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Abstract

The 3DVAR filter is prototypical of methods used to combine ob-
served data with a dynamical system, online, in order to improve esti-
mation of the state of the system. Such methods are used for high di-
mensional data assimilation problems, such as those arising in weather
forecasting. To gain understanding of filters in applications such as
these, it is hence of interest to study their behaviour when applied
to infinite dimensional dynamical systems. This motivates study of
the problem of accuracy and stability of 3DVAR filters for the Navier-
Stokes equation.

We work in the limit of high frequency observations and derive
continuous time filters. This leads to a stochastic partial differen-
tial equation (SPDE) for state estimation, in the form of a damped-
driven Navier-Stokes equation, with mean-reversion to the signal, and
spatially-correlated time-white noise. Both forward and pullback accu-
racy and stability results are proved for this SPDE, showing in partic-
ular that when enough low Fourier modes are observed, and when the
model uncertainty is larger than the data uncertainty in these modes
(variance inflation), then the filter can lock on to a small neighbour-
hood of the true signal, recovering from order one initial error, if the
error in the observations modes is small. Numerical examples are given
to illustrate the theory.

1 Introduction

Data assimilation is the problem of estimating the state variables of a dy-
namical system, given observations of the output variables. It is a chal-
lenging and fundamental problem area, of importance in a wide range of
applications. A natural framework for approaching such problems is that
of Bayesian statistics, since it is often the case that the underlying model
and/or the data are uncertain. However, in many real world applications,
the dimensionality of the underlying model and the vast amount of available
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data makes the investigation of the Bayesian posterior distribution of the
model state given data computationally infeasible in on-line situations. An
example of such an application is the global weather prediction: the com-
putational models used currently involve on the order of O(108) unknowns,
while a large amount of partial observations of the atmosphere, currently on
the order of O(106) per day, are used to compensate both the uncertainty
in the model and in the initial conditions.

In situations like this practitioners typically employ some form of ap-
proximation based on both physical insight and computational expediency.
There are two competing methodologies for data assimilation which are
widely implemented in practice, the first being filters [23] and the second be-
ing variational methods [3]. In this paper we focus on the filtering approach.
Many of the filtering algorithms implemented in practice are ad hoc and,
besides some very special cases, the theoretical understanding of their ability
to accurately and reliably estimate the state variables is under-developed.
Our goal here is to contribute towards such theoretical understanding. We
concentrate on the 3DVAR filter which has its origin in weather forecasting
[25] and is prototypical of more sophisticated filters used today.

The idea behind filtering is to update the posterior distribution of the
system state sequentially at each observation time. This may be performed
exactly for linear systems subject to Gaussian noise: the Kalman filter [21].
For the case of non-linear and non-Gaussian scenarios the particle filter [13]
can be used and provably approximates the desired probability distribution
as the number of particles increases [2]. Nevertheless, standard implementa-
tions of this method perform poorly in high dimensional systems [31]. Thus
the development of practical filtering algorithms for high dimensional dy-
namical systems is an active research area and for further insight into this
subject the reader may consult [36, 15, 38, 20, 26, 7, 39, 4] and references
within. Many of the methods used invoke some form of ad hoc Gaussian
approximation and the 3DVAR method which we analyze here is perhaps
the simplest example of this idea. These ad hoc filters, 3DVAR included,
may also be viewed within the framework of nonlinear control theory and
thereby derived directly, without reference to the Bayesian probabilistic in-
terpretation; indeed this is primarily how the algorithms were conceived.

In this paper we will study accuracy and stability for the 3DVAR filter.
The term accuracy refers to establishing closeness of the filter to the true
signal underlying the data, and stability is concerned with studying the dis-
tance between two filters, initialized differently, but driven by the same noisy
data. Proving filter accuracy and stability results for control systems has a
long history and the paper [32] is a fundamental contribution to the subject
with results closely related to those developed here. However, as indicated
above, the high dimensionality of the problems arising in data assimilation
is a significant challenge in the area. In order to confront this challenge we
work in an infinite dimensional setting, therby ensuring that our results are
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not sensitive to dimensionality. We focus on dissipative dynamical systems,
and take the two dimensonal Navier-Stokes equation as a prototype model in
this area. Furthermore, we study a data assimilation setting in which data
arrives continuously in time which is a natural setting in which to study
high time-frequency data subject to significant uncertainty. The study of
accuracy and stability of filters for data assimilation has been a developing
area over the last few years and the paper [6] contains finite dimensional the-
ory and numerical experiments in a variety of finite and discretized infinite
dimensional systems extend the conclusions of the theory. The paper [37]
highlights the principle that, roughly speaking, unstable directions must be
observed and assimilated into the estimate and, more subtly, that accuracy
can be improved by avoiding assimilation of stable directions. In particu-
lar the papers [6, 37] both explicitly identify the importance of observing
the unstable components of the dynamics, leading to the notion of AUS:
assimilation in the unstable subspace. The paper [5] describes a theoretical
analysis of 3DVAR applied to the Navier-Stokes equation, when the data
arrives in discrete time, and in this paper we address similar questions in
the continuous time setting; both papers include the possibility of only par-
tial observations in Fourier space. Taken together, the current paper and [5]
provide a significant generalization of the theory in [32] to dissipative infinite
dimensional dynamical systems prototypical of the high dimensional prob-
lems to which filters are applied in practice; furthermore, through studying
partial observations, they give theoretical insight into the idea of AUS as
developed in [6, 37]. The infinite dimensional nature of the problem brings
fundamental mathematical issues into the problem, not addressed in previ-
ous finite dimensional work. We make use of the squeezing property of many
dissipative dynamical systems [8, 34], including the Navier-Stokes equation,
which drives many theoretical results in this area, such as the ergodicity
studies pioneered by Mattingly [27, 19]. In particular our infinite dimen-
sional analysis is motivated by the theory developed in [28] and [22], which
are the first papers to study data assimilation directly through PDE analy-
sis, using ideas from the theory of determining modes in infinite dimensional
dynamical systems. However, in contrast to those papers, here we allow for
noisy observations, and provide a methodology that opens up the possibility
of studying more general Gaussian approximate filters such as the Ensemble
and the Extended Kalman filter (EnKF and ExKF).

Our point of departure for analysis is an ordinary differential equation
(ODE) in a Banach space. Working in the limit of high frequency observa-
tions we formally derive continuous time filters. This leads to a stochastic
differential equation for state estimation, combining the original dynamics
with extra terms indcuing mean reversion to the noisily observed signal. In
the particular case of the Navier-Stokes equation we get a stochastic PDE
(SPDE) with additional mean-reversion term, driven by spatially-correlated
time-white noise. This SPDE is central to our analysis as it is used to prove
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accuracy and stability results for the 3DVAR filter. In particular, in the case
when enough of the low modes of the Navier-Stokes equation are observed
and the model has larger uncertainty than the data in these low modes, a
situation known to practitioners as variance inflation, then the filter can lock
on to a small neighbourhood of the true signal, recovering from the initial
error, if the error in the observed modes is small. The results are formulated
in terms of the theory of random and stochastic dynamical systems [1], and
both forward and pullback type results are proved, leading to a variety of
probabilistic accuracy and stability results, in the mean square, probability
and almost sure senses.

The paper is organised as follows. In Section 2 we derive the continuous-
time limit of the 3DVAR filter applied to a general ODE in a Banach space,
by considering the limit of high frequency observations. In Section 3, we
focus on the 2D Navier-Stokes equations and present the continuous time
3DVAR filter within this setting. Sections 4 and 5 are devoted, respectively,
to results concerning forward accuracy and stability as well as pullback accu-
racy and stability, for the filter when applied to the Navier-Stokes equation.
In Section 6, we present various numerical investigations that corroborate
our theoretical results. Finally in Section 7 we present conclusions.

2 Continuous-Time Limit of 3DVAR

Consider u satisfying the following ODE in a Banach space X :

du

dt
= F(u), u(0) = u0 . (1)

Our aim is to study online filters which combine knowledge of this dynamical
system with noisy observations of un = u(nh) to estimate the state of the
system. This is particularly important in applications where u0 is not known
exactly, and the noisy data can be used to compensate for this lack of initial
knowledge of the system state.

In this section we study approximate Gaussian filters in the high fre-
quency limit, leading to stochastic differential equations which combine the
dynamical system with data to estimate the state. As the formal derivation
of continuous time filters in this section is independent of the precise model
under consideration, we employ the general framework of (1). We make
some general observations, relating to a broad family of approximate Gaus-
sian filters, but focus mainly on 3DVAR. In subsequent sections, where we
study stability and accuracy of the filter, we focus exclusively on 3DVAR,
and work in the context of the 2D incompressible Navier-Stokes equation,
as this is prototypical of dissipative semilinear partial differential equations.

4



2.1 Set Up - The Filtering Problem

We assume that u0 ∼ N(m̂0, Ĉ0) so that the initial data is only known
statistically. The objective is to update the estimate of the state of the
system sequentially in time, based on data received sequentially in time.
We define the flow-map Ψ : X × R+ → X so that the solution to (1) is
u(t) = Ψ(u0; t). Let H denote a linear operator from X into another Banach
space Y , and assume that we observe Hu at equally spaced time intervals:

yn = HΨ(u0;nh) + ηn. (2)

Here {ηn}n∈N is an i.i.d sequence, independent of u0, with η1 ∼ N(0,Γ). If
we write un = Ψ(u0;nh), then

un+1 = Ψ(un;h), (3)

and
yn|un ∼ N(Hun,Γ). (4)

We denote the accumulated data up to the time n by

Yn = {yi}ni=1.

Our aim is to find P(un|Yn).
We will make the Gaussian ansatz that

P(un|Yn) ' N(m̂n, Ĉn). (5)

The key question in designing an approximate Gaussian filter, then, is to
find an update rule of the form

(m̂n, Ĉn) 7→ (m̂n+1, Ĉn+1) (6)

Because of the linear form of the observations in (2), together with the
fact that the noise is mean zero-Gaussian, this update rule is determined
directly if we impose a further Gaussian ansatz, now on the distribution of
un+1 given Yn :

un+1|Yn ∼ N(mn+1, Cn+1) (7)

With this in mind, the update (6) is usually split into two parts. The
first, prediction (or forecast), step is the map

(m̂n, Ĉn) 7→ (mn+1, Cn+1) (8)

The second, analysis, step is

(mn+1, Cn+1) 7→ (m̂n+1, Ĉn+1). (9)
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For the prediction step we will simply impose the approximation (7) with

mn+1 = Ψ(m̂n;h), (10)

while the choice of Cn+1 will depend on the choice of the specific filter. For
the analysis step, assumptions (4), (7) imply that

un+1|Yn+1 ∼ N(m̂n+1, Ĉn+1) (11)

and an application of Bayes rule, as applied in the standard Kalman filter
update [21], and using (10), gives us the nonlinear map (6) in the form

Ĉn+1 = Cn+1 − Cn+1H
∗(Γ +HCn+1H

∗)−1HCn+1

m̂n+1 = Ψ(m̂n;h) + Cn+1H
∗(Γ +HCn+1H

∗)−1(yn+1 −Hmn+1)(12)

The mean m̂n+1 is an element of the Banach space X, and Ĉn+1 is a linear
symmetric and non-negative operator from X into itself.

2.2 Derivation of The Continuous-Time Limit

Together equations (10) and (12), which are generic for any approximate
Gaussian filter, specify the update for the mean once the equation deter-
mining Cn+1 is defined. We proceed to derive a continuous-time limit for
the mean, in this general setting, assuming that Cn arises as an approxima-
tion of a continuous process C(t) evaluated at t = nh, so that Cn ≈ C(nh),
and that h � 1. Throughout we will assume that Γ = h−1Γ0. This scaling
implies that the noise variance is inversely proportional to the time between
observations and is the relationship which gives a nontrivial stochastic limit
as h→ 0.

With these scaling assumptions equation (12b) becomes

m̂n+1 = Ψ(m̂n;h) + hCn+1H
∗(Γ0 + hHCn+1H

∗)−1(yn+1 −HΨ(m̂n;h)).

Thus

m̂n+1 − m̂n

h
=

Ψ(m̂n;h)− m̂n

h
+ Cn+1H

∗(Γ0 + hHCn+1H
∗)−1(yn+1 −HΨ(m̂n;h)).

If we define the sequence {zn}n∈Z+ by

zn+1 = zn + hyn+1, z0 = 0 ,

then we can rewrite the previous equation as

m̂n+1 − m̂n

h
=

Ψ(m̂n;h)− m̂n

h
(13)

+ Cn+1H
∗(Γ0 + hHCn+1H

∗)−1

(
zn+1 − zn

h
−HΨ(m̂n;h)

)
.
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Note that
Ψ(m̂n;h) = m̂n + hF(m̂n) +O(h2).

This is an Euler-Maruyama-like discretization of a stochastic differential
equation which, if we pass to the limit of h→ 0 in (13), noting that we have
assumed that Cn ≈ C(nh) for some continuous covariance process, is seen
to be

dm̂

dt
= F(m̂) + CH∗Γ−1

0

(
dz

dt
−Hm̂

)
, m̂(0) = m̂0. (14)

Equation (14) is similar to the observer equation in the nonlinear control
literature [32]. Our objective in this paper is to study the stability and
accuracy properties of this stochastic model. Here stability refers to the
contraction of two different trajectories of the filter (14), started at two
different points, but driven by the same observed data; and accuracy refers to
estimating the difference between the true trajectory of (1) which underlies
the data, and the output of the filter (14). Similar questions are studied
in finite dimensions in [32]. However, the infinite dimensional nature of our
problem, coupled with the fact that we study situations where the state is
only partially observed (H is not invertible on X) mean that new techniques
of analysis are required, building on the theory of semilinear dissipative
PDEs and infinite dimensional dynamical systems.

We now express the observation signal z in terms of the truth u in order
to facilitate study of filter stability and accuracy. In particular, we have
that (

zn+1 − zn
h

)
= yn+1 = Hun+1 +

√
Γ0√
h
∆wn+1,

where {∆wn}n∈N is an i.i.d sequence and ∆w1 ∼ N(0, I) in Y . This corre-
sponds to the Euler-Maruyama discretization of the SDE

dz

dt
= Hu+

√
Γ0
dW

dt
, z(0) = 0. (15)

Expressed in terms of the true signal u, equation (14) becomes

dm̂

dt
= F(m̂) + CH∗Γ−1

0 H (u− m̂) + CH∗Γ
−1/2
0

dW

dt
. (16)

We complete the study of the continuous limit with the specific example
of 3DVAR. This is the simplest filter of all in which the prediction step is
found by simply setting Cn+1 = Ĉ for some fixed covariance operator Ĉ,
independent of n. Then equation (12) shows that Ĉn+1 = Ĉ +O(h) and we
deduce that the limiting covariance is simply constant: C(t) = Ĉ(t) = Ĉ for
all t ≥ 0. The present work will focus on this case and hence study (16) in
the case where C = Ĉ, a constant in time.
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3 Continuous-Time 3DVAR for Navier-Stokes

In this section we describe application of the 3DVAR algorithm to the two
dimensional Navier-Stokes equation. This will form the focus of the remain-
der of the paper. In subsection 3.1 we describe the forward model itself,
namely we specify equation (1), and then in subsection 3.2 we describe how
data is incorporated into the model, and specify equation (16), and the
choices of the (constant in time) operators C = Ĉ and Γ0 which appear in
it.

3.1 Forward Model

Let T2 denote the two-dimensional torus of side L : [0, L) × [0, L) with
periodic boundary conditions. We consider the equations

∂tu(x, t)− ν∆u(x, t) + u(x, t) · ∇u(x, t) +∇p(x, t) = f(x)
∇ · u(x, t) = 0
u(x, 0) = u0(x)

for all x ∈ T2 and t ∈ (0,∞). Here u:T2× (0,∞) → R2 is a time-dependent
vector field representing the velocity, p:T2×(0,∞) → R is a time-dependent
scalar field representing the pressure and f :T2 → R2 is a vector field repre-
senting the forcing which we take as time-independent for simplicity. The
parameter ν represents the viscosity. We assume throughout that u0 and f
have average zero over T2; it then follows that u(·, t) has average zero over
T2 for all t > 0.

Define

T :=

{
trigonometric polynomialsu : T2 → R2

∣∣∣∇ · u = 0,

∫
T2

u(x) dx = 0

}
andH as the closure of T with respect to the norm in (L2(T2))2 = L2(T2,R2).

We let P : (L2(T2))2 → H denote the Leray-Helmholtz orthogonal pro-
jector. Given k = (k1, k2)

T, define k⊥ := (k2,−k1)T. Then an orthonormal
basis for H is given by ψk:R2 → R2, where

ψk(x) :=
k⊥

|k|
exp

(2πik · x
L

)
(17)

for k ∈ Z2 \ {0}. Thus for u ∈ H we may write

u(x, t) =
∑

k∈Z2\{0}

uk(t)ψk(x)

where, since u is a real-valued function, we have the reality constraint u−k =
−uk. We define the projection operators Pλ : H → H and Qλ : H → H for
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λ ∈ N ∪ {∞} by

Pλu(x, t) =
∑

|2πk|2<λL2

uk(t)ψk(x), Qλ = I − Pλ.

Below we will choose the observation operator H to be Pλ.
We define A = − L2

4π2P∆, the Stokes operator, and, for every s ∈ R,
define the Hilbert spaces Hs to be the domain of As/2. We note that A is
diagonalized in H in the basis comprised of the {ψk}k∈Z2\{0} and that, with
the normalization employed here, the smallest eigenvalue of A is λ1 = 1. We
use the norm ‖ · ‖2s := 〈·, As·〉, the abbreviated notation ‖u‖ for the norm on
V := H1, and | · | for the norm on H := H0.

Applying the projection P to the Navier-Stokes equation we may write
it as an ODE in H:

du

dt
+ δAu+ B(u, u) = f, u(0) = u0. (18)

Here δ = 4π2ν/L2 and the term B(u, v) is the symmetric bilinear form
defined by

B(u, v) = 1

2
P (u · ∇v) + 1

2
P (v · ∇u)

for all u, v ∈ V. Finally, with abuse of notation, f is the original forcing,
projected into H. Equation (18) is in the form of equation (1) with

F(u) = −δAu− B(u, u) + f. (19)

See [8] for details of this formulation of the Navier-Stokes equation as
an ODE in H. The following proposition is a classical result which implies
the existence of a dissipative semigroup for the ODE (18). See Theorems
9.5 and 12.5 in [29] for a concise overview and [33, 34] for further details.

Proposition 3.1. Assume that u0 ∈ H1 and f ∈ H. Then (18) has a
unique strong solution on t ∈ [0, T ] for any T > 0 :

u ∈ L∞((0, T );H1) ∩ L2((0, T );H2),
du

dt
∈ L2((0, T );H).

Furthermore the equation has a global attractor A and there is R ∈ (0,∞)
such that, if u0 ∈ A, then the solution from this initial condition exists for
all t ∈ R and supt∈R ‖u(t)‖2 = R.

We let {Ψ(·, t) : H1 → H1}t≥0 denote the semigroup of solution operators
for the equation (18) through t time units. We note that by working with
weak solutions, Ψ(·, t) can be extended to act on larger spaces Hs, with
s ∈ [0, 1), under the same assumption on f ; see Theorem 9.4 in [29].
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3.2 3DVAR

We apply the analysis of the previous section to write down the continuous
time 3DVAR filter, namely (16) with C(t) = Ĉ constant in time, for the
Navier-Stokes equation. We take X = H and throughout we assume that
the data is found by observing Pλu at discrete times, so that H∗ = H = Pλ

and Y = PλH. We assume that A, Γ0 and Ĉ commute and, for simplicity
of presentation, suppose that

Ĉ = ωσ20A
−2ζ , Γ0 = σ20A

−2βPλ. (20)

We set α = ζ−β. These assumptions correspond to those made in [5] where
discrete time filters are studied. Note that As/2 is defined on Hs; it is also
defined on Y for every s ∈ R, provided that λ is finite.

From equations (16), using (19) and the choices for Ĉ and Γ0 we obtain

dm̂

dt
+δAm̂+B(m̂, m̂)+ωA−2αPλ(m̂−u) = f+ωσ0A

−2α−βPλ
dW

dt
, m̂(0) = m̂0

(21)
whereW is a cylindrical Brownian motion in Y . In the following we consider
the cases of finite λ, where the data is in a finite dimensional subspace of
H, and infinite λ, where Pλ = I and the whole solution is observed.

Lemma 3.2. For λ = ∞ assume that 4α + 2β > 1. Then the stochastic
convolution

WA(t) =

∫ t

0
eδ(t−s)AA−2α−βPλdW (s)

has a continuous version in C0([0, T ],V) with all moments E sup[0,T ] ‖WA‖p
finite for all T > 0 and p > 1.

Proof. If λ < ∞ then the covariance of the driving noise is automatically
trace-class as it is finite dimensional; since 4α + 2β > 1 it follows that
the covariance of the driving noise is also trace-class when λ = ∞. The
desired result follows from Theorem 5.16 in [12]. For the moments see [12,
(5.23)].

It is only in the case of full observations (i.e., λ = ∞) that we need the
additional regularity condition 4α + 2β > 1. This may be rewritten as ζ >
1
4 +

1
2β and relates the rate of decay, in Fourier space, of the model variance

to the observational variance. Although a key driver for our accuracy and
stability results (see Remark 4.4 below) will be variance inflation, meaning
that the observational variance is smaller than the model variance in the low
Fourier modes, this condition on ζ allows regimes in which, for high Fourier
modes, the situation is reversed.

Proposition 3.3. Assume that u0 ∈ A and let u be the corresponding so-
lution of (18) on the global attractor A. For λ = ∞ suppose 4α + 2β > 1
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and α > −1
2 . Then for any initial condition m̂(0) ∈ H there is a stochastic

process m̂ which is the unique strong solution of (21) in the spaces

m̂ ∈ L2((0, T ),V) ∩ C0([0, T ],H)

for all T > 0. Moreover,

E‖m̂‖2
L∞((0,T ),H)

+ E‖m̂‖2
L2((0,T ),V)

<∞.

To be more precise

m̂ ∈ L2
(
Ω, C0

loc([0,∞),H)
)
∩ L2

(
Ω, L2

loc([0,∞),V)
)
.

Proof. The proof of this theorem is well known without the function u and
the additional linear term. See for example Theorem 15.3.1 in the book [11]
using fixed point arguments based on the mild solution. Another reference
is [16, Theorem 3.1] based on spectral Galerkin methods. See also [18] or
[30]. Nevertheless, our theorem is a straightforward modification of their
arguments. For simplicity of presentation we refrain from giving a detailed
argument here.

The existence and uniqueness is established either by Galerkin meth-
ods or fixed-point arguments. The continuity of solutions follows from
the standard fixed-point arguments for the mild formulation in the space
C0([0, T ],H).

Finally, as we assume the covariance of the Wiener process to be trace-
class, the bounds on the moments are a straightforward application of Itô’s
formula (cf. [12, Theorem 4.17]) to |m̂|2 and to ‖m̂‖2, in order to derive
standard a-priori estimates. This is very similar to the method of proof that
we use to study mean square stability in Section 4.1.

The additional linear term ωA−2αPλm̂ does not change the result in any
substantive fashion. If λ < ∞ then the proof is essentially identical, as the
additional term is a lower order perturbation of the Stokes operator.

If λ = ∞ then minor modifications of the proof are necessary, but do
not change the proof significantly. This is since, for α > −1

2 , the additional
term ωA−2αm̂ is a compact perturbation of the Stokes operator.

The additional forcing term, depending on u, is always sufficiently regu-
lar for our argument, as we assume u to be on the attractor (see Proposition
3.1).

Remark 3.4. For λ = ∞ it is possible to extend the preceding result to
other ranges of α, but this will change the proof. Hence, for simplicity, for
λ = ∞ we always assume that α > −1

2 .
We comment later on the fact that the solutions to (21) generate a

stochastic dynamical system. As we need two-sided Wiener-processes for
this we postpone the discussion to Section 5.
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4 Forward Accuracy and Stability

We wish to study conditions under which two filters, starting from differ-
ent points but driven by the same observations, converge (stability); and
conditions under which the filter will, asymptotically, track the true signal
(accuracy). Establishing such results has been the object of study in control
theory for some time, and the paper [32] contains foundational work in both
the discrete and continuous time settings. However the infinite dimensional
nature of the problem at hand brings significant new challenges to the anal-
ysis. The key idea driving the proofs is that, although the Navier-Stokes
equations themselves may admit exponentially diverging trajectories, the
observations can counteract this instability, provided the observation space
is large enough. Roughly speaking the exponential divergence of the Navier-
Stokes equations is dominated by a finite set low Fourier modes, whilst the
rest of the space contracts. If the observations provide information about
enough of the low Fourier modes, then this can counteract the instability.
This basic idea underlies the accuracy and stability results proved in sub-
sections 4.1 and 4.2.

A key technical estimate in what follows is the following (see [35]):

Lemma 4.1. For the symmetric bilinear map

B(u, v) = 1

2
P (u · ∇v) + 1

2
P (v · ∇u)

there is constant K ′ ≥ 1 such that for all v, w ∈ V

〈B(v, v)− B(w,w), v − w〉 ≤ K ′‖w‖‖v − w‖ · |v − w|, (22)

|〈B(w, v), v〉| ≤ K ′‖w‖‖v‖|v| and |〈B(w, v), z〉| ≤ K ′‖v‖‖w‖‖z‖ . (23)

Furthermore, for all v ∈ V,

〈B(v, v), v〉 = 0 (24)

Notice that (22) implies that, for K = (K ′)2/δ,

〈B(v, v)−B(w,w), v−w〉 ≤ 1

2
K‖w‖2|v−w|2+1

2
δ‖v−w‖2, ∀v, w ∈ V. (25)

This estimate will be used to control the possible exponential divergence of
Navier-Stokes trajectories which needs to be compensated for by means of
observations.

Proof of Lemma 4.1. We give a brief overview of the main ideas required to
prove this well known result. First notice that the assumption K ′ ≥ 1 is
without loss of generality. We need this later for simplicity of presentation.

12



Then (22) is a direct consequence of (23) and (24), by using the identity

B(v, v)− B(w,w) = B(v + w, v − w) = B(v − w, v − w) + 2B(w, v − w)

For simplicity of presentation, we use the same constant in (22) and (23).
For Navier-Stokes it is well-known that 〈(w · ∇)v, v〉 = 0, as the diver-

gence of w is 0. Thus there is constant c1 such that

2|〈B(w, v), v〉| = 〈(v · ∇)w, v〉| ≤ c1‖w‖|v|2L4 .

Since, in two dimensions H1/2 = D(A1/4) is embedded into L4, there is
constant c2 such that |〈B(w, v), z〉| ≤ c2‖w‖‖v‖

H
1
2
‖z‖

H
1
2
. The first result

in (23) then follows from the interpolation inequality ‖v‖2
H

1
2
≤ c|v|‖v‖ and

the second from the embedding ‖v‖
H

1
2
≤ c‖v‖.

Finally, in the following a key role will be played by the constant γ
defined as follows:

Assumption 4.2. Let γ be the largest positive constant such that

1

2
γ|h|2 ≤ 〈ωA−2αPλh, h〉+

1

2
δ‖h‖2 for all h ∈ V. (26)

It is clear that such a γ always exists, and indeed that γ ≥ δ, as one has
〈A−2αPλh, h〉 ≥ 0. We will study how γ depends on λ and ω in subsequent
discussions where we show that, by choosing λ and ω large enough, γ can
be made arbitrarily large.

4.1 Forward Mean Square Accuracy

Theorem 4.3 (Accuracy). Let m̂ solve (21), and let u solve (18) with
initial condition on the global attractor A. For λ = ∞ assume 4α+ 2β > 1
and α > −1

2 . Suppose that γ, the largest positive number such that (26)
holds, satisfies

γ = KR+ γ0 for some γ0 > 0,

where K is the constant appearing in (25) and R, recall, is defined by R =
supt∈R ‖u(t)‖2. Then

E|m̂(t)−u(t)|2 ≤ e−γ0t|m̂(0)−u(0)|2+ω2σ20

∫ t

0
e−γ0(t−s)traceH(A

−4α−2βPλ)ds.

As a consequence

lim sup
t→∞

E|m̂(t)− u(t)|2 ≤ 1

γ0
ω2σ20traceH(A

−4α−2βPλ).

13



Proof. Define the error e = m̂− u and subtract equation (18) from (21) to
obtain

de+ δAe =
(
B(u, u)− B(m̂, m̂)− ωA−2αPλe

)
dt+ ωσ0A

−2α−βPλdW .

Using the Itô formula from Theorem 4.17 of [12], together with (25), yields

1

2
d|e|2 ≤

(
−1

2
δ‖e‖2 + 1

2
K‖u(t)‖2|e|2 − 〈ωA−2αPλe, e〉

)
dt

+ 〈e, ωσ0A−2α−βPλdW 〉+ 1

2
ω2σ20traceH(A

−4α−2βPλ)dt .

Here we have used the fact that the projection Pλ and A commute. Applying
(26) and taking expectations we obtain

d

dt
E|e(t)|2 ≤ −(γ −K‖u(t)‖2) · E|e(t)|2 + ω2σ20traceH(A

−4α−2βPλ) ,

But supt≥0 ‖u(t)‖2 = R < ∞ by Proposition 3.1 and hence, by assumption
on γ,

d

dt
E|e(t)|2 ≤ −γ0 · E|e(t)|2 + ω2σ20traceH(A

−4α−2βPλ). ,

The result follows from a Gronwall argument.

Remark 4.4. We now briefly discuss the choice of parameters to ensure
satisfaction of the conditions of Theorem 4.3, and its implications. To this
end, notice that K and R are independent of the parameters of the filter,
being determined entirely by the Navier-Stokes equation (18) itself. To apply
the theorem we need to ensure that γ defined by (26) exceeds KR. Notice
that

1

2
γ|h|2 ≤ 〈ωA−2αPλh, h〉+

1

2
δ‖h‖2 for all h ∈ PλV

requires that

1

2
γ ≤ ω

|k|4α
+

1

2
δ|k|2 for all |k|2 < λL2/4π2. (27)

On the other hand,

1

2
γ|h|2 ≤ 〈ωA−2αPλh, h〉+

1

2
δ‖h‖2 for all h ∈ QλV

requires that
γ ≤ δ|k|2 for all |k|2 ≥ λL2/4π2. (28)

Since the global minimum of the function x ∈ R+ 7→ ωx−2α + 1
2δx occurs

at a point cδ2α/2α+1ω1/2α+1 we see that the maximum value of γ such that
(26) holds, γmax, is

γmax = min
{δλL2

4π2
, c(δ2αω)1/(2α+1)

}
.

14



This demonstrates that, provided λ is large enough, and ω is large enough,
then the conditions of the theorem are satisfied.

In summary, these conditions are satisfied provided that enough of the
low Fourier modes are observed (λ large enough), and provided that the ra-
tio of the scale of the covariance for the model to that for the observations,
ω, is sufficiently large. Ensuring that the latter is achieved is often termed
variance inflation in the applied literature and our theory provides concrete
analytical insight into the mechanisms behind it. Furthermore, notice that
once λ and ω are chosen to ensure this, then the asymptotic mean square
error will be small, provided ε := ωσ0 is small that is, provided the obser-
vational noise is sufficiently small. In this situation the theorem establishes
a form of accuracy of the filter since, regardless of the starting point of the
filter,

lim sup
t→∞

E|m̂(t)− u(t)|2 ≤ 1

γ0
ε2traceH(A

−4α−2βPλ).

4.2 Forward Stability in Probability

The aim of this section is to prove that two different solutions of the con-
tinuous 3DVAR filter will converge to one another in probability as t→ ∞.
Almost sure and mean square convergence is out of reach in forward time.
However, almost sure pullback convergence is possible and we study this in
the next section.

Throughout this section we define, for u on the attractor,

R′ = sup
t∈R

|f + ωA−2αPλu|2−1 (29)

and we assume that R′ <∞. From this we define

R′′ =
K

δ2
R′ +

K

δ
ω2σ20traceH(A

−4α−2βPλ). (30)

Theorem 4.5. Let m̂i solve (21) with initial condition m̂(0) = m̂i(0) and
let u solve (18) with initial condition on the global attractor A. For λ = ∞
assume that 4α + 2β > 1 and α > −1

2 . Let R′′ be defined as above, and
suppose γ, the largest positive number such that (26) holds, satisfies γ =
R′′ + γ0 for some γ0 > 0.

Then for all η ∈ (0, γ0)

|m̂1(t)− m̂2(t)|eηt → 0 in probability as t→ ∞.

Proof. It follows from Lemma 4.6 below that, for any fixed t > 0,

P
(
|m̂1(t)−m̂2(t)|2 ≤ |m̂1(0)−m̂2(0)|2e−2γ0t

)
≥ P

(1
t

∫ t

0
K‖m̂2(s)‖2ds ≤ γ−γ0

)
.

(31)

15



Thus to establish the desired convergence in probability, it suffices to estab-
lish that the right hand side converges to 1 as t→ ∞.

Taking the inner-product of equation (21) with m̂, applying (24) and
using the Itô formula from Theorem 4.17 of [12], we obtain

1

2
d|m̂|2 ≤

(
−δ‖m̂‖2 − 〈ωA−2αPλm̂, m̂〉+ 〈f + ωA−2αPλu, m̂〉

)
dt

+ 〈m̂, ωσ0A−2α−βPλdW 〉+ 1

2
ω2σ20traceH(A

−4α−2βPλ)dt

≤
(
−1

2
δ‖m̂‖2 + 1

2δ
|f + ωA−2αPλu|2−1

)
dt

+ 〈m̂, ωσ0A−2α−βPλdW 〉+ 1

2
ω2σ20traceH(A

−4α−2βPλ)dt .

Notice that, from the Poincaré inequality, we have that

d|m̂|2 ≤
(
−δ|m̂|2+1

δ
R′+ω2σ20traceH(A

−4α−2βPλ)
)
dt+2〈m̂, ωσ0A−2α−βPλdW 〉 .

(32)
From this inequality we can deduce two facts. Taking expectations gives

d(E|m̂(t)|2) ≤
(
−δE|m̂|2 + 1

δ
R′

)
dt+ ω2σ20traceH(A

−4α−2βPλ)dt; ,

and thus with R′′ from (30)

lim sup
t→∞

E|m̂(t)|2 ≤ 1

δ2
R′ +

1

δ
ω2σ20traceH(A

−4α−2βPλ) =
R′′

K
. (33)

We also see that

1

t

∫ t

0
|m̂(s)|2ds ≤ R′′

K
+

1

t
|m̂(0)|2 + I(t) , (34)

where we have defined

I(t) =
2

t

∫ t

0
〈m̂(s), ωσ0A

−2α−βPλdW (s)〉

Observe that, by the Itô formula,

E|I(t)|2 ≤ c

t2

∫ t

0
E|m̂(s)|2ds

for the positive constant c = ω2σ20‖A−2α−βPλ‖2L(H). Using (33) we deduce

that I(t) → 0 in mean square and hence in probability. As a consequence
we deduce that (34) implies that

P
(1
t

∫ t

0
K‖m̂(s)‖2ds ≤ R′′

)
→ 1 for t→ ∞ .

This completes the proof.
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Lemma 4.6. Let m̂i solve (21) with the same u on the attractor but with
different initial conditions m̂i(0). For λ = ∞ assume that 4α+2β > 1. Fix
t > 0 and recall that K is the constant appearing in (25). Suppose that γ,
the largest positive number such that (26) holds, satisfies

1

t

∫ t

0
K‖m̂2(s)‖2ds+ γ0 ≤ γ

for some γ0 > 0. Then

|m̂1(t)− m̂2(t)|2 ≤ e−2γ0t|m̂1(0)− m̂2(0)|2.

Proof. We define the error e = m̂1 − m̂2, subtract equation (21) from itself
and take the inner-product with e to obtain, using (25),

1

2

d

dt
|e|2 = 〈F(m̂1)−F(m̂2), e〉 − 〈ωA−2αPλe, e〉

≤ −δ‖e‖2 +K‖m̂2(t)‖2|e|2 − 〈ωA−2αPλe, e〉 .

Applying (26) we obtain

1

2

d

dt
|e(t)|2 ≤ (K‖m̂2(t)‖2 − γ) · |e(t)|2 .

Integrating this inequality yields

|e(t)|2 ≤ exp
(
2

∫ t

0
(K‖m̂2(t)‖2 − γ)ds

)
· |e(0)|2 .

This gives the desired result.

Remark 4.7. Satisfying the condition on γ for the stability Theorem 4.5
is harder than for the accuracy Theorem 4.3. This is because R′′ can grow
with ω and so analogous arguments to those used at the end of the previous
subsection may fail. However different proofs can be developed, in the case
where σ0 is sufficiently small, to overcome this effect.

5 Pullback Accuracy and Stability

In this section we consider almost sure accuracy and stability results for
the 3DVAR algorithm applied to the 2D-Navier-Stokes equation. We use
the notion of pullback convergence as pioneered in the theory of stochastic
dynamical systems, as we do not expect almost sure results to hold forward
in time. Indeed, as shown in the previous section, convergence in probability
is typically the result of forward studies of stability.
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The methodology that we employ derives from the study of semilinear
equations driven by additive noise; in particular the Ornstein-Uhlenbeck
(OU) process constructed from a modification of the Stokes’ equation plays
a central role. Properties of this process are described in subsection 5.1, and
the necessary properties of the 3DVAR Navier-Stokes filter are discussed in
subsection 5.2. In both subsections a key aspect of the analysis concerns the
extension of solutions to the whole real line t ∈ R. Subsections 5.3 and 5.4
then concern accuracy and stability for the filter, in the pull-back sense.

In the following we define the Wiener process

W := ωσ0A
−2α−βPλW,

and recall that when λ = ∞ we assume 4α + 2β > 1 and α > −1
2 . In

this section the driving Brownian motion is considered to be two-sided:
W ∈ C(R,H). This enables us to study notions of pullback attraction and
stability. With this definition, 3DVAR for (18), namely equation (21), may
be written

dm̂

dt
+ δAm̂+B(m̂, m̂) + ωA−2αPλ(m̂− u) = f +

dW
dt

, m̂(0) = m̂0 . (35)

We employ the same notations from the previous sections for the non-
linearity F(u), the Stokes operator A, the bilinear form B, and the spaces
H and V.

5.1 Stationary Ornstein-Uhlenbeck Processes

Let φ ≥ 0 and define the stationary ergodic OU process Zφ as follows, using
integration by parts to find the second expression:

Zφ(t) :=
∫ t
−∞ e−(t−s)(δA+φ)dW(s)

= W(t)−
∫ t
−∞(δA+ φ)e−(t−s)(δA+φ)W(s)ds . (36)

Note that Zφ satisfies

∂tZφ + (δA+ φ)Zφ = ∂tW. (37)

With a slight abuse of notation we rewrite the random variable Zφ(0) as
Zφ(W), a function of the whole Wiener path t 7→ W(t). Thus Zφ(t) =
Zφ(θtW), where θt is the stationary ergodic shift on Wiener space defined
by

θtW(s) = W(t+ s)−W(t) for all t, s ∈ R.

The noise is always of trace-class, in case either λ <∞ or 4α+2β > 1. Recall
that by Lemma 3.2, the OU-process Zφ has a version with continuous paths
in V. We will always assume this in the following. It is well known that
Zφ satisfies the Birkhoff ergodic theorem, because it is a stationary ergodic
process; we now formulate this fact in the pullback sense.
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Theorem 5.1 (Birkhoff Ergodic Theorem). For λ = ∞ assume that
4α+ 2β > 1. Then

lim sup
s→∞

1

s

∫ 0

−s
‖Zφ(τ)‖2dτ = E‖Zφ(0)‖2 .

Proof. Just note that Zφ(τ) = Zφ(θτW), and thus

1

s

∫ 0

−s
‖Zφ(τ)‖2dτ =

1

s

∫ s

0
‖Zφ(θ−τW)‖2dτ → E‖Zφ(W)‖2 for s→ ∞

by the classical version of the Birkhoff ergodic theorem, as θ−τW, τ ≥ 0 is
stationary and ergodic.

We can reformulate the implications of the ergodic theorem in several
ways.

Corollary 5.2. For λ = ∞ assume that 4α+2β > 1. There exists a random
constant C(W) such that

1

|s|

∫ 0

s
‖Zφ(τ)‖2dτ ≤ C(W) for all s < 0.

Furthermore, for any ε > 0 there is a random time tε(W) < 0 such that

1

|s|

∫ 0

s
‖Zφ(τ)‖2dτ ≤ (1 + ε)E‖Zφ(0)‖2 for all s < tε(W) < 0.

This result immediately implies

1

t− s

∫ t

s
‖Zφ(θτW)‖2dτ =

1

t− s

∫ 0

s−t
‖Zφ(θτ+tW)‖2dτ ≤ C(θtW) .

Finally we observe that it is well-known that the Ornstein-Uhlenbeck process
Zφ is a tempered random variable, which means that Zφ(θsW) grows sub-
exponentially for s→ −∞, and in fact it grows slower that any polynomial.
We now state this precisely.

Lemma 5.3. For λ = ∞ assume that 4α + 2β > 1. Then on a set of
measure one

lim
s→−∞

‖Zφ(s)‖ · |s|−ε = 0 for all ε > 0 .

Proof. The claim follows from Proposition 4.1.3 of [1] which states that for
any positive functional h on Wiener paths such that E supt∈[0,1] h(θtW) <∞
one has limt→∞

1
th(θtW) = 0. Here h(W) = ‖Zφ(W)‖p, where the moment

is finite due to Lemma 3.2.
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In addition to the preceding almost sure result, the following moment
bound on Zφ is also useful. It shows that Zφ is of order σ0 and converges to
0 for φ→ ∞. In the following it may be useful to play with φ, and even to
use random φ, as our estimates hold path-wise for all φ.

Lemma 5.4. For λ = ∞ assume that 4α + 2β > 1. Then, for all p > 1
there is a constant Cp > 0 such that(

E‖Zφ(t)‖2p
)1/p

≤ Cpω
2σ20 · trace{(δA+ φ)−1A1−4α−2βPλ}, ∀ t ∈ R.

Proof. Due to stationarity it is sufficient to consider E‖Zφ(0)‖2p. Due to
Gaussianity it is enough to consider p = 1.

E‖Zφ(0)‖2 = E|A1/2Zφ(0)|2 = ω2σ20E
∣∣∣A1/2

∫ 0

−∞
es(δA+φ)A−2α−βPλdW (s)

∣∣∣2 .
Thus by the Itô-Isometry we obtain (projection Pλ commutes with A)

E‖Zφ(0)‖2 = ω2σ20 · trace
(∫ 0

−∞
e2s(δA+φ)A1−4α−2βPλds

)
=

1

2
ω2σ20 · trace

(
(δA+ φ)−1A1−4α−2βPλ

)
.

Remark 5.5. A key conclusion of the preceding lemma is that, if ε := ωσ0
(as defined in Remark 4.4) is small, then all moments of the OU process
Zφ are small. Furthermore, the parameter φ can be tuned to make these
moments as small as desired.

5.2 Solutions Continuous Time 2D Navier-Stokes Filter

In the following we denote the solution of (35) with initial condition m̂(s) =
m̂0 and given Wiener path W by S(t, s,W)m̂0. This object forms a stochas-
tic dynamical system (SDS); see [10, 9]. We cannot use directly the notion
of a random dynamical system, as in [1], because of the non-autonomous
forcing u in (35).

The fact that the solution of the SPDE (35) can be defined path-wise for
every fixed path of W, can be seen from the well-known method of changing
to the variable v := m̂−Zφ. (see Section 7 of [10] or Chapter 15 of [11], for
example). Now, since Zφ satisfies (37), subtraction from (35) shows that v
solves the random PDE

d

dt
v+δAv+B(v, v)+2B(v, Zφ)+B(Zφ, Zφ)+ωA

−2α(v+Zφ−u)−φZφ = f .

(38)
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This can be solved for each given path of W with methods similar to the
ones used for Proposition 3.1 (see also Proposition 3.3). Once, the solution
is defined path-wise, the generation of a stochastic dynamical system is
straightforward. Let us summarize this in a theorem:

Theorem 5.6 (Solutions). For all u0 on the attractor A the Navier-Stokes
equation (18) has a solution u ∈ L∞(R,V). Now consider the 3DVAR filter
written in the form of equation (38). In the case λ = ∞ assume that α > −1

2
and 4α + 2β > 1. For any s ∈ R, any path of the Wiener process W, and
any initial condition v(s) = m̂(s) − Zφ(s) ∈ H equation (38) has a unique
solution

v ∈ C0
loc([s,∞),H) ∩ L2

loc([s,∞),V) .

This implies the existence of a stochastic dynamical system S for (35).

Proof. The first statement follows directly from Proposition 3.1 if we take a
solution on the attractor; in that case it follows that, in fact, u ∈ L∞(R,V).
Proof of the second statement is discussed prior to the theorem statement.

5.3 Pullback Accuracy

Here we show that in the pullback sense solutions m̂ for large times stay
close to u, where the error scales with the observational noise strength σ0.
Recall K and K ′ defined in Lemma 4.1 and R the uniform bound on u from
Proposition 3.1.

Theorem 5.7 (Pullback Accuracy). Let m̂ solve (21), and let u solve
(18) with initial condition on the global attractor A. In the case λ = ∞
assume additionally that 4α + 2β > 1 and α > −1

2 . Suppose that γ from
(26) is sufficiently large so that

K(17E‖Zφ‖2 + 16R) < γ . (39)

Then there is a random constant r(W) > 0 such that for any initial condition
m̂0

lim sup
s→−∞

|S(t, s,W)m̂0 − u(t)− Zφ(θtW)|2 ≤ r(θtW) .

with a finite constant

r(W) =
4

δ

∫ 0

−∞
exp

(∫ 0

τ
(16K(‖Zφ‖2 +R)− γ)dη

)
T 2dτ ,

where T := K ′‖Zφ‖(‖Zφ‖ + 2‖u‖) + φ|Zφ| + ω|A−2αPλZφ| where K ′ and
K := (K ′)2/δ are as defined in Lemma 4.1.

Remark 5.8. Regarding Theorem 5.7 we make the following obervations:
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• In (39) the contribution E‖Zφ‖2 can be made arbitrarily small by
choosing φ sufficiently large, or is small if ε := ωσ0 is sufficiently
small; see Lemma 5.4. Thus 16RK < γ is sufficient for accuracy.
With a more careful application of Young’s inequality, we could also
get rid of several factors of 2, recovering the condition RK < γ from
the forward accuracy result of Theorem 4.3.

• The assumption that u lies on the attractor could we weakened to a
condition on the limsup of u. We state the stronger condition for
simplicity of proofs.

• In the language of random dynamical systems, the theorem states that
the stochastic dynamical system S(t, sW)m̂0 has is a random pullback
absorbing ball centered around u(t) with radius scaling with the size of
the stochastic convolution Zφ. By Lemma 5.4, this scales as O(ε) for
ε = ωσ0 sufficiently small; thus we have derived an accuracy result, in
the pullback sense.

Proof. (Theorem 5.7). Consider the difference d = m̂ − u, where m̂(t) =
S(t, s)m̂0. This solves

∂td+ δAd+ B(d, d) + 2B(u, d) + ωA−2αPλd = ∂tW . (40)

In order to get rid of the noise, define ψ = d− Zφ = m̂− u− Zφ, where Zφ

is the stationary stochastic convolution. Since Zφ solves (37) the process ψ
solves

∂tψ+δAψ+B(ψ+Zφ, ψ+Zφ)+2B(u, ψ+Zφ)+ωA
−2αPλ(ψ+Zφ)−φZφ = 0 .

(41)
From this random PDE, we can take the scalar product with ψ to obtain,
using (24),

1

2
∂t|ψ|2 + δ‖ψ‖2 = −〈2B(Zφ, ψ) + B(Zφ, Zφ) + 2B(u, ψ + Zφ), ψ〉

−〈ωA−2αPλ(ψ + Zφ)− φZφ, ψ〉 .

Using (26) and Lemma 4.1 we obtain

1

2
∂t|ψ|2 +

δ

2
‖ψ‖2 + γ

2
|ψ|2 ≤ −〈2B(Zφ, ψ) + B(Zφ, Zφ) + 2B(u, ψ + Zφ), ψ〉

−〈ωA−2αPλZφ − φZφ, ψ〉
≤ 2K ′ (‖Zφ‖+ ‖u‖) · ‖ψ‖ · |ψ|
+K ′‖Zφ‖ · (‖Zφ‖+ 2‖u‖) · ‖ψ‖
+
(
φ|Zφ|+ ω|A−2αPλZφ|

)
· |ψ| .

Recall that

T = K ′‖Zφ‖(‖Zφ‖+ 2‖u‖) + φ|Zφ|+ ω|A−2αPλZφ| .
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Thus we have, using the Young inequality in the form ab ≤ 1
δa

2+ δ
4b

2 twice,

1

2
∂t|ψ|2 +

δ

2
‖ψ‖2 + γ

2
|ψ|2 ≤ 2K ′(‖Zφ‖+ ‖u‖)‖ψ‖|ψ|+ T · ‖ψ‖

≤ 4K(‖Zφ‖+ ‖u‖)2|ψ|2 + 1
δT

2 + δ
2‖ψ‖

2,

since K = (K ′)2/δ. Hence

∂t|ψ|2 + γ|ψ|2 ≤ 8K(‖Zφ‖+ ‖u‖)2 · |ψ|2 + 2

δ
T 2 .

Comparison principle with ψ(s) = m̂0 − u(s) − Zφ(s) yields (using the
bound on u and (a+ b)2 ≤ 2a2 + 2b2)

|ψ(t)|2 ≤ |m̂0 − u(s)− Zφ(s)|2 exp
(∫ t

s
[16K(‖Zφ‖2 +R)− γ]dr

)
+
2

δ

∫ t

s
exp

(∫ t

r
[16K(‖Zφ‖2 +R)− γ]dτ

)
T 2dr

Thus, we can now use Birkhoffs theorem and the sub-exponential growth for
Zφ. We obtain for γ sufficiently large (as asserted by the Theorem), that
there is a random time t0(W) < 0 such that for all s < t0(W) < 0

|ψ(t)|2 ≤ 4

δ

∫ t

s
exp

(∫ t

r
[16K(‖Zφ‖2 +R)− γ]dτ

)
T 2dr .

Recall that ψ(t) = S(t, s,W)m̂0 − Z(t) − u(t). This finishes the proof,
as the right hand side is almost surely a finite random constant, due to
Birkhoffs ergodic theorem and sub-exponential growth of Zφ and hence T 2

(see Lemma 5.3).

5.4 Pullback Stability

Now we verify that under suitable conditions all solutions of (35) pullback
converge exponentially fast towards each other. We make the assumption
that Birkhoff bounds hold for the solution m̂ (see theorem statement below
to make this assumption precise). These bounds do not follow directly from
Birkhoffs ergodic theorem, as the equation is non-autonomous due to the
presence of u. Whilst it should be possible to establish such bounds, using
the techniques in [17] or [14], doing so is technically involved, as one needs
to use random φ’s in the definition of Zφ. In order to keep the presentation
at a reasonable level, we refrain from giving details on this point.

Theorem 5.9 (Exponential Stability). Assume there is one initial condition

m̂
(1)
0 such that the corresponding solution S(t, s,W)m̂

(1)
0 satisfies Birkhoff-

bounds. To be more precise, we assume that γ from (26) is sufficiently large
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that, for some η > 0 and K = (K ′)2/δ from Lemma 4.1,

lim sup
s→−∞

4K

t− s

∫ t

s
‖S(τ, s,W)m̂

(1)
0 ‖2dτ < γ − 2η . (42)

Let m̂
(2)
0 be any other initial condition. Then

lim
s→−∞

|S(t, s,W)m̂
(1)
0 − S(t, s,W)m̂

(2)
0 | · eη(t−s) = 0.

Recall we verified in Theorem 5.7 that (35) has a random pullback ab-
sorbing set in L2 centered around u(t). Together with Theorem 5.9 this
immediately implies that Equation (35) has a random pullback attractor in
L2 consisting of a single point that attracts all solutions. Let us remark, that
we did not show that the attractor also pullback-attracts tempered bounded
sets, but this is a straightforward modification.

Proof. (Theorem 5.9)Define here v = m̂1−m̂2, where m̂i(t) = S(t, s,W)m̂
(i)
0

are solutions of (35) with different initial conditions. It is easy to see by the
symmetry of B that

∂tv + δAv + B(m̂1 + m̂2, v) + ωA−2αPλv = 0

or
∂tv + δAv + 2B(m̂1, v)− B(v, v) + ωA−2αPλv = 0 .

Thus
1

2
∂t|v|2 + δ‖v‖2 + ω〈A−2αPλv, v〉 ≤ 2K ′‖m̂1‖‖v‖|v| .

By (26)
∂t|v|2 + δ‖v‖2 + γ|v|2 ≤ 4K ′‖m̂1‖‖v‖|v| .

Hence, using Young’s inequality (ab ≤ 1
4δa

2 + δb2) with K = (K ′)2/δ

∂t|v(t)|2 + γ|v|2 ≤ 4K‖m̂1‖2|v|2 .

Thus, using the comparison principle,

|v(t)|2 ≤ |v(s)|2 exp(
∫ t

s
[4K‖m̂1‖2 − γ]dr).

This converges to 0 exponentially fast, provided γ is sufficiently large, as

v(s) = m̂
(1)
0 − m̂

(1)
0 . Moreover,

|v(t)|2e2η(t−s) ≤ |v(s)|2 exp((t− s)r(t, s)).

with r(t, s) = 1
t−s

∫ t
s [4K‖m̂1‖2dτ − γ + 2η and lim sups→−∞ r(t, s) < 0 by

assumption. This implies the claim of the theorem.
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6 Numerical Results

In this section we study the SPDE (21) by means of numerical experiments,
illustrating the results of the previous sections. We invoke a split-step
scheme to solve equation (21), in which we compose numerical integration
of the Navier-Stokes equation (18) with numerical solution of the Ornstein-
Uhlenbeck process

dm̂

dt
+ ωA−2α(m̂− u) = ωσ0A

−2α−β dW

dt
, m̂(0) = m̂0, (43)

at each step. The Navier-Stokes equation (18) itself is solved by a pseudo-
spectral method based on the Fourier basis defined through (17), whilst
the Ornstein-Uhlenbeck process is approximated by the Euler-Maruyama
scheme [24]. All the examples concern the case λ = ∞ only; however similar
results are obtained for finite, but sufficiently large, λ.

6.1 Forward Accuracy

In this section, we will illustrate the results of Theorem 4.3. We will let
α = 1/2 throughout; since β is always non-negative the trace-class noise
condition 4α + 2β > 1 is always satisfied. Notice that the parameter ω
sets a time-scale for relaxation towards the true signal, and σ0 sets a scale
for the size of fluctuations about the true signal. The parameter β rescales
the fluctuation size in the observational noise at different wavevectors with
respect to the relaxation time. First we consider setting β = 0. In Fig. 1 we
show numerical experiments with ω = 100 and σ0 = 0.05. We see that the
noise level on top of the signal in the low modes is almost O(1), and that the
high modes do not synchronize at all; the total error remains O(1) although
trends in the signal are followed. On the other hand, for the smaller value
of σ0 = 0.005, still with ω = 100, the noise level on the signal in the low
modes is moderate, the high modes synchronize sufficiently well, and the
total error is small; this is shown in Fig. 2.

Now we consider the case β = 1. Again we take ω = 100 and σ0 = 0.05
and 0.005 in Figures 3 and 4, respectively. The synchronization is stronger
than that observed for β = 0 in each case. This is because the forcing
noise decays more rapidly for large wavevectors when β is increased, as can
be observed in the relatively smooth trajectories of the high modes of the
estimator.

For the case when σ0 = 0 we recover a (non-stochastic) PDE for the
estimator m̂. The values of σ0 and β are irrelevant. The value of ω is the
critical parameter in this case. For values of ω of O(100) the convergence
is exponentially fast to machine precision. For values of ω of O(1) the
estimator does not exhibit stable behaviour. For intermediate values, the
estimator may approach the signal and remain bounded and still an O(1)
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distance away (see the case ω = 10 in Fig. 5), or else it may come close to
synchronizing (see the case ω = 30 in Fig. 6).

6.2 Forward Stability

This section will provide numerical evidence supporting Theorem 4.5. In
order to investigate the stability of estimators we reproduce ensembles of
solutions of equation (21), for a fixed realization of W (t), and a family of
initial conditions. We let β = 0 throughout this section, and we always
choose values of α which ensure that the trace class condition on the noise,
4α+ 2β > 1, is satisfied.

Let m(k)(t) be the solution at time t of (21) where the initial conditions
are drawn from a Gaussian whose covariance is proportional to the model
covariance: m(k)(0) ∼ N (0, 302Ĉ). First we consider α = 1/2. Figure
7 corresponds to parameters given in Fig. 1 of section 6.1. The top figure
simply shows the ensemble of trajectories, while the bottom figure shows the
convergence of |m(k)(t)−m(1)(t)|/|m(1)(t)| for k > 1. Notice the trajectories
converge to each other, indicating stability. But, the trajectories here do not
converge to the truth (or driving signal). This is because the neighbourhood
of the signal which bounds the estimators is not small. The next image, Fig.
8, shows results for the smaller value of σ0 = 0.005 corresponding to Fig.
2 of section 6.1. Notice the rate of convergence of the trajectories to each
other (bottom) is very similar to the previous case, indicating that there is
again stability. However, this time the neighbourhood of the signal which
bounds the estimators is small, and so they are indeed accurate. Fig. 9
shows the results for the larger value of α = 1 (still with β = 0). In this
case, there is no stability, i.e. the trajectories do not converge to each other
(bottom), and also no convergence to the truth (bottom right of the top
panels), although all trajectories do remain in a neighbourhood of the truth
and the low wavevector modes converge (top left), so there is accuracy with
a large bound. Furthermore, the distance of the trajectories from each other
is similar to the distance from the truth, so the attractor in this case may
be similar to the attractor of the underlying Navier-Stokes equation.

6.3 Pullback Accuracy and Stability

Finally, in this section, we illustrate Theorem 5.7. As the subtle nuance
differences between forward and pullback accuracy and stability ellude stan-
dard numerical simulation, we do not feel it is appropriate to explore this in
further detail numerically. So, this section will be brief. We include a single
image illustrating the equivalence of the above experiments in Figures 8, 7,
and 9 to the traditional notion of pullback attractor in the case that the
attractor is a point: Figure 10.
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7 Conclusions

Data assimilation is important in a range of physical applications where it is
of interest to use data to improve output from computational models. Anal-
ysis of the various algorithms used in practice is in its infancy. The work
herein contains analysis of an algorithm, 3DVAR, which is prototypical of
more complex Gaussian approximations that are widely used in applications.
In particular we have studied the high frequency in time observation limit
of 3DVAR, leading to a stochastic PDE. We have demonstrated mathemat-
ically how variance inflation, widely used by practitioners, stabilizes, and
makes accurate, this filter, complementing the theory in [5] which concerns
low frequency in time observations. It is to be expected that the analytical
tools developed here and in [5] can be built upon to study more complex
algorithms, such as the extended and ensemble Kalman filters, variants on
which are used in operational weather forecasting. This will form a focus of
our future work.
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Figure 1: Trajectories of various modes of the estimator m̂ and the signal
u are depicted above for β = 0 and σ0 = 0.05, along with the total relative
error in the L2 norm, |m̂− u|/|u|.
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Figure 2: Trajectories of various modes of the estimator m̂ and the signal u
are depicted above for β = 0 and σ0 = 0.005, along with the relative error
in the L2 norm, |m̂− u|/|u|.
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Figure 3: Trajectories of various modes of the estimator m̂ and the signal u
are depicted above for β = 1 and σ0 = 0.05, along with the relative error in
the L2 norm, |m̂− u|/|u|.
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Figure 4: Trajectories of various modes of the estimator m̂ and the signal u
are depicted above for β = 1 and σ0 = 0.005, along with the relative error
in the L2 norm, |m̂− u|/|u|.
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Figure 5: Trajectories of various modes of the estimator m̂ and the signal u
are depicted above for σ0 = 0 and ω = 10, along with the relative error in
the L2 norm, |m̂− u|/|u|.
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Figure 6: Trajectories of various modes of the estimator m̂ and the signal u
are depicted above for σ0 = 0 and ω = 30, along with the relative error in
the L2 norm, |m̂− u|/|u|.
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Figure 7: The above panels correspond to Fig. 1 from the text, except
illustrating stability by an ensemble of estimators. The top set of panels are
the same as in Fig. 1, while the bottom panel shows stability by convergence
of the estimators to each other.
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Figure 8: The above panels correspond to Fig. 2 from the text, except
illustrating stability by an ensemble of estimators. The top set of panels are
the same as in Fig. 2, while the bottom panel shows stability by convergence
of the estimators to each other.
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Figure 9: The above panels correspond to the same parameter values as
above Fig. 8, except α = 1. Panels are the same. There is not stability in
this case.
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Figure 10: The same as Figure 8, except the initial ensemble is initiated at
3 separate times: t1, t2, and t3. Clearly the only relevant interval of time is
for t > t3. All trajectories converge to each other.
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