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Abstract This paper examines the computational complexity certification of
the fast gradient method for the solution of the dual of a parametric con-
vex program. To this end, a lower iteration bound is derived such that for
all parameters from a compact set a solution with a specified level of subop-
timality will be obtained. For its practical importance, the derivation of the
smallest lower iteration bound is considered. In order to determine it, we in-
vestigate both the computation of the worst case minimal Euclidean distance
between an initial iterate and a Lagrange multiplier and the issue of finding
the largest step size for the fast gradient method. In addition, we argue that
optimal preconditioning of the dual problem cannot be proven to decrease the
smallest lower iteration bound. The findings of this paper are of importance
in embedded optimization, for instance, in model predictive control.

Keywords Fast Gradient Method · Certification · Lagrange Relaxation

1 Introduction

Motivation In recent years, state-of-the-art optimization methods have chan-
ged numerous fields of engineering, primarily in the context of offline synthesis
and analysis. More recently, they have entered the area of embedded systems,
where data is processed under real-time constraints on low-cost platforms.
One of the challenges in embedded optimization is the a priori certification
of the computational complexity, i.e. the derivation of an upper bound on the
number of iterations that is valid for all data encountered during operation.
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Certification is a crucial prerequisite in risk-of-loss applications, e.g. on-
board trajectory planning in space missions (Blackmore et al 2010), in safety-
critical environments such as power systems (Fuchs et al 2011), for a verified
operation of engineering systems, for instance, in embedded model predictive
control (Bleris and Kothare 2005) and real-time audio clipping (Defraene et al
2011), as well as for the selection of appropriate hardware during the design
phase. In control, certification is particularly challenging as solution times are
restricted to lie within a sampling interval of the control loop. For systems
with fast dynamics, sampling intervals are typically in the range of milli- and
microseconds which underlines the need for a method that features both fast
convergence and an upper iteration bound that is close to the practically ob-
served number of iterations.

An upper iteration bound stems from a non-asymptotic convergence rate
analysis of the solution method and is the very iteration count that ensures a
pre-specified level of suboptimality. From here on, this upper bound is denoted
a lower iteration bound, indicating that any greater iteration count will meet
the suboptimality criterion. Note that an upper iteration bound is to be seen in
the context of an actual implementation of the method, i.e. it puts a bound on
the loop counter, whereas our preferred terminology of a lower iteration bound
highlights the bound’s origin in the convergence analysis of the method.

In this paper we restrict ourselves to convex programs since powerful solu-
tion methods and convergence results are available (see e.g. Nesterov 2004a).

Interior point methods (Nesterov and Nemirovskii 1994) are popular meth-
ods for such problems and McGovern (2000) treats certification aspects of a
short step, primal-dual path following method. The reported lower iteration
bounds are up to two orders of magnitude off from the practically observed
number of iterations which agrees with the widely accepted viewpoint that
bounds for interior point methods lack expressiveness.

Active set methods (Bertsekas 1999) belong to the dominant solution meth-
ods for linearly constrained programs. These methods perform well in practice,
but as their convergence rate is unknown, they are not eligible for certification.

In contrast, gradient methods (Nesterov 2004a; Bertsekas 1999) come with
a convergence rate analysis and provide expressive lower iteration bounds
(e.g. see the example in Boyd and Vandenberghe (2004, §9.3.2) and compare
the convergence rate with Polyak (1987, §3.1.2, Theorem 2)).

In this paper, we will focus on the fast gradient method which was first
derived in Nesterov (1983). Many variants of this method exist and we refer the
reader to Tseng (2008) where an attempt is made to unify existing methods
in the more general context of accelerated proximal gradient methods.

Problem Setup and Previous Work In this paper, we discuss the computational
aspects of deriving a lower iteration bound for a constant step size fast gradient
method for the solution of the parametric convex program

f∗(b) , min f(x) =
1

2
xTHx+ gTx (1)

s.t. Ax = b , x ∈ X ,
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via its dual1. In (1) the strongly convex quadratic function f : Rn → R is
minimized over the intersection of an affine set, given by (A, b) ∈ Rm×n×Rm,
and a nonempty closed convex set X ⊆ Rn. We assume set X to be ‘simple’ so
that Euclidean projection can be evaluated at low computational cost. Simple
sets include the Euclidean ball, simplex, the LP-, SOCP- and the SDP cone.

On embedded systems, problem (1) is solved with varying data, usually
from measurements, which justifies denoting it a parametric program. In this
work, we consider the right hand side b of the equality constraint as the only
parameter. This important class of parametric programs is found, for instance,
in linear quadratic model predictive control (Rawlings and Mayne 2009, §1.3).

In the authors’ previous work (Richter et al 2012), certification of (1)
without equality constraints is considered when vector g of the objective is the
parameter. For this setup, benefits from warm-starting could be quantified for
model predictive control and system properties related to the lower iteration
bound. The bounds derived for real-world problems were found to match the
observed number of iterations within a factor of two to four. Recently, this
work was extended in (Richter et al 2011) for parametric problems of the type
addressed in this paper in the framework of Lagrange relaxation of the equality
constraint (cf. Lemaréchal 2001). The reported bounds for the fast gradient
method solving the dual problem are off by up to three orders of magnitude
from the observed number of iterations; the main reason for this being the
conservative, yet computationally tractable approach to bound the worst case
Euclidean distance between the initial dual iterate and a Lagrange multiplier.

Contribution and Outline This paper discusses the main certification issues
for solving the parametric convex problem (1) in the framework of Lagrange
relaxation using the fast gradient method and poses related open questions.
We start in Section 2 with a review on Lagrange relaxation and the fast gra-
dient method and refer to related work in the area of certification. Thereafter,
Section 3 defines the certification problem of interest and summarizes basic
assumptions that hold throughout the paper. In Section 4, we first define the
smallest lower iteration bound and then proceed to discuss the computation of
its defining entities. The first entity is the worst case minimal Euclidean dis-
tance between an initial iterate and a Lagrange multiplier whose importance
beyond certification will be motivated (Section 4.1). Section 4.2 elaborates on
computing the second important entity which is the smallest Lipschitz constant
of the dual gradient (this section follows (Richter et al 2011, §IV.A)). Since the
Lipschitz constant determines the step size in the fast gradient method, the
latter investigation is of practical importance even when certification is not
an issue. After that, in Section 4.3, we prove that preconditioning of the dual
problem does not decrease the smallest lower iteration bound. Finally, we state
some open questions with regard to the findings in this paper in Section 5.

1 From a certification point of view, a constant step size is not a limitation as for gradient
methods in convex optimization advanced step size rules, e.g. exact line search, do not
exhibit better convergence rate results (Polyak 1987, §3.1.2).
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2 Review and Related Work

Lagrange Relaxation Assume that for a parameter b the feasible set of (1) is
nonempty such that by strong convexity of f and closedness of the feasible set
a unique minimizer x∗(b) exists. In order to obtain it by Lagrange relaxation,
we eliminate the complicating equality constraint, define the dual function

d(λ; b) , min
x∈X

f(x) + λT (Ax− b) , (2)

with multiplier λ ∈ Rm and solve the concave dual problem

d∗(b) , sup
λ∈Rm

d(λ; b) . (3)

If the supremum is attained (see Remark 1 in Section 3 for sufficient con-
ditions), we denote the closed convex set of dual optimal solutions as

Λ∗(b) = arg max
λ∈Rm

d(λ; b) (4)

and refer to any λ∗(b) ∈ Λ∗(b) as a Lagrange multiplier. If strong duality
holds, i.e. d∗(b) = f∗(b), then by strong convexity of f and (Rockafellar 1997,
Corollary 28.1.1), the primal minimizer can be recovered from x∗(λ∗(b)) where

x∗(λ) = arg min
x∈X

f(x) + λT (Ax− b) . (5)

In this paper, we use the fast gradient method to solve the dual problem (3);
the required gradient ∇d (λ; b) is obtained according to the next theorem.

Theorem 1 The dual function d(λ; b) has a Lipschitz continuous gradient
∇d (λ; b) = Ax∗(λ)−b, i.e. for each parameter b and any λ1, λ2 ∈ Rm we have

‖∇d (λ1; b)−∇d (λ2; b)‖ ≤ L ‖λ1 − λ2‖ (6)

with Lipschitz constant L = ‖A‖2/λmin(H), where ‖A‖ denotes the maximum
singular value of A and λmin(H) is the smallest eigenvalue of H.

Proof The first statement follows from Danskin’s Theorem in Bertsekas (1999,
Proposition B.25) that applies if we modify the (potentially non-compact)
feasible set X in (2) at every λ ∈ Rm by adding the convex set constraint
x ∈

{
x ∈ Rn | f(x) + λT (Ax− b) ≤ d(λ; b) + ε′

}
, ε′ > 0, which contains x∗(λ)

and is compact by strong convexity of f . Lipschitz continuity of the gradient
is provided by Nesterov (2004b, Theorem 1). ut

It follows that for solving the dual or outer problem (3) using the fast
gradient method, the inner problem (2) needs to be solved in every iteration
in order to determine the dual gradient.

Fast Gradient Method We consider the constant step size scheme II in Nes-
terov (2004a, §2.2.1) which is given in Algorithm 2.1. The step size 1/L in
line 2 is determined by the Lipschitz constant L of the gradient ∇d (λ; b),
whereas the upper bound on the number of iterations is given in terms of the
lower iteration bound imin which will be formally defined in Section 3.
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Algorithm 2.1 Fast Gradient Method for the Dual Problem (3)

Require: Initial iterate λ0 ∈ Rm, µ0 = λ0, α0 = (
√

5− 1)/2, Lipschitz constant L
1: for i = 0→ (imin − 1) do
2: λi+1 = µi + 1/L · ∇d (µi; b) {cf. Theorem 1}
3: αi+1 = αi

2

(√
α2
i + 4− αi

)
4: βi = (αi (1− αi)) /

(
α2
i + αi+1

)
5: µi+1 = λi+1 + βi(λi+1 − λi)
6: end for
7: return λimin

Related Work Lan and Monteiro (2009) investigate the certification of a prob-
lem similar to (1) with a general smooth convex function f . The authors derive
a lower iteration bound for an augmented Lagrangian approach that ensures
a smooth (augmented) dual function (see e.g. Bertsekas 1999, §4.2). It is as-
sumed that the inner problem is solved by the fast gradient method whereas
the outer problem is solved by the standard gradient method. The derived
bound on the overall number of fast gradient iterations holds under inexact
gradients obtained from suboptimal solutions of the inner problem. A guess-
and-check procedure circumvents the computation of the distance between the
initial dual iterate and the set of Lagrange multipliers which is an important
entity for determining the lower iteration bound. Consequently, no a priori
lower iteration bound as considered in this paper can be computed.

Devolder et al (2011a) propose to smooth the dual function and to add a
strongly concave quadratic such that a lower iteration bound on the required
fast gradient iterations to obtain a nearly primal feasible, suboptimal solution
can be derived. The cost of solving the inner problems is thereby neglected.

In (Doan et al 2011) the relaxed constraints are linear inequalities. By
constraint tightening and the theory developed in Nedić and Ozdaglar (2009),
a lower iteration bound for obtaining a primal feasible iterate is derived. The
bound depends on a Slater point and is valid for a projected gradient method
solving the outer problem while the inner one is solved by conjugate gradients.

3 Definitions and Assumptions

In this section, we define the considered certification problem in terms of a dual
ε-solution and a lower iteration bound and state assumptions that implicitly
hold throughout the paper. Let us start with the definition of some sets.

Definition 1 (Set of Admissible Parameters) The closed convex set of
admissible parameters B ⊆ Rm contains all right hand side vectors b of the
equality constraint such that problem (1) is feasible, i.e. b ∈ B ⇐⇒ f∗(b) <∞.

Definition 2 (Set of Certified Parameters) The set of certified parame-
ters Bc ⊆ B contains all instances b ∈ B for which a lower iteration bound
according to Definition 4 is to be derived.

Definition 3 (Dual ε-Solution) Let b ∈ Bc. For a specified ε > 0, a dual
ε-solution λε ∈ Rm satisfies d∗(b)− d(λε; b) ≤ ε.
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Definition 4 (Lower Iteration Bound) We denote imin a lower iteration
bound if for any number of iterations of the fast gradient method, i ≥ imin, a
dual ε-solution is retrieved for every parameter b ∈ Bc and a common ε > 0.

Definition 5 (Computational Complexity Certification) Consists in
determining a lower iteration bound imin for a given set Bc.
Assumption 1 For all parameters b ∈ Bc, a Lagrange multiplier λ∗(b) exists
and strong duality holds.

Assumption 2 The inner problem (2) can be solved exactly.

Assumption 3 The certified set of parameters Bc is compact and convex.

Remark 1 Assumption 1 holds true if for every b ∈ Bc a feasible point x̄(b)
in the relative interior of X exists, i.e. Ax̄(b) = b, x̄(b) ∈ ri(X) (cf. Bertsekas
2009, Prop. 5.3.3). A milder premise holds if X has a polyhedral structure
(Bertsekas 2009, Prop. 5.3.6). Assumption 2 is satisfied for important prob-
lem instances of model predictive control (see Richter et al 2011, §V), network
resource allocation and others (cf. Nedić and Ozdaglar 2009, §2.2). See (De-
volder et al 2011b) and (Schmidt et al 2011) for convergence of the fast gradient
method in case the inner problem cannot be solved exactly.

4 Obtaining the Smallest Lower Iteration Bound

In this section,we investigate the aspects related to the computation of a lower
iteration bound in the sense of Definition 4 when using the variant of the fast
gradient method given in Algorithm 2.1. For its practical importance, the focus
will be laid on deriving the smallest lower iteration bound as defined next.

Theorem 2 Let the initial iterate of the fast gradient method be determined
by function λ0 : Rm → Rm for every parameter b ∈ Bc, and let L∗ be the
smallest Lipschitz constant of the gradient of the dual function. The smallest
lower iteration bound for the fast gradient method in Algorithm 2.1 is given by

i∗min = max

{⌈
2

√
L∗∆2

d

ε
− 2

⌉
, 0

}
,

where ∆2
d , supb∈Bc

h∗(b) and

h∗(b) , min
λ∈Λ∗(b)

‖λ− λ0(b)‖2 . (7)

Proof Follows from Theorem 2.2.3 in Nesterov (2004a). ut
The problem of determining ∆2

d, which is the worst case minimal squared
distance between an initial iterate and a Lagrange multiplier, is addressed in
Section 4.1. In Section 4.2 the smallest Lipschitz constant L∗ is derived under
mild assumptions, whereas Section 4.3 investigates preconditioning of the dual
problem in order to further decrease the smallest lower iteration bound.

Remark 2 Even if we are able to compute the smallest lower iteration bound,
this does not necessarily imply that it is tight. Actually, it is unknown if there
exists a problem instance for which the bound in Theorem 2 is tight.
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4.1 Worst Case Distance Between an Initial Iterate and a Lagrange Multiplier

For the computation of ∆2
d, we investigate the properties of function h∗(b)

in (7) based on Theorem 3 below. According to it, h∗(b) is a closed convex
function under certain assumptions, however, the satisfiability of these as-
sumptions will be shown to depend on how the set of Lagrange multipliers
Λ∗(b) in the definition of h∗(b) is represented. For a representation derived
from a zero-duality gap formulation of the optimality conditions, the assump-
tions can provably never be met (Section 4.1.1), whereas this is not true for a
representation based on support functions (Section 4.1.2). Section 4.1.3 finally
elaborates on computational aspects as related to the previous findings.

Before stating the main theorem of this section, we note that knowing ∆2
d

is also of interest for extending the approaches in (Lan and Monteiro 2009;
Devolder et al 2011a) to parametric problems as well as in the framework
of exact penalty functions (Bertsekas 1999, §5.4.5). In order to illustrate the
latter, let λ0(b) ≡ 0 for all b ∈ Bc so that from the existence of Lagrange
multipliers and the Minimax Theorem in (Rockafellar 1997, Corollary 37.3.2)

f∗(b) = max
‖λ‖≤∆d

min
x∈X

f(x) + λT (Ax− b) = min
x∈X

max
‖λ‖≤∆d

f(x) + λT (Ax− b)

= min
x∈X

f(x) +∆d · ‖Ax− b‖ , b ∈ Bc ,

which can be solved, e.g. by the fast gradient method if smoothing (Nesterov
2004b) is applied to replace the nonsmooth norm by a smooth approximation.

Theorem 3 Let λ0(b) = Kb + λ̂0, where K ∈ Rm×m is a symmetric matrix

and λ̂0 ∈ Rm. Furthermore, let φ : Rn × Rm → R be a closed jointly convex
function for which it holds that

(i) φ(·, λ) is strongly convex for every λ ∈ Rm,
(ii) φ(x, λ) ≥ −λT b for all (x, λ) ∈ {(x, λ) ∈ Rn × Rm |Ax = b, x ∈ X},

and consider the convex program parametrized in b ∈ Bc

p∗(b) = min ‖λ− λ0(b)‖2 (8)

s.t. φ(x, λ) + λT b ≤ 0 (IC)

Ax = b, x ∈ X .

Assume that there exists a function ν∗ : V → R+, Bc ⊆ V ⊆ Rm, which
assigns to every parameter b ∈ Bc a nonnegative Lagrange multiplier ν∗(b) for
the inequality constraint (IC). If the supremum

ν∗c = sup
b∈Bc

ν∗(b) (9)

exists, then

S1 if K � ν∗c /4 · I, p∗(b) is a closed convex function for all b ∈ Bc,
S2 if K � ν∗c /4 · I, p∗(b) is the sum of a concave quadratic function and a

closed convex function for all b ∈ Bc.
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Proof Choose any b ∈ Bc. We denote the dual problem to (8) as

q∗(b) = sup
ν≥0

min
Ax=b, x∈X
λ∈Rm

‖λ− λ0(b)‖2 + ν
(
φ(x, λ) + λT b

)
, (10)

and infer strong duality, i.e. p∗(b) = q∗(b), from (Gol’̌stěın 1972, Theorem 2)
as the Lagrangian in (10) is strongly convex in (x, λ) (cf. Assumption (i)).

By Assumption (ii) there does not exist a Slater point for problem (8),
hence by Gauvin’s Theorem (Gauvin 1977) the set of Lagrange multipliers for
the inequality constraint (IC) is either empty or nonempty but unbounded.
Theorem 3 assumes the latter. By strong convexity and the assumption that
the supremum ν∗c in (9) exists, it thus follows

p∗(b) = min
Ax=b, x∈X
λ∈Rm

‖λ− λ0(b)‖2 + ν∗c
(
φ(x, λ) + λT b

)
, b ∈ Bc , (11)

since by unboundedness of the set of Lagrange multipliers the scalar ν∗c is a
viable Lagrange multiplier for all parametric problems with parameter b ∈ Bc.

Note that the latter argument can be made alternatively via the theory of
exact penalty functions (see e.g. Bertsekas 1999, §5.4.5).

In order to obtain Statement S1, we can verify using Schur’s Lemma that
K � ν∗c /4 · I is necessary and sufficient for ‖λ − Kb − λ̂0‖2 + ν∗cλ

T b being
jointly convex in (λ, b) which in turn is sufficient for the objective in (11) to
be jointly convex in (x, λ, b). Based on joint convexity of the objective and
standard arguments (cf. Bertsekas 1999, §5.4.4), convexity of p∗(b) follows.

Closedness follows from lower semicontinuity of p∗(b) at every b ∈ Bc es-
tablished by (Bank et al 1982, Theorem 4.3.4). In order for this to hold true,
strong convexity of the objective in (11) in (x, λ) for every b ∈ Bc and closed-
ness of the convex set X are of importance as they imply boundedness of the
set of minimizers and further that X can be represented as the intersection of
all closed halfspaces containing it.

For the proof of Statement S2, we note that for every b ∈ Bc

p∗(b) = ν∗c b
T

(
K − ν∗c

4
· I
)
b+ ψ∗(b) , (12)

where

ψ∗(b) , ν∗c λ̂
T
0 b+ min

Ax=b, x∈X
λ∈Rm

∥∥∥λ− (K − ν∗
c

2 · I
)
b− λ̂0

∥∥∥2 + ν∗cφ(x, λ) , (13)

so that for K � ν∗c /4·I the (closed) quadratic term in (12) is negative semidefi-
nite. Convexity and closedness of ψ∗(b) follow from a similar reasoning as used
in the proof of Statement S1. ut

Remark 3 For the case where neither K � ν∗c /4 · I nor K � ν∗c /4 · I, it
follows from the proof of Statement S2 that p∗(b) is the sum of an indefinite
quadratic function and a closed convex function.
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Based on the next theorem, two representations of the set of Lagrange
multipliers Λ∗(b) will be derived in Sections 4.1.1 and 4.1.2 so that problem (7)
can be posed as (8). Interestingly enough, we will prove that only the latter
representation allows one to validate the assumptions of Theorem 3.

Theorem 4 (Adapted from Bertsekas (2009, Prop. 5.3.3b)) For each
parameter b ∈ Bc there holds f∗(b) = d∗(b) and (x∗(b), λ∗(b)) is a primal/dual
optimal solution pair if and only if x∗(b) is primal feasible and

x∗(b) = arg min
x∈X

f(x) + λ∗(b)T (Ax− b) . (14)

4.1.1 Zero-Duality-Gap-Based Representation of Λ∗(b)

This representation follows from the sufficiency condition of Theorem 4, i.e.

Λ∗(b) = {λ ∈ Rm | ∃x ∈ X ∩ {x |Ax = b} : f(x)− d(λ; b) ≤ 0} , b ∈ Bc. (R1)

To render the constraints convex, the equality enforcing a zero-duality gap
is replaced by an inequality in (R1), legitimated by f(x) ≥ d(λ; b) for all pri-
mal/dual feasible pairs (x, λ). The next theorem proves that except for a trivial
case the premise of Theorem 3 cannot be validated for representation (R1).

Theorem 5 Consider representation (R1) of the closed convex set of La-
grange multipliers Λ∗(b). Let λ0 be any function that maps Rm into Rm. If
λ0(b) ∈ Λ∗(b) for every b ∈ Bc, we have ν∗c = 0 trivially, else, the premise of
Theorem 3 cannot be validated.

Proof We identify function φ(x, λ) in Theorem 3 as φ(x, λ)=f(x)− d̂(λ), where

d̂(λ) , min
x∈X

f(x) + λTAx

is continuously differentiable according to Theorem 1. Assumptions (i) and (ii)

on φ(x, λ) hold since f is strongly convex and the relation f(x) ≥ d̂(λ)− λT b
holds for all primal/dual feasible pairs (x, λ). If λ0(b) ∈ Λ∗(b) for every b ∈ Bc,
then p∗(b) ≡ 0 which implies ν∗(b) ≡ 0 for all b ∈ Bc, so ν∗c = 0.

On the other hand, let there be a b̄ ∈ Bc with λ0(b̄) /∈ Λ∗(b̄). For the
sake of contradiction, assume that there exists a Lagrange multiplier ν∗ =
ν∗(b̄) ≥ 0 for the inequality constraint (IC). Then by strong convexity of the
Lagrangian in (x, λ) and (Rockafellar 1997, Corollary 28.1.1) we have for the
pair of minimizers (x∗(b̄), λ∗∗(b̄)) of (8), that we denote as (x∗, λ∗∗) below,

(x∗, λ∗∗) = arg min
Ax=b, x∈X
λ∈Rm

∥∥λ− λ0(b̄)
∥∥2 + ν∗

(
f(x)− d̂(λ) + λT b̄

)
,

or equivalently (by differentiability of f and d̂ (cf. Bertsekas 2009, Prop. 1.1.8))

ν∗∇f(x∗)T (x− x∗) +
(

2
(
λ∗∗ − λ0(b̄)

)
− ν∗

(
∇d̂(λ∗∗)− b̄

))T
(λ− λ∗∗) ≥ 0

for all (x, λ) ∈
{

(x, λ) ∈ Rn × Rm |Ax = b̄, x ∈ X
}

and x∗ ∈ X∩
{
x |Ax = b̄

}
.

For the latter inequality to hold, we have 2(λ∗∗−λ0(b̄))−ν∗(∇d̂(λ∗∗)− b̄) = 0,

but as ∇d̂(λ∗∗) − b̄ = Ax∗ − b̄ = 0 (cf. Theorem 1 and dual optimality), we
end up with λ∗∗ − λ0(b̄) = 0 which contradicts λ0(b̄) /∈ Λ∗(b̄). ut
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4.1.2 Support-Function-Based Representation of Λ∗(b)

This representation is based on the necessary condition of Theorem 4.

Lemma 1 For each parameter b ∈ Bc, the convex set of Lagrange multipli-
ers Λ∗(b) can be represented as

Λ∗(b) = {λ ∈ Rm | ∃x ∈ X ∩ {x |Ax = b} :

xTHx+ gTx+ σX
(
−Hx− g −ATλ

)
+ λT b ≤ 0

}
, (R2)

where σX (y) = supx∈X y
Tx denotes the closed convex support function of X.

Proof By Proposition 1.1.8 in (Bertsekas 2009) we have the equivalence

(14) ⇐⇒ x∗(b) ∈ X and 0 ≤
(
Hx∗(b) + g +ATλ∗(b)

)T
(x− x∗(b)) ∀x ∈ X

⇐⇒ x∗(b) ∈ X and 0 ≤ inf
x∈X

(
Hx∗(b) + g +ATλ∗(b)

)T
(x− x∗(b)) ,

which using the definition of σX (·) and primal feasibility proves the lemma.
ut

Before illustrating with an example that representation (R2), as opposed
to (R1), is meaningful with respect to Theorem 3, we prove that this cannot
be expected for every parametric problem.

Theorem 6 Consider representation (R2) of the closed convex set of La-
grange multipliers Λ∗(b). There exist parametric problems of type (1) with
b ∈ Bc for which the premise of Theorem 3 cannot be validated.

Proof For representation (R2) we identify function φ(x, λ) in Theorem 3 as

φ(x, λ) = xTHx+ gTx+ σX
(
−Hx− g −ATλ

)
,

which is strongly convex in x as H � 0, so meets Assumption (i), and satisfies
Assumption (ii) since for every (x, λ) ∈ {(x, λ) ∈ Rn × Rm |Ax = b, x ∈ X}

φ(x, λ) ≥ xTHx+ gTx− xTHx− gTx− λTAx = −λT b

by definition of the support function σX (·). For the sake of contradiction,
assume that the premise of Theorem 3 can be validated for a problem with

H = I, g =
[

2
−2
]
, A =

[
−1 1

]
, X =

{
x ∈ R2 | ‖x‖∞ ≤ 1

}
, (15)

for which the set of admissible parameters is B = [−2, 2]. Let Bc = B and

K = 0, λ̂0 = 0. Since Bc is a closed interval of the real line and ψ∗(b) in (13) is
closed convex by Statement S2 in Theorem 3, it follows from (Bertsekas 2009,
Proposition 1.3.12) that ψ∗(b) is continuous on Bc. But this implies that h∗(b)
must be continuous on Bc, however, by basic calculations we find

h∗(b) =

{
1
4 (4− b)2 , for b ∈ [−2, 2) ,

0 , for b = 2 ,
(16)

which is closed but not continuous. ut
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Let us revisit the example (15) in the previous proof in order to understand
which part of the assumptions of Theorem 3 cannot be validated. From this
insight, we will then alter the example appropriately so that Theorem 3 applies.

We start with defining map ν∗(b) as the one that returns for every param-
eter b ∈ Bc the smallest Lagrange multiplier for inequality constraint (IC).
Note that here σX (·) = ‖ · ‖1, so that for b ∈ [−2, 2) we obtain this map from

ν∗(b) = min
ν≥0

ν (17)

s.t. (x∗(b), λ∗∗(b))=arg min
Ax=b, x∈X

λ∈R

λ2 + ν
(
xTx+ gTx+ λb+ ‖x+ g +ATλ‖1

)
,

by Theorem 4 and (Rockafellar 1997, Cor. 28.1.1). For problem (15) we obtain

x∗(b) =
[−2

2

]
− 1

2

[−1
1

]
(4− b) , λ∗∗(b) = 1

2 (4− b) , b ∈ [−2, 2) ,

such that after some calculation, the function in (17) is found to be

ν∗(b) =

{
1 + 2

2−b , for b ∈ [−2, 2) ,

0 , for b = 2 .

Now, ν∗(b) is defined everywhere on Bc, however, the supremum ν∗c in (9)
does not exist, which explains why Theorem 3 does not apply. Differently, the
theorem applies if Bc = [−2, 2− δ], δ ∈ (0, 4], since ν∗c then exists.

4.1.3 Computational Aspects

The investigation of function h∗(b) based on Theorem 3 depends on the exis-
tence of the supremum ν∗c in (9) for representation (R2). Let us assume for
the moment that the supremum exists and is available. If the set of certified
parameters Bc is contained in the relative interior of the admissible set of
parameters B, i.e. Bc ⊂ ri B, then h∗(b) is continuous on Bc (this follows from
Statements S1 and S2 in Theorem 3 and (Rockafellar 1997, Theorem 10.4)),
thus by Weierstrass’ Theorem the value of ∆2

d in (7) is attained.
If Statement S1 applies, the supremum is attained at some extreme point

since Bc is assumed convex (Rockafellar 1997, Corollary 32.3.2). For instance,
if Bc is a polytope, then it suffices to evaluate h∗(b) at its vertices. Although
Statement S2 is weaker, it can be used to get an upper bound on ∆2

d by
omitting the nonpositive quadratic term in (12) and maximizing ψ∗(b), i.e.

∆2
d ≤ sup

b∈Bc

ψ∗(b) .

Note that this includes the case K = 0, λ̂0 = 0, which is the problem of
determining an upper bound on the largest squared norm Lagrange multiplier.

Evaluating h∗(b) pointwise corresponds to solving a single convex program
if the dual function d(λ; b) or the support function of set X can be repre-
sented conveniently. In this respect, alternative (R1) works, e.g. for quadratic
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programming (X is a polyhedron) if the linear inequality constraints defining
set X are relaxed too (cf. Bertsekas 2009, Example 5.3.1), and linear program-
ming (H = 0, X is a polyhedron), whereas (R2) is a viable representation if
set X is a 1-, 2- or∞-norm ball, a simplex, ellipsoid, proper cone or a Cartesian
product, Minkowski sum and/or union of them (see Rockafellar 1997, §13).

Remark 4 It is standard to characterize the set of Lagrange multipliers Λ∗(b)
by the Karush-Kuhn-Tucker (KKT) conditions (Bertsekas 1999, §3.3.1). This
approach requires additional constraint qualifications to hold and set X to be
representable as the intersection of finitely many level sets of closed convex
functions sj(x), i.e. X = {x ∈ Rn | sj(x) ≤ 0, j = 1, . . . , l}. However, the non-
convex complementary slackness conditions, as part of the KKT conditions,
complicate the analysis of h∗(b) and also prevent one from evaluating it by
convex programming – despite the convexity of set Λ∗(b).

4.2 Computation of the Smallest Lipschitz Constant

The smallest Lipschitz constant of the gradient, L∗, is the other crucial entity
in the computation of the smallest lower iteration bound (cf. Theorem 2). We
will show that L∗ can indeed be computed under mild assumptions so that
for some λ̄1, λ̄2 inequality (6) is tight. This result is also crucial for practical
performance of the fast gradient method as 1/L∗ is the implemented step size.

Let us start with an important observation. If we define a change of vari-
ables for problem (2), i.e. x = Pw with invertible matrix P ∈ Rn×n, then from
Theorem 1 we obtain ∇d (λ; b) = APw∗(λ) − b = Ax∗(λ) − b, however, the
Lipschitz constant according to the same theorem changes, since in general

‖A‖2/λmin(H) 6= ‖AP‖2/λmin(PTHP ) . (18)

By minimizing the right hand side of (18) over all invertible matrices P we
obtain the smallest Lipschitz constant L∗ under a linear change of variables.
Whereas this problem can be cast as a convex semidefinite program (see Boyd
et al 1994, §3.1), it can also be solved analytically based on the next lemma.

Lemma 2 It holds that

min
P invertible

‖AP‖2/λmin(PTP ) = ‖A‖2 .

Proof For all invertible matrices P we have

λmin (PPT )wTAATw ≤ wTAPPTATw, ∀w ∈ Rn. (19)

This implies λmin (PPT ) ≤ ‖AP‖2 / ‖A‖2 and thus the lower bound ‖A‖2
of the objective. But choosing P = I attains this lower bound. ut

Theorem 7 The smallest Lipschitz constant of the dual gradient under a lin-
ear change of variables is L∗ = ‖AH− 1

2 ‖2.
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Proof Let P = H−
1
2S, S invertible, and apply Lemma 2 to the r.h.s. of

min
P invertible

‖AP‖2/λmin(PTHP ) = min
S invertible

‖AH− 1
2S‖2/λmin(STS) . ut

Let us investigate when L∗ < L, where L is from Theorem 1.

Lemma 3 If L∗ is the Lipschitz constant from Theorem 7 and L the one from
Theorem 1, then ‖A‖2/λmax(H) ≤ L∗ ≤ L.

Proof L is an upper bound of L∗ by definition. Also,

‖AP‖2/λmin(PTHP ) ≥ λmin(PTP ) ‖A‖2/λmin(PTHP ) ≥ ‖A‖2/λmax(H)

by using (19) and λmin(PTHP ) ≤ λmax(H)λmin(PTP ). ut

So, we deduce that L∗ < L only if λmax(H) > λmin(H) which is true
whenever Hessian H is not a positive multiple of the identity matrix. Also, L∗

is a tight Lipschitz constant under a mild assumption as shown next.

Theorem 8 If there exists a λ̄ ∈ Rm with x∗(λ̄) ∈ intX, then L∗ from The-
orem 7 is a tight Lipschitz constant of the dual gradient.

Proof We prove that there exists a subset of Rm with nonempty interior on
which the Lipschitz constant of the dual gradient attains L∗. By the premise,
there exists a δ > 0 such that X =

{
x ∈ Rn | ‖x− x∗(λ̄)‖ < δ

}
⊆ X. Let set M

contain all multipliers λ with x∗(λ) ∈ X, or equivalently, for all λ ∈ M the
minimizer of (5) is free. In this case, we can compute the minimizer explicitly,
i.e. x∗(λ) = −H−1(g +ATλ), thus M =

{
λ ∈ Rm |

∥∥H−1AT (λ− λ̄)
∥∥ < δ

}
.

Since
{
λ ∈ Rm |

∥∥H−1AT∥∥ ∥∥(λ− λ̄)
∥∥ < δ

}
is an m-dimensional open sub-

set of M, we conclude that M has nonempty interior. The dual function defined
over M is

d(λ; b) = −1/2
(
gT + λTA

)
H−1

(
g +ATλ

)
− λT b ,

which is twice continuously differentiable, so the Lipschitz constant of its gra-
dient is λmax(AH−1AT ) (Nesterov 2004a, Lemma 1.2.2), which is L∗. ut

Remark 5 In model predictive control, the interior assumption of Theorem 8
is a standard assumption (cf. (Rawlings and Mayne 2009, §1.2)). So, for this
class of problems, a tight Lipschitz constant can be obtained from Theorem 7.

Let us illustrate the findings of this section with the example given by (15).
Consider a change of variables for its dual problem (2) according to

x =

[
p1 0
0 p2

]
w, 0 < p1 ≤ p2 .

From Theorem 7, the smallest Lipschitz constant is given by L∗ = 2 for any
p1, p2 > 0. As x∗(2) = 0 ∈ intX, it is also tight (cf. Theorem 8). On the
contrary, the Lipschitz constant from Theorem 1 is

L(p1, p2) = 1 + (p2/p1)
2 ≥ L∗ ,

which can be arbitrarily larger than L∗ if p1 and p2 are chosen accordingly.
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4.3 Optimal Preconditioning of the Dual Problem

Theorem 2 states the smallest lower iteration bound for Algorithm 2.1. Yet,
we might get a better bound by considering the dual problem in a different
basis. For a strongly concave problem the lower iteration bound can be im-
proved if the preconditioner decreases the condition number (see (Bertsekas
1999, §1.3.2) for heuristic and (Boyd et al 1994, §3.1) for optimal precondi-
tioners). The dual function in (2) lacks strong concavity, leaving the condition
number undefined. In this section, we propose to take the smallest lower iter-
ation bound in Theorem 2 as an alternative selection criterion for an optimal
preconditioner of the dual function. It turns out that under the computation-
ally tractable approximate reformulation of this problem introduced below, it
cannot be ensured that the obtained optimal preconditioner gives a strictly
better smallest lower iteration bound than the original one.

In order to see this, define dC(υ; b) , d(Cυ; b) as the preconditioned dual
function where C ∈ Rm×m is an invertible preconditioner. In order to find
a preconditioner that minimizes the smallest lower iteration bound for the
preconditioned problem we need to minimize L∗(C)∆2

d(C) over all invertible
matrices C (cf. Theorem 2), where

L∗(C) = ‖CTAH− 1
2 ‖2 , ∆2

d(C) = sup
b∈Bc

min
λ∈Λ∗(b)

‖C−1 (λ− λ0(b)) ‖2 .

Minimizing L∗(C)∆2
d(C) directly is hard in view of ∆2

d(C), however, a
tractable formulation can be obtained from the upper bound

min
C inv.

L∗(C)∆2
d(C) ≤ min

C inv.
L∗(C)‖C−1‖2∆2

d = min
C inv.

‖CTAH− 1
2 ‖2

λmin(CTC)
∆2
d .

Assume that a preconditioner C∗ is obtained from solving the upper bound.
Then by the previous inequality and Lemma 2, we have

L∗(C∗)∆2
d(C

∗) ≤ L∗(C∗)‖C∗−1‖2∆2
d = L∗∆2

d ,

which implies that the original smallest lower iteration bound is not guaranteed
to be strictly improved. Also, if matrix A is sparse, then C∗TA might not be
sparse thus rendering an iteration of the fast gradient method more expensive.

5 Discussion

Let us pose some open questions based on the findings in this paper.
As shown in Section 4.1, characterization of function h∗(b) critically de-

pends on how the set of Lagrange multipliers is represented. The example in
Section 4.1.2 illustrates that with representation (R2) it is possible to reveal
that h∗(b) is the sum of a concave and a convex term (which in this example is
convex), however, this cannot be concluded from representation (R1). Thus, it
would be interesting to have an analysis independent from the representation.

Another issue concerns the computation of ν∗c in (9) and, as a prerequisite,
verifying if ν∗(b) is defined on Bc. For a meaningful lower iteration bound, it is
also important to find an affine initialization map λ0(b) that makes ∆2

d ‘small’.
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