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The performance of ozonation in wastewater depends on water quality and the ability to

form hydroxyl radicals (�OH) to meet disinfection or contaminant transformation objec-

tives. Since there are no on-line methods to assess ozone and �OH exposure in wastewater,

many agencies are now embracing indicator frameworks and surrogate monitoring for

regulatory compliance. Two of the most promising surrogate parameters for ozone-based

treatment of secondary and tertiary wastewater effluents are differential UV254 absorbance
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(DUV254) and total fluorescence (DTF). In the current study, empirical correlations for

DUV254 and DTF were developed for the oxidation of 18 trace organic contaminants (TOrCs),

including 1,4-dioxane, atenolol, atrazine, bisphenol A, carbamazepine, diclofenac, gemfi-

brozil, ibuprofen, meprobamate, naproxen, N,N-diethyl-meta-toluamide (DEET), para-

chlorobenzoic acid (pCBA), phenytoin, primidone, sulfamethoxazole, triclosan, trimetho-

prim, and tris-(2-chloroethyl)-phosphate (TCEP) (R2 ¼ 0.50e0.83) and the inactivation of

three microbial surrogates, including Escherichia coli, MS2, and Bacillus subtilis spores

(R2 ¼ 0.46e0.78). Nine wastewaters were tested in laboratory systems, and eight waste-

waters were evaluated at pilot- and full-scale. A predictive model for �OH exposure based

on DUV254 or DTF was also proposed.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction pathogens is a costly and time-consuming proposition. As
Trace organic contaminants (TOrCs) pose a challenge for

wastewater treatment facilities due to an increased aware-

ness of their ubiquity, the ambiguity of public and aquatic

health implications, the high costs associated with their

quantification, and the paucity of regulatory guidance. The

use of ozone for the transformation of TOrCs, including

pharmaceuticals and personal care products (PPCPs) and

endocrine disrupting compounds (EDCs), has been studied

extensively in the literature (Huber et al., 2003, 2004; Buffle

et al., 2006; Lee et al., 2008; Dodd et al., 2009; von Sonntag

and von Gunten, 2012). Studies specifically addressing the

efficacy of ozone for TOrC elimination, reductions in estro-

genicity, and the effects on toxicity have also been performed

in pilot- and full-scale systems (Huber et al., 2005; Hollender

et al., 2009; Wert et al., 2009a; Stalter et al., 2010a, 2010b;

Gerrity et al., 2011a; Gerrity and Snyder, 2011; Zimmermann

et al., 2011). Ozone is also effective for the inactivation of

a wide range of microbial indicators and pathogens (Driedger

et al., 2001; Burns et al., 2007; Gerrity et al., 2011a).

This demonstrated efficacy for TOrC mitigation and

disinfection has established ozone as a viable option for

wastewater treatment. Ozone-based treatment trains are also

becoming increasingly popular in indirect potable reuse (IPR)

applications as an alternative to membrane filtration, reverse

osmosis, and UV/H2O2, which is described as full advanced

treatment (FAT) by the California Department of Public Health

(CDPH) in the United States (U.S.) (CDPH, 2011). By combining

ozone with downstream biological filtration, this alternative

treatment train is capable of providing a finishedwater quality

similar to that of FAT, albeit at potentially reduced costs

(Hollender et al., 2009; Reungoat et al., 2010; Stalter et al.,

2010a, 2010b; Gerrity et al., 2011a; Reungoat et al., 2012;

Zimmermann et al., 2011).

In wastewater applications, particularly when supple-

mented with hydrogen peroxide, ozonation can be considered

an advanced oxidation process (AOP) due to its rapid decom-

position into hydroxyl radicals (�OH). In contrast with drinking

water applications (Kaiser et al., submitted for publication),

there are no on-line methods to measure ozone and �OH

exposure in wastewater so the “CT” approach typically asso-

ciated with chlorine disinfection (i.e., the product of oxidant

concentration and time) cannot be applied to estimate treat-

ment performance. Also, frequent monitoring for TOrCs and
a result, many agencies are embracing indicator frameworks

and highlighting the need for surrogate monitoring

(Dickenson et al., 2009). For example, CDPH recently published

a revised set of draft regulations for groundwater replenish-

ment, which outlines required removals for indicator

compounds based on their chemical structures and functional

groups (e.g., hydroxyl aromatic, saturated aliphatic). Although

these specified removals apply only to advanced oxidation in

FAT applications (i.e., reverse osmosis permeate), the frame-

work can be applied more broadly as a TOrC mitigation

baseline. In addition to the specified removals, CDPH also

requires FAT facilities to identify at least one surrogate

parameter that can be monitored continuously, predict the

level of oxidation for the indicator compounds, and alert

operators to process inefficiencies and failures. Several

common water quality parameters associated with bulk

organic matter, specifically differential UV absorbance (DUV)

and total fluorescence (DTF), offer particularly promising

solutions for this type of application.

Currently, there are few studies that describe the rela-

tionships between changes in bulk organic matter, contami-

nant destruction, and microbial inactivation. Studies using

fluorescence as part of an analytical method to detect TOrCs

are becoming more common (Camacho-Munoz et al., 2009),

but the goal of these studies is inherently different than using

changes in bulk organic matter to estimate oxidation efficacy.

Although the high sensitivity of fluorometers offers a prom-

ising tool for detection of individual contaminants, this

method is hindered by interferences from background

effluent organic matter (EfOM) in wastewater applications

(Fig. S1). Therefore, DUVdmore specifically, DUV254dand DTF

currently offer the most promising tools to supplement

existing analytical methods based on liquid or gas chroma-

tography and mass spectrometry (LCeMS or GCeMS).

Buffle et al. (2006) proposed the use of DUV to determine

ozone exposure in wastewater applications after observing

a first-order kinetic relationship between the two parameters.

Based on this concept, Bahr et al. (2007),Wert et al. (2009b), and

Nanaboina and Korshin (2010) developed preliminary correla-

tions between DUV254 and several indicator compounds and

microbes. Bahr et al. (2007) presented the linear regression

parameters in relation to second-order ozone and �OH rate

constants. Wert et al. (2009b) indicated that ozone-susceptible

target compounds (i.e., kO3 > 103 M�1 s�1) demonstrated strong

http://dx.doi.org/10.1016/j.watres.2012.08.037
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linear correlationswith0e50%reductions inUV254absorbance,

whereas slower-reacting compounds (i.e., kO3 < 103 M�1 s�1)

correlatedwellwith15e65%reductions inUV254absorbance. In

addition to developing individual correlations for six phar-

maceuticals, the study indicated that the empirical

correlations were consistent between different wastewater

qualities. Rosario-Ortiz et al. (2010) extended this concept to

the UV/H2O2 advanced oxidation process and confirmed

that these correlations were also consistent between

different water qualities. These preliminary studies indicate

that DUV254 correlations offer powerful, robust, and straight-

forward tools that can easily be incorporated into full-scale

applications.

Several studies have expanded on this preliminary

research to incorporate both commercially available and

innovative technologies. Pisarenko et al. (2012) developed a set

of TOrC correlations based on DUV254 and DTF using a pilot-

scale O3/H2O2 reactor (HiPOx�, APTwater, Long Beach, CA),

while Gerrity et al. (2010) illustrated how the DUV254 correla-

tion concept can be applied to novel forms of advanced

oxidation, specifically nonthermal plasma (AquaPure, Petach-

Tikva, Israel). Therefore, the existing literature offers the

following conclusions: (1) DUV and DTF are strongly correlated

with the elimination of aromatic and non-aromatic TOrCs, (2)

each compound has a unique set of regression parameters

related to its second-order rate constants for reactions with

various oxidants, (3) unit processes with different oxidation

mechanisms (e.g., ozone/H2O2 vs. UV/H2O2) also have unique

sets of correlations, and (4) the correlations for specific

contaminants and oxidation processes are consistent

between different secondary or tertiary effluents.

The objective of the current study was to expand on this

foundation by developing a more comprehensive database of
Table 1 e Summary of average water quality data for the benc

Sample ID Location pH TOC
mg/L

UV254

cm�1
TF
AF

Secondary effluents for bench-scale experiments (after laboratory filtration)

CCWRD Nevada 6.9 7.6 0.146 38,8

MWRDGC Illinois 7.6 6.9 0.131 37,7

WBMWD California 7.3 18.0 0.268 94,8

PCU Florida 7.3 7.2 0.187 53,9

GCGA Georgia 7.3 6.3 0.130 34,7

LWWTP Switzerland 7.2 6.0 0.099 27,2

RWWTP Switzerland 7.2 4.7 0.129 N/A

KOWWTP Switzerland 7.0 4.7 0.110 N/A

AWWTP Australia 7.2 7.0 0.201 51,6

Tertiary effluents for pilot-scale experiments

Lit. 1a Nevada 8.2 6.6 0.140 N/A

Lit. 2a Florida 7.6 10.3 0.260 N/A

Lit. 3a Colorado 7.1 10.3 0.171 N/A

Reno 1b Nevada 6.9 5.9 0.120 32,6

Reno 2b Nevada 6.9 6.6 0.140 31,5

Tucson Arizona N/A 5.6 0.157 46,4

CLVc Nevada 7.3 6.0 0.130 26,9

Tertiary effluent for full-scale sampling

Springfield Missouri 7.9 4.9 0.116 28,7

a Wert et al., 2009b (sand-filtered tertiary effluents).

b Gerrity et al., 2011a (Reno 1 ¼ ultrafiltration effluent; Reno 2 ¼ sand-fil

c Pisarenko et al., 2012 (MBR pilot).
bench-scale correlations (i.e., increase the number of

contaminants and matrices), validating those same correla-

tions at pilot- and full-scale, and illustrating how the concept

can be integrated into an actual treatment train to provide

real-time, on-line monitoring of process performance. This

study incorporated 18 trace organic contaminants, three

microbial surrogates, nine sets of bench-scale experiments,

four independent pilot-scale validations, and one full-scale

validation. A commercially available on-line UV absorbance

analyzer was also integrated into the study. Ultimately, this

database can be integrated into the software of emerging

absorbance and fluorescence technologies to allow for opti-

mization of dosing conditions and to provide real-time esti-

mates of contaminant oxidation and disinfection.
2. Materials and methods

2.1. Bench-scale experiments

Unfiltered secondary effluent was collected from nine waste-

water treatment facilities, as described in Table 1. For the five

wastewaters from the U.S., a portion of the secondary effluent

was filtered in series through 10-mm and 0.5-mm (nominal)

polypropylene spiral-wound cartridge filters (MicroSentry�,

Shelco Filters, Middletown, CT). The four remaining waste-

waters were filtered in the laboratory with 0.45-mm cellulose

acetate filters. Differences in oxidation efficacy for unfiltered

versus filtered secondary effluents were evaluated during the

bench-scale phase. Each matrix was analyzed for a variety of

general water quality parameters (Table 1) to characterize the

matrices and determine the appropriate ozone and H2O2

dosing conditions.
h- (filtered), pilot-, and full-scale experiments.

U
Alkalinity

mg/L as CaCO3

NH3

mg-N/L
NO3

mg-N/L
NO2

mg-N/L

74 123 0.09 14.0 0.06

12 134 0.07 9.10 <0.05

07 332 46.9 0.11 0.17

96 205 0.02 7.70 <0.05

95 169 5.80 8.60 0.30

38 65 0.11 24.0 0.16

220 0.03 12.0 0.01

145 0.02 13.2 0.07

42 105 0.09 18.0 0.05

128 <0.20 13.0 <0.05

269 6.98 0.07 0.77

101 1.28 9.70 0.40

08 90 N/A N/A <0.05

05 90 N/A N/A <0.05

96 N/A N/A N/A N/A

88 99 <0.50 13.8 <0.10

82 N/A <0.10 11.0 N/A

tered tertiary effluent).

http://dx.doi.org/10.1016/j.watres.2012.08.037
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Separate oxidation experiments were performed for each

of themajor tests, as listed below, to provide sufficient sample

volume for the analytical methods and to reduce potential

interferences caused by spiked contaminants. Separate

secondary effluent samples were spiked with (1) approxi-

mately 1 mg/L of each of the target TOrCs (3.4e5.2 nM), (2)

500 mg/L of para-chlorobenzoic acid (pCBA; 3.2 mM), (3) 1 mg/L

of 1,4-dioxane (11 mM), (4) 107 MPN/100 mL of Escherichia coli

15597 (ATCC 15597), (5) 107 PFU/mL of the bacteriophage MS2

(ATCC 15597-B1), and (6) 105 CFU/100 mL of Bacillus subtilis

spores (ATCC 23059). The E. coli, MS2, and B. subtilis spore

assays were only performed on six of the nine matrices.

Bench-scale ozone tests were performed by spiking

aliquots of ozone stock from a batch reactor. Nanopure water

(Barnstead, Dubuque, IA) was placed inside a water-jacketed

flask and cooled to 2 �C. Once cooled, 11% gaseous ozone

was diffused into the water using oxygen-fed generators (U.S.

experiments: model CFS-1A, Ozonia North America, Inc.,

Elmwood Park, NJ; international experiments: model CMG 3-3,

Innovatec, Rheinbach, Germany). This configuration resulted

in ozone stock solution concentrations ranging from 70 to

110 mg/L, which were measured with the indigo trisulfonate

colorimetric method according to Standard Method 4500-O3

or by direct photometry at 258 nm (Hoigne and Bader, 1994).

With the exception of one secondary effluent (GCGA), the

study targeted mass-based ozone to total organic carbon

(O3:TOC) ratios of 0.25, 0.50, 1.0, and 1.5 (mg O3/mg TOC). Since

nitrite consumes dissolved ozone at a 1:1 mass ratio, the high

nitrite concentration (0.3 mg-N/L) in the GCGA secondary

effluent relative to its TOC (6.3 mg/L) resulted in corrected

O3:TOC ratios of 0.07, 0.32, 0.83, and 1.34. The effect of H2O2

addition was also evaluated by targeting molar H2O2:O3 ratios

of 0, 0.5, and 1.0. For the ozone/H2O2 experiments, H2O2 was

added immediately before the addition of the ozone stock

solution. All dosing ratios, bulk organic characterization, and

target compound concentrations accounted for the dilution

effect of the ozone spike. Upon completion of ozone decay

(O3 < 0.03 mg/L), the samples were quenched with 10 mg/L of

sodium thiosulfate to eliminate any residual H2O2, preserved

with 1 g/L of sodium azide, and stored at 4 �C prior to analysis.

2.2. Pilot-scale validation

The results from the bench-scale experimentswere compared

with an independent pilot-scale data set from the literature

(Wert et al., 2009b) and three pilot-scale reactors associated

with the current study. The ozone test matrices were

comprised of five different sand-filtered effluents, one ultra-

filtration filtrate, and one membrane bioreactor (MBR) filtrate.

Validation data are limited for some compounds since the

study from the literature only included a subset of the target

compound list, and some compoundswere not detected in the

ambient matrices.

The Wert et al. (2009b) study evaluated pilot-scale ozona-

tion (1 L/min) of sand-filtered tertiary effluent from three

different locations in the U.S. The ozone doses ranged from

0 to 12 mg/L (no H2O2 addition), which corresponded to mass-

based O3:TOC ratios ranging from 0 to 1.2. For the current

study, a sand-filtered tertiary effluent (Tucson, AZ) was

treated with a 40-L/min pilot-scale ozone/UV/H2O2 reactor
(Wedeco/ITT, Herford, Germany), but it was only operated in

the ozone and ozone/H2O2 modes for the purposes of this

study. The ozone doses ranged from 0 to 9 mg/L, which cor-

responded to mass-based O3:TOC ratios of 0e1.5, and molar

H2O2:O3 ratios of 0 and 1.0 were also tested.

A 40-L/min pilot-scale IPR treatment train (Reno, NV)

comprised of ozone and biological activated carbon (BAC) was

also evaluated for this study. The ozone system (HiPOx�,

APTwater, Long Beach, CA) was fed with tertiary effluent after

ultrafiltration for the first phase of the study and sand-filtered

tertiary effluent for the second phase of the study. During both

phases, ozone was dosed at 5 mg/L (mass-based O3:TOC ratio

of 0.8), and H2O2 was dosed at a molar H2O2:O3 of 1.0 for

bromate mitigation. Additional details related to the treat-

ment train and water quality were described previously in the

literature (Gerrity et al., 2011a).

The final pilot-scale system (City of Las Vegas, NV)

included an 80-L/min MBR (Hydranautics, Nitto Denko,

Oceanside, CA), a 40-L/min ozone system (HiPOx�), and two

40-L/min reverse osmosis skids operated in parallel (Hydra-

nautics). Ozone doses ranged from 0 to 9 mg/L (mass-based

O3:TOC ratios of 0e2.0), and molar H2O2:O3 ratios ranged from

0 to 0.5. The ozone process was evaluated with an online

absorbance analyzer (spectro::lyser, s::can Messtechnik,

Vienna, Austria) that was externally mounted and fed with

a sidestream of process flow. Only one analyzer was available

so it was adjusted manually to receive MBR filtrate and ozo-

nated MBR filtrate at different times during the monitoring

period to evaluate temporal variability. Additional details

related to the operation of this pilot have also been described

in the literature (Pisarenko et al., 2012).

2.3. Full-scale validation

Samples were collected from a full-scale wastewater treat-

ment plant (Springfield, Missouri) with conventional activated

sludge, sand filtration, and ozone for final disinfection. During

the sampling event, the 1.14 � 105 m3/day facility was tar-

geting an ozone production rate of approximately 544 kg/day.

This corresponds to an applied ozone dose of 4.8 mg/L and

a mass-based O3:TOC ratio of approximately 1.0.

2.4. Analytical methods

2.4.1. Bulk organic matter
For TOC analysis, samples were collected in glass vials, acid-

ified to pH <3 with hydrochloric acid, and filtered through

0.20-mm hydrophilic polypropylene filters (GHP Acro-disk,

Pall Life Sciences) prior to quantification with a Shimadzu

(Columbia, MD) TOC analyzer. Absorbance spectra were

measured using a PerkinElmer (Waltham, MA) Lambda 45

UVeVIS Spectrometer, consistent with Standard Method

5910 B. Excitationeemission matrices (EEMs) were created

using a QuantaMaster UVeVis QM4 Steady State Spectroflu-

orometer (Photon Technology International, Inc., Birming-

ham, NJ). The spectrofluorometer included a 75-W, short-arc

xenon lamp with an excitation range from 240 to 1200 nm.

Data processing in MATLAB (Natick, MA) included corrections

for Raman scattering, blank response, the spectral sensitivity

of the lamp, and the inner filter effect (i.e., the absorbance of

http://dx.doi.org/10.1016/j.watres.2012.08.037
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the matrix). Regional integration was performed according to

published literature (Chen et al., 2003) with slight modifica-

tions (Gerrity et al., 2011a) to calculate the regional and total

fluorescence intensities (in arbitrary fluorescence units) for

each sample.

2.4.2. Trace organic contaminants
In addition to pCBA and 1,4-dioxane, the following TOrCswere

targeted in this study: atenolol, atrazine, bisphenol A, carba-

mazepine, N,N-diethyl-meta-toluamide (DEET), diclofenac,

gemfibrozil, ibuprofen, meprobamate, musk ketone, nap-

roxen, phenytoin, primidone, sulfamethoxazole, tris-(2-

chloroethyl)-phosphate (TCEP), triclosan, and trimethoprim.

Due to its high volatility, musk ketone was subsequently

omitted from the study.
Table 2 e Summary of target compounds and rate constants.

Compounda MRL (ng/L) kO3 (M�1 s�1), pH ¼
Group 1 e High reactivity with both ozone and �OH

Bisphenol Ah,i 50 7 � 105

Carbamazepinec 10 3 � 105

Diclofenacc 25 1 � 106

Naproxend,s 25 2 � 105

Sulfamethoxazolec 25 3 � 106

Triclosane,j 25 4 � 107

Trimethoprimf 10 3 � 105

Group 2 e Moderate reactivity with ozone and high reactivity with �OH

Atenololg 25 2 � 103

Gemfibrozilj,k 10 5 � 104

Group 3 e Moderate reactivity with both ozone and �OH

DEETj,l 25 <10

Ibuprofenc 25 10

pCBAp 10,000 <0.1

Phenytoinj,m 10 <10

Primidoner,j 10 1

Group 4 e Low reactivity with ozone and moderate reactivity with �OH

1,4-Dioxaneq 500 <1

Atrazinen 10 6

Meprobamatej 10 <1

Group 5 e Low reactivity with both ozone and �OH

Musk Ketonej 100 <1

TCEPj,o 200 <1

a Superscripts refer to sources of O3 (pH ¼ 7) and �OH rate constants, res

b CDPH, 2011; Groups AeG require 0.5-log removal and Groups HeI requ

c Huber et al. (2003).

d Huber et al. (2005).

e Suarez et al. (2007).

f Dodd et al. (2006).

g Benner et al. (2008).

h Deborde et al. (2005).

i Rosenfeldt and Linden (2004).

j Lee and von Gunten (2012)

k Razavi et al. (2009).

l Song et al. (2009).

m Yuan et al. (2009).

n Acero et al. (2000).

o Watts and Linden (2009).

p Katsoyiannis et al. (2011).

q Bowman et al. (2001).

r Real et al. (2009).

s Packer et al. (2003).
These target compounds were analyzed using a Symbiosis

(Spark Holland, Emmen, the Netherlands) automated on-line

solid phase extractor and a 4000 QTRAP triple quadrupole-

linear ion trap hybrid mass spectrometer (ABSCIEX, Foster

City, CA, USA). Full method descriptions and parameters,

including acquisition and preparation of the TOrC spike and

standard solutions, have been described previously (Trenholm

et al., 2009; Gerrity et al., 2011b). The 1,4-dioxane sampleswere

processed and analyzed by Weck Laboratories (Industry, CA)

using EPA Methods 3520C and 8270M, respectively. The pCBA

samples were analyzed by LCeMS/MS according to previously

publishedmethods (Vanderford et al., 2007).

The method reporting limits (MRLs) and second-order

ozone and �OH rate constants for the reactions with these

compounds are summarized in Table 2. The compounds were
7 k�OH (M�1 s�1) CDPH Classificationb

1 � 1010 A. Hydroxy Aromatic

9 � 109 C. Nonaromatic with carbon

double bonds

8 � 109 D. Deprotonated amine

1 � 1010 E. Alkoxy polyaromatic

6 � 109 B. Amino/acylamino aromatic

1 � 1010 A. Hydroxy aromatic

7 � 109 D. Deprotonated amine

8 � 109 D. Deprotonated amine

1 � 1010 F. Alkoxy aromatic

5 � 109 G. Alkyl aromatic

7 � 109 G. Alkyl aromatic

5 � 109 G. Alkyl aromatic

6 � 109 G. Alkyl aromatic

7 � 109 G. Alkyl aromatic

3 � 109 Alternative criterion

(0.5-log removal)

3 � 109 D. Deprotonated amine

4 � 109 H. Saturated aliphatic

2 � 108 I. Nitro aromatic

6 � 108 H. Saturated aliphatic

pectively.

ire 0.3-log removal.
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divided into five groups according to their relative reactivity

with ozone and �OH, and they were also classified according

to the recently revised CDPH Groundwater Replenishment

Reuse regulations (CDPH, 2011). For context, the advanced

oxidation process in every FAT facility in the State of Cal-

ifornia must demonstrate 0.5-log (groups AeG) and 0.3-log

(groups HeI) removal of at least one indicator compound in

each group. Alternatively, the facility may demonstrate 0.5-

log removal of 1,4-dioxane in accordance with the previous

draft regulations. In the context of this study, the CDPH

regulations can generally be achieved by demonstrating 0.5-

log removal for groups 1e3 and 0.3-log removal for groups

4e5. It is important to note that this CDPH classification

scheme specifically applies to RO permeate, but it is included

in this study for oxidation of secondary and tertiary effluents

as a treatment baseline.

2.4.3. Microbial surrogates
E. coli samples were assayed with the 24-h Colilert (Idexx,

Westbrook, ME) method using the Quanti-Tray 2000 quantifi-

cation protocol. E. coli 15597 spiking stocks were propagated in

log phase in tryptic soy broth (TSB). The concentrated stocks

were then centrifuged, washed, and resuspended in buffered

demand-free (BDF) water (Thurston-Enriquez et al., 2003). The

final stocks generally contained w1010 CFU/100 mL.
Fig. 1 e Examples of changes in bulk organic matter as a functio

samples: (A) absorbance spectra, (B) relative differential absorba

units) at an excitation wavelength of 254 nm, and (D) relative diff

254 nm.
The bacteriophage MS2, which is often used as a surrogate

for human enteroviruses, was prepared and assayed with the

double agar layer method (Adams, 1959) using antibiotic-

resistant E. coli 700891 (ATCC 700891) as the bacterial host.

All MS2 culture media (i.e., TSB, 0.7% tryptic soy agar (TSA) for

the soft overlay, and 1.5% TSA as the solid substrate) was

spiked with ampicillin and streptomycin at final concentra-

tions of 15 mg/L to prevent growth of indigenous bacteria.

Plaques were counted after 18 h of incubation at 35 �C. MS2

spiking stocks were purified with a polyethylene glycol (PEG)

precipitation and Vertrel extraction before being resuspended

in BDF water. This purification process was used to mono-

disperse the bacteriophages and remove a significant portion

of the organic matter associated with the culture media,

thereby reducing potential scavenging effects during the

oxidation experiments (Mesquita et al., 2010). The final stocks

generally contained w1011 PFU/mL.

B. subtilis sporesda surrogate for ozone-resistant micro-

organismsdwere propagated in TSB at 35 �C and 150 rpm for

24 h, centrifuged and washed twice in BDF water to remove

the nutrient-rich media, and sporulated in BDF water at 35 �C
and 150 rpm for an additional 24 h. The sporulated stock was

heat-shocked at 80 �C and 50 rpm for 12 min to inactivate any

remaining vegetative bacteria. The spore suspension was

centrifuged and washed twice in BDF water in order to create
n of ozone dose (O3:TOC ratio) in CCWRD secondary effluent

nce spectra, (C) fluorescence spectra (arbitrary fluorescence

erential fluorescence spectra at an excitation wavelength of
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the final spiking stock. The final stocks generally contained

w108 CFU/100 mL in the sporulated form. All spore samples

were heat-shocked at 80 �C (�5 �C) and 50 rpm for 12min prior

to plating. Samples with higher anticipated concentrations of

spores (i.e.,>20/mL) were assayedwith the pour platemethod

using molten nutrient agar (1%) supplemented with trypan

blue. Lower concentrations of spores were assayed with

membrane filtration using 0.45-mm filters and nutrient agar

plates supplemented with trypan blue. Plates were counted

after 24 h of incubation at 35 �C.
3. Results and discussion

3.1. Selection of surrogate parameters

Analysis of the full absorbance spectra for each sample indi-

cated that ozone and ozone/H2O2 resulted in prominent and

monotonic decreases in absorbance at all wavelengths. An

example is provided for CCWRD in Fig. 1A. These decreases

were also highly reproducible with other secondary effluents.

Themaximum differentials occurred at wavelengths between

250 and 270 nm, and the relative differentials (Fig. 1B; i.e.,

DUV) offered easily decipherable plateaus between 250 and

300 nm.With respect to fluorescence, all major constituents of

EfOM (i.e., microbial biopolymers, fulvic-like, and humic-like

species) experienced significant reductions in fluorescence,

although the rates of transformation differed between the

major groups (data not shown). The fluorescence spectra at an

excitation wavelength of 254 nm for ozonated CCWRD

samples are illustrated in Fig. 1C, and the corresponding

relative differential fluorescence spectra (i.e., DTF) are illus-

trated in Fig. 1D. These observations confirm that changes in

absorbance and fluorescence reflect the behavior of the entire

ensemble of compounds comprising EfOM. Furthermore,

these observations support the conclusion that treatment

efficacy can theoretically be evaluated based on measure-

ments at practically any wavelength, or in the case of
Fig. 2 e Relative reductions in (A) UV254 absorbance (DUV254) and

after ozonation (H2O2:O3 [ 0e1.0) in the laboratory systems.
fluorescence, using any reasonable combination of excitation

and emission wavelengths.

One issue that has not been addressed in the literature is

the effect of TOrC-specific properties on correlationmodels. In

order to explore this concept in greater detail, the absorbance

and fluorescence fingerprints of individual target compounds

spiked in deionized water (w10 mg/L) were evaluated

(Supplementary Information Appendix 1; SI-A1). Preliminary

correlations were developed for compound-specific properties

(e.g., maximum absorbance wavelength, excitation and

emission wavelengths corresponding to maximum fluores-

cence), but these correlations did not provide any significant

benefits over DUV254 or DTF. Based on these observations,

there was insufficient evidence to justify selection of

compound-specific parameters. Therefore, the empirical

correlations described below were based on the bulk organic

parameters most commonly discussed in practice (DUV254)

and research (DTF).

After aggregating the DUV254 and DTF data from the nine

sets of bench-scale experiments (Fig. 2), the reductions in

UV254 absorbance and total fluorescence were described by

the equations below. The models based on a specific H2O2:O3

ratio sometimes provide stronger correlations than the

generic model.

AllH2O2: O3: DUV254ð%Þ ¼ 100 �0:46ðO3 :TOCÞ0:53 R2 ¼ 0:87 (1)

All H2O2: O3: DTFð%Þ ¼ 100 � 0:83ðO3 : TOCÞ0:35 R2 ¼ 0:77 (2)

H2O2:O3 ¼ 0 : DUV254ð%Þ¼ 100�0:51ðO3 :TOCÞ0:63 R2 ¼0:92 (3)

H2O2: O3 ¼ 0 : DTFð%Þ ¼ 100 �0:85ðO3 :TOCÞ0:37 R2 ¼ 0:78 (4)

H2O2:O3¼0:5: DUV254ð%Þ¼100�0:45ðO3 :TOCÞ0:48 R2¼0:90 (5)

H2O2: O3 ¼ 0:5: DTF ð%Þ ¼ 100 �0:84ðO3 :TOCÞ0:33 R2 ¼ 0:77 (6)

H2O2:O3 ¼ 1:0 : DUV254ð%Þ¼ 100�0:42ðO3 :TOCÞ0:45R2 ¼0:86 (7)
(B) total fluorescence (DTF) for the nine secondary effluents
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H2O2: O3 ¼ 1:0 : DTFð%Þ ¼ 100 � 0:81ðO3 : TOCÞ0:35 R2 ¼ 0:77 (8)
3.2. Development of TOrC correlations

The first step in developing the empirical correlation models

was to plot the relative elimination of the target compounds

(in %) against the relative changes in both UV254 absorbance

(DUV254 in %) and total fluorescence (DTF in %). Fig. 3 provides

examples for sulfamethoxazole and meprobamate, and

Appendix SI-A2 provides the remaining scatter plots for each

target compound. Each marker represents a single ozone or

ozone/H2O2 dosing condition. Filtered versus unfiltered (SI-A3)

and ozone versus ozone/H2O2 samples (SI-A4) were not

differentiated in Fig. 3 and SI-A2 because they did not yield

noticeably different results. With respect to peroxide addition

(SI-A4), several of the plots indicate that H2O2:O3 ratios had
Fig. 3 e Example correlations between the % elimination of (A) U

(B) total fluorescence and sulfamethoxazole, (C) UV254 absorban

fluorescence and meprobamate. The remaining correlations are
a very slight impact on the correlation models, specifically for

the more resistant compounds. The addition of H2O2 caused

slight decreases in process efficacy for reducing UV254 absor-

bance and fluorescence, but the corresponding effects on

contaminant concentrations were generally insignificant.

Since the impact was minimal, all of the ozone and ozone/

H2O2 data were grouped into a single dataset (Fig. 3 and SI-A2)

prior to developing the final correlations.

Due to the empirical nature of these correlations, some

degree of scatter was anticipated. However, based on the

overlapping data points in Fig. 3 and SI-A2, there was no

apparent difference between the various water matrices on

a compound-specific basis. In contrast, there were dramatic

differences between contaminants, which can be explained

by their reactivity with ozone and/or �OH (Table 2). Therefore,

individual correlations were developed for each target
V254 absorbance and Group 1 compound sulfamethoxazole,

ce and Group 4 compound meprobamate, and (D) total

illustrated in SI-A2 through SI-A6.

http://dx.doi.org/10.1016/j.watres.2012.08.037
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compound according to Eq. (9), and the corresponding

regression parameters are summarized in Table 3.

These correlations focus on the linear portion of the decay

curves due to practical treatment limitations for most

compounds (i.e., maximum practical removal < 99%). For the

fast-reacting compounds, the concentrations rapidly

approached their respective MRLs even at the lowest O3:TOC

ratio (i.e., nearly vertical lines). Since the data that were

<MRL would distort the linear regression analyses, some of

the data points were excluded, as indicated by the “NUV” or

“NTF” parameter for each compound. The compounds within

the same group were treated similarly in order to reduce any

artificial biases.

�
1� ½C�

½C0�
�
� 100ð%Þ ¼ Slope �

��
1� UV or TF

UV0 or TF0

�
� 100�%��

þ Intercept (9)

The target compounds were separated into five groups

based on their reactivity with ozone and �OH. These differ-

ences in reactivity affected themagnitudes of their slopes and

vertical intercepts, which will be described below. Table 3
Table 3 e Summary of regression parameters.

Contaminant NUV j NTF UV254 absor

Slope Interce

Group 1a

Bisphenol A 30 j 26 N/A

Carbamazepine 30 j 26 N/A

Diclofenac 30 j 26 N/A

Naproxen 30 j 26 N/A

Sulfamethoxazole 30 j 26 N/A

Triclosan 30 j 26 N/A

Trimethoprim 30 j 26 N/A

Indicator 210 j 182 N/A

Group 2a

Atenolol 60 j 52 2.37 �4

Gemfibrozil 60 j 52 1.80 31

Indicator 120 j 104 2.08 13

Group 3a

DEET 60 j 52 1.59 �2

Ibuprofen 60 j 52 1.62 5

pCBA 42 j 42 1.31 3

Phenytoin 60 j 52 1.72 2

Primidone 60 j 52 1.54 �1

Indicator 282 j 250 1.58 1

Group 4a

1,4-Dioxane 40 j 40 1.57 �18

Atrazine 124 j 104 1.79 �21

Meprobamate 124 j 104 1.87 �16

Indicator 288 j 248 1.80 �19

Group 5a

TCEP 121 j 101 0.57 �7

Microbial inactivationb

E. coli 95 j 95 0.13 �1.2

MS2 94 j 94 0.14 �0.1

Bacillus Spores 15 j 15 N/A N/A

NUV and NTF refer to the number of data point used in the development o

a % compound elimination vs. % organic surrogate elimination (see Eq. (

b Log inactivation vs. % organic surrogate elimination (see Eq. (19)).
also provides regression parameters for a representative

“Indicator” in each group based on all of the constituent

compounds combined. Finally, Table 4 summarizes the

required removals of the organic surrogate parameters to

achieve various treatment thresholds (i.e., 90% removal or the

relevant CDPH requirement).

For Group 1, the contaminant degradation profiles were so

steep, as illustrated in Fig. 3A, that it was not possible to

describe the removal rate based on DUV254 (i.e., R2 < 0.2).

Although it was possible to develop correlation models with

DTF, the correlationswere relatively weak (i.e., R2< 0.57).With

respect to the DTF models in Table 3, the Group 1 compounds

were generally characterized by high slopes (>1.6) with low

vertical intercepts (<10) or low slopes (<1.6) with high vertical

intercepts (>10). The high slopes indicate rapid reaction rates,

as would be expected for these compounds, and the low

vertical intercepts indicate that elimination of these particular

compounds started at the same time as the elimination of

UV254 absorbance and total fluorescence. In contrast, the

fastest reacting compounds, including triclosan, bisphenol A,

and diclofenac, had lower slopes because their oxidation

started quicker than that of UV254 absorbance and total
bance Total fluorescence

pt R2 Slope Intercept R2

1.33 22 0.56

1.72 �3 0.53

1.48 12 0.56

1.74 �4 0.55

1.66 �6 0.54

1.00 41 0.57

1.60 4 0.50

1.51 10 0.47

0.79 1.55 �33 0.83

0.62 1.32 0 0.77

0.59 1.43 �17 0.68

0.67 1.07 �24 0.76

0.64 1.15 �20 0.77

0.48 0.86 �15 0.54

0.60 1.16 �22 0.66

0.65 1.05 �22 0.74

0.58 1.06 �20 0.65

0.69 1.29 �57 0.70

0.76 1.46 �61 0.80

0.64 1.53 �59 0.82

0.74 1.46 �59 0.76

0.56 0.44 �19 0.56

0.47 0.10 �3.6 0.46

0.71 0.11 �3.4 0.78

f the regression parameters.

9)).
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Table 4 e Required elimination of organic surrogates to
achieve treatment thresholds.

Contaminant CDPH
Group
and

objective

CDPH objective 90% elimination

UV254 TF UV254 TF

Group 1

Bisphenol A A j 69% w20% 35% w20% 51%

Carbamazepine C j 69% w20% 42% w20% 54%

Diclofenac D j 69% w20% 39% w20% 53%

Naproxen E j 69% w20% 42% w20% 54%

Sulfamethoxazole B j 69% w20% 45% w20% 58%

Triclosan A j 69% w20% 28% w20% 49%

Trimethoprim D j 69% w20% 41% w20% 54%

Group 2

Atenolol D j 69% 31% 66% 40% 79%

Gemfibrozil F j 69% 21% 52% 33% 68%

Group 3

DEET G j 69% 45% 87% 58% >100%

Ibuprofen G j 69% 40% 77% 52% 96%

pCBA G j 69% 50% 98% 66% >100%

Phenytoin G j 69% 39% 78% 51% 97%

Primidone G j 69% 45% 87% 59% >100%

Group 4

1,4-Dioxane e j 69% 55% 98% 69% >100%

Atrazine D j 69% 50% 89% 62% >100%

Meprobamate H j 50% 35% 71% 57% 97%

Group 5

TCEP H j 50% >100% >100% >100% >100%
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fluorescence, which translated into vertical shifts in the

regressions.

The degradation profiles for the Group 2 compounds were

different from the other compound groups, thereby justifying

a unique classification, but the reaction rates for the constit-

uent compounds (gemfibrozil and atenolol) also differed by an

order of magnitude. This was apparent in the different

regression properties in Table 3, but the models still indicated

fast reaction rates by either a high slope or vertical intercept.

Fewer data points were excluded from the Group 2 analysis

due to the greater resistance of these compounds to oxidation.

Due to the reduced reactivity, regression analyses for both

DUV254 and DTF were possible.

For the Group 3 compounds, the DUV254 models consis-

tently had slopes of 1.7 or lower and vertical intercepts <5

(Table 3). Again, this indicates that contaminant oxidation

initiated at the same time as the changes in UV254 absorbance

but at a much faster rate. For the total fluorescence models,

the slopes were generally <1.1, while the vertical intercepts

were consistently negative (Table 3). Therefore, the Group 3

compounds experienced a lag in oxidation in comparison to

reductions in total fluorescence, but the changes then occur at

approximately the same rate.

The Group 4 compounds demonstrated significant lags in

oxidation compared to elimination of UV254 absorbance and

total fluorescence, as indicated by the negative vertical

intercepts (Table 3), and the fluorescence models were also

characterized by slightly exponential trends (Fig. 3). This is

consistent with the group’s low to moderate reactivity with

ozone and �OH.
Aswould be expected, TCEP (Group 5) was characterized by

extremely small slopes and negative intercepts (Table 3),

which indicate that TCEP oxidation starts much later and at

a much slower rate than changes in UV254 absorbance and

total fluorescence. TCEP also had one of the weaker correla-

tions, presumably due to its resistance to oxidation. In fact,

the oxidation of TCEP failed to reach 40%with the target ozone

doses, thereby providing a limited range of reduction to

evaluate with linear regression. It is important to note that

musk ketone would also be included in Group 5, but it was not

possible to quantify this compound during the bench-scale

experiments (see Materials and methods). Since musk

ketone and TCEP are characterized by similar resistance to

oxidation, the regression parameters for musk ketone would

likely be similar to those of TCEP. Therefore, DUV254 and DTF

are poor surrogates for TCEP and musk ketone in relation to

the CDPH framework and the 90% threshold since the

required elimination of UV254 absorbance and total fluores-

cence exceeded the bounds of the model (i.e., >100%).
3.3. Modeling �OH exposure with correlations

In addition to estimating transformation of the target

compounds, the aforementioned correlations can also be used

to estimate overall �OH exposure with ozone or ozone/H2O2.

Eq. (10) represents the linear correlation model for pCBA

(regression parameters from Table 3), and Eq. (11) illustrates

the process for calculating overall �OH exposure based on

changes in pCBA concentrations during advanced oxidation.

By combining Eqs. (10) and (11), the �OH exposure models in

Eqs. (12) and (13) can be derived.

�
1� ½pCBA�

½pCBA�0

�
�100ð%Þ ¼Slope�

��
1� UVorTF

UV0 or TF0

�
�100�%��

þ Intercept ð10Þ

Z
½�OH�dtðMsÞ ¼

ln

� ½pCBA�
½pCBA�0

�

�5� 109M�1s�1
(11)

DUV254 Model :
Z

½�OH�dtðMsÞ

¼
ln

�
� 0:0131 �

��
1� UV

UV0

�
� 100�%��þ 0:97

�

�5� 109
ð12Þ

DTFModel :
Z

½�OH�dtðMsÞ

¼
ln

�
�0:0086�

��
1� TF

TF0

�
�100�%��þ1:15

�

�5�109
ð13Þ

Therefore, instead of spiking and analyzing for changes in

pCBA concentration, one can use DUV254 or DTF to develop

a rough estimate of overall �OH exposure. This method for

calculating �OH exposures can then be used to estimate the

elimination of recalcitrant TOrCs (i.e., contribution from

ozone assumed to be negligible) based on kinetics, particularly

for compounds that do not have established correlation

models. For example, a 35% reduction in UV254 absorbance

during ozonation of secondary effluent corresponds to an �OH

http://dx.doi.org/10.1016/j.watres.2012.08.037
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exposure of 1.34 � 10�10 Ms based on the aforementioned

pCBA model (Eq. (14)).

DUV254 ¼35% :

Z
½�OH�dtðMsÞ ¼ lnð�0:0131 � 35þ 0:97Þ

�5� 109

¼ 1:34� 10�10 Ms ð14Þ

The corresponding elimination of meprobamate can be

estimated directly from its DUV254 correlation (49%; Table 3

and Eq. (15)) or from kinetics (42%; Eq. (16)e(18)) using

a combination of the estimated �OH exposure and the �OH

reaction rate constant (4.0� 109M�1 s�1; see Table 2). Since the

reactivity between meprobamate and ozone is low, this

reaction can be ignored.

DUV254 ¼ 35% :

�
1� ½C�

½C0�
�
� 100ð%Þ ¼ 1:87 � 35� 16¼ 49% (15)

ln ðC=C0Þ ¼ �ðk$OHÞ
�Z

½$OH�dt
�
; (16)

where the contribution from ozone is assumed to be

negligible.

ln ðC=C0Þ ¼ ��
4:0� 109M�1s�1

��
1:34� 10�10Ms

�¼�0:54 (17)

�
1� ½C�

½C0�
�
� 100ð%Þ ¼ ð1� expð�0:54ÞÞ�100ð%Þ ¼ 42% (18)

These estimates can be compared to the experimental

observations for meprobamate in Fig. 3. The models proposed

in Eqs. (12) and (13) represent a first approximation to assess
�OH exposure using on-line instrumentation. Additional

studies are needed to further validate this approach in pilot-

and full-scale systems.

3.4. Development of microbial correlations

The DUV254 and DTF correlations for the target microbes

are provided in Table 3 and SI-A2 through SI-A4. In contrast

with the target compounds for which the upper bound of
Fig. 4 e Validation of the (A) DUV254 and (B) DTF correlations for

sites. The validation of the data from the s::can spectro::lyser is

illustrated in SI-A5 and SI-A6.
elimination was generally <99%, the microbial correlations

were based on log inactivation rather than percent reductions

in concentrations, as described in Eq. (19):

�Log

�
N
N0

�
¼Slope�

��
1� UVorTF

UV0orTF0

�
�100ð%Þ

�
þIntercept (19)

Therefore, the slopes and intercepts cannot be compared

directly to those of the target compounds. In addition, the

correlations for the surrogate microbes generally exhibited

greater variability than those of the target compounds, which

was also observed in Bahr et al. (2007). It is interesting to note

that the inactivation of E. coli and MS2 was quite comparable,

which indicates that E. coli could possibly be used as a surrogate

for some viruses, but MS2 demonstrated stronger correlations

than E. coli (Table 3). With respect to B. subtilis, the spores

required extended exposure to ozone before any inactivation

was observed (SI-A2 through SI-A4), which is consistent with

the lag phase described by Driedger et al. (2001). Therefore, it

was not possible to accurately correlate B. subtilis spore inacti-

vation with DUV254 or DTF. In fact, nearly 50% and 90% reduc-

tions in UV254 absorbance and total fluorescence, respectively,

were required before any inactivation was observed, but the

inactivation was very rapid after that threshold was achieved.
3.5. Pilot-scale validation

As shown in Fig. 4A, Fig. 4B, and SI-A5, there was relatively

good agreement between the bench- (indicated by WRF-09-10

markers) and pilot-scale correlations, which highlights the

widespread applicability of this concept to diverse water

qualities and treatment scales. As with the bench-scale data,

the contaminant correlations proved to be much stronger

than the microbial correlations, particularly in the case of E.

coli. Therefore, the use of DUV254 or DTF may be limited to

general process performance and contaminant oxidation,

while disinfection may still require more traditional frame-

works (e.g., the CT concept) to describe expected levels of

inactivation.
phenytoin based on grab samples at the various pilot-scale

illustrated in (C). The remaining pilot-scale validations are

http://dx.doi.org/10.1016/j.watres.2012.08.037
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Fig. 5 e (A) Influent and effluent UV254 absorbance grab samples from the ozone process at the CLV pilot. (B) Comparison of

grab samples and online analyzer data for UV254 absorbance at the CLV pilot. The ozone dosing conditions (i.e., 1e15) are

described in Table S1.
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With respect to the CLV pilot, a series of grab samples was

collected to evaluate the continuous operation of the ozone

pilot and validate the data from the online UV254 absorbance

analyzer. Fig. 5A illustrates the temporal variability in UV254

absorbance prior to and after ozonation in addition to the cor-

responding differentials. Although the UV254 absorbance prior

to ozonation fluctuated over time, the constant ozone dose

applied during this period (1.5mg/L; O3:TOC¼ 0.25; H2O2:O3¼ 0)

resulted in a consistent DUV254 of approximately 30%.

In addition to the grab samples in Fig. 5A, Fig. S2A illus-

trates the fluctuation in UV254 absorbance for the MBR filtrate

prior to ozonation, which was continuously monitored from

May 21st through May 31st of 2011 with the online analyzer.

The grab sample toward the end of the monitoring period was

used as a preliminary validation between the online analyzer
and laboratory data. Fig. S2B illustrates the continuous

monitoring data for the ozonated MBR filtrate from May 31st

to July 4th of 2011. In contrast with the relatively stable signal

before ozonation, the signal after ozonation experienced rapid

fluctuations due to analyzer interference. In order to improve

the clarity of the data, any erroneous values>0.100 cm�1 were

removed from the data set and attributed to the following

reasons: unexpected or planned shutdowns of the pilot

systems, scaling or biological fouling of the analyzer, and

periodic spikes in turbidity or air bubbles that interrupted the

light path in the flow cell. Ensuring continuous flow through

the analyzer and implementing a routine cleaning and

maintenance schedule (e.g., daily instead of weekly) would

likely be required to mitigate these problems in the future.

However, this preliminary data set indicates that online
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monitoring of UV254 absorbance is a promising operational

tool.

In addition to the long-term monitoring data, a one-day,

variable ozone dose experiment was also performed to vali-

date the empirical TOrC correlations. Fig. 5B illustrates the

resulting data from both grab and continuous monitoring

samples, where the numbered boxes represent different

dosing conditions (O3 ¼ 0.6e9.0 mg/L; O3:TOC ¼ 0.1e2.0; see

Table S1 for details). During the short timeframeof the variable

dose experiment, the influent water quality (shaded circles)

was relatively stable, and the data demonstrate good consis-

tency between the online (empty triangles) versus grab sample

(black squares) data. Fig. 4CandSI-A6 illustrate theuseof these

grab samples andonlinedata to validate theTOrCcorrelations.

With the exception of ibuprofen and TCEP, the predictive

model based on the online absorbance readings and the actual

levels of transformation based on the grab samples were

consistent. This was particularly true for the highly suscep-

tible Group 1 compounds, which were almost always <MRL

after oxidation, but the data were also relatively consistent for

the Group 2, 3, and 4 compounds. It is unclear exactly why the

actual data and the predictive model for ibuprofen and TCEP

were dissimilar. However, the bench-scale TCEP data that

were used to develop the correlations also showed more

variability than the other compounds. In general, the predic-

tive model tended to overestimate the level of oxidation for

some compounds.

3.6. Full-scale validation

The full-scale samples indicated that the reductions in UV254

absorbance, total fluorescence, and many of the target

compounds at the full-scale facility were similar to the
Table 5 e Full-scale validation of UV254 absorbance and total fl

Parameter Ozone influent Ozone effluent

Organic Surrogates

UV254 Absorbance 0.116 cm�1 0.059 cm�1

Total Fluorescence 28,782 (unitless) 4546 (unitless)

Group 1

Carbamazepine 220 ng/L <10 ng/L

Diclofenac 47 ng/L <25 ng/L

Naproxen 26 ng/L <25 ng/L

Sulfamethoxazole 2200 ng/L < 25 ng/L

Trimethoprim 21 ng/L < 10 ng/L

Group 2

Atenolol 190 ng/L <25 ng/L

Gemfibrozil 72 ng/L <10 ng/L

Group 3

DEET 100 ng/L 55 ng/L

Phenytoin 150 ng/L 17 ng/L

Primidone 210 ng/L 45 ng/L

Group 4

Meprobamate 350 ng/L 110 ng/L

Group 5

TCEP 410 ng/L 340 ng/L

Microbes

E. coli 3.5 � 103 MPN/100 mL 12 MPN/100 mL

a % elimination or log inactivation limited by MRL.
predicted values (Table 5). Exclusions include compounds that

were not detected in the ozone influent sample, which were

omitted from Table 5; compounds that reached their respec-

tive MRLs during ozonation, which limited the quantifiable

range; and two specific outliers (DEET and E. coli).

Ozonation only achieved 45% elimination of DEET, but it is

unclear what caused this deviation from the bench-scale

correlation. With respect to E. coli, the potential level of inac-

tivation was limited to only 3.5 logs since the ozone influent

sample only contained 3.5 � 103 MPN/100 mL. It is easier to

achieve several orders of magnitude of inactivation when the

initial E. coli level is high, such as in a spiked bench-scale

experiment, but it becomes increasingly difficult to inacti-

vate bacteria as the numbers approach the detection limit of

the assay, possibly due to shielding. This may be one possible

explanation for the discrepancy between the maximum level

of inactivation (3.5 logs) and the observed level of inactivation

(2.5 logs). With the exception of these two outliers, themodels

provided relatively accurate predictions of process perfor-

mance, which highlights the utility of this surrogate frame-

work as an alternative to frequent TOrC monitoring.
4. Conclusions

One of the critical components of treatment plant operation is

real-time monitoring of process performance that allows for

subsequent operational adjustments. As such, the primary

goal of this study was to provide operators with tools to

predict treatment efficacy and identify breakdowns and inef-

ficiencies in the performance of oxidation processes that rely

heavily on fast reacting oxidants, such as ozone and �OH. In

order to better integrate ozonation and other AOPs into water
uorescence correlations.

Actual elimination DUV254 prediction DTF prediction

49% 51% N/A

84% N/A 85%

<MRLa >99% >99%

<MRLa >99% >99%

<MRLa >99% >99%

<MRLa >99% >99%

<MRLa >99% >99%

<MRLa >99% 96%

<MRLa >99% >99%

45% 76% 65%

89% 86% 74%

79% 74% 65%

69% 76% 68%

17% 21% 18%

2.5 logsa 5.2 logs 4.7 logs
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and wastewater treatment, a more comprehensive under-

standing of the available technologies in addition to tools that

make them amenable to the current regulatory framework are

required. Equipping utilities and operators with quick and

simple proxies to assess oxidation and disinfection efficacy

will reduce the analytical demand related to continuous

monitoring of trace organic contaminants and microorgan-

isms, allow for rapid adjustments to operational variables

(e.g., ozone and/or H2O2 dose), and provide a basis for

awarding removal credits for various contaminants.

This study provides quantitative information that can be

used to tailor a surrogate framework for indicator compounds

to an individual system, similar towhat is now required by the

California Department of Public Health. Differential UV254

absorbance and total fluorescence were correlated with trace

organic contaminant oxidation and microbial inactivation to

provide estimates of treatment efficacy in 17 different

wastewater matrices from the U.S., Switzerland, and

Australia. The results of this study indicate that DUV254 and

DTF can be used as surrogates for target compound elimina-

tion. The primary benefit of this strategy is that it requires

minimal equipment, expertise, time, and cost compared to

full-scale monitoring of target compounds and pathogens.

Automated online analyzers are available for UV absorbance

and fluorescence so full-scale implementation of the empir-

ical models developed in this study is entirely feasible.

Although there is a certain amount of inherent variability in

themodels, the pilot- and full-scale validation efforts indicate

that the models are robust. As mentioned earlier, similar

models can be applied to other forms of advanced oxidation,

such as UV/H2O2, so expanded model databases are also

warranted for other forms of treatment. Future research

should also attempt to develop empirical models based on

reaction rate constants with ozone and �OH.

With respect to microbial inactivation, the correlations

may not yet be strong enough to warrant disinfection credits,

particularly for microbes with significant lag phases (e.g., B.

subtilis spores and Cryptosporidium oocysts), but the models

still provide a useful estimate of expected log inactivation for

some bacteria and viruses. Additional studies would be

necessary to further refine the microbial inactivation models

and integrate them into a regulatory framework.
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