000181977 001__ 181977
000181977 005__ 20181203022858.0
000181977 0247_ $$2doi$$a10.4171/JEMS/279
000181977 022__ $$a1435-9855
000181977 037__ $$aARTICLE
000181977 245__ $$aNoetherian loop spaces
000181977 260__ $$c2011
000181977 269__ $$a2011
000181977 336__ $$aJournal Articles
000181977 520__ $$aThe class of loop spaces of which the mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as ℂP∞ and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space BX of such an object and prove it is as small as expected, that is, comparable to that of BℂP∞. We also show that BX differs basically from the classifying space of a p-compact group in a single homotopy group. This applies in particular to 4-connected covers of classifying spaces of compact Lie groups and sheds new light on how the cohomology of such an object looks like. © European Mathematical Society 2011.
000181977 700__ $$aCastellana, Natàlia
000181977 700__ $$aCrespo, Juan A.
000181977 700__ $$0243126$$g144617$$aScherer, Jérôme
000181977 773__ $$j13$$tJournal of the European Mathematical Society$$q1225-1244
000181977 909C0 $$xU10968$$0252139$$pUPHESS
000181977 909CO $$pSV$$particle$$ooai:infoscience.tind.io:181977
000181977 917Z8 $$x144617
000181977 917Z8 $$x249835
000181977 937__ $$aEPFL-ARTICLE-181977
000181977 973__ $$rREVIEWED$$sPUBLISHED$$aOTHER
000181977 980__ $$aARTICLE