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Force and Torque Analytical Models of a Reaction
Sphere Actuator Based on Spherical Harmonic

Rotation and Decomposition
Leopoldo Rossini, Olivier Chételat, Emmanuel Onillon, and Yves Perriard

Abstract—This paper presents an analytical model for the force
and torque developed by a reaction sphere actuator for satellite
attitude control. The reaction sphere is an innovative momentum
exchange device consisting of a magnetic bearings spherical rotor
that can be electronically accelerated in any direction making all
the three axes of stabilized spacecrafts controllable by a unique
device. The spherical actuator is composed of an 8-pole permanent
magnet spherical rotor and of a 20-coil stator. Force and torque
analytical models are derived by solving the Laplace equation and
applying the Lorentz force law. The novelty consists in exploiting
powerful properties of spherical harmonic functions under rota-
tion to derive closed-form linear expressions of forces and torques
for all possible orientations of the rotor. Specifically, the orienta-
tion of the rotor is parametrized using seven decomposition coeffi-
cients that can be determined noniteratively and in a linear fashion
by measuring the radial component of the magnetic flux density
from at least seven different locations. Therefore, force and torque
models for all possible orientations of the rotor are expressed in
closed form as linear combination of mutually orthogonal force
and torque characteristic matrices, which are computed offline.
The proposed analytical models are experimentally validated us-
ing a developed laboratory prototype.

Index Terms—Force and torque model, reaction sphere, satellite
attitude control, spherical actuator.

I. INTRODUCTION

A TTITUDE and orbit control systems (AOCS) are respon-
sible for the orbital behavior and pointing precision of

stabilized satellites and have a major impact on the efficiency
and quality of commercial and scientific space missions [1].
AOCS require a minimum of three reaction wheels (RW) or
control moment gyroscopes (CMG), but in practice, four or five
wheels are common for optimization and redundancy purposes.
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Fig. 1. Schematic illustration of the 3-D motor of the reaction sphere, which
is composed of an 8-pole rotor (cube) and a 20-pole stator (dodecahedron). For
illustrative purposes, the iron stator is not shown in the left figure.

The attitude of the satellite can be changed by reaction to the
acceleration of the appropriate wheel [2].

We propose to employ a single-reaction sphere held in posi-
tion by magnetic levitation as an alternative to traditional RW or
CMG approaches. The sphere can be accelerated in any direc-
tion by a 3-D motor making all the three axes of the spacecraft
controllable by just a single device. Furthermore, the reaction
sphere rotor being magnetically levitated, the absence of friction
improves the pointing performance of the satellite with respect
to conventional ball bearing momentum exchange devices. The
proposed approach is patent protected [3]. A schematic repre-
sentation of this spherical actuator is presented in Fig. 1. The
3-D motor is synchronous and the novelty consists in arranging
permanent magnets and electromagnets at locations following
the vertices of regular polygons. The permanent magnet motor
is composed of a rotor with eight poles, each of them being ei-
ther a north pole if xyz > 0 or a south pole otherwise (x, y, and
z are the coordinates of a given point of the sphere). The per-
manent magnets (region 3) are adjusted on a back iron hollow
spherical shell (region 2). The stator has 20 air-core electro-
magnets, each corresponding to one vertex of a dodecahedron.
The electromagnets are mounted on a ferromagnetic spherical
support (region 5). Notice that a ferromagnetic stator increases
the actuator forces and torques and at the same time provides an
important shielding role [4].

The proposed reaction sphere can be classified under the fam-
ily of electromagnetic spherical actuators. A variety of different
electromagnetic spherical motors, mainly for robotic purposes,
have been proposed in the literature [5]–[9]. However, these
design concepts and developed prototypes share some common
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application-driven features that, to our understanding, prevent
them from being employed as attitude control actuators. First,
a mechanical shaft emerges from the rotor to export the torque,
breaking the mechanical symmetry of the designs and limit-
ing the tilting range to a maximum of ±45◦. Conversely, as in
the aimed application the torque is exported to the satellite by
conservation of the angular momentum [2], the structure of the
proposed reaction sphere is symmetric with no physical con-
straints on the rotation. Furthermore, differently from [5], [6],
and [8], where the rotor of the presented actuators is sup-
ported by either low-friction surface coating or by, respectively,
hydrostatic and aerostatic bearings, the rotor of the reaction
sphere is magnetically levitated and no friction occurs during
operation.

Force and torque direct models are necessary for the oper-
ation of spherical actuators as they allow relating a given set
of stator currents to force and torque outputs. Depending on
the architecture of the design, force and torque direct models
between stator coils and the permanent magnet rotor are ob-
tained with multiple approaches. Finite element simulations to
compute force characteristics between a stator coil and the rotor
of a spherical machine with variable pole pitch were proposed
in [6]. The torque output of a spherical actuator consisting of
a spherical rotor with dihedral-shaped permanent magnets and
multiple layer stator coils was derived by solving the Laplace
equation and employing Lorentz integration in [7]. An alterna-
tive approach to characterize torque models, while reducing the
computational time, consists in modeling both the stator coils
and the permanent magnets as distributed multipoles (DMP).
Unlike the Lorentz force or the Maxwell stress tensor meth-
ods that require integration, the dipole force computation is
expressed in closed form [10]. For the proposed reaction sphere
actuator, similarly to [11], force and torque models were derived
by solving the Laplace equation and subsequently applying the
Lorentz force law [12].

To our understanding, a common characteristic of these mod-
eling techniques is that force and torque models are intrinsically
dependent on the orientation of the rotor. Thus, force and torque
calculations are carried out by applying a change of coordinates
in the derived magnetic flux models, generally parameterized
with a set of three Euler angles to account for the orientation of
the rotor. To this end, several noncontact-based methods were
proposed to measure the orientation of the spherical rotor. For
instance, a vision-based approach combined with a recursive
nonlinear optimization algorithm was proposed in [13]. How-
ever, the nonlinear nature of the problem to be solved requires
a fairly good initial guess of the orientation. In [14], the authors
proposed a laser-based-orientation measurement but the appa-
ratus requires a flat reflecting plate that cannot be embedded in
our design. An optimization strategy for position and orienta-
tion tracking of moving objects in 3-D space is proposed in [15].
The method is based on a distributed multiple pole model of the
moving object but requires three-axis Hall sensors. Another pro-
posed approach consists of a direct method that maps distributed
two-axis and three-axis magnetic flux density measurements to
the instantaneous orientation of the rotor [16]. The proposed
mapping is based on an artificial neural network.

In this paper, we propose the following.
1) A development of force and torque analytical models for

the reaction sphere actuator that are intimately related to
the rotor-orientation measurement. In particular, thanks
to the proposed magnetization of the permanent magnet
rotor, the development of the magnetic flux density ana-
lytical model is carried out in stator coordinates exploiting
powerful properties of spherical harmonics under rotation.
The resulting models are linear and relate a set of stator
currents to the output forces and torques. The novelty con-
sists in parameterizing the analytical model using seven
spherical harmonic decomposition coefficients that pro-
vide an analytical expression of the magnetic flux density
for any possible orientation of the rotor.

2) An estimation method of the seven spherical harmonic
decomposition coefficients. Conversely from [16], where
two-axis and three-axis magnetic flux density measure-
ments are necessary, the proposed estimation method is
based on measuring the radial component of the magnetic
flux density at multiple locations equidistant from the ro-
tor surface. Moreover, differently from [17], where the
radial component needs to be measured on all the bound-
ary surface, the magnetic flux density in the airgap can
be reconstructed with only N ≥ 7 measurements. Finally,
contrarily to the estimation of a set of three Euler angles
in [13], the proposed procedure is linear and it is expressed
in closed form.

3) A step by step implementation procedure of the proposed
force and torque models.

4) A numerical verification using finite element simulations,
where stator currents are computed to satisfy reference
forces and torques for the rotor about several randomly
generated orientations.

5) An experimental verification of the proposed models using
the laboratory prototype we have developed.

II. MAGNETIC FLUX DENSITY MODEL

In this section, an analytical expression for the magnetic flux
density in the airgap of the reaction sphere is developed solv-
ing Laplace’s and Poisson’s equations. The development of the
magnetic flux density model follows our previous work pre-
sented in [12] with a significant variation introduced to express
the field of a rotated rotor in stator coordinates.

A. Constitutive Relations

For the formulation of the analytical model, we use the rotor
and stator model reported in Fig. 1 with the respective relevant
dimensions. The reaction sphere is composed of a rotor back
iron (region 2) a permanent magnet (region 3), an airgap that
includes the coils (region 4), and an iron stator (region 5). The
rotor back iron is hollow (region 1) and the reaction sphere is
surrounded by air (region 6).
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The constitutive relations describing the magnetic effects in-
side the six regions are characterized by

Bi =

⎡
⎢⎣

Bir

Biθ

Biφ

⎤
⎥⎦ =

⎧
⎪⎨
⎪⎩

μ0Hi , for i = 1, 4, 6

μ0μrHi , for i = 2, 5

μ0μmHi + Br , for i = 3
(1)

where the subscript i denotes the region numbers; B and H are
the magnetic flux density and the magnetic field, respectively;
μ0 is the vacuum magnetic permeability, while μr and μm are
the magnetic permeability of the iron and the permanent mag-
net material, respectively. Finally, Br is the remanence of the
permanent magnet.

B. Rotor Magnetization

In order to obtain an 8-pole spherical rotor, the following
remanence is applied to the permanent magnet of an immobile
rotor:

Br,imm =

⎡
⎢⎣

Brr

Brθ

Brφ

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

Y 2
3 (θ, φ) − Y −2

3 (θ, φ)
Y 2

3 (θp , φp) − Y −2
3 (θp , φp)

0

0

⎤
⎥⎥⎥⎦Br

(2)
where Br is the constant magnetic remanence modulated by
the complex spherical harmonics Y −2

3 and Y 2
3 , while θp =

cos−1
(
1/
√

3
)

and φp = π/4 are the coordinates defining a pole.
We refer the reader to Appendix for a brief overview on spheri-
cal harmonics. To calculate the radial magnetization of a rotated
rotor expressed in stator coordinates, the radial component of
the magnetization of the immobile rotor in (2) is decomposed
in terms of spherical harmonics of degree 3 as

Brr (θ, φ) = Br

3∑
m=−3

cm
3,immY m

3 (θ, φ) (3)

where, by the orthogonality property of spherical harmonics, the
decomposition coefficients cm

3,imm for the immobile rotor can be
expressed as

cm
3,imm =

⎧
⎨
⎩

± 1
Y 2

3 (θp , φp) − Y −2
3 (θp , φp)

, if m = ±2

0, otherwise.
(4)

The radial magnetization of a rotated rotor expressed in terms
of stator coordinates can be calculated by considering the effect
that a rotation operator R (α, β, γ), parameterized using ZYZ
Euler angles α, β, and γ, has on the spherical harmonic decom-
position coefficients cm

3,imm of degree 3. The effect of such a
rotation can be formulated as

cm
3 (α, β, γ) =

∑
n

D3
mn (α, β, γ) cn

3,imm (5)

where D3
mn (α, β, γ) are unitary rotation matrices [18]. Hence,

the spherical harmonic basis functions are decomposed into a
direct sum of orthogonal subspaces that are globally invariant
under rotation. Therefore, as the decomposition coefficients of

the immobile rotor are nonzero for n = ±2, the radial magne-
tization of a rotated rotor expressed in stator coordinates can be
calculated as

Brr (θ, φ) = Br

3∑
m=−3

cm
3 Y m

3 (θ, φ) (6)

where

cm
3 = D3

m,2 (α, β, γ) c2
3,imm + D3

m,−2 (α, β, γ) c−2
3,imm . (7)

Finally, using (6), the magnetic remanence for any possible
orientation of the rotor can be formulated as

Br =

⎡
⎢⎣

Brr

Brθ

Brφ

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Br

3∑
m=−3

cm
3 Y m

3 (θ, φ)

0

0

⎤
⎥⎥⎥⎥⎦

. (8)

Therefore, the remanence of a rotated rotor is function of the
spherical harmonic decomposition coefficients c±3

3 , c±2
3 , c±1

3 ,
and c0

3 . However, since c−m
n = (−1)m cm

n , where cm
n denotes

the complex conjugate of cm
n , the radial magnetization of the ro-

tor is parameterized using seven real coefficients only. Finally,
notice that the physical orientation of the rotor in terms of Eu-
ler angles can be determined from unitary matrices D3

m,±2 as
already proposed, for instance, in a computer vision applica-
tion [19].

C. Governing Equations

Starting from the magnetostatic field equation for current-
free regions ∇× H = 0, the magnetic field H in region i is
calculated as the gradient of a magnetic scalar potential ϕ [20]

Hi =

⎡
⎢⎣

Hir

Hiθ

Hiφ

⎤
⎥⎦ = −∇ϕi =

⎡
⎢⎢⎢⎢⎢⎢⎣

−∂ϕi

∂r

−1
r

∂ϕi

∂θ

− 1
r sin θ

∂ϕi

∂φ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

Then, substituting the constitutive relations in (1) into ∇ · B =
0, and employing (9), we obtain the Laplace equations for re-
gions i = 1, 2, 4, 5, 6

∇2ϕi = 0 (10)

and the Poisson equation for the permanent magnet in region
i = 3

∇2ϕ3 =
1

μ0μm
∇ · Br . (11)

With definition (8), the Poisson equation (11) for the permanent
magnet can be rewritten as

∇2ϕ3 =
2

μ0μm

1
r
Br

3∑
m=−3

cm
3 Y m

3 (θ, φ) . (12)

The solutions ϕi of (10) and (12) are the magnetic scalar po-
tentials inside the six regions. Once these equations are solved,
the magnetic flux density within region i can be calculated by
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first employing definition (9) and subsequently applying the
respective constitutive relations (1).

D. General Solution to Laplace’s and Poisson’s Equations

The general solution of the Laplace equation in spherical
coordinates characterizing region i = 1, 2, 4, 5, 6 is [11]

ϕi =
∞∑

n=0

n∑
m=−n

(
κm

n,ir
n + ξm

n,ir
−(n+1)

)
Y m

n (θ, φ) (13)

where κm
n,i and ξm

n,i are coefficients to be defined using boundary
conditions while Y m

n (θ, φ) are complex-valued spherical har-
monic functions. The general solution to the Poisson equation
(12) is obtained by including an additional term to solution (13)
so as to satisfy the conditions imposed by the excitation term on
the right-hand side of (12). Therefore

ϕ3 =
∞∑

n=0

n∑
m=−n

(
κm

n,3r
n + ξm

n,3r
−(n+1)

)
Y m

n (θ, φ)

− r

5μ0μm
Br

3∑
m=−3

cm
3 Y m

3 (θ, φ) . (14)

E. Boundary Conditions

A set of boundary conditions is necessary to determine co-
efficients κm

n,i and ξm
n,i , i = 1, 2, . . . , 6, that provide particular

solutions to (10) and (12). Boundary conditions for the reaction
sphere configuration can be summarized as

B6r |r→∞ = 0, B6θ |r→∞ = 0, B6φ |r→∞ = 0 (15)

B1r |r=0 �= ∞, B1θ |r=0 �= ∞, B1φ |r=0 �= ∞ (16)

Bir |r=Ri
= Bi+1r |r=Ri

and (17)

Hiθ |r=Ri
= Hi+1θ |r=Ri

, Hiφ |r=Ri
= Hi+1φ |r=Ri

. (18)

Expressions (15) and (16) are the boundary conditions to be
satisfied at the far field and at the origin, where the magnetic
flux density approaches zero when r → ∞ and must be finite at
r = 0. Furthermore, boundary conditions (17) specify that the
radial component of B must be continuous across the interface
i and i + 1. Finally, conditions (18) indicate that, in absence of
a free surface current density, the tangential component of H
must also be continuous at the interface [20].

F. Solution

Forces and torques are produced by the interaction of the
magnetic flux density with the stator coils located in region 4.
Hence, only the magnetic scalar potential ϕ4 within the airgap
will be calculated. Invoking the orthogonal property of spheri-
cal harmonics, using the definition in (9) together with general

solutions (13) and (14), boundary conditions (15)–(18) result in
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κm
3,6 = 0

ξm
3,1 = 0

κm
3,1R

3
1 − κm

3,2R
3
1 − ξ3,2R

−4
1 = 0

κm
3,2R

3
2 + ξ3,2R

−4
2 − κm

3,3R
3
2 − ξ3,3R

−4
2 = 0

κm
3,3R

3
3 + ξ3,3R

−4
3 − κm

3,4R
3
3 − ξ3,4R

−4
3 = 0

κm
3,4R

3
4 + ξ3,4R

−4
4 − κm

3,5R
3
4 − ξ3,5R

−4
4 = 0

κm
3,5R

3
5 + ξ3,5R

−4
5 − ξ3,6R

−4
5 = 0

3κm
3,1R

2
1 − 3μrκ

m
3,2R

2
1 + 4μrξ

m
3,2R

−5
1 = 0

3μrκ
m
3,2R

2
2 − 4μrξ

m
3,2R

−5
2 − 3μm κm

3,3R
2
2 + 4μm ξm

3,3R
−5
2

+6Br/μ0c
m
3 = 0

3μm κm
3,3R

2
3 − 4μm ξm

3,3R
−5
3 − 6Br/μ0c

m
3 − 3κm

3,4R
2
3

+4ξm
3,4R

−5
3 = 0

3κm
3,4R

2
4 − 4ξm

3,4R
−5
4 − 3μrκ

m
3,5R

2
4 + 4μrξ

m
3,5R

−5
4 = 0

3μrκ
m
3,5R

2
5 − 4μrξ

m
3,5R

−5
5 + 4ξm

3,6R
−5
5 = 0

(19)
that is a system of 12 linear equations for the 12 unknown
coefficients κm

3,i and ξm
3,i , i = 1, 2, . . . , 6. Defining

K1 =
ξm
3,4

Brcm
3

μ0 , K2 =
κm

3,4

Brcm
3

μ0 (20)

and solving the system of linear equations (19) for the desired
coefficients κm

3,4 and ξm
3,4 , (13) for the magnetic scalar potential

within the airgap can be rewritten as

ϕ4 = r−4 (
K1 + K2r

7) Br

μ0

3∑
m=−3

cm
3 Y m

3 (θ, φ) (21)

where K1 and K2 are constant. Although easily calculated using
a program of symbolic calculation, expressions for K1 and K2
are excessively long for a finite value of the permeability μr .
Therefore, we will assume that the iron is infinitely permeable
(μr → ∞). Notice that with this assumption, the number of
conditions in (19) reduces to 4 and coefficients κm

3,i = 0 and
ξm
3,i = 0, ∀i �= 3, 4. Therefore,

K1 =
R5

3

5
K̂1

Ǩ1
K2 = −K1R

−7
4 (22)

with

K̂1 =

(
1 + 3/4R−7

2 R7
3

) (
1 − R−2

2 R2
3

)
(
1 + 3/4R−7

4 R7
3

) (
1 − R−7

2 R7
3

) +
3/2

(
1 − 1/2R−2

2 R2
3

)
(
1 + 3/4R−7

4 R7
3

)
(23)

and

Ǩ1 = 1 − μm

(
1 + 3/4R−7

2 R7
3
) (

1 − R−7
4 R7

3
)

(
1 + 3/4R−7

4 R7
3

) (
1 − R−7

2 R7
3

) . (24)

Then, the magnetic scalar potential (21) becomes

ϕ4 = r−4 (
1 − R−7

4 r7) K1Br

μ0

3∑
m=−3

cm
3 Y m

3 (θ, φ) . (25)
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Finally, the magnetic flux density in the airgap is calculated
using (9) and the constitutive relation in air B4 = μ0H4 as

B4 = K1Br

3∑
m=−3

cm
3 ∇

[
r−4 (

R−7
4 r7 − 1

)
Y m

3 (θ, φ)
]

(26)

that can also be expressed as the sum of the magnetic flux
densities Bm

4 generated by each spherical harmonic of degree 3
and order m as

B4 =
3∑

m=−3

cm
3 Bm

4 (27)

where

Bm
4 = K1Br∇

[
r−4 (

R−7
4 r7 − 1

)
Y m

3 (θ, φ)
]
. (28)

III. FORCE AND TORQUE MODELS

Force and torque models are necessary for the design of
closed-loop dynamic controllers. On one hand, the force is re-
quired to control the position of the rotor inside the stator. On
the other hand, the torque allows controlling the rotation of the
rotor so as to influence the attitude of the satellite. Force and
torque models are derived by first considering the interaction be-
tween the rotor magnetic flux density and one stator coil and by
subsequently invoking the superposition principle to calculate
forces and torques generated by the complete set of coils.

A. Force Generated by a Coil

To calculate the force produced by a single coil, we consider
the latter as a spherical portion delimited by angles θa and θb ,
and by the spherical radii Ra and Rb as illustrated in Fig. 1.
The position of the coil in the stator frame [X,Y,Z] can be
described by the rotation matrix R̃ (α, β) that is parametrized
using angles α and β that completely specify its location. As
the Lorentz force integration will be carried out in Cartesian
coordinates, the flux density (26) is expressed in these coordi-
nates as B4 (x, y, z). This expression can be derived from (26)
by using the transformation x = r sin θ cos φ, y = r sin θ sin φ,
z = r cos θ, and by employing the gradient operator in Carte-
sian coordinates as ∇ = [∂/∂x, ∂/∂y, ∂/∂z]T . Therefore,
the force F̃ generated by the coil expressed in the coil reference
frame [Xc, Yc , Zc ] depicted in Fig. 2 can be calculated using the
Lorentz force law as

F̃ =
∫ Rb

Ra

∫ θb

θa

∫ π

−π

J × R̃TB4 (x′, y′, z′) r2 sin θ dφdθdr

(29)
where

[x′, y′, z′]T = R̃ [sin θ cos φ, sin θ sin φ, cos θ]T . (30)

The current density in the coil reference frame is expressed by

J = J [− sin φ, cos φ, 0]T (31)

where J is the amplitude of the vector field. The magnetic flux
density for any orientation is calculated using (27). Therefore,
from (29), we obtain the force generated by a coil and by the

Fig. 2. Stator and coil reference frames for force and torque calculation.

spherical harmonic of degree 3 and order m as

F̃m =
∫ Rb

Ra

∫ θb

θa

∫ π

−π

J × R̃TBm
4 (x′, y′, z′) r2 sin θ dφdθdr.

(32)
Then, the net force generated by a single coil is obtained by
summing forces generated by each spherical harmonic as

F̃ =
3∑

m=−3

cm
3 F̃m . (33)

Finally, notice that the integral (32) can be expressed in closed
form using a program of symbolic computation.

B. Torque Generated by a Coil

Following the same development as for the calculation of the
force, the torque T̃ generated by a coil is obtained by making
the cross product of the application points of the infinitesimal
forces by their values

T̃ =
∫ Rb

Ra

∫ θb

θa

∫ π

−π

r × J × R̃TB4 (x′, y′, z′) r2 sin θ dφdθdr

(34)
where

r = [r sin θ cos φ, r sin θ sinφ, r cos θ]T . (35)

Then, the torque generated by a single coil and by the spherical
harmonic of order m becomes

T̃m =
∫ Rb

Ra

∫ θb

θa

∫ π

−π

r × J × R̃TBm
4 (x′, y′, z′) r2 sin θ dφdθdr.

(36)
Finally, the net torque provided by the coil is calculated sum-
ming the contribution of each spherical harmonic as

T̃ =
3∑

m=−3

cm
3 T̃m . (37)

C. Complete Force and Torque Model

Given a set of 20-coil coordinates Pk , each having a current
density norm Jk , the force F̃k and torque T̃k generated by a coil
can be computed using (33) and (37), respectively. Summing
forces and torques given by each individual coil in the stator



ROSSINI et al.: FORCE AND TORQUE ANALYTICAL MODELS OF A REACTION SPHERE ACTUATOR 1011

frame [X,Y,Z] results in the complete force and torque models

F =
20∑

k=1

R̃k F̃k (Jk ) =
3∑

m=−3

cm
3

20∑
k=1

R̃k F̃m
k (Jk ) (38)

and

T =
20∑

k=1

R̃k T̃k (Jk ) =
3∑

m=−3

cm
3

20∑
k=1

R̃k T̃m
k (Jk ) (39)

where R̃k shall satisfy

R̃T
k Pk = [0, 0, 1]T . (40)

By applying the current density norm substitution

Jk =
2Nt

(R2
b − R2

a) (θb − θa)
(41)

where Nt is the number of turns in each coil, (38) and (39) can
be written as

F =
3∑

m=−3

cm
3 Km

F i and T =
3∑

m=−3

cm
3 Km

T i (42)

where i is a current vector, and Km
F and Km

T are, respectively,
force and torque matrices for the harmonic m and are defined
as

Km
F =

20∑
k=1

R̃k F̃m
k (Jk ) and Km

T =
20∑

k=1

R̃k T̃m
k (Jk ) .

(43)
We emphasize that in (42), forces and torques are expressed as
a linear combination of forces and torques provided by each
spherical harmonic of order m, with the coefficients cm

3 deliv-
ering to the models all the necessary information relative to the
orientation of the rotor. Notice that the matrices Km

F and Km
T

given by (43) are constant and can be computed offline. Finally,
defining force and torque characteristic matrices KF and KT as

KF =
3∑

m=−3

cm
3 Km

F and KT =
3∑

m=−3

cm
3 Km

T (44)

(42) can be rewritten in a compact form as

F = KF i and T = KT i. (45)

D. Force and Torque Inverse Models

An inverse model that determines a current vector i for a
desired force F and torque T can be derived. The difficulty of
the inverse model is that there are 20 degrees of freedom for the
current and only 6 degrees of freedom for forces and torques.
To calculate the desired inverse models, definitions in (45) can
be rewritten in matrix form as[

F

T

]
=

[
KF

KT

]
i. (46)

Because the stator has 20 poles Pi , i = 1, 2, . . . , 20, each cor-
responding to one vertex of a dodecahedron, each pole faces
another and one has Pi = −P20+1−i , i = 1, 2, . . . , 10. Con-
sequently, due to the symmetry of both the stator coils and

the magnetization pattern, Fi = F20+1−i , i = 1, 2, . . . , 10 and
Ti = −T20+1−i , i = 1, 2, . . . , 10, where Fi and Ti are, re-
spectively, the force and the torque produced by coil i. There-
fore, it can be verified that force and torque characteristic ma-
trices are mutually orthogonal, and hence KF KT

T = 0. Because
of this decoupling characteristic, force and torque can be con-
trolled independently, which is most suitable for the control of
the spherical actuator. Hence, applying the right inverse matrix
to (46), we obtain the inverse model for the force and torque

i = MF F + MT T (47)

where

MF = KT
F

(
KF KT

F

)−1
and MT = KT

T

(
KT KT

T

)−1
. (48)

Observe that, because forces and torques generated by the stator
span a 3-D space, the rank of the matrices KF and KT is equal to
three, and so are the ones of KF KT

F and KT KT
T . Therefore, their

right inverse always exists. Furthermore, (47) is also the least
squares solution of (46) and hence the resulting current vector
is the minimal norm solution and the unique vector minimizing
the dissipated energy.

IV. DETERMINATION OF THE SPHERICAL HARMONIC

COEFFICIENTS FOR FORCE AND TORQUE MODELS

Seven spherical harmonic decomposition coefficients are nec-
essary to completely characterize the force and torque produced
by the rotor in any orientation using (44). In this section, a
method based on measuring the radial component of the mag-
netic flux density at multiple locations is proposed to determine
these coefficients. Starting from the magnetic scalar potential
(25), the radial component of the magnetic flux density in the
airgap can be calculated as

B4r (r, θ, φ) = K1Br
∂

∂r

[
r−4 (

R−7
4 r7 − 1

)] 3∑
m=−3

cm
3 Y m

3 (θ, φ)

(49)
from which we derive

B4r (r, θ, φ)
K1Brr−5

(
4 + 3R−7

4 r7
) =

3∑
m=−3

cm
3 Y m

3 (θ, φ) . (50)

Therefore, the spherical harmonic decomposition coefficients
cm
3 can be calculated by decomposing the quantity on the left-

hand side of (50) on the basis of spherical harmonics of degree
3. Several methods are proposed in the literature to tackle this
problem. For instance, the coefficients can be calculated by ap-
proximating the integration in (71) as presented in [21]. How-
ever, this procedure requires an important number of measure-
ments around the rotor resulting in a large computational effort.
Nevertheless, notice that for band-limited functions, which is
the case here, the sampling theorem allows the decomposition
coefficients to be computed exactly from measurements taken
on the equiangular latitude-longitude grid [22]. This approach is
very attractive as it requires a limited number of measurements
but forces the sensors to be placed on the latitude–longitude
grid, which is not very practical for the reaction sphere be-
cause of the presence of the stator coils. We propose to sample
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the radial component of the magnetic flux density at N ≥ 7
mutually noncollinear locations equidistant from the rotor cen-
ter and to solve the decomposition problem using least-squares
techniques as originally suggested in [23]. Therefore, suppose
that N one-axis magnetic flux density sensors are placed at
Sk = (Rs, θk , φk ), k = 1, 2, . . . , N . Then, defining

B⊥
4,k = B4r (Rs, θk , φk ) , Π = K1BrR

−5
s

(
4 + 3R−7

4 R7
s

)
(51)

and decomposing cm
3 in its real and imaginary parts as

cm
3 = am

3 + ibm
3 , |m| ≤ 3 (52)

we can write

B⊥
4,k

Π
= c0

3Y
0
3 (θ, φ)

+
3∑

m=1

[
c−m
3 Y −m

3 (θk , φk ) + cm
3 Y m

3 (θk , φk )
]

= c0
3Y

0
3 (θk , φk ) +

3∑
m=1

[
cm
3 Y m

3 (θk , φk ) + cm
3 Y m

3 (θk , φk )
]

= c0
3Y

0
3 (θk , φk ) + 2

3∑
m=1

Re {cm
3 Y m

3 (θk , φk )}

=
a0

3

2
R0

3 (θk , φk ) +
3∑

m=1

am
3 Rm

3 (θk , φk ) +
3∑

m=1

bm
3 Im

3 (θk , φk )

(53)

where Rm
3 (θk , φk ) = 2Re {Y m

3 (θk , φk )} and Im
3 (θk , φk ) =

−2Im {Y m
3 (θk , φk )}. Therefore, defining a vector of N mag-

netic flux measurements

B⊥
4 =

[
B⊥

4,1 , B⊥
4,2 , . . . , B⊥

4,N

]T
(54)

and defining the N × 7 matrix A as

AT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
R0

3 (θ1 , φ1)
1
2
R0

3 (θ2 , φ2) . . .
1
2
R0

3 (θN , φN )

R1
3 (θ1 , φ1) R1

3 (θ2 , φ2) . . . R1
3 (θN , φN )

R2
3 (θ1 , φ1) R2

3 (θ2 , φ2) . . . R2
3 (θN , φN )

R3
3 (θ1 , φ1) R3

3 (θ2 , φ2) . . . R3
3 (θN , φN )

I1
3 (θ1 , φ1) I1

3 (θ2 , φ2) . . . I1
3 (θN , φN )

I2
3 (θ1 , φ1) I2

3 (θ2 , φ2) . . . I2
3 (θN , φN )

I3
3 (θ1 , φ1) I3

3 (θ2 , φ2) . . . I3
3 (θN , φN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)
the desired coefficients x =

[
a0

3 , a1
3 , a2

3 , a3
3 , b1

3 , b2
3 , b3

3
]T

can
be computed solving ΠAx = B⊥

4 using the left-inverse matrix
of A as

x =
1
Π

(
ATA

)−1
ATB⊥

4 . (56)

The matrix ATA is nonsingular if the sensors are placed so that
they are mutually noncollinear. Observe that the matrix

P =
1
Π

(
ATA

)−1
AT (57)

of (56) is constant and can be computed offline. Hence, force and
torque characteristics for the rotor in any possible orientation can
be determined in closed form by projecting the measurements of
the radial component of the magnetic flux density on the column
space of P . In the next section, we summarize the proposed
method and we discuss its implementation procedure.

V. SUMMARY AND IMPLEMENTATION PROCEDURE

The objective of this section is to summarize the proposed
technique to compute force and torque models and to highlight
the implementation details. In the previous section, we proposed
a method to measure the seven necessary spherical harmonic de-
composition coefficients cm

3 , with |m| ≤ 3. Hence, given these
coefficients, force and torque characteristic matrices are calcu-
lated using (44). However, applying definition (52) and invoking
the properties employed to derive (53), the force characteristic
matrix KF in (44) can be rewritten as

KF =
a0

3

2
K0

F,R +
3∑

m=1

am
3 Km

F,R +
3∑

m=1

bm
3 Km

F,I (58)

where

Km
F,R = 2Re {Km

F } and Km
F,I = −2Im {Km

F } . (59)

Therefore, the force characteristic matrix can be calculated di-
rectly from (56) as

KF =
x1

2
· K0

F,R + x2 · K1
F,R + x3 · K2

F,R + x4 · K3
F,R

+ x5 · K1
F,I + x6 · K2

F,I + x7 · K3
F,I (60)

where xk is the kth entry of the solution vector x. Similarly,
defining

Km
T ,R = 2Re {Km

T } and Km
T ,I = −2Im {Km

T } (61)

the torque characteristic matrix can be expressed as

KT =
x1

2
· K0

T ,R + x2 · K1
T ,R + x3 · K2

T ,R + x4 · K3
T ,R

+x5 · K1
T ,I + x6 · K2

T ,I + x7 · K3
T ,I . (62)

We emphasize that the matrices Km
F,R , Km

F,I , Km
T ,R , and Km

T ,I
are constant and are computed offline.

A. Implementation Procedure

The implementation procedure to compute force and torque
characteristic matrices for the rotor about any possible orienta-
tion is summarized by dividing the operations to be performed
as offline and online.

The diagram of the procedure to compute the force char-
acteristic matrix is reported in Fig. 3. Although not reported,
the diagram for the torque characteristic matrix has exactly the
same structure. Therefore, force and torque characteristic ma-
trices KF and KT are expressed as linear combination of the
matrices Km

F,R , Km
F,I , Km

T ,R , and Km
T ,I with the decomposition

coefficients x1 , x2 , . . . , x7 . The matrices Km
F,R , Km

F,I , Km
T ,R ,

and Km
T ,I as well as the projection matrix P are constant and are

computed offline. Hence, we emphasize that force and torque
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Fig. 3. Diagram for the computation of the force characteristic matrix KF ∈
R

3×20 . The matrices Km
F ,R and Km

F ,I as well as the projection matrix P are
constant and are computed offline.

characteristic matrices for the rotor about any possible orienta-
tion are computed noniteratively and in a linear fashion. Finally,
it should be noted that the magnetic flux density measurements
will be affected by the field due to stator currents. However, as
illustrated in [5], the measured radial components of the flux
density are linear with respect to coil currents. Therefore, the
influence of the stator currents on the sensor measurements can
be compensated for by using current measurements and the in-
formation obtained in a calibration procedure.

TABLE 1
PARAMETERS FOR FINITE ELEMENTS VERIFICATION

VI. VERIFICATION WITH FINITE ELEMENT SIMULATIONS

A. Simulation Setup

In this section, magnetic flux density, force, and torque models
are verified using finite element simulations. Electromagnetic
3-D finite element simulations are performed using the ac/dc
module of COMSOL Multiphysics v4.1 running on a Win7 64-
bit system equipped with two Intel six-core 3.33-GHz CPUs and
48-GB RAM. Simulation parameters are summarized in Table I.
Notice that the verification is performed using a nonferromag-
netic stator. Hence, the analytical expression of the magnetic
flux density without the metallic stator can be easily obtained
from (26) by calculating the limit for the inner stator radius
R4 → ∞.

B. Magnetic Flux Density Simulations

The three components of the magnetic flux density are
evaluated about a parametric circular path, which is de-
scribed in spherical coordinates as p = rp r̂ + θp θ̂ + φφ̂, where
rp = 95.5 mm and φ ∈ [0, 360] deg. The evaluation is re-
peated about four different values of the latitudinal angle
θp = {45, 55, 65, 75}◦ . Therefore, for an immobile rotor with
a nonferromagnetic stator, the expected radial component of
the flux density about these parametric circular paths can be
calculated from (25) as

B4r (rp , θp , φ) = lim
R4 →∞

{
K1Br

∂

∂r

[
r−4 (

R−7
4 r7 − 1

)]∣∣
r=rp

}

·
3∑

m=−3

cm
3,immY m

3 (θp , φ)

= lim
R4 →∞

{K1}
6
√

3Br

r5
p

sin2 θp cos θp sin 2φ.

(63)

The tangential components B4θ and B4φ can be derived in a
similar way. Simulated values of the magnetic flux density are
compared to the analytical model in Fig. 4. As one can notice,
all the three components of the simulated flux density are in
strong accordance with the analytical expression of the model.

C. Force and Torque Simulations

The objective of this section is to illustrate the ability of the
developed force and torque analytical models to produce suit-
able current vectors to satisfy reference forces and torques for
four randomly generated orientations of the rotor. For illustra-
tive purposes, ten single-axis magnetic flux density sensors are
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Fig. 4. Simulated magnetic flux density at various values of the angle θ
compared to analytical model.

placed at the center of each stator coil P1 to P10 . Hence, the
projection matrix P as well as force and torque characteristics
matrices Km

F,R , Km
F,I , Km

T ,R , and Km
T ,I are computed as pre-

sented in the offline procedure in Section V-A. Subsequently,
the simulated magnetic flux density is used to compute matrices
KF and KT as described in the online procedure. Then, for each
of the four orientations, force and torque characteristic matrices
are employed to compute a suitable current vector by applying
the inverse model (47) to satisfy three randomly generated pairs
of reference forces and torques. Forces and torques are chosen
with random direction but with norm equal to 25 N and 1 N·m,
respectively. Therefore, force and torque inverse models are ver-
ified for a total of 12 configurations. Simulations are performed
by applying to the stator coils the current vector generated with
the inverse model. Finally, simulated forces and torques are
computed using the Lorentz integral in COMSOL Multiphysics
and compared to the expected reference values. The three com-
ponents of the reference and simulated forces for the studied
configurations are reported in Fig. 5. As can be observed, forces
resulting from the proposed simulated model are in agreement
with the reference values. Although not reported in this paper,
torque simulations resulted in a similar performance.

VII. EXPERIMENTAL VERIFICATION WITH LABORATORY

PROTOTYPE

A. Developed Laboratory Prototype

A laboratory prototype of the reaction sphere has been devel-
oped. The prototype is composed of a permanent magnet rotor
and a plastic stator with coils as reported in Figs. 6 and 7, re-
spectively. Notice that manufacturing permanent magnets with

Fig. 5. Reference and simulated forces for multiple randomly selected con-
figurations of the reaction sphere rotor.

Fig. 6. Rotor during assembly showing cylindrical permanent magnets with
(left) different heights. (Right) Final rotor.

Fig. 7. One of the two plastic stator hemispheres with air-cored coils and
plastic protections.

the spherical shape depicted in Fig. 1 to obtain the theoretical
remanence Br,imm of (2) is both technologically challenging
and expensive. Therefore, in order to obtain a valid approxima-
tion of the desired magnetic remanence, the spherical permanent
magnet has been discretized using a mosaic of 728 cylindrical
magnets glued on the surface of the reaction sphere rotor back
iron. These permanent magnets have the same magnetic rema-
nence Br and their height is varied to approximate the desired
spherical harmonic of (2). The stator is manufactured using a
nonferromagnetic plastic material that serves as support for the
20 air-cored coils. Notice that the coils have been manufactured
with the desired spherical shape. Specifications of this prototype
are consistent with Table I.

B. Magnetic Flux Density Measurement

1) Experimental Setup: The experimental setup for the mag-
netic flux density measurement is depicted in Fig. 8. The mag-
netic flux density is measured with a Gaussmeter (MAGNET-
PHYSIK FH55) equipped with an axial Hall probe (HS-AGB5)
that can be placed at multiple declination angles θ and at
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Fig. 8. Experimental setup for magnetic flux density measurement.

various distances from the rotor surface. The axial probe can
be positioned to measure the radial component of the magnetic
flux density B4r and both tangential components B4θ and B4φ ,
which all contribute to generate the Lorentz force. An electric ac
motor connected to a rigid guiding axis is employed to rotate the
rotor at 0.1 r/min. A dSPACE platform records the measured
data at sampling intervals of 0.5 s.

2) Measurement Results: The three components of the mea-
sured magnetic flux density at r = 95.5 mm for different values
of angle θ are compared to the analytical model in Fig. 9. As
can be observed, both the radial and tangential components of
the measured flux density have the desired sinusoidal profile for
all angles θ. However, the amplitudes of all three components
of the measured flux density profiles are approximately 20%
weaker than their analytical values due to the discretization of
the spherical permanent magnet. As a matter of fact, the dis-
cretization is obtained with a mosaic of 728 cylindrical magnets
that do not cover the whole rotor surface. Subsequently, the ra-
dial components of the magnetic flux density measured about a
pole (θ ≈ 55◦ and φ = 45◦), from a radius Ra = 92 mm (inner
coil radius) to Rb = 99 mm (outer coil radius and location of
sensors), are compared to the analytical model in Fig. 10. As one
can notice, the ratio ΔK between the measured and analytical
values does not vary significantly throughout the airgap, and it
is approximately equal to 0.8.

3) Discussion: On the basis of the measurements performed,
it is assumed that the magnetic flux density Bp

4 within the airgap
of the developed prototype can be expressed as

Bp
4 = ΔK B4 (64)

where B4 is the flux density with the ideal spherical permanent
magnet in (26) while ΔK = 0.8 a scalar to account for its dis-
cretization. The value of ΔK is determined experimentally and
depends on both the discretization method and the dimension of
the rotor.

For open-loop operation, with assumption (64) and invok-
ing linearity, force and torque analytical models proposed
in Section III can be easily scaled to account for the discretiza-
tion by premultiplying KF and KT in (44) with ΔK . Therefore,
for the same current vector, the amplitude of forces and torques
produced by the developed prototype will be lower by a fac-
tor ΔK than those obtained with the ideal spherical permanent
magnet. We emphasize, however, that since ΔK is a scalar,

Fig. 9. Measured magnetic flux density at various angles θ compared to ana-
lytical model.

Fig. 10. Measured radial component of the magnetic flux density at various
values of the radius r compared to analytical model.

the directions of forces and torques remain virtually unaffected.
Vice versa, with the scaled force and torque models, the cur-
rents necessary to satisfy a pair of reference force and torque
will be higher by a factor 1/ΔK than those necessary with the
ideal spherical magnet. Therefore, the current vector has a larger
magnitude to compensate for the weaker flux density due to the
discretization of the magnet.

For closed-loop operation, however, rescaling the force and
torque characteristic matrices in (43) and the normalization
factor Π in (51) is possible but not necessary. As a matter of
fact, the matrices KF and KT are computed using (60) and
(62), where the coefficients xk , estimated using (56) from mea-
surements embedded in the vector B⊥

4 , completely specify the
weaker magnetic flux density within the airgap. Therefore, the
currents computed to satisfy a pair of reference force and torque
using the inverse model (47) will automatically and in a closed-
loop fashion compensate for the weaker flux density due to the
discretization of the magnet.
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Fig. 11. Experimental setup for (left) force and (right) torque measurement.

C. Force and Torque Measurement

1) Experimental Setup: The experimental setup for force
and torque measurements is reported in Fig. 11. The sphere
is maintained centered inside the stator by a temporary rigid
guiding axis to allow the measurement of forces and torques.
Only force and torque components parallel to the axis will be
measured. We emphasize, however, that this test axis is purely
arbitrary and that the procedure for obtaining force and torque
models is applied as presented in the previous sections without
a priori information on the choice of the rotation axis. For force
measurements, the rotor is suspended to a load cell (HMB Typ
Z8) that continuously measures the rotor weight. The perma-
nent magnet rotor is mounted inside a plastic stator that also
supports the coils. To measure the torque, the rotor is suspended
and the torque is measured with a load cell through a cantilever
of length d equal to 14.3 cm.

The measurement procedure consists in illustrating the ability
of the developed force and torque analytical models to produce
suitable current vectors to obtain the desired forces and torques
for the rotor about various orientations. For each orientation,
described by a rotation of α about the axis, the magnetic flux
density is measured at the center of each stator coil P1 to P9
at Rs = 99 mm and the online procedure in Section V-A is
followed to compute KF and KT . For each orientation, a set
of currents iF and iT is computed using the inverse model to
produce vertical forces of 9.81 N and torques of 0.4 N·m as

iF = KT
F

(
KF KT

F

)−1 · [0, 0, 9.81 · 1]T k (65)

iT = KT
T

(
KT KT

T

)−1 · [0, 0, 0.4]T k (66)

where k is a scalar factor, which will be varied to verify the
linearity.

2) Measurement Results: Measured forces and torques for
different values of the proportionality factor k and for the rotor
about different orientations are reported in Fig. 12. Measured
values confirm the linearity between stator currents and forces
and torques. Moreover, forces and torques obtained about var-
ious orientations of the rotor are in good agreement with the
analytical models. Differences between the experimental val-
ues and the analytical model are mainly caused by fabrication
and measurement errors as well as residual features due to the
discretization of the magnet.

The currents necessary to obtain the measured forces when
the proportionality factor k is equal to 3 are presented in Fig. 13.
As discussed in Section III-D, because two facing coils Pi and
P20+1−i produce the same force, one has iF,i = iF,20+1−i , i =

Fig. 12. Measured forces (left) and torques (right) for different orientations
of the rotor and different magnitudes of the current vector.

Fig. 13. Half-stator currents iF for different orientations of the rotor with
force proportionality factor k = 3.

1, 2, . . . , 10. Therefore, since coil P10 and P11 are not used
in this experiment, only current from P1 to P9 are reported
in Fig. 13. For each angle α, Fig. 13 indicates the maxi-
mum current intensity defined by the vector infinity-norm as
|iF | = max |ii | , i = 1, 2, . . . , 10, and the total electric power
P relative to all 20 stator currents. As can be noticed, the current
of each coil depends on the orientation of the rotor described
by α. Moreover, although the current vector iF is computed
to minimize the dissipated energy for each orientation α using
(48), the total electric power varies among the orientations in-
dicating the existence of preferred configurations. Although not
reported, similar results are observed for the current iT neces-
sary to produce the torques reported in Fig. 12. For k = 3, the
current intensity lies between |iT | = 1.30 A and |iT | = 1.52 A
while the necessary electric power ranges from P = 52.95 W
to P = 104.00 W . Finally, note that higher forces and torques
can be easily generated provided that sufficient electric power
can be supplied to the stator coils.

VIII. CONCLUSION

We have presented force and torque analytical models of
an innovative spherical actuator. The magnetization of the per-
manent magnet rotor allows exploiting powerful properties of
spherical harmonics under rotation to produce an expression of
the magnetic flux density for the rotor in any possible orienta-
tion. The resulting model is linear and is parameterized using
seven spherical harmonic coefficients that convey the necessary
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information relative to the rotor configuration. We have then
proposed an estimation method of the seven spherical harmonic
coefficients. This method is based on measuring the radial com-
ponent of the magnetic flux density at N ≥ 7 locations equidis-
tant from the rotor surface. Unlike the estimation of the rotor
orientation using Euler angles, the proposed technique is lin-
ear and is expressed in closed form. Despite being intimately
related to the magnetization of the rotor, involving in our case
spherical harmonics of degree 3 only, this methodology could
also be generalized to take undesired distortions into account,
by considering their expansion on harmonic functions of higher
degrees in (8). Subsequently, we have summarized the imple-
mentation procedure for the online computation of force and
torque models, highlighting the attractive computational struc-
ture, in which several ingredients are computed offline. Finally,
force and torque models are verified with numerical finite ele-
ment simulations and with the developed laboratory prototype.
Although not considered in this paper, the influence of sensor
noise and the distortion of the magnetic flux density on the
spherical actuator performance will be the topic of our future
investigations.

APPENDIX

SPHERICAL HARMONICS

In this appendix, a synthetic overview of the definition and
relevant properties of spherical harmonics are presented accord-
ing to [18]. For any integer n ≥ 0 and integer m, with |m| ≤ n,
the complex-valued spherical harmonic of degree n and order
m ≥ 0 is defined in spherical coordinates (θ, φ) as

Y m
n (θ, φ) =

√
(2n + 1) (n − m)!

4π (n + m)
Pm

n (cos θ) eimφ (67)

and for m < 0 as

Y −m
n (θ, φ) = (−1)m Y m

n (θ, φ) (68)

where Pm
n (cos θ) are associated Legendre functions and

Y m
n (θ, φ) is the complex conjugate of Y m

n (θ, φ). The spherical
harmonics Y m

n (θ, φ) are orthogonal in L2
(
S2

)
∫ π

0

∫ 2π

0
Y m

n (θ, φ) Y j
k (θ, φ) sin θ dθdφ = δnm δkj . (69)

Therefore, any function f ∈ L2
(
S2

)
can be expanded as

f (θ, φ) =
L∑

n=0

n∑
m=−n

cm
n Y m

n (θ, φ) (70)

where the coefficients cm
n of expansions are calculated invoking

the orthogonality property as

cm
n =

∫ 2π

0

∫ π

0
f (θ, φ) Y m

n (θ, φ) sin θ dθdφ. (71)

Finally, applying a rotation operator on the function f (θ, φ)
gives some new function f̆ (θ, φ) whose expansion coefficients
are calculated as

c̆m
n =

∑
m ′

cm ′

n Dn
mm ′ (αβγ) (72)

where Dn
mm ′ (αβγ) are unitary rotation matrices due to Wigner,

which are expressed in terms of the Euler angles (αβγ).
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