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Abstract: We demonstrate simultaneous strain and temperature sensing
based on hybrid Raman and Brillouin scattering with enhanced performance
thanks to the combined use of standard Fabry—Perot lasers in conjunction
with optical pulse coding techniques. The combination of both techniques
allows for an improvement of ~8.7 dB in temperature resolution and ~3 dB
in strain resolution, with respect to standard distributed feedback lasers, as
confirmed by experiments, resulting in a final temperature / strain resolution
of ~0.27K / ~30ue over 25-km sensing fiber range, avoiding the use of
optical amplification and wavelength averaging techniques.
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1. Introduction

Optical-fiber distributed sensors provide a photonic-based enabling technology which
encompasses a growing variety of applications, from structural-health monitoring, to leakage
and deformation detection in pipelines, boreholes and power cables, from landslide warning to
fire detection in reservoirs and tunnels [1]. A great part of distributed optical fiber sensors
enables strain or temperature measurements. Those sensors allowing for simultaneous strain
and temperature measurements are mostly based either on Brillouin scattering effect [2,3] or
on combined Raman—Brillouin scattering effects [4], typically in conjunction with
interrogating techniques based on optical time domain reflectometry (OTDR).

For the hybrid sensing techniques that are based on combined Raman—Brillouin scattering,
spontaneous Raman scattering (SpRS), which does not depend on strain, is exploited to
directly infer the fiber temperature profile. The strain sensitivity is provided by the Brillouin
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scattering, through its dependence on the fiber sound velocity [5]; unfortunately, the most
strain-sensitive parameter, i.e. the Brillouin frequency shift (BFS), also exhibits a notable
cross-sensitivity to fiber temperature. Hence, in order to provide temperature-independent
strain estimation, the temperature profile obtained from SpRS is used in BFS calibration.

In combined Raman—Brillouin sensors, the difference in cross-sections for Brillouin and
Raman scattering leads to significantly different backscattered power levels (actually the
Brillouin-scattering cross-section is typically about one order of magnitude larger than the
Raman cross-section), thus causing significant impairments in temperature-strain resolution.
In fact, the limiting factor in combined Raman—Brillouin sensors has been identified to be due
to the noise in low-power SpRS based temperature measurements [4]. Since it is not simple or
cost-effective to use two different light sources for SpRS and Brillouin scattering, then one
straightforward solution is given by an increase in input light power. However, the onset of
optical nonlinear effects creates a constraint in the maximum usable input power level,
limiting this below a given threshold value. In order to overcome this limitation, an effective
sensing scheme based on the use of multiple longitudinal modes lasers has been recently
reported [6], allowing for higher usable pump peak power values as well as a reduced level in
coherent Rayleigh noise (CRN) [8].

In this paper, we propose the use of optical pulse coding in combination with standard
high-power Fabry—Perot (FP) lasers to achieve high-resolution strain and temperature
measurements in combined Raman-Brillouin sensing. Actually, considering that the typical
peak power of each FP mode is far below the nonlinear threshold level, it is possible to use
pulse coding techniques [9] to improve the signal-to-noise ratio (SNR) in both Raman and
Brillouin traces, showing a particular benefit for low-power noisy Raman measurements and
finally leading to a notable performance improvement in combined sensing.

2. Theory

In distributed hybrid Raman—Brillouin sensors, both the anti-Stokes SpRS power and the BFS
are simultaneously measured [4]. While the anti-Stokes SpRS is sensitive to temperature
variations only, the BFS allows for both temperature and strain measurements. Since, when
measuring the BES it is inherently impossible to separate temperature from strain changes, the
strain-independent temperature measurements provided by Raman measurements constitute a
very attractive solution to perform simultaneous strain-temperature sensing using a single
fiber. In such a scheme, the fiber temperature (7) is obtained by anti-Stokes SpRS power
traces. However, to take into account fiber loss, the ratio of Rayleigh-backscattered power
(Prqy) over anti-Stokes Raman power (P,s) is typically used, providing the following equation:

PRay (Z) oc PRay (Z)
P(z) P (T,2)

exp{_jg[aRa)-(Z)_aAS (Z):I'dg} (e))

where Rg,(z) is the Rayleigh backscattering coefficient, Rag(7,z) is the temperature-
dependent Raman backscattering coefficient (from [7]), og,, and a,g are the loss coefficients
at Rayleigh and AS-Raman light wavelengths respectively. Equation (1) allows one to infer
the fiber temperature with respect to one known reference value at a given point, provided that
the attenuation coefficients (0gqy, ®as) for the optical fiber are known [7]. For narrowband
sources, the Rayleigh backscattered light from a given fiber location is phase-correlated with
the backscattered light from other fiber locations, giving rise to noisy interference patterns
(known as CRN [8]) at the receiver-side, affecting the Rayleigh trace. This effect cannot be
reduced through trace averaging, thus requiring techniques to increase the source bandwidth,
or, equivalently, to reduce the source coherence length. Once temperature (A7) and BFS (Avp)
variations along the fiber are obtained, this information can be used in conjunction to strain
and temperature coefficients for BFS (C,3, = 0.048 MHz/pe and C,zr = 1.10 MHz/°C [2]) to
obtain the distributed strain profile (Ae) according to:
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In order to improve the performance of distributed hybrid sensors, the use of multi-
wavelength sources, such as FP lasers, has been recently proposed [6]. Actually, the peak
power launched into the fiber when using FP laser is distributed among several longitudinal
modes along the spectrum, overcoming the main limiting nonlinearities, such as stimulated
Brillouin scattering (SBS) and modulation instability (MI), which become particularly
relevant when narrowband sources are used. The limiting factor in hybrid sensing is actually
given by the noise affecting the low-power anti-Stokes Raman measurements [4]; however,
the proposed broadband source allows for the use of high peak power levels, resulting in
higher SNR and leading then to a better temperature and strain resolution.

On the other hand, the use of optical pulse coding has been recently proposed for
distributed sensing based on spontaneous Brillouin scattering [9], offering an effective
technique to improve the SNR of the measurements, and hence to enhance the sensing
performance. However, coding techniques unfortunately also reduce the SBS threshold, and,
for instance, when using 127-bit Simplex coding with single longitudinal mode lasers (e.g.
DFB lasers) and ~350 ns pulses, the SBS threshold power is decreased from ~30 dBm (with
single pulses) down to ~10 dBm. Considering that the SBS threshold only limits the peak
power per FP mode, then the use of pulse coding with no induced distortion is possible even
with high-power FP lasers, since in typical conditions the power of each FP mode remains
below the SBS threshold. However, even though the use of FP lasers in single-pulse schemes
enhances the sensing performance, the noise in SpRS traces is still a limiting factor [9]. Note
that, while the temperature resolution depends only on the SNR of the Raman measurements,
the strain resolution depends on both BFS and temperature resolution. Thus, the use of optical
pulse coding in principle allows for higher resolution on Raman power and BFS
measurements, leading to a much better sensing performance. In this paper, then, we
experimentally show that the combination of both FP lasers and pulse coding allows for a
significant SNR enhancement in both anti-Stokes Raman power and BFS measurements.

3. Experimental setup

To evaluate the distributed Brillouin—Raman sensor performance provided by the combination
of FP lasers with optical pulse coding techniques, the experimental setup shown in Fig. 1 has
been implemented. Two optical sources, a FP laser and a DFB laser, have been used to
compare the performance of the proposed technique with respect to the conventional hybrid
sensor based on a single longitudinal mode laser. Since the FP laser allows for more optical
power at the fiber input than the DFB laser, an Erbium-doped fiber amplifier (EDFA) has
been used to amplify the DFB laser allowing for a better comparison under the same
experimental conditions. The peak pulse power at the fiber input has been hence set to 15
dBm for both sources, making the use of coding impossible when employing the DFB laser,
due to onset of the detrimental nonlinear effects (most notably SBS) near fiber input [9].
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Fig. 1. Experimental set-up.

Note that when using the DFB laser, additional techniques are required to reduce CRN in
the Rayleigh measurement, thus current dithering and wavelength averaging need to be also
implemented. Conversely, the broadband characteristics of the FP laser allow us to inherently
reduce CRN, not requiring the additional above-mentioned techniques used with single mode
lasers [8]. In our experiment we have employed a high-power FP laser with ~30 longitudinal
modes, inherently allowing for more than 7.3 dB measured CRN reduction in Rayleigh trace
with respect to DFB lasers. Moreover, the linewidth of each FP laser mode (1-2 MHz within
100-ps scale) provides a further reduction in CRN with respect to narrowband used DFB laser
(~few hundred kHz linewidth). Finally, during the averaged-trace acquisition over a timescale
higher than millisecond-order, the wavelength drift of FP laser modes (induced e.g. by FP
laser temperature variations) generates an inherent wavelength-averaging effect over a
fraction of nanometer, which greatly suppresses CRN effects. The CW-light of the source is
then split into two branches, so that 10% of it is used as optical local oscillator (OLO) at the
receiver side, while the 90% of the light is modulated by a Mach-Zehnder interferometer
(MZI, extinction ratio > 40dB) with 350 ns pulses from a waveform generator (WFG),
allowing for 35 m spatial resolution. The use of a high extinction ratio MZI is necessary in
order to avoid noise contributions due to small leaking CW light components. Since the peak
power per laser mode at fiber input is ~0 dBm, which falls well below the coded-pulse SBS
threshold (~10 dBm), 127-bit Simplex coding can be effectively used for further performance
enhancement when using the high-power FP laser, not inducing detrimental nonlinearities.
This is not possible with DFB lasers, whose total power must be limited below ~10 dBm.

The sensing fiber is given by a 25-km standard single-mode fiber (SSMF), and the
receiver-side is composed of three different stages. The first two stages are direct-detection
receivers for anti-Stokes Raman and Rayleigh measurements respectively, making use of an
optical band-pass filter (OBPF, > 60 dB band rejection), a 10-MHz PIN photodiode for the
Rayleigh traces and a 10-MHz avalanche photodiode (APD) for the Raman traces, trans-
impedance amplifiers (TTIA) and analog-to-digital converters (ADC). On the other hand, the
third stage consists in a self-heterodyne optical detection scheme followed by an electrical
coherent receiver for BFS measurements. Note that beatings with higher frequencies arising
from the multi-wavelength OLO are filtered out by the receiver bandwidth (12.5 GHz), so that
they do not represent an additional source of noise. To reduce polarization-induced
fluctuations in the optical heterodyne process, a polarization scrambler (PS) is used to
depolarize the OLO. The electrical coherent detection is performed by an optical spectrum
analyzer (OSA) operating in zero-span mode, with a maximum resolution bandwidth of 3
MHz, which actually limits the spatial resolution to ~35 m, however this is not a limitation to
the proposed technique.
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4. Results

To demonstrate the feasibility of using optical pulse coding techniques with high-power FP
lasers in distributed hybrid Raman—Brillouin sensors, we have employed in our experiment a
FP laser with ~30 high-power longitudinal modes. The spectrum of the used laser at the fiber
input is shown in Fig. 2a. We can clearly observe that the maximum peak power of the
strongest longitudinal modes is ~0 dBm, resulting well below the SBS threshold limit of ~10
dBm for DFB lasers with 127-bit Simplex coding.
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Fig. 2. (a) Full spectrum of the used FP laser and (b) detail of backscattered light spectrum.

Considering the large number of FP modes, in principle we can use up to ~25 dBm total
power at the fiber input without incurring in SBS. However, the maximum power allowed at
the MZI input, in our experiment, limits the usable peak power at the fiber input to a
maximum of 15 dBm, resulting in the spectrum shown in Fig. 2a. This power level in
narrowband sources is higher than nonlinear threshold level, thus allowing us to demonstrate
the feasibility of using FP lasers with pulse coding to improve hybrid sensor performance. The
normalized-power spectrum of four FP laser modes and the corresponding backscattered light
are compared in Fig. 2b. We can clearly distinguish the spontaneous Brillouin scattering
generated from every FP mode when using coding (exhibiting similar power levels of Stokes
and anti-Stokes components around each FP mode). The beating process between the multi-
wavelength OLO (obtained directly from the FP laser) and Brillouin components generates an
electrical signal which corresponds to the Brillouin spectrum as shown in Fig. 3 (obtained
with 150k averages).
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Fig. 3. Brillouin spectrum as a function of fiber distance, using FP laser with 127-bit Simplex
coding.

Figure 3 shows the Brillouin spectrum along the sensing fiber when using Simplex coding,
representing the contribution of all Stokes and anti-Stokes light components generated by all
FP modes. We can note that no distortion of the spectrum is observed, since the power per
mode keeps limited below the SBS threshold, even though the total laser peak power is higher
than this value. The spectrum is then properly fitted by a Lorentzian curve in order to obtain
the BFS evolution along the fiber. Actually, Fig. 4a reports the BFS obtained with both the FP
laser (with both single pulses and coding) and the DFB laser (with single pulses only since
coding cannot be applied), where a small difference in the BFS can be observed, mainly due
to the different wavelength of the used DFB and FP lasers. By calculating the standard
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deviation of the BFS along the fiber, the resolution of the measurements can be estimated, as
shown in Fig. 4b. We can note in Fig. 4b that the FP laser offers a slightly poorer resolution
than the DFB laser with single pulses, as reported in [6]. This additional inaccuracy in FP
lasers, observed at same input peak power, can be a consequence of a small drift affecting the
modes of the FP laser in the ps-scale and related to the wavelength dependence of the BFS, in
such a way that each FP mode generates a slightly different BFS inducing a small additional
broadening factor in the measured Brillouin spectrum. The measured Brillouin linewidth is
actually ~50 MHz, thus slightly reducing the BFS measurement resolution.
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Fig. 4. (a) BFS along the sensing fiber, when using a DFB laser (single pulses) and a FP laser
(Simplex coding and single pulses). (b) Error in BFS measurement vs distance for DFB laser
(single pulses) and FP laser (Simplex coding).
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Fig. 5. Anti-Stokes Raman traces for both DFB laser (with single pulses) and FP laser (127-bit
Simplex coding).

However, such additional inaccuracy observed in BFS measurement with FP laser, which
degrades the resolution, is compensated by the SNR enhancement provided by Simplex
coding, as shown in Fig. 4b, resulting in similar net BFS resolution obtained for both cases.
On the other hand, Fig. 5 shows the anti-Stokes Raman traces measured for both DFB laser
(with single pulses) and FP laser (with pulse coding), considering the same number of
acquisitions. We can clearly observe a notably better SNR when using FP laser and coding,
corresponding to ~8.7 dB resolution enhancement with respect to the use of conventional
hybrid sensors (based on DFB laser and single pulses). Note that the use of coding techniques
with FP laser is possible thanks to the power distribution among several longitudinal modes
along the spectrum (coding cannot be applied to DFB laser due to onset of nonlinear effects
[9]). Resolution for simultaneous strain and temperature measurements (obtained from Egs.
(1-2) can be calculated employing the measured standard deviation of both BFS and anti-
Stokes Raman power traces. Figure 6a and Fig. 6b show a comparison of the experimental
temperature and strain resolutions obtained with both DFB laser (using single pulses) and FP
laser (using 127-bit Simplex coding). We can see how the temperature resolution of ~2 °C,
obtained with the DFB laser at 25-km distance, is improved down to a notable value of ~0.27
°C when using the FP laser and Simplex coding, resulting in a nearly ten-fold resolution
improvement (equal to almost 8.7 dB). Simultaneous strain resolution is also sensibly
improved from ~60 pe down to ~30 pe over 25-km distance, with a ~3 dB net improvement.
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Fig. 6. (a) Temperature and (b) strain resolution vs distance, for DFB (single pulses) and FP
laser (Simplex coding).

6. Conclusions

In conclusion, we have implemented a distributed hybrid Raman—Brillouin sensor combining
the use of optical pulse coding techniques with high peak power FP lasers to enhance the
performance of this kind of sensors, thanks to the distribution of the power into several
longitudinal modes within the laser spectrum. Thus, the limitation on the maximum allowed
input pulse power when using pulse coding with using narrowband sources can be overcome
with FP lasers providing an effective solution to improve the performance of hybrid sensors.
Experimental results indicate the achievement of a sensing resolution better than ~0.27 °C /
~30 pe in temperature / strain over 25-km distance, corresponding to an improvement better
than ~8.7 dB in temperature resolution and ~3 dB in strain resolution with respect to the use
of standard DFB lasers. This has been achieved with a significantly simpler sensor
implementation without the need of optical amplification or wavelength averaging techniques.

#124144 - $15.00 USD  Received 11 Feb 2010; revised 11 Mar 2010; accepted 12 Mar 2010; published 7 Apr 2010
(C) 2010 OSA 12 April 2010/ Vol. 18, No. 8 / OPTICS EXPRESS 8465





