝ and b. We focus our atten-

tion on the following sets of parameters: first, a parameter

set with R=Ln ¼ 10, Ly ¼ 1000, q ¼ 4, � ¼ 0:1, and

me=mi ¼ 2:72� 10�4, called “low-gradient;” second, a

“high-gradient” parameter set, with R=Ln ¼ 90, � ¼ 0:01,

being the other parameters the same as in the first set; third,

we apply our analysis to a TCV tokamak45 L-mode dis-

charge, where the plasma with approximately circular flux

surfaces is created close to the high-field side of the machine,

creating a scenario that reproduces the toroidal limiter con-

figuration considered here: R=Ln ¼ 25, R=LT ¼ 35

Ly ¼ 1610, R ¼ 1025, q ¼ 3, � ¼ 3:16� 10�3, and me=mi

¼ 2:72� 10�4. The parameter sets used are summarized in

Table I.

We first consider the low-gradient set of parameters.

Our analysis indicates that the SOL corresponding to this pa-

rameter set is in the BM dominated regime. In fact, R=Ln is

smaller than the threshold value between RBM and RDW, as

calculated in Sec. V A, and it is also smaller than the thresh-

old between InBM and InDW, as calculated in Sec. V B.

Moreover, according to the results shown in Fig. 10, since

rR ’ 0:44 and rI ’ 5:25, the instability belongs to the resis-

tive branch of the BM. We first consider the effect of ŝ on

the instability. In Fig. 14, we show c as a function of n, for

different value of the magnetic shear, in the b ¼ 0 limit. Our

analysis (see Sec. III A) shows that the maximum expected

growth rate is for 1=ð2pq
ffiffiffiffiffiffiffiffiffiffiffi
cmax

B �
p

Þ < ky < 0:3cmax
B , which in

our case corresponds to 0:052 < ky < 1:73, therefore, the

peak growth rate is expected at ky ’ 1. Since kk � ky, we

can estimate the toroidal mode number as n ’ m=q, where m
is the poloidal mode number, thus the interval can also be

expressed as 2 < n < 69. Effectively, the results of the linear

code shows that the maximum growth rate, c ’ 0:53cmax
B , is

reached for ky ’ 0:50, which corresponds to a toroidal mode

number n ’ 20, in agreement with our estimate. We also

observe, as expected from the analysis in Sec. III A, the max-

imum of the growth rate for ŝ ’ 1 (see Fig. 1). The influence

of electromagnetic effects is studied in Fig. 15, where we

show c as a function of n for different values of b. We verify

the development of the IdBM when the ideal threshold is

overcome. At ŝ ¼ 0, the IdBM growth rate rises up to

0:5cmax
B when aMHD ’ 0:58, according to the results shown in

Fig. 3, and consequently the limit for the development of the

IdBM is overcome when b > 1:8� 10�3. According to our

observations, we remark a shift of the maximum growth rate

from finite ky towards ky ! 0, typical of the IdBM instabil-

ity, at the expected b threshold.

Considering the high-gradient parameter set, from the

analysis in Sec. V, we conclude that it falls in the parameter

space region where the RDW is the fastest growing instabil-

ity. In fact, R=Ln is above both the threshold between RBM

and RDW (see Sec. V A) and the threshold between InBM

and InDW (see Sec. V B). Moreover, according to the results

FIG. 13. Role of electromagnetic effects on the drift waves: suppression of the drift waves growth rate in the resistive limit (a) and in the inertial limit (b) for

increasing b.

TABLE I. List of the parameters for the three cases analyzed in the linear

stability analysis. The TCV L-mode parameter set reflects the equilibrium of

shot no. 42237.

Name 2pa q � me=mi R=Ln g

Low-gradient 1000 4 0:1 2:72� 10�4 10 1

High-gradient 1000 4 0:01 2:72� 10�4 90 1

TCV L-mode 1610 3 3:16� 10�3 2:72� 10�4 25 0:71

FIG. 14. Linear growth rate c, solution of Eqs. (1), as a function of the toroi-

dal mode number n, for different values of ŝ, for the “low-gradient” set of

parameters.
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shown in Fig. 9, for d ’ 0:41 (c ’ 34:20), the DW is in the

parameter range of the resistive branch, although marginal

influence by inertial effects may be expected. In Fig. 16,

we show c as a function of n, for different values of ŝ, as

calculated by the linear code. The maximum growth rate

is c ’ 32:15, while, with the considered parameters

cmax
RDW ’ 20:73. The difference is due to the presence of iner-

tial effects, which increases the growth rate with respect to

the purely resistive case. The analysis in Sec. IV A shows

that the peak growth rate is expected at ky ’ 0:57 and, since

kk � ky, corresponding to n ’ m=q ’ 22. The linear code

confirms that the maximum growth rate is reached at ky ’
0:57 and n ’ 22, close to the poloidal and toroidal mode

number estimate. The peak growth rate is observed at ŝ ¼ 0

and, for both ŝ > 0 and ŝ < 0, we remark a decrease of the

growth rate, according to the results in Fig. 4. We underline

that in the linear code, the curvature term is retained in all

the equations, while in the simplified fluxtube model used to

compute the results in Fig. 4, it is neglected. This introduces

an asymmetric behaviour of the solutions with respect to ŝ > 0

and ŝ < 0. We also analyze electromagnetic effects on the

RDW instability that we are considering here. In Fig. 17, we

show c as a function of n, for different values of b. For

b ¼ 1� 10�4, we observe that the growth rate decreases to

about 1=3 of the maximum value obtained for b ¼ 1� 10�5.

This is due to the electromagnetic damping of the RDW.

The effect starts to be noticeable for b > 2:34Ln�=½Rð1
þ 171gÞ� ’ 9:59� 10�5, according to Sec. V E. Since, for

the parameters under consideration, the aMHD limit for the

IdBM is overcome when b�2:01� 10�4, we note that there

is a window of b values in which the RDW instability is sup-

pressed and the IdBM is not unstable. For b ¼ 1� 10�3, we

observe the appearance of the IdBM instability, where we

note the shift of the maximum growth rate from finite ky to

ky ! 0, as expected for the IdBM instability. The maximum

growth rate decreases to c ’ cmax
B ’ 18:52, close to the max-

imum growth rate of BM instabilities.

Finally, we analyze the L-mode discharge in the TCV

tokamak. We find that, according to the parameter space

analysis, the SOL of this configuration is in the InDW

region. In fact, for this set of parameters, we evaluate

d ’ 0:46, rR ’ 20:54, and rIn ’ 5:10, therefore, inertial

effects partially dominate over resistive effects, as shown

in Fig. 9. Moreover, since R=Ln ’ 25, we are in the

regime where the DW grow faster. The highest growth rate

of c ¼ 10:58 is reached at n ¼ 39 and m ¼ 112, correspond-

ing to ky ¼ 0:44; for comparison, we note that the maximum

InDW growth rate for the considered parameters is cmax
InDW

¼ 9:44 at ky ¼ 0:57. The nature of the instability changes

with ŝ. In fact, at ŝ ¼ 2, the InBM prevails, with the maxi-

mum growth rate of c ¼ 3:42 at n ¼ 13 and m ¼ 40, corre-

sponding to ky ¼ 0:16. At this ky value, rIn ¼ 43:06, causing

a damping of the growth rate for InBM to c ’ 0:3cmax
B

’ 2:78, according to the parameter space analysis. At

ŝ ¼ �2, both the InBM and the InDW are suppressed.

FIG. 15. Linear growth rate c, solution of Eqs. (1), as a function of the toroi-

dal mode number n, for different values of b, for the “low-gradient” set of

parameters.

FIG. 16. Linear growth rate c, solution of Eqs. (1), as a function of the toroi-

dal mode number n, for different values of ŝ, for the “high-gradient” set of

parameters.

FIG. 17. Linear growth rate c, solution of Eqs. (1), as a function of the toroi-

dal mode number n, for different values of b, for the “high-gradient” set of

parameters.
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VII. CONCLUSIONS AND DISCUSSION

The present paper provides a framework to identify

the fastest growing instabilities as a function of the pa-

rameters characterizing the tokamak SOL region. We

have considered the local, linearized, drift-reduced Bra-

ginskii equations with cold ions, in the infinite aspect ra-

tio SOL geometry with a toroidal limiter. We have

identified the regimes of linear instabilities due to the

presence of the resistive and inertial branches of the DW

and the resistive, inertial, and ideal branches of the BM.

Starting from a detailed analysis of each instability, we

have identified the boundaries of the SOL parameter

space regions dominated by each mode.

In the electrostatic limit, we observe that DW

dominates over the BM at steep gradients. In general,

the R=Ln threshold depends on rR ¼ 1=ðcmax
B k2

y q2�Þ,
rIn ¼

ffiffiffiffiffi
mi
p

=ðcmax
B kyq

ffiffiffiffiffiffi
me
p Þ, and ŝ (Figs. 7 and 8). The tran-

sition between RDW and InDW is governed by the d ¼
�Lnmi=ðRmeÞ parameter and it occurs at d ’ 3:55 for

ŝ ¼ 0, with the transition value of d decreasing with the

increase of jŝj (Fig. 9). The regions of influence of the

RBM and the InBM have been evaluated as a function of

rR and rIn, the boundary between those is independent of

ŝ for most of the values of rR and rIn and the transition

occurs for rR ’ 0:56� r1:82
In (Fig. 10). Electromagnetic

effects cause, at high R=Ln, the damping of the DW insta-

bility at b=ð2�Þ ’ 1:17Ln=½Rð1þ 171gÞ� in the resistive

case, and at bmi=ð2meÞ ’ 0:17 in the inertial case (Fig. 13).

The appearance of the IdBM instability is observed when the

aMHD ¼ q2bð1þ gÞR=Ln threshold is overcome (Figs. 11

and 12).

We have used our framework to interpret the results of a

linear code that evaluates the growth rate of the SOL insta-

bilities. By considering three different sets of SOL parame-

ters, we have identified the main instability governing the

physical system in each scenario, showing that we can pre-

dict the dependence of each instability on magnetic shear

and plasma b.

We notice that in existing tokamaks R=Ln spans one

order of magnitude and � two orders of magnitude (see, e.g.,

Refs. 24–32). Both DW and BM instabilities can exist in this

range of R=Ln and both resistive and inertial effects are im-

portant, and therefore we expect the behaviour of the SOL to

change remarkably in these wide intervals of parameters.

Our parameter space analysis has been conceived as a first

stage tool to be used in the understanding of turbulence in

the SOL of tokamaks, necessary to interpret the results of

non-linear simulations.

ACKNOWLEDGMENTS

This work is supported by the Swiss National Science

Foundation. We acknowledge useful discussions with F.

Avino, S. Coda, I. Furno, B. Rogers, O. Sauter, and D.

Wagner.

APPENDIX: NUMERICAL SCHEMES

We describe the code used to evaluate the growth rate of

the SOL instability by solving the eigenvalue problem in

Eqs. (1). The unknowns are the perturbed density n, electro-

static potential U, magnetic flux w, electron temperature Te,

and ion parallel velocity Vki. We assume perturbations in the

form fnðy; z; tÞ ¼ fnðyÞexpðin/þ ctÞ, where n is the toroidal

mode number, and / is the toroidal angle. We discretize y ¼
½0; Ly� with Ny points, y1;…; yi;…; yNy

, with yi ¼ ði� 1Þ
Ly=ðNy � 1Þ and we evaluate n, U, and Te at these points.

The quantities w and Vki are evaluated on Ny � 1 points,

y1;…; yi;…; yNy�1, with yi ¼ ði� 1=2ÞLy=ðNy � 1Þ for w
and Vki. We denote the grid on which we evaluate n, U, and

Te as the unshifted grid, while the grid for w and Vki is

referred to as the shifted grid. We also denote

Dy ¼ Ly=ðNy � 1Þ. We introduce the vector ~x¼ ½n1;…;nNy
;

U1;…UNy
;Te;1;…;Te;Ny

;w1;…;wNy�1;Vki;1;…;Vki;Ny�1�, and

rewrite Eqs. (1) as

L
@

@t
~x ¼ M~x; (A1)

where

L ¼

Uu Zu;u Zs;u Zu;u Zs;u

Zu;u Dy;2
u;u Zs;u Zu;u Zs;u

Zu;s Zu;s �me=miD
y;2
s;s � b=2 Zu;s Zs;s

Zu;u Zu;u Zs;u Uu Zs;u

Zu;s Zu;s Zs;s Zu;s Us

0
BBBBBBB@

1
CCCCCCCA
;

(A2)

and

M ¼

Cu;u R=LnDy;1
u;u � Cu;u Dz;1

s;uDy;2
s;u Cu;u �Dz;1

s;u

Cu;u Zu;u Cu;u Dz;1
s;uDy;2

s;u Zs;u

�Dz;1
u;s Dz;1

u;s

�
� þ ð1þ 171gÞb=2R=Ln

�
Dy;2

s;s �1:71Dz;1
u;s Zs;s

2=3Cu;u R=LnDy;1
u;u � 2=3Cu;u 2=31:71Dz;1

s;u 7=3Cu;u �2=3Dz;1
s;u

�Dz;1
u;s Zu;s

�
� þ ð1þ gÞb=2R=Ln

�
Dy;2

s;s �Dz;1
u;s Zs;s

0
BBBBBBBBB@

1
CCCCCCCCCA
: (A3)
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We note that U is the identity matrix, Z is the empty

matrix while the D matrices are discretized differential

operators for which the first superscript indicates the vari-

able with respect to which the derivative is calculated, the

second superscript indicates the order of the derivative.

For every matrix, the first subscript indicates the shifted

(s) or unshifted (u) grid on which the operator is acting,

the second subscript indicates the grid type or the resulting

variable. Both Du;u and Ds;s are square matrixes, the first

with Ny � Ny dimensions and the second with ðNy � 1Þ
� ðNy � 1Þ dimensions. The generic differential operators

are written as

Dk;pBi ¼
@k

@yk






y¼yi

’ 1

ðDyÞk
Xp=2

n¼�p=2

Ak;p
n Biþn; (A4)

where p is the accuracy order of the scheme. Coefficients

for Du;u and Ds;s are similar. Coefficients An
k are obtained

by Taylor expanding Biþn ¼ BðyiþnÞ around yi. Coefficients

for Du;s and Ds;u are obtained in a similar way by replacing

i by iþ 1/2. The C matrix is the curvature operator, con-

structed by combining the appropriate differential operators

defined above, according to Eq. (2). We remark that the

parallel derivative is calculated as @fn=@z ¼ a=q@fn=@y
þ in fn.

The eigenvalue problem is solved using three different

approaches. The first one is the direct solution of the problem

associated to Eq. (A1), providing the whole spectrum of

eigenmodes and eigenvalues of the system. This was accom-

plished by using the LAPACK library.46 The second method

is an iterative solver that integrate the time evolution of the

system (A1) by discretizing it with an implicit scheme in the

form

~xtþDt �~xt

Dt
¼ ð1�HÞL�1M~xt þHL�1M~xtþDt; (A5)

where the choice of H ¼ 0 leads to a fully explicit scheme,

while H 6¼ 0 leads to a semi-implicit scheme. The growth

rate is calculated by comparing the solution at two different

time steps. The third approach is based on considering the

time evolution of the system (A1) and evaluating the expo-

nential of the matrix L�1MDt, having fixed a desidered time

step Dt. The employed method is the Pad�e approximation

described in Ref. 47 The growth rate can be calculated com-

paring the solution at two different time steps. The calcula-

tion of the exponential matrix is costly, but the successive

iterations are extremely fast. The iterative solver is usually

faster than the other two methods. We have verified that the

three methods, applied to the same set of parameters, give

similar results. For the linear global calculations presented in

this article, we use the spectral solver with a fourth order fi-

nite difference scheme.

The differential operators are discretized differently in

the fluxtube code used to evaluate the linear growth rates of

Sec. V. In the fluxtube code each perturbed quantity is

Fourier decomposed in the y direction: f ðy; z; tÞ / exp

ðikyyþ ctÞ. The parallel derivative is discretized with a sec-

ond order finite difference scheme.
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