Journal article

Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors

A theoretical and experimental analysis of optical pulse coding techniques applied to distributed optical fiber temperature sensors based on spontaneous Brillouin scattering using the Landau-Placzek ratio (LPR) scheme is presented, quantifying in particular the impact of Simplex coding on stimulated Brillouin and Raman power thresholds. The signal-to-noise ratio (SNR) enhancement and temperature resolution improvement provided by coding are also characterized. Experimental results confirm that, differently from Raman-based sensors, pulse coding affects the stimulated Brillouin threshold, resulting in lower optimal input power levels; these features allow one to achieve high sensing performance avoiding the use of high peak power pulses.

Related material