
Computational Aspects of Distributed Optimization in Model
Predictive Control

Christian Conte1, Tyler Summers1, Melanie N. Zeilinger2, Manfred Morari1 and Colin N. Jones2

Abstract— This paper presents a systematic computational
study on the performance of distributed optimization in model
predictive control (MPC). We consider networks of dynamically
coupled systems, which are subject to input and state con-
straints. The resulting MPC problem is structured according
to the system’s dynamics, which makes the problem suitable for
distributed optimization. The influence of fundamental aspects
of distributed dynamic systems on the performance of two
particular distributed optimization methods is systematically
analyzed. The methods considered are dual decomposition
based on fast gradient updates (DDFG) and the alternating
direction method of multipliers (ADMM), while the aspects
analyzed are coupling strength, stability, initial state, coupling
topology and network size. The methods are found to be sensi-
tive to coupling strength and stability, but relatively insensitive
to initial state and topology. Moreover, they scale well with the
number of subsystems in the network.

I. INTRODUCTION

This paper presents a computational study on the use of
distributed optimization in MPC. The class of systems for
which such a control approach is useful are networks of
subsystems which are coupled in either their dynamics, their
objectives or their constraints. It is assumed that each subsys-
tem can only take local measurements, while communication
among coupled subsystems is possible.

Various distributed MPC schemes for this class of systems
have been proposed in the literature. They can roughly be di-
vided into two categories, namely non-iterative and iterative
methods. In non-iterative methods, neighboring subsystems
communicate once per time step only, while in iterative
methods they communicate several times. Among the non-
iterative schemes are MPC formulations where the local
deviation from a given feasible trajectory is explicitly con-
strained, e.g. [1]. Furthermore, there are approaches where
dynamic coupling is taken into account as disturbance [2],
[3]. Thus, non-iterative schemes are usually conservative due
to the fact that local control actions are based on a worst-case
assumption regarding neighboring subsystems.

In comparison to its non-iterative counterpart, iterative
distributed MPC is less conservative since multiple commu-
nication steps allow for negotiation among the subsystems. In
this way, neighboring subsystems can strive for a consensus
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on local trajectories which are beneficial or even optimal in
the global sense. A standard framework for this negotiation
process is given by distributed optimization. Specific dis-
tributed optimization methods that have been proposed for
distributed MPC are dual decomposition [4], proximal center
decomposition [5], primal decomposition [6] and a hybrid
Gauss-Jacobi method [7]. From a global system perspective,
the principle of iterative distributed MPC is very similar to
standard centralized MPC, except for the fact that the MPC
problem is solved in a distributed manner.

Despite its prominent position in the literature, the per-
formance of distributed optimization in MPC is poorly
understood. It is well known that in some cases distributed
optimization methods converge slowly, whereas in contrast
e.g. [8] points out that the alternating direction method of
multipliers (ADMM), a particular distributed optimization
method, often converges to a satisfactory accuracy in a few
tens of iterations. The primal objective of this paper is
therefore to provide a systematic computational study on the
performance of two well-established distributed optimization
methods, namely dual decomposition based on fast gradient
updates (DDFG) and ADMM, in MPC. In particular, the sen-
sitivity of their performance with respect to a comprehensive
but not exhaustive list of aspects fundamental to distributed
MPC is investigated: (i) the initial state of the problem, (ii)
the coupling topology in the network of subsystems, (iii) the
coupling strength among neighboring subsystems, (iv) the
stability of the decoupled subsystems and (v) the number
of subsystems in the network. To the best of the authors’
knowledge, this is the first study of this kind published in
the context of distributed MPC.

The paper is organized as follows: In Section II the
distributed MPC problem is presented, while in Section III
specific distributed optimization methods are introduced.
Section IV contains the computational results and the dis-
cussions thereof, while Section V concludes the paper.

II. PRELIMINARIES

A. Notation

For a matrix S ∈ Rn×m, the norm ‖S‖2 denotes its largest
singular value. For a set of vectors {xi}i∈M, where xi ∈ Rni

and i ∈ M ⊆ N, coli∈M(xi) denotes a vector in which all
elements of {xi}i∈M are stacked.

B. Distributed Linear Dynamic Systems

We consider discrete-time linear dynamic systems of the
form

x+ = Ax+Bu , (1)



where x ∈ Rn and u ∈ Rp. System (1), in the following
denoted as the global system, consists of M subsystems,
each of which has a state xi ∈ Rni and an input ui ∈ Rpi .
We denote the set of subsystem indices asM = {1, . . . ,M}.
Thus, the global state and input vector can be written as

x = coli∈M(xi) , u = coli∈M(ui) . (2)

The dynamics of each subsystem are

x+
i =

M∑
j=1

(Aijxj +Bijuj) , ∀i ∈M , (3)

where Aij and Bij are sub blocks of the global matrices A
and B. Furthermore, states and inputs are locally constrained
as

xi ∈ Xi , ui ∈ Ui , ∀i ∈M . (4)

The coupling among the subsystems is described by an
underlying graph, which can also be used to define the notion
of neighboring subsystems.

Definition II.1 (Coupling graph) The coupling graph is
the directed graph G(V, E), whose vertex set V contains one
vertex vi per subsystem i ∈M. The set of edges E contains
a directed edge (vi, vj), if Aji 6= 0 ∨ Bji 6= 0. Subsystem
i is a neighbor of subsystem j if (vi, vj) ∈ E . The set of
neighbors of subsystem i is denoted as Ni and the set of
subsystems to which i is a neighbor is denoted as N̄i.
C. Structured MPC

In this paper, we consider the problem of regulating
constrained distributed linear systems by model predictive
control (MPC), where a finite horizon constrained optimal
control problem is solved online at every time instant. This
problem is parametric in the initial state x0 and the control
law is defined as the first element of the resulting input
trajectory. The problem’s objective function has the form

min
x,u

Vf (x(N)) +

N−1∑
k=1

l(x(k), u(k)) , (5)

where N denotes the finite horizon of the MPC problem.
Furthermore, the vectors x = colk∈{0,...,N}(x(k)) and u =
colk∈{0,...,N−1}(u(k)) denote the predicted state and input
trajectories, which are subject to constraints (3) and (4). The
function l(x, u) : Rn × Rp → R is the stage cost and the
function Vf (x) : Rn → R is the terminal cost, which, in
combination with an appropriate terminal constraint x(N) ∈
Xf , guarantees stability of the closed-loop system [9].

In order for distributed optimization to be meaningful,
the MPC problem needs to exhibit the same structure as
the dynamic system. Constraints (3) and (4) are naturally
structured, while an approach to synthesize a structured cost
function and a structured terminal constraint was recently
proposed in [10]. Thus, the MPC problem can be written in
the equivalent form

min
yi∈Yi(xi

0)∀i∈M,z

M∑
i=1

Ji(yi) (6a)

s.t. yi = Eiz ∀i ∈M , (6b)

where the vector z contains the predicted state and input
trajectories of the global system, i.e.

z = coli∈M(zi) . (7)

Naturally, vector zi represents the predicted state and input
trajectories of subsystem i. Furthermore, for every i ∈ M,
every row of Ei is a unit vector with elements in {0, 1}.
Thus, the coupling graph G is encoded in the matrices Ei
and the vector yi can be seen as a vector of local copies of
those variables in z, which affect subsystem i. This vector
of local copies can be segmented further as

yi = colj∈Ni∪i(yij) = colj∈Ni∪i(Eijzj) , (8)

where yij represents those entries in yi, which represent
variables copied from subsystem j ∈ Ni and Eij denotes
the respective sub block of Ei. In the same context, the set
Yi(xi0) denotes the local constraints affecting subsystem i.
Specifically, these are the initial- and terminal constraint, the
dynamics according to (3) and the state and input constraints
according to (4). Due to the initial state constraint, Yi(xi0)
is a function of xi0, the initial state of subsystem i. Finally,
Ji(yi) denotes the local cost function of subsystem i.

Remark II.2 The particular formulation of problem (6) was
chosen due to the fact that it is directly compatible with
standard distributed optimization methods (see Section III).

III. DISTRIBUTED OPTIMIZATION

In this section, distributed optimization methods are in-
troduced which are capable of solving constrained problems
such as (6), given they are convex. Most distributed opti-
mization methods for convex problems are of first-order type
and rely on a decomposition of the dual problem. In this
paper, the performance of DDFG, a method relying on the
Lagrangian

L(y, z, λ) =

M∑
i=1

Ji(yi) + λTi (yi − Eiz) , (9)

is compared to the performance of ADMM, a method relying
on the augmented Lagrangian

Lρ(y, z, λ) =

M∑
i=1

Ji(yi) + λTi (yi − Eiz) +
ρ

2
‖yi − Eiz‖22 .

(10)
For a more in-depth overview on distributed optimization,
the reader is referred to [8], [11].

A. Dual Decomposition Based on Fast Gradient Updates

The Lagrangian (9) is separable into M terms, each of
which depends on the variables of one subsystem only.
Hence,

L(y, z, λ) =

M∑
i=1

Li(yi, zi, λ) , (11)

where for every subsystem i ∈M

Li(yi, zi, λ) = Ji(yi) + λTi yi −
∑

j∈N̄i∪i

λTjiEjizi (12)



and where λji is the respective sub vector of λj . Thus, also
the dual function of problem (6) is separable as

d(λ) =

M∑
i=1

di(λ) =

M∑
i=1

min
yi∈Yi(xi

0),zi
Li(yi, zi, λ) . (13)

The dual of problem (6), maxλ d(λ), can then be solved by
the procedure described in Algorithm 1, where L denotes the
Lipschitz constant of the gradient∇d(λ) of the dual function.

Algorithm 1 Dual Decomposition Based on Fast Gradient
Updates (DDFG)

Input: Lipsch. constant of ∇d(λ) L, α =
√

5−1
2 , λ = ν = 0

1: ∀i ∈M in parallel:
2: repeat
3: (y+

i , z
+
i ) = arg minyi∈Yi(xi

0),zi Li(yi, zi, ν)

4: communicate z+
i to all j ∈ Ni

5: λ+
i = νi + 1

L (y+
i − Eiz+)

6: α+ = α
2 (
√
α2 + 4− α)

7: β = α(1−α)
α2+α+

8: ν+
i = λ+

i + β(λ+
i − λi)

9: until convergence

Remark III.1 Algorithm 1 converges to a dual optimizer
λ∗ if for every i ∈ M, Ji(yi) is strictly convex. The primal
optimizer coli∈M(y∗i , z

∗
i ) is found as a byproduct [11].

Algorithm 1 is a distributed version of the dual ascent
method, in which the gradient updates are done in an optimal
way according to [12]. In [13], this approach has recently
been customized for the dual of MPC problems. In particular,
the bound

qε ≤ max

{⌈
2

√
L

ε
‖λ∗(x0)‖2 − 2

⌉
, 0

}
(14)

is implied, where qε denotes the number of iterations required
to achieve an accuracy d(λ∗)−d(λ) ≤ ε in the dual objective
value. Furthermore, λ∗(x0) is a dual optimizer for problem
(6). Note that [13] provides an explicit formula to find the
Lipschitz constant L, whereas ‖λ∗(x0)‖2 can generally only
be found by solving the optimization problem.

B. Alternating Direction Method of Multipliers

The alternating direction method of multipliers is a par-
allelizable version of the method of multipliers, which was
originally designed as a robust version of the dual ascent
method. While the dual ascent method is only applicable
to problems with smooth dual functions, the method of
multipliers also handles problems with general concave dual
functions [8].

The augmented Lagrangian (10) can be written as

Lρ(y, z, λ) =

M∑
i=1

Liρ(yi, z, λ) , (15)

where

Liρ(yi, z, λ) = Ji(yi)+λTi (yi−Eiz)+
ρ

2
‖yi−Eiz‖22 . (16)

The dual of problem (6) can then be solved by the procedure
described in Algorithm 2.

Algorithm 2 Alternating Direction Method of Multipliers
(ADMM)

1: ∀i ∈M in parallel:
2: choose initial λi = 0, z = 0
3: repeat
4: y+

i = arg minyi∈Yi(xi
0) L

i
ρ(yi, z, λ)

5: communicate y+
i to all j ∈ Ni

6: z+
i = 1

|N̄i+1|
∑
j∈N̄i∪iE

T
ji

(
y+
ji + 1

ρλji

)
7: communicate z+

i to all j ∈ N̄i
8: λ+

i = λi + ρ(y+
i − Eiz+)

9: until convergence

Remark III.2 In Algorithm 2, the residuals yi − Eiz con-
verge asymptotically to zero for all i ∈M and the objective
value

∑
i∈M Ji(yi) converges asymptotically to the primal

optimum if all functions Ji(yi) are closed, proper and convex
and the unaugmented Lagrangian (10) has a saddle point
[8].

Remark III.3 In the averaging step 6 of Algorithm 2, it is
assumed for ease of notation, that every i ∈ M copies the
complete vector zj of all neighbors j ∈ Ni. In practice, this
is not always necessary.

IV. COMPUTATIONAL STUDY
In this section, the performance of the distributed opti-

mization methods introduced in Section III is analyzed. The
performance of these methods is measured in number of iter-
ations until a specific stopping criterion is met. Specifically,
the influence of some fundamental aspects in distributed
MPC on the performance is investigated. The study is set
up in the spirit of a sensitivity analysis. Hence, we introduce
one specific test case to isolate the impact of each aspect on
the performance. In each of these test cases, the parameters
that reflect the aspect under consideration are varied, while
the remaining parameters are held at constant values.

The interpretation of observed performance trends is often
difficult. However, in case of DDFG, the bound in (14) can
be used as a performance indicator. In particular, the norm
of the dual optimizer ‖λ∗(x0)‖2 can serve as a source for
interpretation. Since the dual variables represent prices on
constraint violations, ‖λ∗(x0)‖2 can be viewed as the price
of consensus. This price determines on one hand a rigorous
mathematical upper bound on the number of iterations to
convergence and can on the other hand often be used to
intuitively connect problem aspects such as system size or
coupling strength with performance results. Therefore, in
the presentation of all computational results, the number of
iterations to convergence for DDFG is illustrated alongside
‖λ∗(x0)‖2.



Remark IV.1 A second parameter that affects the bound in
(14) is the Lipschitz constant L of ∇d(λ). According to [13]
however, in the problem formulation (6), L depends solely
on the Hessian of the primal cost function and the coupling
constraints (6b). Hence, L is only determined by the coupling
graph and therefore only considered when investigating the
impact of the coupling topology on the performance in
Section IV-B.

Throughout the computations, we consider subsystems of
the form

x+
i = Aiixi +Biui +

∑
j∈Ni

Aijxj ∀i ∈M , (17)

where the matrices Aij are upper-triangular matrices in R2×2

and Bi ∈ R2 where the upper entry is zero. For each
subsystem i, the matrices Aii and Bi have equal non-zero
entries and the matrices Aij have equal non-zero entries for
all j ∈ Ni. These entries can be used to affect stability
and coupling properties of the system. The amount to which
subsystem i is coupled is measured as

σic =
‖ANi‖2
‖Aii‖2

∀i ∈M , (18)

where for every subsystem i, ANi
is composed of the

matrices Aij for all j ∈ Ni. Furthermore, the individual
stability σis of every decoupled subsystem j is measured by
the largest eigenvalue of the matrix Aii. Note that even if all
Aii are stable, the global system can still be unstable due to
coupling effects.

We compare DDFG and ADMM when applied to problem
(6) under system dynamics (17). In all computations, the
methods are run for a maximum number of 2000 iterations
and the step size parameter in ADMM is ρ = 120. As a
stopping criterion for both methods we use two combined
conditions. The first one is a relative condition on the primal
residual

‖col{1,...,M}(yi − Eiz)‖∞
‖z‖∞

≤ 10−3 , (19)

and the second condition is a relative condition on the
difference of the primal objective value to the optimum

|
∑M
i=1 Ji(yi)− Ji(y∗i )|
|
∑M
i=1 Ji(y

∗
i )|

≤ 10−3 . (20)

As a reference primal optimum, the centralized solution
provided by the commercial solver CPLEX is used. It is
evident that neither condition (19) nor condition (20) can
be checked online and in a distributed way. However, the
problem of imposing practical distributed stopping criteria is
non-trivial and beyond the scope of this paper.

For every individual MPC problem, data sets containing
the solutions for a number of randomly chosen initial condi-
tions are generated. The findings are illustrated in box plots,
where the upper and lower end of the box denote the 25th
and 75th percentile of the data, the median is marked as a
dot and the whiskers span the whole range of the data.

MPC parameters throughout the computations (if not
mentioned otherwise): Time horizon N = 10; local state
constraints Xi = {xi ∈ R2|‖xi‖∞ ≤ 10}, local input
constraints Ui = {ui ∈ R2|‖ui‖∞ ≤ 10}; quadratic local
stage cost li(xNi

, ui) = xTNi
QixNi

+ uTi Riui with Qi = I
and Ri = I; quadratic local terminal cost V if (xi) = xTi Pixi
with Pi = Qi; terminal constraint Xf = X1 × . . .×XM .

Remark IV.2 The terminal cost and constraint chosen as
above do not guarantee stability of the resulting closed-
loop MPC controller. The focus of this section, however,
is on computational aspects rather than stability. A way
to design stabilizing terminal costs and constraints that
fit the framework of this computational study was recently
presented in [10].

A. Coupling Strength and Stability

Scenario: To analyze the impact of the coupling strength,
the subsystem dynamics (17) are scaled such that for all i ∈
M the value σic is uniformly varied in {0.2, 0.4, . . . , 2.0},
while σis = 1. Likewise, to analyze the impact of local
stability, the subsystem dynamics are scaled such that for
all i ∈ M σic = 1 and σis is varied in {0.2, 0.4, . . . , 2.0}.
For each combination (σis, σ

i
c), problem (6) is solved for 100

random initial conditions.
Findings: Figure 1 illustrates the number of iterations

to convergence for ADMM and DDFG as well as the
magnitude of ‖λ∗(x0)‖2 for varying σic, Figure 2 illustrates
the same quantities for varying σis. The number of iterations
to convergence increases with both of these quantities.

Interpretation: For either varying σic or σis, the number
of iterations to convergence mainly for DDFG, but also
for ADMM, is correlated with ‖λ∗(x0)‖2. This allows the
following interpretation:
• Coupling Strength: As the coupling strength increases,

subsystem i has more incentive to influence the state
trajectories of subsystems in Ni. Therefore, the price
of consensus increases and so does the number of
iterations.

• Stability: As system i becomes more unstable, it be-
comes more sensitive to its neighbors’ trajectories.
Thus, the incentive to influence these increases and as
a consequence, the price of consensus and the number
of iterations to convergence is also increased.

B. Coupling Topology

Scenario: For 10 subsystems of form (17), the coupling
graph is varied according to four topologies (see Fig. 3):
(a) chain, (b) ring, (c) 2-hop ring, (d) 3-hop ring. For
each topology, problem (6) is solved for 100 random initial
conditions. The coupling and stability parameters are σic =
σis = 1 for every i ∈M.

Findings: Figure 4 illustrates the number of iterations to
convergence for ADMM and DDFG as well as the magnitude
of ‖λ∗(x0)‖2. The number of iterations to convergence
increases with the graph connectivity and so does the mag-
nitude of ‖λ∗(x0)‖2. The Lipschitz constant L of d(λ) is
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Fig. 1: Number of iterations to convergence under ADMM
and DDFG for a network of 10 coupled double-integrators
with σis = 1 and σic ∈ {0.2, 0.4, . . . , 2.0}. The median of
‖λ∗(x0)‖2 is depicted in the lower plot.
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Fig. 2: The analog to Figure 1 with σic = 1 and σis ∈
{0.2, 0.4, . . . , 2.0}.

found as 1.5 for chain and ring, 2.5 for the two-hop ring
and 3.5 for the three-hop ring.

Interpretation: While, according to the consensus litera-
ture, an improvement in performance with increasing graph
connectivity would be expected, our results show an increase
in the number of iterations. One possible explanation for
this behavior is the increase in the dimension of λ∗, which
affects the size of ‖λ∗(x0)‖2 if the magnitude of the dual
optimizer’s entries remain comparable. A larger bound (14)
then suggests an increase in the number of iterations to
convergence. Another possible explanation is the increase
in L, which has a similar effect on bound (14).

(a) chain (b) ring (c) 2-hop ring (d) 3-hop ring

Fig. 3: Graph topologies under consideration.
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Fig. 4: Number of iteration to convergence for different
coupling topologies with ADMM and DDFG, median of the
dual optimizer ‖λ∗(x0)‖.

C. Initial State

Scenario: We consider a chain of 10 subsystems of form
(17) with σic = σis = 1 for every i ∈ M. 100 random
initial states on the boundary of the region of attraction are
generated (by bisection). Subsequently, problem (6) is solved
for scalings of these initial conditions, with scalar scaling
factors in {0.2, 0.4, . . . , 1.0}.

Findings: Figure 5 illustrates an increase in the number of
iterations for both DDFG and ADMM with the initial state
approaching the boundary of the feasible set. Furthermore,
the spread in the number of iterations (visible by the larger
span between the 25th percentile and the 75th percentile)
becomes larger and the probability of outliers increases.

Interpretation: The number of iterations to convergence
mainly for DDFG, but also for ADMM, seems to be cor-
related with the magnitude of ‖λ∗(x0)‖2. This behavior is
possibly caused by the fact that as the initial state approaches
the boundary of the feasible set, the range of possible control
moves is decreased for every subsystem i ∈ M. Such a
decrease is likely to increase the price of consensus and thus
also the number of iterations.
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Fig. 5: Number of iterations to convergence and median
‖λ∗(x0)‖2 under ADMM and DDFG for a network of 10
coupled double-integrators with 100 random initial states
which were scaled by a factor in {0.2, 0.4, . . . , 1.0} (x-axis).



D. Number of Connected Systems
Scenario: We consider a chain of subsystems of form (17),

with σic = σis = 1 ∀i ∈ M. The number of connected ele-
ments takes values in {3, 50, 100, 150, 200, 250} and for each
size problem (6) is solved for 10 random initial conditions.

Findings: As depicted in Figure 6, the number of iterations
to convergence increases with the size of the network. The
increase is however significantly lower than linear and even
seems to settle for a large number of elements. The value
of ‖λ∗(x0)‖2 correlates with the number of iterations to
convergence.

Interpretation: The slope of ‖λ∗(x0)‖2 closely resembles
a square root function. This behavior can be explained by
the fact that, as the length of the chain grows, the entries of
the dual optimizer λ∗ do not change in magnitude while only
the dimension of λ∗ becomes larger. Thus, ‖λ∗(x0)‖2, grows
with order O(

√
M). From this observation and the existence

of bound (14), we conjecture that the number of iterations,
at least for DDFG, can be expected to grow according to
order O(

√
M) as well. Figure 6 suggests that the growth in

the number of iterations may be even lower in practice.
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Fig. 6: Scaling behavior of distributed MPC for a chain of
subsystems with σc = σs = 1 under ADMM and DDFG.
The median of ‖λ∗(x0)‖2 is depicted in the lower plot.

V. CONCLUSION
In this paper, the performance of two distributed opti-

mization methods in MPC, namely DDFG and ADMM,
was investigated by a systematic computational study. The
analysis and results offer insight into the connection between
fundamental attributes of distributed dynamic systems and
the performance of distributed optimization methods.

The two attributes, to which the performance of the
methods were the most sensitive, were coupling strength
and stability of the subsystems. The methods however still
perform well for coupling strengths which would lead to a
very small region of attraction under non-iterative distributed
MPC. Under distributed optimization in contrast, the region
of attraction is the same as in a centralized approach.
This underlines the much lower conservatism of iterative
compared to non-iterative distributed MPC.

The performance of both methods was relatively insen-
sitive to varying initial states. Even though initial states
close to the boundary of the feasible set result in a slightly
larger number of iterations, the methods are still tractable.
This feature is beneficial for distributed MPC, where the
initial state is the only problem parameter that changes
during closed-loop operation. Thus, this finding suggests
that distributed MPC will perform well during closed-loop
operation.

Another conjecture is that iterative distributed MPC scales
well with the size of the problem. More specifically for
DDFG, as the number of subsystems increases, the increase
in the number of iterations is expected to grow by no
more than order O(

√
M). This implies a great potential of

iterative distributed MPC for large-scale systems where any
centralized MPC approach eventually becomes intractable.

Regarding the methods that were compared, ADMM con-
sistently showed a lower number of iterations to convergence
than DDFG. Note furthermore, that there are no tuning
parameters in DDFG, while the performance of ADMM
might still be improved for a specific problem by the tuning
parameter ρ.
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