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Abstract Gaussian measures μβ,ν are associated to some stochastic 2D models of turbu-
lence. They are Gibbs measures constructed by means of an invariant quantity of the system
depending on some parameter β (related to the 2D nature of the fluid) and the viscosity ν.
We prove the existence and the uniqueness of the global flow for the stochastic viscous sys-
tem; moreover the measure μβ,ν is invariant for this flow and is the unique invariant measure.
Finally, we prove that the deterministic inviscid equation has a μβ,ν-stationary solution (for
any ν > 0).

Keywords Gibbs measures · Stochastic analysis · Invariant measures · 2D turbulence

1 Introduction

The goal of this paper is to study a class of mathematical models related to 2D fluids through
their statistical properties and in particular their invariant measures. From a theoretical point
of view, 2D turbulence is not simply a reduced dimensional version of 3D turbulence be-
cause a completely different phenomenology arises from new conservation laws in two di-
mensions, energy and enstrophy. Energy and enstrophy input are usually implemented nu-
merically using a Gaussian stochastic forcing which is white noise in time. We refer to the
paper [6], where an overview of 2D turbulence is described thoroughly.

There is an extensive literature about the existence and uniqueness of solutions of
the stochastic 2D Navier-Stokes equation. Its long time behavior has also been exten-
sively studied, including the existence and uniqueness of invariant measures (see, e.g.,
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[20] and the references therein including the results of Flandoli, Hairer, Kuksin, Kupiainen,
Maslowski, Mattingly, Shirikyan, Sinai).

As far as the 2D Euler equation is concerned, a recent paper [7] constructs invariant
measures of general types including the Gaussian measures we are interested in. However,
the techniques used in [7] are different from ours and the measures are described through a
variational formulation.

The study of qualitative properties of the invariant measures is an interesting problem
both from the mathematical and physical point of view, but many open questions still wait
for an answer. Among the non trivial invariant measures there is a Gaussian measure, called
the Gibbs measure of the enstrophy (see [1, 2, 13, 16]), which is a stationary measure both
for the 2D Navier-Stokes with additive space-time white noise and for the 2D deterministic
Euler equation. However, it is not known if this is the unique invariant measure.

Our contribution in this paper is to be able to prove existence and uniqueness of an
invariant measure of Gaussian type for a very general model that does not include the 2D
Navier-Stokes equation but that has all the peculiar features of 2D fluids, like conservation
of energy and enstrophy. We point out that the Gaussian invariant measure that we consider
here is not the Gibbs measure of the enstrophy considered for the 2D stochastic Navier-
Stokes or deterministic 2D Euler equation in previous papers [1, 2, 4, 13, 16], but has a
more regular support. In particular, the support of this measure is a Sobolev space of non
negative exponent.

From the mathematical point of view, the equations of fluid dynamics or of models related
to turbulence can be represented as an abstract stochastic evolution equation in a Hilbert
space of the following form

du(t) + [
νAu(t) + B

(
u(t), u(t)

)]
dt = √

Qdw(t), (1)

where w is a cylindrical Wiener process and Q is a linear operator; the coefficient ν ≥ 0 is
the viscosity. More details on the functional setting will be given in the next section.

For the abstract model (1) under suitable assumptions on the operators A, B and Q, we
prove that it is well posed in the support of the Gaussian measure μβ,ν ; this is done following
the technique of [20], differently from [2, 13, 16]. Then, we prove that μβ,ν is an invariant
measure, and that there exists at most one invariant measure; uniqueness of the invariant
measure is proved by means of Girsanov theorem. Finally, for the deterministic and inviscid
model (Q = 0, ν = 0), we prove that there exists a stationary solution, whose marginal at
fixed time is this Gaussian measure.

We provide an example of equation of the form (1) for which our results hold: the shell
model of turbulence given in Sect. 4 with the peculiar properties of 2D fluids. Shell mod-
els of turbulence have been introduced as a simplified phenomenological model of fluid
dynamic equations in order to investigate a number of properties which are out of reach
at present for the more realistic models. This is because, although departing from reality,
they capture some essential statistical properties and features of turbulent flows. On the
other side, even if the 2D Navier-Stokes/Euler equations can be formulated at the abstract
level as Eq. (1), they do not satisfy all the assumptions of our theorems (see Remark 4.2 in
Sect. 4). Our hope is to weaken these assumptions and still be able to use the analysis used
here.

As far as the content of this paper is concerned, in Sect. 2 we introduce the operators
associated to the model (1) with their properties and the Gibbs measures μβ,ν . We introduce
the (linear) Ornstein-Uhlenbeck equation with a suitable noise so that μβ,ν is its unique in-
variant measure. In Sect. 3, we deal with the viscous stochastic case; we prove the existence
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and uniqueness of strong solutions and that μβ,ν is the unique invariant measure. Moreover,
some ergodic properties of this measure with its rate of convergence are shown. In Sect. 4,
we introduce a particular example, shell models of turbulence with an emphasis on the Sabra
model. The coefficient β characterizing the measure μβ,ν will be related to the coefficients
a and b of the Sabra model through condition (59). Section 5 is devoted to the deterministic
inviscid model, in particular we present our results for the inviscid Sabra model with β = 1.
For any ν > 0 we prove the existence of a stationary process whose law at any fixed time
is μ1,ν .

2 Introduction to the Model and Functional Setting

2.1 Operators and Spaces

Let (H, | · |) be a real separable Hilbert space endowed with an inner product denoted by
(·, ·), and A an unbounded self-adjoint positive linear operator on H with compact resol-
vent. We denote by 0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of A and by e1, e2, . . . a complete
orthonormal system in H given by the eigenfunctions of the operator A

Aen = λnen.

We have that limn→∞ λn = ∞.
Let Hn = span{e1, e2, . . . , en} and Πn the projector operator onto Hn.
For any α ∈ R we can define the power operators Aα as

Aαx =
∞∑

n=1

λα
n(x, en)en, D

(
Aα

) =
{

x =
∞∑

n=1

xnen :
∞∑

n=1

λ2α
n x2

n < ∞
}

.

We set

Hα = D
(
Aα/2

)
.

Each Hα is a Hilbert space with scalar product 〈u,v〉Hα := (Aα/2u,Aα/2v). We denote by
‖ · ‖α the norm in Hα and by 〈·, ·〉 the Hα − H−α duality paring.

Let B : H × H → H−1 be a bilinear operator; we assume that there exists a positive
constant c such that

∥
∥B(u, v)

∥
∥−1

≤ c|u||v|. (2)

We consider the finite dimensional approximation of the bilinear operator B; this is the
bilinear operator BM defined as

BM(u, v) = ΠMB(ΠMu,ΠMv)

for any M ∈ N. For each BM we have the same estimate as (2) (with the constant c indepen-
dent of M).

For any ν > 0, let μβ,ν be the Gaussian measure N (0, 1
ν
A−β) (see, e.g., [14, 23]). Heuris-

tically

μβ,ν(du) = “
1

Z
e

−ν‖u‖2
β du”

where Z is a normalization constant to make μβ,ν a probability measure.
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Besides the basic properties of the operators A and B given above, we present other
important assumptions.

Condition (C1): For any ν > 0, the operator νA generates an analytic semigroup of con-
tractions in H , i.e. for any p > 0 there exists cp,ν > 0 such that

∣
∣Ape−νAtx

∣
∣ ≤ cp,ν

tp
|x| ∀t > 0, x ∈ H. (3)

Condition (C2): The bilinear operator B satisfies the following properties:

(i) 〈B(u, v),w〉 = −〈B(u,w), v〉
(ii) ∃β > 0 such that 〈B(u,u),Aβu〉 = 0

for any u,v,w giving meaning to the above relationships.
Condition (C3): For each n, set Bn(u, v) = 〈B(u, v), en〉. Then, for some β > 0 we have

∫ ∣
∣Bn(x, x)

∣
∣2

μβ,ν(dx) < ∞ ∀n (4)

and Bn(x, x) independent of xn (where x = ∑
n xnen). Moreover, for some β ∈ (0,1]

lim
M→∞

M∑

n=1

∫ ∣∣〈BM(x, x) − B(x, x), en

〉∣∣2
μβ,ν(dx) = 0. (5)

Condition (C4): There exist β > 0 and α ∈ [0, β) such that the embedding Hβ ⊂ Hα is
Hilbert-Schmidt, i.e.

∞∑

n=1

λα−β
n < ∞.

Condition (C5): for α and β given in (C2) and (C4), B : Hα ×Hα → Hβ−1 is a continuous
operator, i.e.

∥∥B(u, v)
∥∥

β−1
≤ c‖u‖α‖v‖α ∀u,v ∈ Hα. (6)

Moreover, if α > 0 we assume

∥
∥B(u, v)

∥
∥

α−1
≤ c|u|‖v‖α ∀u ∈ H,v ∈ Hα. (7)

Remark 2.1 (i) We have the relationships corresponding to assumption (C2):

(
BM(u, v),w

) = −(
BM(u,w), v

)
, (8)

(
BM(u,u),Aβu

) = 0. (9)

(ii) From (C2 i) we have

〈
B(u, v), v

〉 = 0 and
(
BM(u, v), v

) = 0. (10)

(iii) By means of the bilinearity and of estimate (6) we have

lim
M→∞

∥
∥BM(u, v) − B(u, v)

∥
∥

β−1
= 0 ∀u,v ∈ Hα.
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(iv) Since α ≥ 0, the inequality (7) implies

∥∥B(u, v)
∥∥

α−1
≤ c‖u‖α‖v‖α ∀u,v ∈ Hα. (11)

Moreover,

lim
M→∞

∥
∥BM(u, v) − B(u, v)

∥
∥

α−1
= 0 ∀u,v ∈ Hα. (12)

(v) Assumption (C4) implies that the space Hα has full measure μβ,ν , i.e. μβ,ν(Hα) = 1.
However, for Gaussian measures in infinite dimensional spaces we have μβ,ν(Hβ) = 0 (see,
e.g., [23]). Also

∫
|u|2 dμβ,ν < ∞

∫
‖u‖2

β dμβ,ν = +∞.

(vi) Assumptions (C4) and (C5) imply that (4) holds.

We denote by Lp(μβ,ν) the space of measurable functions φ defined in the support of the
measure μβ,ν and such that

∫ |φ|pdμβ,ν < ∞.

2.2 The Equations

Set Q = 2A1−β in (1), that is we consider the following nonlinear stochastic equation

du(t) + [
νAu(t) + B

(
u(t), u(t)

)]
dt =

√
2A1−βdw(t). (13)

In addition we deal with the inviscid and deterministic equation

du

dt
(t) + B

(
u(t), u(t)

) = 0 (14)

and with the viscous linear stochastic equation

dz(t) + νAz(t) dt =
√

2A1−βdw(t). (15)

(10) implies a formal law of conservation of E(t) = 1
2 |u(t)|2 in Eq. (14). We recall that in

hydrodynamics the quantity E(t) is the energy, which is a conserved quantity in the motion
of incompressible inviscid fluids.

Relationship (ii) in assumption (C2) implies that Sβ(t) = 1
2 ‖u(t)‖2

β is a conserved quan-
tity for Eq. (14), that is formally we have

dSβ

dt
(t) = 〈

u̇(t),Aβu(t)
〉 = −〈

B
(
u(t), u(t)

)
,Aβu(t)

〉 = 0.

The Gaussian measure μβ,ν = N (0, 1
ν
A−β) can be described heuristically as

μβ,ν(du) = “
1

Z
e−νSβ (u)du”.

Therefore it makes sense to see if the measure μβ,ν , described by means of the invariant
quantity Sβ , is a stationary statistical solution for the inviscid equation (14). To this end,
we will first prove that μβ,ν is a stationary measure for the stochastic viscous equation (13)
looking for a dynamics in the space Hα of full measure μβ,ν . However, the basic stochastic
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case to deal with is the linear equation (15) for which we recall well known properties (see
[14]). Let us mention here that the stochastic forcing term is infinite dimensional and acts
on all the components en of H .

Proposition 2.2 Let assumptions (C1) and (C4) be satisfied.
Then, for any z(0) ∈ Hα there exists a unique strong solution to Eq. (15) such that

z ∈ C
([0, T ];Hα

)
P-a.s.

The stationary process solving Eq. (15) is

ζ(t) = √
2
∫ t

−∞
e−ν(t−s)A

√
A1−βdw(s)

and the law of ζ(t) is μβ,ν for any time t .

Remark 2.3 (i) For 2D Euler equation with β = 1, the energy E is finite μ1,ν -a.s., whereas
the enstrophy S1 is infinite μ1,ν -a.s.

(ii) It is possible to define a formally invariant measure constructed by means of the
invariant E = 1

2 |u|2

μβ,ν(du) = “
1

Z
e−νE(u)du”.

This has been already considered for shell models of turbulence in [4].

3 Stochastic Viscous Models

We consider Eq. (13); first we prove that there exists a unique solution for any initial data
in Hα . The solution is strong in the probabilistic sense and uniqueness is in pathwise sense.
Moreover, we show that μβ,ν is the unique invariant measure associated with this stochastic
equation.

3.1 Strong Solution

We look for dynamics in the state space Hα with 0 ≤ α < β fulfilling assumptions (C1),
(C2), (C4), (C5). We consider any finite time interval [0, T ].

Theorem 3.1 Let assumptions (C1), (C2), (C4) and (C5) be satisfied.
Then, for any u(0) ∈ Hα , there exists a unique solution u to Eq. (13) such that

u ∈ C
([0, T ];Hα

)
P-a.s.

Moreover, the process u is a Markov process, Feller in Hα .

We divide the proof in three steps in the following subsections.
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3.1.1 Existence of Strong Solutions

We use a well known trick to study a stochastic semilinear equation with additive noise (see
[20]).

We set v = u − z. Then

dv

dt
(t) + νAv(t) + B

(
v(t) + z(t), v(t) + z(t)

) = 0 (16)

with v(0) = u(0) − z(0). Set z(0) = 0.

Proposition 3.2 We consider the same assumptions as in Theorem 3.1. Let v(0) ∈ Hα . Then
there exists a solution to Eq. (16) such that

v ∈ C
([0, T ];Hα

) ∩ L2
(
0, T ;H 1+α

)
P-a.s.

Proof We proceed pathwise. We want to prove that Eq. (16) has a solution P-a.s. In a stan-
dard way (see [27]), we consider first the finite dimensional Galerkin problem associated to
(16), that is

dvM

dt
(t) + νAvM(t) + BM

(
vM(t) + zM(t), vM(t) + zM(t)

) = 0 (17)

with vM(0) = ΠMv(0) and zM(t) = ΠMz(t). It is a classical result (see [27]) that (17) has a
global solution vM ∈ C([0, T ];HM). We are going to get a priori estimates on the sequence
{vM}M , which are independent of M . The estimates will allow to extract a subsequence
converging in a suitable way.

We take the scalar product of the left hand side of Eq. (17) with vM in H ; we get

1

2

d

dt

∣∣vM
∣∣2 + ν

∥∥vM
∥∥2

1
= −(

BM
(
vM + zM, vM + zM

)
, vM

)

= −(
BM

(
vM + zM, zM

)
, vM

)
by (10)

≤ ∥
∥B

(
vM + zM, zM

)∥∥−1

∥
∥vM

∥
∥

1

≤ c
∣∣vM + zM

∣∣∣∣zM
∣∣∥∥vM

∥∥
1

by (2)

≤ ν

2

∥∥vM
∥∥2

1
+ cν

2

∣∣zM
∣∣2∣∣vM

∣∣2 + cν

2

∣∣zM
∣∣4

by Young inequality, for some positive constant cν . Henceforth, we denote by cν a generic
constant depending on ν, but independent of M .

We use |ΠMx| ≤ |x|. Therefore

d

dt

∣
∣vM

∣
∣2 + ν

∥
∥vM

∥
∥2

1
≤ cν |z|2

∣
∣vM

∣
∣2 + cν |z|4. (18)

Hence, Gronwall inequality applied to

d

dt

∣∣vM
∣∣2 ≤ cν |z|2

∣∣vM
∣∣2 + cν |z|4

Author's personal copy



266 H. Bessaih, B. Ferrario

gives

sup
0≤t≤T

∣∣vM(t)
∣∣2 ≤ e

cνT ‖z‖2
C([0,T ];H)

(∣∣vM(0)
∣∣2 + cνT ‖z‖4

C([0,T ];H)

)
(19)

and integrating in time (18)

ν

∫ T

0

∥∥vM(s)
∥∥2

1
ds ≤ ∣∣vM(0)

∣∣2 + T cν

(‖z‖2
C([0,T ];H)

∥∥vM
∥∥2

C([0,T ];H)
+ ‖z‖4

C([0,T ];H)

)
. (20)

Moreover, when α ≥ 0 we proceed in a similar way: we take the scalar product of the left
hand side of Eq. (17) with AαvM in H ; then

1

2

d

dt

∥
∥vM

∥
∥2

α
+ ν

∥
∥vM

∥
∥2

1+α
= −(

A
−1+α

2 BM
(
vM + zM, vM + zM

)
,A

1+α
2 vM

)

≤ ∥
∥BM

(
vM + zM, vM + zM

)∥∥−1+α

∥
∥vM

∥
∥

1+α

≤ c
∣∣vM + zM

∣∣∥∥vM + zM
∥∥

α

∥∥vM
∥∥

1+α
by (7)

≤ ν

2

∥∥vM
∥∥2

1+α
+ cν

2

(∣∣vM
∣∣2 + ∣∣zM

∣∣2)∥∥vM
∥∥2

α
+ cν

2

∥∥zM
∥∥4

α
.

This gives

d

dt

∥
∥vM

∥
∥2

α
+ ν

∥
∥vM

∥
∥2

1+α
≤ cν

(∣∣vM
∣
∣2 + ‖z‖2

α

)∥∥vM
∥
∥2

α
+ cν‖z‖4

α. (21)

Therefore, using (19) and the fact that α ≥ 0 we get

sup
0≤t≤T

∥
∥vM(t)

∥
∥2

α
≤ ∥

∥vM(0)
∥
∥2

α
ecν

∫ T
0 (|vM(t)|2+‖z(t)‖2

α)dt

+ cν

∫ T

0
ecν

∫ T
t (|vM(s)|2+‖z(s)‖2

α)ds
∥∥z(t)

∥∥4

α
dt (22)

and integrating in time (21) we get a similar estimate for
∫ T

0 ‖vM(s)‖2
1+αds.

Summing up, we have

sup
M

∥∥vM
∥∥2

L∞(0,T ;Hα)
< ∞, (23)

sup
M

∥∥vM
∥∥2

L2(0,T ;H 1+α)
< ∞. (24)

In addition dvM

dt
is bounded: indeed

dvM

dt
(t) = −νAvM(t) − B

(
vM(t) + zM(t), vM(t) + zM(t)

);

using (24)–(23), we have that the first term in the r.h.s. belongs to the space L2(0, T ;Hα−1)

and the second to the space C([0, T ];Hα−1) (use (11)) and thus in L2(0, T ;Hα−1). Then

sup
M

∥∥∥
∥
dvM

dt

∥∥∥
∥

2

L2(0,T ;Hα−1)

< ∞. (25)
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Since the space {v : v ∈ L2(0, T ;H 1+α), dv
dt

∈ L2(0, T ;Hα−1)} is compactly embedded in
the space L2(0, T ;Hα), from (23)–(25) we get that there exists a subsequence {vMi } weakly
convergent to a v in L2(0, T ;H 1+α), weakly-* convergent in L∞(0, T ;Hα) and strongly
convergent in L2(0, T ;Hα). By means of the bilinearity of B , of the strong convergence
result and of (12), we conclude that the limit v fulfills (16).

The fact that v ∈ C([0, T ];Hα) comes from a result in Temam [27] (Lemma 1.4,
page 263): if v ∈ L2(0, T ;H 1+α) and dv

dt
∈ L2(0, T ;H−1+α), then v ∈ C([0, T ];Hα). �

Remark 3.3 We can prove also the uniqueness of this solution v, but we do not need it
here. Anyway, the proof of uniqueness would be based on the same estimates as in the next
Sect. 3.1.2.

We conclude for u = v + z.

Proposition 3.4 We consider the same assumptions as in Theorem 3.1. Let u(0) ∈ Hα . Then
there exists a solution to Eq. (13) such that

u ∈ C
([0, T ];Hα

)
P-a.s.

3.1.2 Pathwise Uniqueness

Now we prove that the strong solution u constructed in the previous section is pathwise
unique, that is

Proposition 3.5 We consider the same assumptions as in Theorem 3.1. Let u1, u2 be two
solutions to Eq. (13) with the same initial data, defined on the same stochastic basis and
with the same Wiener process. Then u1 = u2 P-a.s., the equality being in C([0, T ];Hα).

Proof We proceed pathwise. Let u1, u2 ∈ C([0, T ];Hα) be two paths (in a set of
P-measure 1).

Set U = u1 − u2. Then U ∈ C([0, T ];Hα) and it solves an equation which is determin-
istic (for any path):

dU

dt
+ νAU + B(u1, u1) − B(u2, u2) = 0; U(0) = 0. (26)

First, we notice that U is more regular than the ui ’s (the noise term has disappeared and we
expect more regularity as for Eq. (16)).

By the bilinearity of the operator B , we have

dU

dt
+ νAU + B(u1,U) + B(U,u2) = 0; U(0) = 0. (27)

We get an a priori estimate:

1

2

d

dt

∥∥U(t)
∥∥2

α
+ ν

∥∥U(t)
∥∥2

1+α

= −(
A

α−1
2

[
B

(
u1(t),U(t)

) + B
(
U(t), u2(t)

)]
,A

α+1
2 U(t)

)

≤ [∥∥u1(t)
∥
∥

α
+ ∥

∥u2(t)
∥
∥

α

]∥∥U(t)
∥
∥

α

∥
∥U(t)

∥
∥

1+α
by (6)
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≤ ν

2

∥
∥U(t)

∥
∥2

1+α
+ cν

2

[∥∥u1(t)
∥
∥2

α
+ ∥

∥u2(t)
∥
∥2

α

]∥∥U(t)
∥
∥2

α
.

Therefore

d

dt

∥
∥U(t)

∥
∥2

α
≤ cν

[∥∥u1(t)
∥
∥2

α
+ ∥

∥u2(t)
∥
∥2

α

]∥∥U(t)
∥
∥2

α
;

using Gronwall inequality it follows

∥∥U(t)
∥∥2

α
≤ ∥∥U(0)

∥∥2

α
ecν

∫ t
0 [‖u1(s)‖2

α+‖u2(s)‖2
α ]ds . (28)

Finally, U(t) = 0 for all t , since U(0) = 0. �

Remark 3.6 Markovianity is inherited from the Galerkin approximations.

3.1.3 Feller Property

Let us denote by u(t;x) the solution of Eq. (13) with initial data x, by Bb(H
α) the space of

Borel bounded functions φ : Hα → R and by Cb(H
α) its subspace of continuous bounded

functions.
Define the Markov semigroup Pt : Bb(H

α) → Bb(H
α) as

Ptφ(x) = E
[
φ
(
u(t;x)

)]
.

This is a contraction semigroup. Moreover, it is Feller in Hα , that is

Pt : Cb

(
Hα

) → Cb

(
Hα

)
.

This comes from the estimates for the pathwise uniqueness. Indeed, (28) gives

∥∥u(t;x) − u(t;y)
∥∥2

α
≤ ‖x − y‖2

αe
cν

∫ t
0 [‖u(s;x)‖2

α+‖u(s;y)‖2
α ]ds (29)

for t > 0 fixed. By (22) we get a uniform estimate of ‖u(·;x)‖2
L∞(0,T ;Hα) when ‖x‖α is

bounded, i.e.

∀R > 0 ∃CR: sup
‖x‖α≤R

∥
∥u(·;x)

∥
∥

C([0,T ];Hα)
< CR. (30)

Hence, when ‖x − y‖α → 0 from (29) and (30) we get ‖u(t;x) − u(t;y)‖α → 0. We
conclude that φ(u(t;x)) → φ(u(t;y)) for φ ∈ Cb(H

α) and therefore E[φ(u(t;x))] →
E[φ(u(t;y))] by the dominated convergence. This means that Ptφ ∈ Cb(H

α) for any t > 0
and φ ∈ Cb(H

α).

3.2 Invariant Measure

We prove the following theorem:

Theorem 3.7 Besides the assumptions of Theorem 3.1 we consider (C3). Then, μβ,ν is the
unique invariant measure for Eq. (13), in the sense that

∫
Ptφ dμβ,ν =

∫
φ dμβ,ν ∀φ ∈ L1

(
μβ,ν

)
and t ≥ 0. (31)
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First, we show that μβ,ν is an invariant measure for the nonlinear equation (13) in the
sense that

∫
Ptφ dμβ,ν =

∫
φ dμβ,ν ∀φ ∈ Cb

(
Hα

)
and t ≥ 0.

Then, we prove the same relationship for all φ ∈ L1(μβ,ν) by extending Pt from Cb to
L1(μβ,ν). The next step is to prove the uniqueness of the invariant measure.

A consequence of this result is the following

Corollary 3.8 Given any initial data with law μβ,ν , there exists a unique stationary solution
of Eq. (13) whose law at any fixed time is μβ,ν .

Finally, in Sect. 3.2.4 we analyze the rate of convergence of Ptφ, as t → ∞.

3.2.1 Existence of the Invariant Measure

We know that the linear stochastic equation (15) has μβ,ν as unique invariant measure, that
is μβ,ν is the unique probability measure such that

∫
E

[
φ
(
z(t;x)

)]
μβ,ν(dx) =

∫
φ(x)μβ,ν(dx) ∀t ≥ 0, φ ∈ Bb

(
Hα

)

(see [14, 15]). Actually we can define the latter relationship for all φ ∈ Lp(μβ,ν), given any
1 ≤ p < ∞ (see, e.g., [11, 12]).

Now, we want to show that μβ,ν is an invariant measure also for the nonlinear equa-
tion (13).

Following the lines of [4], we define the measure μ
β,ν

M = ⊗M

j=1 N (0, 1
ν
λ

−β

j ) on Borel
subsets of R

M . In a standard way, taking as initial value uM(0) a random variable of law
μ

β,ν

M then the Galerkin system

duM(t) + [
νAuM(t) + BM

(
uM(t), uM(t)

)]
dt = ΠM

√
2A1−β dw(t) (32)

has a unique strong μ
β,ν

M -stationary solution; the important point is that μ
β,ν

M is an invariant
measure for (32) (see Sect. 3.2 in [4]). Thus, the infinite dimensional equation

dUM(t) + [
νAUM(t) + BM

(
UM(t),UM(t)

)]
dt =

√
2A1−β dw(t) (33)

has a μβ,ν -stationary solution (notice that UM = uM + (I − ΠM)z). Passing to the limit as
M → ∞ we get that also Eq. (13) with initial data of law μβ,ν has a μβ,ν -stationary solution,
that is

∫
Ptφ dμβ,ν =

∫
φ dμβ,ν ∀t ≥ 0, φ ∈ Cb

(
Hα

)
. (34)

3.2.2 Extension of Pt

In this section, we assume (C3). Now we want to improve (34) considering φ ∈ L1(μβ,ν).
To this end, we use an approximative criterium of Eberle [17]. The result of this section will
be useful to prove results in Sect. 3.2.4.

We introduce the Kolmogorov operator associated to the stochastic equation (13). Let
FC∞

b be the space of infinitely differentiable cylindrical functions bounded and with
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bounded derivatives; φ ∈ FC∞
b means that there exist m ∈ N, φ̃ ∈ C∞

b (Rm) and multiindices
(i1, i2, . . . , im) such that

φ(x) = φ̃
(
(x, ei1), (x, ei2), . . . , (x, eim)

)
.

We set ∂φ

∂xi
= ∂φ̃

∂xi
with xi = (x, ei). FC∞

b is a dense subset of Lp(μβ,ν) for any p ≥ 1.
We define the Kolmogorov operator first on these very regular functions φ ∈ FC∞

b as

Kφ(x) =
∑

j

[
λ

1−β

j

∂2φ

∂x2
j

(x) − Bj(x, x)
∂φ

∂xj

(x) − νλjxj

∂φ

∂xj

(x)

]
. (35)

We have that Kφ ∈ L1(μβ,ν) for any φ ∈ FC∞
b (use that, thanks to (4), each Bj ∈ L1(μβ,ν)

and the sums are finite).
First, we prove that μβ,ν is an infinitesimally invariant measure for Eq. (13) in the sense

that
∫

Kφ dμβ,ν = 0 ∀φ ∈ FC∞
b . (36)

Indeed, we can write K as the sum of two operators, K = Q + L, with domains FC∞
b and

we have the infinitesimal invariance for both these operators. We integrate by parts:

∫
Qφ dμβ,ν ≡

∫ ∑

j

[
λ

1−β

j

∂2φ

∂x2
j

(x) − νλjxj

∂φ

∂xj

(x)

]
μβ,ν(dx) = 0 (37)

and
∫

Lφ dμβ,ν ≡ −
∫ ∑

j

Bj (x, x)
∂φ

∂xj

(x)μβ,ν(dx)

= −ν

∫ ∑

j

λ
β

j Bj (x, x)xj

︸ ︷︷ ︸
=0 by (C2 ii)

φ(x)μβ,ν(dx) = 0. (38)

We have used that each Bj does not depend on the variable xj .
Moreover, (36) implies that the Kolmogorov operator (K,FC∞

b ) is dissipative on
Lp(μβ,ν) for any 1 ≤ p < ∞ (see Lemma 1.8 in [17]). Hence it is closable in Lp(μβ,ν)

(see [26]).
Now we have

Proposition 3.9 Besides the assumptions of Theorem 3.1 we consider (C3). Then, the
closure operator K of the Kolmogorov operator (K,FC∞

b ) in L1(μβ,ν) generates a sub-
Markovian strongly continuous semigroup Tt = eKt in L1(μβ,ν).

Moreover, Tt is the only strongly continuous semigroup on L1(μβ,ν) which has generator
that extends (K,FC∞

b ) (see Appendix A in [17]).
We postpone the proof of this result and continue our analysis. Since FC∞

b is a core for
the infinitesimal generator of Tt in L1(μβ,ν) by density from (36) we get that

∫
Kφ dμβ,ν = 0 ∀φ ∈ D(K).
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This is equivalent to

∫
Ttφ dμβ,ν =

∫
φ dμβ,ν ∀φ ∈ L1

(
μβ,ν

)
and t ≥ 0. (39)

The semigroup {Tt }t≥0 provides a martingale μβ,ν -stationary solution to the stochastic
equation (13) (see, e.g., [17] and references therein). Therefore {Tt } is an extension of {Pt }
on L1(μβ,ν). Henceforth, we denote these semigroups in Cb(H

α) and L1(μβ,ν) with the
same symbol Pt . Finally, (39) means that (31) holds true.

Now, we go back to the proof of Proposition 3.9. We refer to [17] for all the details; in
particular, we use Theorem 5.2, Corollary 5.3, Lemma 5.11 and (5.46) at page 226 of [17]
with p = 1.

Proof of Proposition 3.9 From Lumer-Phillips theorem we know that the closure of the
operator (K,FC∞

b ) in L1(μβ,ν) generates a strongly continuous semigroup Tt if and only
if the range of (λ − K,FC∞

b ) is dense in L1(μβ,ν) for some (and all) λ > 0. To prove the
density result, we use an approximative criterium:

∀F ∈ L1
(
μβ,ν

)∀ε > 0 ∃v ∈ FC∞
b : ∥

∥(λ − K)v − F
∥
∥

L1(μβ,ν )
< ε. (40)

Now, we take F ∈ L1(μβ,ν). Then there exists a sequence {FN }N∈N with FN ∈ C∞
b (RN)

and

lim
N→∞

∥∥FN − F
∥∥

L1(μβ,ν )
= 0, sup

N

∥∥FN
∥∥

Cb
< ∞. (41)

On the other hand, the assumption Bn ∈ L2(μβ,ν) (for any n) implies that BN ∈ L2(μβ,ν) for
any N , and therefore there exists a sequence {CN }N∈N with CN ∈ C∞

b (RN → R
N) and

∥∥BN − CN
∥∥

L2(μβ,ν )
≤ 1

N
. (42)

Bearing in mind (5), this implies that

∥∥ΠNB − CN
∥∥

L2(μβ,ν )
≤ ∥∥ΠNB − BN

∥∥
L2(μβ,ν )

+ ∥∥BN − CN
∥∥

L2(μβ,ν )
→ 0 (43)

as N → ∞.
For each N , we introduce a regularized finite dimensional Kolmogorov operator KN

acting on functions φ ∈ C∞
b (RN):

(
KNφ

)
(x) =

N∑

j=1

[
λ

1−β

j

∂2φ

∂x2
j

(x) − CN
j (x)

∂φ

∂xj

(x) − νλjxj

∂φ

∂xj

(x)

]
.

It has smooth coefficients. Therefore, given FN ∈ C∞
b (RN) and λ > 0 the equation

(
λ − KN

)
φN = FN (44)

has a unique solution φN ∈ C∞
b (RN); moreover

λ
∥∥φN

∥∥
Cb

≤ ∥∥FN
∥∥

Cb
. (45)
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Further, setting |√Aγ DφN |2 = ∑N

j=1 λ
γ

j | ∂φN

∂xj
|2, by a straightforward computation we have

K
(
φN

)2 = 2φNKφN + 2
∣∣
√

A1−βDφN
∣∣2

.

Using the infinitesimal invariance (36), we have

∥
∥
√

A1−βDφN
∥
∥2

L2(μβ,ν )
= −

∫
φNKφNdμβ,ν

= −
∫

φN
[
KφN − KNφN

]
dμβ,ν −

∫
φNKNφNdμβ,ν

= −
∫

φN

N∑

j=1

(
Bj − CN

j

)∂φN

∂xj

dμβ,ν +
∫

φN
(
FN − λφN

)
dμβ,ν

≤ ∥
∥φN

∥
∥

Cb

∥
∥ΠNB − CN

∥
∥

L2(μβ,ν )

∥
∥DφN

∥
∥

L2(μβ,ν )

+ ∥∥φN
∥∥

Cb

(∥∥FN
∥∥

Cb
+ λ

∥∥φN
∥∥

Cb

)
.

Using (45) and the fact that λ
1−β

1 ‖DφN‖2
L2(μβ,ν )

≤ ‖√A1−βDφN‖2
L2(μβ,ν )

for β ≤ 1, we get
that there exists a constant Cβ,λ > 0 such that

∥
∥DφN

∥
∥

L2(μβ,ν )
≤ Cβ,λ

∥
∥FN

∥
∥

Cb

[
1 + ∥

∥ΠNB − CN
∥
∥

L2(μβ,ν )

]
. (46)

Let us go back to (40); by (44) we have

(λ − K)φN − F = (
KN − K

)
φN + FN − F ≡

N∑

j=1

[
Bj − CN

j

]∂φN

∂xj

+ FN − F.

Integrating with respect to the measure μβ,ν we get

∥∥(λ − K)φN − F
∥∥

L1(μβ,ν )
≤

∫ ∣∣
∣∣
∣

N∑

j=1

[
Bj − CN

j

]∂φN

∂xj

∣∣
∣∣
∣
dμβ,ν + ∥∥FN − F

∥∥
L1(μβ,ν )

≤ ∥
∥ΠNB − CN

∥
∥

L2(μβ,ν )

∥
∥DφN

∥
∥

L2(μβ,ν )
+ ∥

∥FN − F
∥
∥

L1(μβ,ν )

by Schwarz inequality. Using (46) we find

∥
∥(λ − K)φN − F

∥
∥

L1(μβ,ν )
≤ Cβ,λ

∥
∥ΠNB − CN

∥
∥

L2(μβ,ν )

∥
∥FN

∥
∥

Cb

[
1 + ∥

∥ΠNB − CN
∥
∥

L2(μβ,ν )

]

+ ∥
∥FN − F

∥
∥

L1(μβ,ν )
.

Bearing in mind the assumptions on the approximating terms and (43), we find (40). �

Remark 3.10 Because of the invariance of the measure μβ,ν , the contraction semigroup Pt

in Cb(H
α) can be uniquely extended to a strongly continuous contraction semigroup in

Lp(μβ,ν) also for any p > 1. Indeed,

∣
∣Ptφ(x)

∣
∣p = ∣

∣E
[
φ
(
u(t;x)

)]∣∣p ≤ E
[∣∣φ

(
u(t;x)

)∣∣p] = Pt |φ|p(x)
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and by the invariance of the measure μβ,ν

∫
|Ptφ|pdμβ,ν ≤

∫
Pt |φ|pdμβ,ν =

∫
|φ|pdμβ,ν .

Since Cb(H
α) is dense in Lp(μβ,ν), we can uniquely define the semigroup on Lp(μβ,ν) for

any p > 1. We use the same symbol Pt to denote all these semigroups.
Notice that in condition (C3) we require

∫ |Bn(x, x)|2μβ,ν(dx) < ∞ for any n. Therefore
K : FC∞

b → L2(μβ,ν). Moreover, according to Corollary 5.3 of [17], we have that the re-
striction of Tt to L2(μβ,ν) is a strongly continuous semigroup on L2(μβ,ν) and the generator
of this semigroup again extends (K,FC∞

b ). In the sequel we will use the same symbol to
denote these semigroups in both spaces L1(μβ,ν) and L2(μβ,ν).

3.2.3 Uniqueness of the Invariant Measure

Now we prove that Eq. (13) has at most one invariant measure. We use the results of
Sect. 3.1.

Proposition 3.11 With the assumptions of Theorem 3.1, there exists at most one invariant
measure for Eq. (13).

Proof Let R(t, x, ·) be the law of z(t;x) and P (t, x, ·) be the law of u(t;x). Then any
R(t, x, ·) is equivalent to the Gibbs measure μβ,ν (see, e.g., [15]); we write it as R(t, x, ·) ∼
μβ,ν . Moreover we have that

∫ T

0

∣
∣
√

Aβ−1B
(
z(t), z(t)

)∣∣2
dt < ∞ P-a.s. (47)

and
∫ T

0

∣∣
√

Aβ−1B
(
u(t), u(t)

)∣∣2
dt < ∞ P-a.s. (48)

For this use that ‖B(x, x)‖β−1 ≤ c‖x‖2
α from assumption (6) and that

P{z ∈ C([0, T ];Hα)} = P{u ∈ C([0, T ];Hα)} = 1.
According to Theorem 9.2 in [18] (see also [19]), (47)–(48) imply that the measure

P (t, x, ·) is equivalent to R(t, x, ·). On the other side R(t, x, ·) ∼ R(s, y, ·) ∼ μβ,ν , hence
we get

P (t, x, ·) ∼ P (t, y, ·) ∼ μβ,ν

for any x, y ∈ Hα and t > 0. Using Doob theorem (see, e.g., Theorem 4.2.1 in [15]), we
deduce that there exists at most one invariant measure. �

By means of the existence result of the previous section, we get that μβ,ν is the unique
invariant measure for Eq. (13). Moreover, it is strongly mixing

lim
t→∞P (t, x,Γ ) = μβ,ν(Γ ) (49)

for arbitrary x ∈ Hα and Borel set Γ in Hα .
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3.2.4 Rate of Convergence

Now, we consider the semigroup Pt in L2(μβ,ν) (see Remark 3.10).
We recall the “Carré du champ” identity. For the reader’s convenience we give the proof

(see, e.g., [11]).

Proposition 3.12 Besides the assumptions of Theorem 3.1 we consider (C3). Then, we have
∫

φ Kφ dμβ,ν = −
∫ ∣∣

√
A1−βDφ

∣∣2
dμβ,ν ∀φ ∈ D(K). (50)

Proof First we take φ ∈ FC∞
b . A straightforward computation yields that

Kφ2 = 2φKφ + 2
∣∣
√

A1−βDφ
∣∣2

.

By the μβ,ν -infinitesimal invariance, we have
∫

Kφ2 dμβ,ν = 0; thus

∫
φKφ dμβ,ν = −

∫ ∣∣
√

A1−βDφ
∣∣2

dμβ,ν . (51)

Now, taking φ ∈ D(K), we use that FC∞
b is a core for K ; therefore there exists a sequence

{φn} ⊂ FC∞
b such that

φn → φ, Kφn → Kφ in L2
(
μβ,ν

)
.

From (51) we get
∫ ∣∣

√
A1−βD(φn − φm)

∣∣2
dμβ,ν ≤

∫
|φn − φm|∣∣K(φn − φm)

∣∣dμβ,ν .

Hence, the sequence {√A1−βDφn} is a Cauchy sequence in L2(μβ,ν) and we get (50). �

Now, given φ ∈ L2(μβ,ν) we set φ = ∫
φ dμβ,ν ; then we have the following theorem on

the rate of convergence of Ptφ as t → ∞.

Theorem 3.13 Besides the assumptions of Theorem 3.1 we consider (C3). Then
∫ ∣∣Ptφ(x) − φ

∣∣2
μβ,ν(dx) ≤ e−λ1t

∫ ∣∣φ(x) − φ
∣∣2

μβ,ν(dx)

for any φ ∈ L2(μβ,ν) and t > 0.

Proof Let us define the space

L2
0

(
μβ,ν

) = {
φ ∈ L2

(
μβ,ν

) : φ = 0
}; (52)

it is not difficult to prove that it is invariant for the semigroup Pt (see [12]).
First, let us take φ ∈ L2

0(μ
β,ν) ∩ D(K); then Ptφ ∈ L2

0(μ
β,ν) ∩ D(K) and by the Hille-

Yosida theorem

d

dt
Ptφ = KPtφ.
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Therefore, bearing in mind (50)

1

2

d

dt

∫
|Ptφ|2 dμβ,ν =

∫
Ptφ KPtφ dμβ,ν = −

∫ ∣
∣
√

A1−βDxPtφ
∣
∣2

dμβ,ν .

Since a Gaussian measure fulfills the spectral gap inequality (see [8]) we have
∫ ∣

∣
√

A1−βDxPtφ(x)
∣
∣2

μβ,ν(dx) ≥ λ1

2

∫ [
Ptφ(x)

]2
μβ,ν(dx)

where λ1 > 0 is the first eigenvalue of the operator A. By the two latter relationships we get

d

dt

∫
|Ptφ|2dμβ,ν ≤ −λ1

∫
|Ptφ|2dμβ,ν .

Hence, using Gronwall lemma, we have that for any t > 0
∫

|Ptφ|2 dμβ,ν ≤ e−λ1t

∫
|φ|2 dμβ,ν ∀φ ∈ L2

0

(
μβ,ν

) ∩ D(K). (53)

Now we take φ ∈ D(K); replacing φ with φ − φ in (53), we obtain that
∫

|Ptφ − φ|2 dμβ,ν =
∫ ∣∣Pt(φ − φ)

∣∣2
dμβ,ν ≤ e−λ1t

∫
|φ − φ|2 dμβ,ν .

Using that D(K) is dense in L2(μβ,ν) we get the result. �

4 An Example: Shell Models of Turbulence

Shell models of turbulence describe the evolution of complex Fourier-like components of
a scalar velocity field. Here, we present the details for the SABRA shell model (see [24]),
but the same results hold for the GOY shell model (see [21, 25]). In recent years, there
has been an increasing interest in these fluid dynamical models, both for the deterministic
and the stochastic case (see also [3, 5, 9, 10]). From the analytic point of view as well
as for numerical computations, they are easier to analyze than the Navier-Stokes or Euler
equations. But, they retain many important features of the true hydrodynamical models.

Instead of dealing with complex valued unknowns we deal with the real and imaginary
part of each component of the scalar velocity field (for the basic settings we follow [4]); this
defines a sequence {un}n with un ∈ R

2. For x = (x1, x2) ∈ R
2 we set |x|2 = x2

1 + x2
2 and the

scalar product in R
2 is x · y = x1y1 + x2y2.

Then, using the notations of Sect. 2.1, we define the basic space H as

H =
{

u = (u1, u2, . . .) ∈ (
R

2
)∞ :

∞∑

n=1

|un|2 < ∞
}

.

The basis in H is given by the sequence {e(1)

1 , e
(2)

1 , e
(1)

2 , e
(2)

2 , e
(1)

3 , e
(2)

3 , . . .} of elements of
(R2)∞, where

e(1)
n = (

(0,0), . . . , (0,0), (1,0), (0,0), . . .
)

e(2)
n = (

(0,0), . . . , (0,0), (0,1), (0,0), . . .
)

with the nonvanishing vectors in place n.

Author's personal copy



276 H. Bessaih, B. Ferrario

The eigenvalues are

λn = k2
0λ

2n

with λ > 1.
Let us check the validity of assumptions (C1)–(C5).
Inequality (3) holds with cp,ν = (

p

eν
)p . We can take any α < β to fulfill (C4).

We set kn = √
λn. The bilinear term B is defined by means of the components Bn =

(Bn,1,Bn,2) as follows (see, e.g., [4]):

B1,1(u, v) = ak2[−u2,2v3,1 + u2,1v3,2],
B1,2(u, v) = −ak2u2 · v3,

(54)

B2,1(u, v) = ak3[−u3,2v4,1 + u3,1v4,2] + bk2[−u1,2v3,1 + u1,1v3,2],
B2,2(u, v) = −ak3u3 · v4 − bk2u1 · v3

(55)

and for n > 2

Bn,1(u, v) = akn+1[−un+1,2vn+2,1 + un+1,1vn+2,2]
+ bkn[−un−1,2vn+1,1 + un−1,1vn+1,2]
+ akn−1[un−1,2vn−2,1 + un−1,1vn−2,2]
+ bkn−1[un−2,2vn−1,1 + un−2,1vn−1,2], (56)

Bn,2(u, v) = −akn+1[un+1,1vn+2,1 + un+1,2vn+2,2]
− bkn[un−1,1vn+1,1 + un−1,2vn+1,2]
− akn−1[un−1,1vn−2,1 − un−1,2vn−2,2]
− bkn−1[un−2,1vn−1,1 − un−2,2vn−1,2] (57)

where a and b are real numbers such that

a + bλ2β = (a + b)λ4β (58)

for some β > 0, that is

λ2β = − a

a + b
(59)

(recall that λ > 1). This condition implies (C2 ii), whereas (C2 i) holds for any real a and b.
For instance, let us check that (58) implies (C2 ii). We have

∞∑

n=1

k2β
n Bn(u,u) · un

=
∞∑

n=1

k2β
n

[
Bn,1(u,u)un,1 + Bn,2(u,u)un,2

]

=
∞∑

n=1

[
a + bλ2β − (a + b)λ4β

]
λk2β+1

n (un+2 · un)(un+1,2 + un+1,1).

Author's personal copy



Invariant Measures of Gaussian Type for 2D Turbulence 277

Relationship (5) of (C3) holds for β > 1
2 ; this includes the interesting physical case of

β = 1 (see Sect. 2.2). Indeed, for the SABRA shell model

BM
n,1(x, x) − Bn,1(x, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for n ≤ M − 2,

−akM(xM,1xM+1,2 − xM,2xM+1,1) for n = M − 1,

−akM+1(xM+1,1xM+2,2 − xM+1,2xM+2,1)

− bkM(xM−1,1xM+1,2 − xM−1,2xM+1,1) for n = M

and

BM
n,2(x, x) − Bn,2(x, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for n ≤ M − 2,

−akM(−xM,1xM+1,1 − xM,2xM+1,2) for n = M − 1,

−akM+1(−xM+1,1xM+2,1 − xM+1,2xM+2,2)

− bkM(−xM−1,1xM+1,1 − xM−1,2xM+1,2) for n = M.

Therefore
M∑

n=1

∣∣BM
n − Bn

∣∣2 = ∣∣BM
M−1 − BM−1

∣∣2 + ∣∣BM
M − BM

∣∣2

so

lim
M→∞

∫ M∑

n=1

∣
∣BM

n − Bn

∣
∣2

dμβ,ν ≤ lim
M→∞

8

ν2

[
a2

λ2β
k

2−4β

M + a2

λ2β
k

2−4β

M+1 + b2k
2−4β

M

]
= 0.

This holds for β > 1
2 .

Moreover we have (see [4])

Lemma 4.1 For any α1, α2, α3 ∈ R

B : Hα1 × Hα2 → H−α3 with α1 + α2 + α3 ≥ 1

and there exists a constant c (depending on a, b,λ and the αj ’s) such that

∥
∥B(u, v)

∥
∥−α3

≤ c‖u‖α1‖v‖α2 ∀u ∈ Hα1 , v ∈ Hα2 .

This implies that conditions (C5) are true: (6) for any β

2 ≤ α < β and (7) for any α.
We finally point out that our results of Sect. 3.2 hold also in any space Lp(μβ,ν) with

p = 1,2, . . . (see Remark 3.10). Indeed, we have
∫ ∣

∣Bn(x, x)
∣
∣qμβ,ν(dx) < ∞ ∀n,q ∈ N; (60)

for q = 2 this is (4) of (C3).

Remark 4.2 The stochastic 2D Navier-Stokes equation and the deterministic unforced 2D
Euler equation can be represented by Eqs. (13) and (14) respectively (−A is the Stokes
operator and B(u, v) is related to the term (u · ∇)v). However, not all assumptions (C1)–
(C5) are fulfilled. Indeed, (C1) holds true, (C2) holds true for β = 1 (the peculiarity of 2D
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hydrodynamics, and the conserved quantity S1 is the enstrophy); for β = 1 (the choice is
imposed by (C2)) condition (4) of (C3) holds. Condition (C4) holds if modified allowing
α < 0; this makes a big change in the analysis of existence and uniqueness of solutions in
the space Hα (see [2, 13, 16]). Condition (C5) changes, but the new estimate allows anyway
to get existence and uniqueness of solution.

Hence, we can conclude that with some modifications a similar set of conditions is ful-
filled by the stochastic 2D Navier-Stokes equation and the deterministic unforced 2D Euler
equation, except condition (5) of (C3). This reflects the fact that for the 2D Navier-Stokes
equation with space-time white noise it has been proven existence and uniqueness of the so-
lution for μ1,ν -almost every initial data, and that μ1,ν is an invariant measure, but no results
on the uniqueness of the invariant measure are known.

5 Inviscid Models

We are interested in the deterministic inviscid and unforced dynamics represented by
Eq. (14). We have that the measure μβ,ν is infinitesimally invariant for Eq. (14); now
(L,FC∞

b ) is the Liouville operator associated to the deterministic inviscid equation (14).
Hence, the problem is to see if there exists a global dynamic leaving μβ,ν invariant.

Here, we present our results for the SABRA shell model with β = 1 (the physical rele-
vant case) only to make simpler the exposition, but it can be generalized to the other fluid
dynamicals models.

Equation (14) is formally obtained from Eq. (13) setting ν = 0 and considering a vanish-
ing right hand side. More generally, we can consider the nonlinear viscous equation

duε(t) + [
νεAuε(t) + B

(
uε(t), uε(t)

)]
dt = √

2ε dw(t), t > 0, (61)

with ε > 0. When ε = 0 we get Eq. (14) (with β = 1). Our results of the previous sections
hold true for any ε > 0.

Therefore, we shall consider the limit ε → 0 in the viscous stochastic case to get the
inviscid deterministic one (see also a similar case studied in [22]).

The fact that the measure μ1,ν is an invariant measure for any ε > 0 can be easily
checked. We proceed as in the previous section, but now the Kolmogorov operator asso-
ciated to Eq. (61) is Kε = εQ + L; bearing in mind (37) and (38) we get that μ1,ν is an
infinitesimal invariant measure for the operator (Kε,FC∞

b ). And for any ε > 0 the operator
(Kε,FC∞

b ) is dissipative on Lp(μ1,ν) for any 1 ≤ p < ∞.
We are going to prove that when the initial data is a random variable with law μ1,ν , then

Eq. (14) has a solution which is a stationary random process, whose law at any fixed time is
μ1,ν .

An important property is the integrability of B with respect to the measure μ1,ν .

Proposition 5.1 If ν > 0, then for any α < 1 we have

∫ ∥
∥B(x, x)

∥
∥p

α
μ1,ν(dx) < ∞

for any p ∈ N.
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Proof We write the proof for p = 2 but it is the same for the other values of p, since μ1,ν is
Gaussian and the Bn’s are second order polynomial. We have

∫ ∣
∣Bn,1(x, x)

∣
∣2

μ1,ν(dx) =
∫ ∣

∣akn+1[−xn+1,2xn+2,1 + xn+1,1xn+2,2]
+ bkn[−xn−1,2xn+1,1 + xn−1,1xn+1,2]
+ (a + b)kn−1[xn−1,2xn−2,1 + xn−1,1xn−2,2]

∣
∣2

μ1,ν(dx)

≤ 2
∫ {

a2k2
n+1

[
x2

n+1,2x
2
n+2,1 + x2

n+1,1x
2
n+2,2

]

+ b2k2
n

[
x2

n−1,2x
2
n+1,1 + x2

n−1,1x
2
n+1,2

]

+ (a + b)2k2
n−1

[
x2

n−1,2x
2
n−2,1 + x2

n−1,1x
2
n−2,2

]}
μ1,ν(dx)

= 16

ν2

{
a2k2

n+1(λn+1λn+2)
−1 + b2k2

n(λn−1λn+1)
−1

+ (a + b)2k2
n−1(λn−1λn−2)

−1
}

= 4

ν2k2
0

{
a2λ−4 + b2 + (a + b)2λ4

}
λ−2n.

Similarly, we estimate
∫ |Bn,2(x, x)|2μ1,ν(dx). Therefore

∫ ∥∥B(x, x)
∥∥2

α
μ1,ν(dx) =

∫ ∞∑

n=1

λα
n

∣∣Bn(x, x)
∣∣2

μ1,ν(dx)

≤ cν,k0,λ

(|a|2 + |b|2)
∞∑

n=1

λ2n(α−1)

which is finite if α < 1. �

Here is our main result.

Theorem 5.2 For any ν > 0, there exists a μ1,ν -stationary process, whose paths solve
Eq. (14) P-a.s. In particular, the paths are in Cδ(R;Hα) (for any 0 ≤ δ < 1

2 and α < 1).

Proof We fix ν > 0 arbitrarily. According to Corollary 3.8, Eq. (61) has a unique μ1,ν -
stationary solution vε; this process is a strong solution and has paths in C([0,∞);Hα) a.s.
(for α < 1, but we always think of α as much close to 1 as possible).

First, we prove that the sequence {vε}0<ε≤1 is tight in Cδ̃([0, T ];Hα̃) for any δ̃ ∈ (0, 1
2 )

and α̃ < α.
We write Eq. (61) in the mild form:

vε(t) = zε(t) −
∫ t

0
e−νεA(t−s)B

(
vε(s), vε(s)

)
ds, (62)

where

zε(t) = e−νεAtvε(0) +
∫ t

0
e−νεA(t−s)

√
2εdw(s)
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is the μ1,ν -stationary solution of the linear equation

dzε(t) + νεAzε(t)dt = √
2ε dw(t)

with the initial data of law μ1,ν .
We consider the two terms in the right hand side of (62). Using the μ1,ν -stationarity we

have that for any 0 ≤ δ < 1
2 there exists a constant Cδ > 0 such that

sup
0<ε≤1

E
[∥∥zε

∥∥
Cδ([0,T ];Hα)

] ≤ Cδ. (63)

We take η ∈ (0,1) and set γ = α − 2η. For the convolution integral in (62) we have

∥
∥∥
∥

∫ ·

0
e−νεA(·−s)B

(
vε(s), vε(s)

)
ds

∥
∥∥
∥

p

W1,p(0,T ;Hγ )

=
∫ T

0

∥
∥∥
∥

∫ t

0
e−νεA(t−s)B

(
vε(s), vε(s)

)
ds

∥
∥∥
∥

p

γ

dt +
∫ T

0

∥∥B
(
vε(t), vε(t)

)∥∥p

γ
dt

+
∫ T

0

∥
∥∥
∥

∫ t

0
νεAe−νεA(t−s)B

(
vε(s), vε(s)

)
ds

∥
∥∥
∥

p

γ

dt

≤
∫ T

0
tp−1

(∫ t

0

∥∥e−νεA(t−s)B
(
vε(s), vε(s)

)∥∥p

γ
ds

)
dt +

∫ T

0

∥∥B
(
vε(t), vε(t)

)∥∥p

γ
dt

+ νε

∫ T

0

(∫ t

0

∥
∥Ae−νεA(t−s)B

(
vε(s), vε(s)

)∥∥
γ
ds

)p

dt

≤
∫ T

0
tp−1

(∫ t

0

∥
∥B

(
vε(s), vε(s)

)∥∥p

γ
ds

)
dt +

∫ T

0

∥
∥B

(
vε(t), vε(t)

)∥∥p

γ
dt

+ νε

∫ T

0

(∫ t

0

∥∥A1−ηe−νεA(t−s)AηB
(
vε(s), vε(s)

)∥∥
γ
ds

)p

dt

≤
(

1

p
T p + 1

)∫ T

0

∥∥B
(
vε(t), vε(t)

)∥∥p

γ
dt

+ νε

∫ T

0

(∫ t

0
cp,ν

‖B(vε(s), vε(s))‖α

(t − s)1−η
ds

)p

dt by (3). (64)

For the latter integral we use Hölder inequality and get that

(∫ t

0

‖B(vε(s), vε(s))‖α

(t − s)1−η
ds

)p

≤
(∫ t

0

ds

(t − s)1− η
2

)2p
1−η
2−η

(∫ t

0

∥∥B
(
vε(s), vε(s)

)∥∥
2
η −1

α
ds

)p
η

2−η

.

Hence, for p > 2
η

− 1 we have

∥∥∥
∥

∫ ·

0
e−νεA(·−s)B

(
vε(s), vε(s)

)
ds

∥∥∥
∥

p

W1,p(0,T ;Hγ )
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≤
(

1

p
T p + 1

)∫ T

0

∥
∥B

(
vε(t), vε(t)

)∥∥p

γ
dt + νεT m

∫ T

0

∥
∥B

(
vε(t), vε(t)

)∥∥p

α
dt (65)

for some positive constant m = mη,ν,p .
Integrating with respect to the measure μβ,ν and using the invariance we get

E

∥∥
∥∥

∫ ·

0
e−νεA(·−s)B

(
vε(s), vε(s)

)
ds

∥∥
∥∥

p

W1,p(0,T ;Hγ )

≤ T

(
1 + 1

p
T p + νεT m

)∫ ∥
∥B(x, x)

∥
∥p

α
μ1,ν(dx). (66)

Now, we use that W 1,p(0, T ) ⊂ Cδ([0, T ]) if 1 − 1
p

> δ. Then, using the previous esti-

mates in (62), given any 0 ≤ δ < 1
2 , p > 1

1−δ
and p > 2

η
− 1 we have

sup
0<ε≤1

E
[∥∥vε

∥∥p

Cδ([0,T ];Hγ )

]
< ∞. (67)

On the other hand, the space Cδ([0, T ];Hγ ) is compactly embedded in Cδ̃([0, T ];Hγ̃ ) if
δ̃ < δ and γ̃ < γ ; this follows from the compact embedding Hγ � Hγ̃ and from the Ascoli-
Arzelà theorem. Because these results hold for any δ ∈ [0, 1

2 ) and γ̃ < γ < α < 1 (with p big
enough, but we use (60)), we can consider any δ̃ < 1

2 and any γ̃ < 1. The tightness follows
from (67) as usual by means of Chebyshev inequality. And to simplify notation henceforth
we consider the tightness in the space Cδ([0, T ];Hα) (δ < 1

2 and α < 1).
By the tightness result and Prohorov theorem, the sequence of the laws of vε has a sub-

sequence {vεn}∞
n=1 weakly convergent as n → ∞ (with εn → 0) in Cδ([0, T ];Hα) to some

limit measure. By a diagonal argument, this holds for any T and therefore the limit measure
leaves in Cδ([0,∞);Hα). By Skorohod theorem, there exist a probability space (Ω̃, F̃, P̃),
a random variable ṽ and a sequence {ṽε} such that law(ṽε) = law(vε), law(ṽ) = μ1,ν and ṽε

converges to ṽ a.s. in Cδ([0,∞);Hα).
We now identify the equation satisfied by ṽ. We are going to prove that P̃-almost each

path solves (14).
It is enough to control the behavior of the terms with B . First

e−νεA(t−s)B
(
ṽν,ε(s), ṽν,ε(s)

) − B
(
ṽν(s), ṽν(s)

)

= e−νεA(t−s)
[
B

(
ṽν,ε(s), ṽν,ε(s)

) − B
(
ṽν(s), ṽν(s)

)]

+ [
e−νεA(t−s) − I

]
B

(
ṽν(s), ṽν(s)

)
.

When we consider the second addend in the mild form expression, it trivially converges to
zero; but for the convergence of the first one it is enough to verify that

∫ t

0

∥
∥B

(
ṽν,ε(s), ṽν,ε(s)

) − B
(
ṽν(s), ṽν(s)

)∥∥
α−1

ds → 0

as ε → 0; for this we use the bilinearity and the estimate (11).
Similarly we work on the time interval [−T ,0] by considering the reversed-time

parabolic nonlinear equation

duε(t) + [−νεAuε(t) + B
(
uε(t), uε(t)

)]
dt = √

2ε dw(t), t < 0. (68)
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It has a unique μ1,ν -stationary solution vε; this process is a strong solution, has paths in
Cδ((−∞,0];Hα). The tightness and the convergence are obtained in the same way as
above. �
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