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Abstract: This paper is devoted to the design of a predictive controller for constrained linear
systems to track periodic references. The only assumption on the dynamics of the reference is
that it is periodic and its period is known. It is also assumed that the reference signal is a priori
known by the controller. Inspired in the hierarchical control scheme based on the trajectory
planification, the ideas of the MPC for tracking [Limon et al., 2008] are extended to this case.
The proposed predictive controller has the future sequence of inputs and an artificial reference
as decision variables. The cost function is divided into two terms: one penalizes the tracking
error with the artificial reference and other penalizes the deviation of the artificial reference
to the reference to be tracked. Stability is ensured thanks to the addition of two constraints:
a terminal constraint on the predicted trajectory and a constraint that enforces the artificial
reference to be periodic. It is proved that the proposed controller is recursively feasible and the
controlled system satisfies the hard constraints, is asymptotically stable and converges to the
best possible reachable trajectory. The properties of the proposed controller are illustrated in
an example.

1. INTRODUCTION

Model predictive control is one of the few control tech-
niques capable of regulating the controlled variable ensur-
ing constraint satisfaction. For a given set-point, the MPC
can be suitably designed to ensure closed-loop stability and
constraint satisfaction. However if the set-point changes,
the stabilizing design of the predictive controller may not
be valid anymore and/or feasibility of the controller may
be lost [Rawlings and Mayne, 2009].

In order to overcome this problem several solutions have
been proposed [Camacho and Bordons, 2004, Rossiter
et al., 1996, Chisci and Zappa, 2003]. In [Pannocchia and
Kerrigan, 2005, Pannocchia, 2004] the set-point change
is considered equivalent to a disturbance to be rejected
and asymptotic stability and offset-free is ensured by
integrating a disturbance model in the prediction model.
A different approach has been proposed in the context of
reference governors [Gilbert et al., 1999, Bemporad et al.,
1997]. This control technique assumes that the system is
robustly stabilized by a local controller, and a nonlinear
filtering of the reference is designed to ensure robust
satisfaction of the constraints. These controllers ensure
robust tracking without considering the performance of
the obtained controller nor the domain of attraction.

In [Limon et al., 2008, Ferramosca et al., 2009] an MPC for
tracking constant references is proposed, which is able to
lead the system to any admissible set point in an admissi-
ble way. The main characteristics of this controller are: an
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artificial steady state is considered as a decision variable,
a cost that penalizes the error with the artificial steady
state is minimized, an additional term that penalizes the
deviation between the artificial steady state and the target
steady state is added to the cost function (the so-called
offset cost function) and an invariant set for tracking is
considered as extended terminal constraint. This controller
ensures that under any change of the target steady state,
the closed loop system maintains the feasibility of the
controller and ensures the convergence to the target if
admissible.

For the case of non-constant references, in [Magni et al.,
2001] a class of output feedback MPC for nonlinear
discrete-time systems is proposed to solve the problem of
tracking exogenous signals (and asymptotically rejecting
disturbances) generated by systems with a known dynam-
ics. In [Mäder and Morari, 2010] the authors consider the
problem of offset-free tracking for reference signals gener-
ated by arbitrary dynamics, excluding the consideration
of feasibility and stability of the closed-loop system.

Periodic systems are important extensions of linear time-
invariant systems and allow modeling of important control
problems [Bittanti and Colaneri, 2009, Varga, 2007, Lovera
and Varga, 2005]. Available methods for tracking based on
MPC generally consider the case of (piecewise) constant
references. The problem of tracking periodic references for
LTI systems can, however, be considered as the problem
of tracking constant references of periodic systems using
a different modeling framework. MPC of discrete-time
linear/nonlinear periodic systems was tackled, e.g., in
[Böhm et al., 2009, Kern et al., 2009, Kim et al., 2000,
Lee et al., 2001, Gondhalekar and Jones, 2011].



In this paper, the tracking problem of periodic references
is considered, whose future evolution is assumed to be
known but not their dynamics. This problem is analyzed
for constrained linear systems and, based on the ideas of
[Limon et al., 2008], a novel MPC controller is proposed.
As in [Limon et al., 2008], an artificial reachable reference
is considered as decision variable as well as the predicted
input of the system, a cost function that penalizes the
tracking error between the predicted trajectory and the
artificial reference is considered, an extended terminal
constraint is added and a term penalizing the deviation
between the artificial reference trajectory and the known
future reference is also added. The proposed controller
ensures an admissible evolution for any possible reference
and asymptotic stability to the best reachable reference.
Then if the reference is reachable by the constrained sys-
tem, this reference will be asymptotically tracked without
error.

2. PROBLEM STATEMENT AND CONTROL
OBJECTIVE

Consider a linear time-invariant system described by a
state-space linear model

x(k + 1) =Ax(k) +Bu(k) (1)

y(k) =Cx(k) +Du(k)

where x(k) ∈ IRn is the state at the sampling time k,
u(k) ∈ IRm is the manipulable input and y(k) ∈ IRp

is the controlled variables. It is assumed that (A,B) is
controllable.

The evolution of the plant must be such that the following
constraints must hold

(x(k), u(k)) ∈ Z (2)

where set Z is a convex and closed polyhedron.

The control objective is to track an exogenous and a-
priori known reference signal r = {r(0), r(1), · · ·} for the
controlled output y(k). The reference is assumed to be
periodic, that is r(k + Nr) = r(k) for all k ≥ 0, and
the period of the signal Nr is known. Then a control law
u(k) = κ(x(k), r) must be designed to ensure that the
controlled system

x(k + 1) =Ax(k) +Bκ(x(k), r)

y(k) =Cx(k) +Dκ(x(k), r)

satisfies the constraints along its evolution and if possible,
lim
k→∞

∥y(k)− r(k)∥ = 0.

In the sequel, for a certain signal r = {r(0), r(1), · · ·}, rk
will denote rk = {r(k), r(k + 1), · · · , r(k +Nr − 1)}.

3. TRAJECTORY PLANNING AND MPC

In the tracking problem, the provided reference signal may
be impossible to be tracked due to the limits introduced by
the constraints or due to a possible inconsistency with the
dynamics of the system. In any of these cases, the reference
is said to be unreachable. In the following definition the
set of reachable trajectories, that is, the set of references
that can be tracked, are stated.

Definition 1. A signal r is said to be reachable if there
exist state and input signals x and u such that

(1) (x,u) are coherent with the model (1) for all k ≥ 0,
(2) (x,u) are admissible, that is, (x(k), u(k)) ∈ Z,
(3) (x,u) maps the reference, that is,

r(k) = Cx(k) +Du(k)

Then, it is clear that the control objective can only be
achieved iff the reference signal r is (or converges to) a
reachable signal. If the reference to be tracked is not reach-
able (which is not unusual in practice), the control problem
can be solved by means of a two-layer structure. In the
upper level, a trajectory planner calculates a reachable
reference yr as close as possible to the exogenous reference
signal r by solving the following optimization problem:

(xr(k),ur(k)) = arg min
x̄r,ūr

Vp(rk; x̄
r, ūr)

=

Nr−1∑
i=0

∥ȳr(i)− r(k + i)∥2T

s.t. x̄r(i+ 1) = Ax̄r(i) +Būr(i)

ȳr(i) = Cx̄r(i) +Dūr(i)

(x̄r(i), ūr(i)) ∈ Z
Notice that this optimization problem could be calculated
off-line due to the periodic nature of the signal.

In the lower level, a predictive controller is designed to
track the calculated reachable reference (xr(k),ur(k)) in
an admissible way. This is derived from the following
optimization problem:

min
ū

V (x,xr(k),ur(k); ū)

=
N−1∑
i=0

∥ȳ(i)− ȳr(i)∥2Q + ∥ū(i)− ur(i|k)∥2R

s.t. x̄(i+ 1) = Ax̄(i) +Bū(i)

x̄(0) = x(k)

ȳ(i) = Cx̄(i) +Dū(i)

ȳr(i) = Cxr(i|k) +Dur(i|k)
(x̄(i), ū(i)) ∈ Z
x̄(N) = xr(N |k)

From the optimal solution to this optimization problem
u∗(k), the control law is given by u(k) = u∗(0|k).
This hierarchical control structure ensures that the con-
trolled signal y(k) converges to the best possible reachable
reference yr(k) (according to the considered value func-
tion) if the MPC optimization problem is feasible at the
initial state.

Consider the case that the signal to be tracked is changing,
that is, the pattern of periodic reference signal changes
with the time, leading to a transitory period of non-
periodic behavior. Then, in this case, the calculated trajec-
tory at a certain sampling time k might be not consistent
with the trajectory calculated at k − 1, that is, xr(k +
i|k − 1) ̸= xr(k + i|k) for a certain i. This may render
the MPC problem infeasible for the current state and the
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current reference due to the terminal constraint. There-
fore, the recursive feasibility and the stability conditions
of the predictive control scheme can not be guaranteed in
general.

On the other hand, feasibility of the initial state is compul-
sory for the stability of the controller. The feasibility region
depends on the prediction horizon and the reference to be
tracked (due to the terminal constraint). If the reference
is changed, then the feasibility region changes and the
feasibility of the optimization problem at the current state
may be lost.

In this paper a novel MPC is proposed to solve the tracking
problem of periodic references. This controller ensures
recursive feasibility, and admissible asymptotic stability
of the closed loop system to the reachable trajectory.
Besides the control law is calculated by solving a single
optimization problem.

4. MPC FOR TRACKING PERIODIC REFERENCES

The proposed predictive controller combines the former
two controllers in a single optimization problem, in a
way such that the reachable trajectory and the sequence
of future inputs are the decision variables. Thus, the
predicted cost considered is the following

J(x, rk; x̄
s, ūs, ū) = V (x; x̄s, ūs, ū) + Vp(rk; x̄

s, ūs)

=

N−1∑
i=0

∥ȳ(i)− ȳs(i)∥2Q + ∥ū(i)− ūs(i)∥2R

+

Nr−1∑
i=0

∥ȳs(i)− r(k + i)∥2T

where it is assumed that N ≤ Nr.

The term V (x;xs,us,u) is the cost that penalizes the
tracking error with the reachable trajectory predicted
for a prediction horizon N , while the term Vp(rk;x

s,us)
penalizes the error between the reachable trajectory and
the reference to be tracked predicted for one period Nr.

The control law is derived from the solution of following
optimization problem

min
ū,x̄s,ūs

J(x, rk; x̄
s, ūs, ū) (3a)

s.t. x̄(i+ 1) = Ax̄(i) +Bū(i) (3b)

x̄(0) = x (3c)

ȳ(i) = Cx̄(i) +Dū(i) (3d)

(x̄(i), ū(i)) ∈ Z (3e)

x̄s(i+ 1) = Ax̄s(i) +Būs(i) (3f)

ȳs(i) = Cx̄s(i) +Dūs(i) (3g)

(x̄s(i), ūs(i)) ∈ Zs (3h)

x̄s(0) = Ax̄s(Nr − 1) +Būs(Nr − 1) (3i)

x̄(N) = x̄s(N) (3j)

The set Zs is such that Zs ⊆ Z ⊖Bϵ where Bϵ is the ball
of radius ϵ > 0. This tighter set of constraints is added for

stability reasons. The optimal solution to this optimization
problem is denoted (xs∗,us∗,u∗) and it is assumed to be
unique.

Notice that two terminal constraints have been added
for stability reasons. The constraint (3i) is added to
enforce that the reachable trajectory is periodic, while
the constraint (3j) makes that the terminal state of the
predicted trajectory of the plant reaches the reachable
trajectory.

Since the set of constraints does not depend on the
reference signal r, there exists a set of states XN ⊆
IRn such that the optimization is feasible iff x ∈ XN .
The domain of attraction XN can be read as the set of
states that can admissibly reach any admissible periodic
trajectory in N steps.

The control law is given by

u(k) = u∗(0|k)

The proposed controller ensures that the controlled system
is admissibly stabilized to the optimal trajectory.

Theorem 2. Assume that the reference r is a periodic
signal of period Nr and N ≤ Nr then for all ini-
tial state x(0) ∈ XN the proposed predictive control
law ensures that the controlled system satisfies the con-
straints and converges to an admissible trajectory such
that Vp(xk,uk, rk) is minimum.

Proof. First it will be proved that the optimization prob-
lem is recursively feasible and then the convergence of the
closed-loop system will be shown.

Let define

u(k + 1) = (u∗(1|k), · · · , u∗(N − 1|k), us∗(N |k))
xs(k + 1) = (xs∗(1|k), · · · , xs∗(Nr − 1|k), xs∗(0|k))
us(k + 1) = (us∗(1|k), · · · , us∗(Nr − 1|k), us∗(0|k))

Given that Axs∗(Nr − 1|k) + Bus∗(Nr − 1|k) = xs∗(0|k),
us∗(0|k) is an admissible control input. On the other hand,
since x(k + 1) = x∗(1|k), it is easy to see that x(i|k +
1) = x(i+1|k) for i = 1, · · · , N −1 and, thanks to the fact
that u(N − 1|k + 1) = us∗(N |k), x(N |k + 1) = xs∗(N +
1|k) = xs(N |k + 1). Therefore, in virtue of the feasibility
of the optimal solution at k, the feasibility of this solution
holds, and then the optimization problem will be feasible
at k + 1.

Denote

J∗(k) = V (x(k);xs∗(k),us∗(k),u∗(k))

+Vp(rk;x
s∗(k),us∗(k))

J(k + 1) = V (x(k + 1);xs(k + 1),us(k + 1),u(k + 1))

+Vp(rk+1;x
s(k + 1),us(k + 1))

Then, the proposed sequences (u(k+1),xs(k+1),us(k+
1)) satisfy

J(k + 1)− J∗(k) =−∥y(k)− ys(0)∥2Q − ∥u(k)− us(0)∥2R
+∥ys(Nr − 1|k + 1)− r(k +Nr)∥2T
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−∥ys∗(0|k)− r(k)∥2T
Given that ys(Nr − 1|k + 1) = ys∗(0|k) from the equality
constraint and r(k +Nr) = r(k), we have that

J(k + 1)− J∗(k) =−∥y(k)− ys∗(0|k)∥2Q
−∥u(k)− us∗(0|k)∥2R

From the optimality of the solution it is derived that

J∗(k + 1)− J∗(k)≤−∥y(k)− ys∗(0|k)∥2Q
−∥u(k)− us∗(0|k)∥2R

Then x(k) converges to xs∗(0|k) and the optimal solution
u∗(k) converges to us∗(k). In virtue of the continuity of
the optimal solution w.r.t. the state and lemma 3, it can
be proved that in this situation, (xs∗(k),us∗(k)) is those
that minimize

min
x̄s,ūs

Vp(rk; x̄
s, ūs)

s.t. x̄s(i+ 1) = Ax̄s(i) +Būs(i)

ȳs(i) = Cx̄s(i) +Dūs(i)

(x̄s(i), ūs(i)) ∈ Zs

x̄s(0) = Ax̄s(Nr − 1) +Būs(Nr − 1)

Now the optimality lemma is proved.

Lemma 3. Let x be such that the optimal solution
(u∗,xs∗,us∗) of the optimization problem (3) satisfy that
xs∗(0) = x and u∗(j) = us∗(j) for j = 0, 1, · · · , N−1, then

(xs∗,us∗) = arg min
x̄s,ūs

Vp(rk; x̄
s, ūs)

s.t. x̄s(i+ 1) = Ax̄s(i) +Būs(i)

ȳs(i) = Cx̄s(i) +Dūs(i)

(x̄s(i), ūs(i)) ∈ Zs

x̄s(0) = Ax̄s(Nr − 1) +Būs(Nr − 1)

Proof. The proof will be done by contradiction. Assume
that (xs∗,us∗) is not the optimal trajectory. Then the op-
timal one, denoted as (xso,uso), is such that (xso,uso) ̸=
(xs∗,us∗) and

Vp(rk;x
s∗,us∗) > Vp(rk;x

so,uso)

Let denote the sequences

(x̂s, ûs) = β(xs∗,us∗) + (1− β)(xso,uso)

where β ∈ (0, 1]. These sequences define a reachable
trajectory, that is, they are consistent with the model and
admissible, in virtue of the convexity of the constraints
and the linearity of the model.

Let Kdb be the dead-beat control gain of the system and
let define the sequence û(j) = Kdb(x̂(j) − x̂s(j)) + ûs(j)
for x̂(0) = xs∗(0) and x̂(j + 1) = Ax̂(j) + Bû(j). Since
N ≥ n and since (x̂s(j), ûs(j)) ∈ Zs ⊆ Zs ⊖ Bϵ for
all j = 0, · · · , Nr − 1 and x̂(0) = xs∗(0), in virtue of
the continuity of the system and the convexity of the

constraints there exist a β̂ such that the (û, x̂s, ûs) is
a feasible solution of the optimization problem for all

β ∈ [β̂, 1). The cost of this solution is such that

J(xs∗(0), rk; û, x̂
s, ûs) = ∥xs∗(0)− x̂s(0)∥2P + Vp(rk; x̂

s, ûs)

where

P =

N−1∑
j=0

(
(A+BKdb)

j
)T

(Q+KT
dbRKdb)(A+BKdb)

j

From the optimality of the solution this cost is such that

Vp(rk;x
s∗,us∗) ≤ J(xs∗(0), rk; û, x̂

s, ûs)

From the definition of (x̂s, ûs) we have that

xs∗(0)− x̂s(0) = (1− β)(xs∗(0)− xso(0))

and from the convexity of Vp we have that

Vp(rk; x̂
s, ûs)≤ βVp(rk;x

s∗,us∗) + (1− β)Vp(rk;x
so,uso)

Denoting

W (β) = (1− β)2∥xs∗(0)− xso(0)∥2P
+βVp(x

s∗,us∗, r) + (1− β)Vp(x
so,uso, r)

we have that

Vp(rk;x
s∗,us∗) ≤ J(xs∗(0), rk; û, x̂

s, ûs) ≤ W (β)

From the definition of W (β) we infer that

W (1) = Vp(rk;x
s∗,us∗)

Taking the partial of this function we have that

∂W

∂β
=−2(1− β)∥xs∗(0)− xso(0)∥2P

+Vp(rk;x
s∗,us∗)− Vp(rk;x

so,uso)

Evaluating this derivative at β = 1

∂W

∂β

∣∣∣∣
β=1

= Vp(rk;x
s∗,us∗)− Vp(rk;x

so,uso)

From the initial assumption we have that Vp(rk;x
s∗,us∗) >

Vp(rk;x
so,uso) and then

∂W

∂β

∣∣∣∣
β=1

> 0

Then there exists a β̄ ∈ [β̂, 1) such that W (β̄) < W (1) =
Vp(rk;x

s∗,us∗). Summarizing we have proved that

Vp(rk;x
s∗,us∗) ≤ W (β̄) < Vp(rk;x

s∗,us∗)

which is a contradiction and hence, the lemma is proved.

5. SOME PROPERTIES OF THE PROPOSED
CONTROLLER

The proposed controller has a number of interesting prop-
erties as the following:

(i) The proposed optimization problem is a standard
multi-parametric quadratic program in (x, rk) that
can be solved for a given (x(k), rk) using special-
ized algorithms [Boyd and Vandenberghe, 2006]. Fur-
thermore, exploiting the results of [Bemporad et al.,



2002], the resulting control law is a piece-wise affine
function of (x, rk).

(ii) As it was illustrated in [Limon et al., 2008], the addi-
tion of the artificial reference in the MPC formulation
leads to an enlargement of the domain of attraction
of the predictive controller. This property can be
extended to the presented controller, but enhanced.
In effect, the enlargement of the domain of attraction
of the proposed controller is more significant since
the domain of attraction is the set of states that can
reach in N steps any periodic reachable signal of the
system. Since a constant reference is a possible peri-
odic reachable signal, the domain of attraction of the
proposed controller is larger than the one presented
in [Limon et al., 2008], but at expense of a larger
number of decision variables.

(iii) The controller ensures recursive feasibility for any
(possibly non-periodic) reference signal rk and if rk
converges to a periodic reference, the controller steers
the system to the best possible periodic reachable
signal. In effect, assume that at k, the expected
reference (according to rk−1) is denoted as r̃k, but
the real reference differs from the expected rk ̸= r̃k
(due to a change of pattern in the periodic signal).
Then, the optimization problem is feasible for rk
and in virtue of the continuity of the control law
κN (x(k), rk), if rk converges to the expected r̃k (that
is the reference converges to a periodic signal), then
κN (x(k), rk) converges to κN (x(k), r̃k) and hence
the trajectory of the system converges to the best
reachable trajectory.
This property is illustrated in the example pre-

sented in the next section.

(iv) If Z is compact then the control law κN (x(k), rk)
is also Lipschitz continuous with respect the state
x(k). As the model is continuous, then the closed loop
system is ISS with respect to additive disturbances
[Limon et al., 2009], whenever the evolution of the
plant is admissible.

6. ILLUSTRATIVE EXAMPLE

Let consider a linear system given by the matrices

A =

[
0.22 0.44
0 0.88

]
, B =

[
1
1

]
, C = [ 1 0 ] , D = 0

subject to constraints on the inputs and the outputs as
follows

|u(k)| ≤ 2, |y(k)| ≤ 6

It is known that the reference is periodic with a period
Nr = 50 samples. Then the proposed MPC is designed
with Q, R and T equal to the identity matrix.

In order to illustrate the properties of the proposed con-
troller a periodic, but changing, reference has been chosen
as shown in figures 1 and 3. This reference starts with a
sawtooth wave for 3 periods, then it changes to a sinusoidal
wave for 3 periods and finally it changes to a constant
value.

The evolution of the output together with the reference
to be tracked for the case of the system without input
constraints is depicted in figure 1 and the corresponding
output in figure 2. It can be seen that the reference is
not reachable due to the constraints on the output of the
system. Notice that in the first period the signal converges
to the reference which is tracked in an admissible way.
However during the samples [100, 150] the evolution of
the system changes but maintains the feasibility of the
problem. This is derived from a change in the pattern of
the reference signal. See that rk for k = 100, · · · , 150 are
not consistent due to the change to the sinusoidal wave at
sample 150. The sinusoidal wave can be tracked whenever
the output is admissible. In the interval [250, 300] the
output shape changes due to the change in the pattern
of the reference from a sinusoidal wave to a constant
signal. Finally notice that the constant reference is tracked
without error.
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Fig. 1. Evolution of the output for the system without
constraints on the inputs.
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Fig. 2. Evolution of the input for the system without
constraints on the inputs.

The same test has been executed considering the con-
straints on the inputs as |u(k)| ≤ 1. Figures 3 and 4 show
the evolution of the outputs and the inputs respectively.
It can be seen that the tighter set of admissible inputs,
makes that the controlled system exhibit a larger tracking
error. Notice that the properties of the controller hold.

7. CONCLUSIONS

In this paper, the tracking problem of periodic references
is considered, whose future evolution is assumed to be
known but not their dynamics. This problem is analyzed
for constrained linear systems and, based on the ideas of
[Limon et al., 2008], a MPC controller has been proposed.
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Fig. 3. Evolution of the output for the system with
constraints on the inputs |u(k)| ≤ 1.
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Fig. 4. Evolution of the input for the system with con-
straints on the inputs |u(k)| ≤ 1.

As in [Limon et al., 2008], an artificial reachable reference
is considered as decision variable as well as the predicted
input of the system, a cost function that penalizes the
tracking error between the predicted trajectory and the
artificial reference is considered, an extended terminal
constraint is added and a term penalizing the deviation
between the artificial reference trajectory and the known
future reference is also added. The proposed controller
ensures an admissible evolution for any possible reference
and asymptotic stability to the best reachable reference.
Then if the reference is reachable by the constrained sys-
tem, this reference will be asymptotically tracked without
error.
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