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Abstract— This work presents an approach for both dis-
tributed synthesis and control for a network of discrete-time
constrained linear systems without central coordinator. Every
system in the network is dynamically coupled to a number
of neighboring systems and it is assumed that communication
among neighbors is possible. A model predictive controller
based on distributed optimization is introduced, by which every
system in the network can compute feasible and stabilizing
control inputs online. Stability of the closed-loop network
of systems is guaranteed by introducing local terminal cost
functions and sets, which together satisfy invariance conditions
in a distributed way. This includes in particular that the
local terminal sets are not static but evolve over time. It is
shown that synthesis of both quadratic terminal cost functions
and corresponding terminal sets can be done by distributed
optimization. Finally, closed-loop performance of the proposed
controller is demonstrated on a coupled array of inverted
pendulums.

I. INTRODUCTION

This paper considers both distributed synthesis and control
for a network of dynamically coupled linear systems. None
of these systems is aware or the global network’s state or
model. Instead, each system has a set of local information
which it obtains by measuring its own state and by sharing
knowledge with a number of neighboring systems. The fact
that each system takes all decisions based on local informa-
tion implies a strong need for both distributed synthesis and
distributed control.

Many researchers have considered the synthesis of dis-
tributed controllers for unconstrained linear systems. For
some classes of systems, the control synthesis problem has
been proven to be intractable, although other tractable classes
have been identified. In [1] for instance, it is shown that the
synthesis problem is convex if the communication structure
of a system is quadratically invariant to its coupling structure.
Since the resulting problem is infinite dimensional however,
no universal synthesis method exists, although in some
cases practical methods are available. Centralized methods
to obtain distributed linear state feedback controllers include
the solution of a linear matrix inequality (LMI) [2], [3] or the
construction of a vector Lyapunov function [4]. Distributed
methods include LMI based H., controller synthesis [5],
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[6] or gradient based optimization of an infinite horizon
quadratic cost function [7].

For constrained linear systems, model predictive control
(MPC) has proven to be a powerful centralized control
method. At every point in time, a finite horizon optimal
control problem, i.e. the MPC problem, is solved and the
control input is defined as the first element of the optimal
input sequence. Stability is usually achieved by forcing
the last element of the optimal state trajectory to lie in a
terminal invariant set, in which a Lyapunov function for the
unconstrained system under a nominal control law is known.
If this Lyapunov function is used as a terminal cost in the
finite horizon problem, stability of the closed loop system
under the MPC control law is guaranteed [8]. This paper
provides sufficient, and practical conditions that extend the
standard theory to the distributed case.

In order to maintain constraint satisfaction and stability,
distributed MPC approaches are often more conservative
than centralized ones. In some approaches, a global MPC
problem is solved by distributed optimization, but conser-
vative terminal sets consisting of a single point are used to
guarantee closed loop stability [9], [10]. In other approaches,
restrictions are imposed such that stabilizing control inputs
can be found by decoupled local optimization problems.
These include solving a local min-max problem, taking the
influence of neighbors into account as disturbance [11] or
staying close to previously computed feasible local trajecto-
ries [12].

In this paper, a novel distributed MPC controller for
discrete-time constrained linear systems is proposed. Com-
pared with existing approaches, conservatism is reduced by
combining distributed optimization with nonconservative de-
centralized terminal sets. Stability and invariance are guaran-
teed by updating the size of these terminal sets dynamically,
utilizing recent research on decentralized Lyapunov functions
in [13]. This scheme of decentralized invariance follows
similar ideas as recently presented in [14]. However, the
approach taken here focuses not only on invariance, but
also on stability and on simultaneous distributed synthesis of
terminal control laws, terminal costs and terminal invariant
sets. The proposed distributed MPC controller results in a
larger region of attraction compared to a controller based on
a terminal set consisting of a single point. As an additional,
and important, novelty, a synthesis method is proposed, by
which the computation of all terminal costs and sets can be
carried out in a completely distributed way.

The structure of the paper is as follows: In Section II, the
distributed problem is introduced. In Section III, stability
conditions for distributed MPC are derived by adapting an



idea on structured control Lyapunov functions from [13].
Subsequently, in Section IV, a distributed synthesis method
for an MPC controller which fulfills these stability conditions
is presented and in Section V, performance of the proposed
distributed MPC controller is demonstrated by a numerical
example.

II. PRELIMINARIES AND PROBLEM SETUP
A. Preliminaries and Notation

For a vector z € R", ||z|| denotes its Euclidean norm.
By diag(Sy, Sa,. .., S,), we denote a block-diagonal matrix
with matrices S; to S, on the main diagonal and zeros
everywhere else. A function f : Ry — R belongs to class
IC if it is continuous, strictly increasing and if f(0) = 0. A
function f : Ry — R, belongs to class K, if f € K and
if img_, 00 f(8) = 00.

B. Decentralized Constrained Linear Systems

Throughout the paper, we deal with an ordered set of M
dynamically coupled linear systems. The state of system 4
is denoted as z; € R™¢, whereas its input is denoted as
u; € RPi. Coupling is caused by the states while inputs
only affect the systems locally. Consequently, the dynamics
of system ¢ can be written as

M
j=1

where A;; € R™*™i and B; € R™*Pi, The dynamics of
the overall network of systems are obtained as

T = Az + Bu , 2)
where z = [z7,...,27]T € R™ is its state and u =
[wh, ... ul]T € RP is its input. A € R™*™ consists of

the blocks A;; and B = diag(Bi,...,By) € R™*P is
block-diagonal, where it is assumed that the pair (A, B) is
controllable. Throughout the paper, we will refer to a system
described by (1) as a subsystem and to the system described
by (2) as the global system.

Using the subsystem dynamics (1), we define the notion
of neighboring subsystems and specify the communication
structure in the overall network.

Definition I1.1 (Neighboring subsystems) Subsystem j is
a neighbor of subsystem i if A;; # 0. N; denotes the ordered
set of neighbors of subsystem i including i and s, € R™Vi
contains the states of all subsystems in N;.

Assumption II.2 (Communication) Two subsystems i and
j can communicate with each other only if either j € N; or

iE./\/}.

The states and inputs of every subsystem ¢ are subject to
local constraints

;€ X, u; €U 3)
where X; = {r; € R™|Glx; < fi} and U; = {u; €

RP: |G u; < fi} are polytopes containing the origin in their

interior. By taking the cartesian product of all local constraint
sets, we denote the global state and input constraint sets as

X:Xlx...xXM,L{Zle...xUM. (4)

Remark I1.3 The particular class of constrained distributed
systems introduced in this section has been chosen for the
sake of simplicity in the notation. Nevertheless, the ideas
presented in the following sections can be extended to more
general problem formulations, e.g. combined constraints.

C. Distributed MPC Problem Formulation
First, consider the global MPC problem

N-1

V@) = min Vi) + Y ekl u) G
k=0

s.t.z(0) ==z (5b)

z(k+1) = Az(k) + Bu(k), Yk € {0,...,N — 1}

(5¢)

(x(k),u(k)) e X xU,Vk €{0,...,N -1} (5d)

z(N) € X; . (5¢)

We define X as the set of x, for which (5) is feasible.
Both the stage cost I(x, ) and the terminal cost Vy(x) are
convex functions and the terminal set Xy C R™ is convex
compact and contains the origin in its interior. Furthermore,
u = {u(0),...,u(N — 1)} denotes an input trajectory over
the finite horizon N and u*(x) denotes an optimal choice of
u in the sense of (5). The first element of u*(x) is denoted
u* () and defines a state feedback control law, which results
in the nonlinear global closed loop system dynamics

rT = Az + Bu*(z) . (6)

Sufficient conditions for stability of system (6) on X are
fulfilled if a terminal control law wus(-) : Xy — R? and K
class functions o7, o and a3 exist such that

Vo e Xpiw € X, up(x) €U, Ax + Buy(x) € Xy (Ta)
o (|z]]) < Vi(z) < ao(]]]]) (7b)
Vi(Az + Bug(z)) = Vi(x) < —as(|lz]]) . (Tc)

Condition (7a) implies that X is a positive invariant set
and conditions (7b) and (7c) imply that on Xy, V(z) is a
Lyapunov function for the closed loop system

x" = Az + Buy(z) . 8)

In a distributed system, central computation of u*(z) is
not possible due to the lack of global system information
at subsystem level. However, an appropriately structured
global MPC problem can be solved by well-established
distributed optimization methods [15]. In these methods, a
global convex optimization problem is decomposed into a
number of smaller subproblems, which are coupled through
shared variables. By iterative negotiation on these shared
variables, the subproblems’ variable sets converge to the
global optimal solution, while in every iteration only com-
munication between coupled subproblems is required.



To comply with the communication constraints from As-
sumption II.2, we would like to decompose problem (5)
into one subproblem per subsystem ¢, each of which only
contains the variables u; and z,;,. The only elements in
(5), which do not inherently allow such a decomposition
are the stage cost [(x,u), the terminal cost Vy(x) and the
terminal set Xy. The main challenge in the formulation of
the distributed MPC problem is thus the choice of these
elements, in particular the choice of the stability-critical
terminal cost and terminal set. These are generally dense,
but for the sake of decomposability we impose the structural
constraints

M
lz,u) = Zli(x/\/i,ui) (9a)
11\:/[1 |
Vi(w) = Vi(x) (9b)
=1
Xp=X} x...oxxM (9c)

where X} C R™:. A distributed synthesis approach for a
terminal cost and a terminal set, structured as in (9b) and
(9c¢), is presented in the next two sections.

III. DISTRIBUTED INVARIANCE

A. Decentralized Terminal Cost

One sufficient condition for stability of an MPC controller
is fulfilled if the terminal cost function is a Lyapunov func-
tion for the unconstrained system under a terminal control
law. A Lyapunov function structured as (9b) strongly resem-
bles the vector Lyapunov function methodology presented in
[4]. In this methodology, a Lyapunov function for a network
of coupled subsystems is constructed as a weighted sum of
Lyapunov functions for the uncoupled subsystems. However,
this methodology does not directly include the synthesis
of a nominal control law, existence of which is another
sufficient stability condition for MPC. Therefore, we will
exploit another approach, synthesizing a control law and a
Lyapunov function simultaneously.

A naive way to choose a terminal cost function Vf’(azl)
for subsystem i would be to demand it to decrease in
every time step, even under full coupling. Such an approach,
however, would be very conservative. Consider for instance
a subsystem ¢, whose state x; rests at the origin where
V)%(;vl) = 0. If the state z; of a neighboring subsystem
j € N; is nonzero, x; will necessarily be driven away
from the origin, causing Vf’(xl) to increase. Therefore, as
proposed in [13], it is desirable to allow a local terminal cost
to increase, as long as at the same time the global terminal
cost decreases.

Theorem IIL.1 (Implied by Theorem II1.4 in [13])

If there exists a positive invariant set Xy C R™, and
there exist functions Vi(xi), 7vi(an;), uy(an;) and
li(zn,, wy(x;)) as well as functions of, o and o € Ko,

such that Ve € Xy and Vi € {1,..., M}
o (|zil]) < Vi) < ab(l|al]) (10)
Vi) = Vi(z:) < —li(ans, uf(en) +vilaas)  (12)

M
> vilen,) <0,
=1

13)

then the function Vy(z) = Zf\il V]?(xl) is a Lyapunov
function for system (8) under control law us(x) =
[u}’T(le )y ,uj\f/[’T(arNM)]T and (8) is asymptotically sta-
ble on X;.

B. Decentralized Invariant Terminal Set

Given a Lyapunov function Vy(z) for the closed loop
system (8), any feasible level set Xy = {z € R™|Vy(z) <
a} C X thereof is invariant and would therefore be a
potential terminal set for a stabilizing centralized MPC
controller. However, for distributed optimization we want
the terminal set to be decomposable as in (9c), which is
nontrivial and will be discussed in the following.

Consider for every subsystem a level set of the local
terminal cost function V;(:zz,) as

Xj = {x; e R™|V(z;) < i}, (14)
where Zﬁl a; < a. We then have
(21, am) €XfF x .o x X =2t eXy . (19)

However, the converse of (15) does not hold. Hence, as time
evolves, the state of the global system remains in X’y but the
state of any subsystem ¢ might leave X’ }, which compromises
invariance. A remedy for this issue is to update the size of
the local terminal sets according to the dynamics

of =a; +yi(zn;) (16)

which leads to a dynamic terminal set X}(ai) for every
subsystem. The following results will show invariance of the
dynamic set X} (a1) x ... x XM (an).

Lemma IIL.2 Vi € {1,..., M} : Given a local terminal set
Xi(i) = {wi € R™|V}(2;) < i}, it holds that

T; € X}(ai) = x:r S X}(a;r) . 17

Proof: ¥i € {1,...,M} : Consider z; € X}(a),
which implies that Vf’(mi) < a;. By Theorem III.1 we have
Vi(al) < Vie:) = lilan, up(ons) +vilen;)  (18)

< Vi) +7vi(an;) < i +7i(an,) = of (19)

and thus ;7 € X} (o). ]

Theorem IIL.3 Given a feasible set X; = {x €
R™|Vi(z) < a} C X and Vi € {1,..., M} local terminal
sets Xj(a;) = {x; € R™|Vi(z;) < a;}, it holds that
Xi(ar) x ... x XM (an) C Xy
= X} (af) x..ox XM (o)) C X .

(20)



Proof:  Xf(a1) x ... x XM(ay) C Xy implies
Zij\i1 a; < a. Using the update rule (16) and Theorem III.1,
we see that

M M M M
DD NS SEED ST
i=1 i=1 i=1 i=1

which implies (20). n

Remark I11.4 Another method considering dynamic invari-
ant sets for distributed systems was recently proposed
in [14]. However, while the dynamics in [14] are state-
independent, the dynamics presented in this paper depend
on the current state of the system and can therefore adapt
to specific scenarios.

IV. DISTRIBUTED SYNTHESIS

For the remainder of this paper, consider local linear state
feedback control laws u} (zn,) = Ka,xn, and quadratic
local functions li(zp;,u}) = Th QN TN, + uzf’TRiu;,
Vi(z;) = al Piw; and v;(zn,) = 23 T, 2n,, where Q.
R; and P; are positive definite matrices. The first part of
this section is concerned with distributed synthesis of P;,
Ky, and T'ps,, such that Theorem III.1 is satisfied. The
second part is then concerned with distributed computation
of local terminal sets X }(ai) under polytopic state and input
constraints.

Remark IV.1 Note that the matrices I'n;, are not required
to be negative semi-definite. Quite the opposite, positive- or
indefiniteness allows a local cost increase, given that the
global cost still decreases. This reduces conservatism in the
choice of P; and K ;.

Since both local and global considerations need to be taken
into account in the computations, some additional notation
is introduced for convenience. Let for every subsystem U; €
{0,1}™*™ and W; € {0, 1}~ *™ be matrices whose rows
are linearly independent unit vectors, such that for all x € X

z; =Uzx, zn, =Wz . 22)

A. Decentralized Synthesis of Terminal Cost

By defining Ay, = U; AW, the dynamics of subsystem i
can be written as z;7 = (Ay; + Bi K, )z, and conditions
(12) and (13) from Theorem III.1 can be written as the set
of nonlinear matrix inequalities

(An;, + B;Kn,) ' Pi(An, + BiKy,) — P
< —(Qu; + K{ RiEx,) + T, Vi€ {l,..., M} (23)
M
S WITyW; <0,
i=1
where P; = W,UT P,U;WT. The following discussion will
demonstrate that conditions (23) and (24) can equivalently
be written as a set of LMIs. This is beneficial since it
poses a distributed convex feasibility problem, which can be

solved by efficient numerical tools. Consider now for every
subsystem ¢ the substitution E; := Pfl. Consequently, E =

(24)

diag(Es,...,Ey) = P! and E; = WU P'UW/T.
We additionally introduce Ex;, = WZ—EWiT, which leads to
the substitions Hys, := En,I'n En, and Yy, := Kn, Ep;.
Furthermore, consider the following Lemma.

Lemma IV.2 (Proposition 8.1.2 in [16]) Given the sym-
metric matrices S; € R™ ", Sy € R™ ™ and the matrix
T € R¥™ If rank(T) = n, then S1 < Ss if and only if
TS TT <TS,TT.

Theorem IV.3 Condition (23) is equivalent to the LMIs

E; + Hy, En, A%, + Y BT ENiQ/lv/f v R}/
AN, En, + BiYn, E; 0 0
Q}%QEAQ 0 I 0
Ry, 0 0 I
>0, Vie{l,...,M}
(25)
and condition (24) is equivalent to the LMI
M
S Wl HNW; <0, (26)
i=1

Proof: First, we prove that (25) is equivalent to (23).
Multiplying inequality (23) by Exs;, from both sides yields
the nonlinear matrix inequality

— (En, AN, + Y3 BN Pi(AN,En, + BiYn;) >0 . (27)
Applying the Schur complement, we obtain
[ Ei"‘ENiFMiEMi (ENaAf& —I—YAZ;iBiT)
(

An,En, + BiYn,) E;
C[EvQN? VIR |QN BN 0 >0. (28
0 0 RVvy. o~

Applying the Schur complement a second time we obtain
(25). To prove that (26) is equivalent to (24), we proceed as
M

=1
(29)
M M
s E (Z WiTl“NiWZ) E=Y EW/Ty,W,E<0
i=1 i=1
(30)

M M
&> W ENTNEnWi=> W/ HyW; <0,

i=1 i=1

(3D
where (30) follows from Lemma IV.2 and (31) follows from
the fact that F' is block-diagonal. [ ]

Remark IV.4 The problem of finding Ey;,, Yy, and Hy;,
that satisfy (25) and (26) can be posed as a distributed
LMI. (25) directly decomposes into one LMI per subsystem 1,
which is coupled to its neighbors by Eys,. For decomposition
of (26), the structure in the sum on the left hand side can
be exploited. In particular, the nonzero block of a matrix
WX Hp, W; overlaps with the nonzero block of a matrix
WjTHNj W; only if either j € N or i € Nj.



B. Decentralized Synthesis of Terminal Set

The problem of finding the largest feasible level set of a
given convex quadratic function under polytopic state and
input constraints is represented by the linear program (LP)

Omag = argmin, — o (32a)

st ||PP(GE)T B < (f27)? (32b)
Vie{l,...,ll}, Yie{l,...,M}

1P KR (GEN)T |3 < (f7)?2 (32¢)

Vie{l,..., ll},Vie{l,...,.M} ,

where Py, = Exfl and [¢, I’ are the numbers of halfspaces
defining the constraint polytopes X; and Uf;. This problem
obviously decomposes into one subproblem per subsystem,
whereas the subproblem of each subsystem is coupled to the
subproblems of all its neighbors by the variable «. Thus,
problem (32) can be solved by distributed optimization and
the size (uyq, Of the largest feasible level set of Vi (z) can
be obtained at every subsystem. Since initial feasible level
sets X}(ai) need to satisfy Zf\il @; < Qmaz, they could be
obtained simply by dividing a4, by M. This requires local
knowledge of M, which is a rather mild assumption.

Remark IV.5 An initial terminal set for every subsystem i
can also be found by solving the distributed MPC problem for
a given initial condition, treating the local o; as optimization
variables: Consider a spanning tree over the network of
subsystems. Each subproblem in the tree, additionally to
its local oy, optimizes over a running sum variable, which
equals its own share o plus the sum of all o; down the tree.
The root subproblem can then enforce Zf\il o; < Omaz-

A summary of the offline distributed synthesis process
leading to a stabilizing distributed MPC is given in Algo-
rithm 1, online distributed MPC is described in Algorithm 2.

Algorithm 1 Offline distributed MPC synthesis

1: Solve system of LMIs (25) and (26) by distributed
optimization to find local terminal costs.

2: Solve LP (32) by distributed optimization to locally find
the size a4, Of the largest feasible level set of the
global terminal cost.

3: Find initial sizes «; for the local terminal sets such that
Zﬁl a; < Qg (for instance by the approach layed

out in Remark IV.5).

Algorithm 2 Online Distributed MPC, executed at every
subsystem

Measure local state x;.

Solve local MPC problem by distributed optimization.
Apply the input obtained in step 2.

Update a;: o = o + 2§ (N)Dizp, (V)

Go to step 1

EANE -

V. NUMERICAL EXAMPLE

The unstable system presented in this section consists of
a one-dimensional array of inverted pendulums with masses
of 1kg and rod lengths of 1m. Each pendulum represents a
subsystem which is coupled to its adjacent pendulums by
a spring of 3N/m and a damper of 3Ns/m. Furthermore,
every pendulum can apply a torque input u; = 7; in its
pivot. The state of each pendulum consists of its angle and
its angular velocity, hence x; = [¢;, ¢;]”, the discrete-time
model is obtained by the Euler method with sample time
0.1s. Polytopic local state and input constraints of the form
[|Zi]loo < 10 and ||u;||eo < 10 are imposed and the local
stage cost matrices (; = I and R; = I.

Both a terminal cost (LMI) and a terminal set (LP)
were computed by distributed optimization. In particular, the
alternating direction method of multipliers [15] was used
as a solver method. The number of iterations required for
satisfactory convergence is illustrated in Fig. 1 for different
array lengths. As the length is increased, the required number
of iterations stagnates for the LMI, while it keeps increasing
for the LP. This is due to the fact that the variable o couples
all subproblems in the LP (32), while in the LMI all coupling
is local.

8000 -
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@
o
S
I=]

5000 - =!

4000 -

Number of iterations

w
o
S
S

2000~

—+8— Terminal cost synthesis

1000 - —6— Terminal set synthesis

5 10 éO 5;0 9‘6
Number of pendulums

Fig. 1: Number of iterations required to synthesize local

terminal costs and sets by distributed optimization.

For an array of 5 pendulums, an initial condition of
x = [1.3,0,...,0]” and a prediction horizon of 10 steps,
the performance of three controllers was compared: (i) cen-
tralized MPC with dense LQR terminal cost and set, (i¢) the
distributed MPC proposed in this paper and (i) distributed
MPC with terminal set Xy = {0}. The simulated closed-loop
trajectories for the input torques and angles of the first two
pendulums are illustrated in Fig. 2. It is remarkable that the
accumulated cost of the proposed distributed MPC controller
(1) is only 3.8% higher than the one of centralized MPC
(), while the accumulated cost of controller (iii) is 49%
higher. For controller (i7) and a prediction horizon of 40
steps, the evolution of the local terminal sets is illustrated in
Fig. 3. Note that as time evolves, the sizes of all terminal
sets are shrinking except for the one of pendulum 3, which
is continuously expanding.
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— — —Pend. 1, distr. MPC X' = {0} (cost 13.66)

—_gHI
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Fig. 2: Torque and angle trajectories for pendulum 1 (red)
and 2 (blue) for different controllers.
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Fig. 3: Evolution of the shapes of the local terminal sets
under update rule (16) and a prediction horizon of 40 steps.

For the 5 pendulum array, the regions of attraction under
the three MPC configurations were investigated by deflecting
¢1 to the border of infeasibility, while keeping all other states
at the origin. As illustrated in Fig. 4, for short prediction
horizons, the proposed MPC approach results in a region of
attraction which is similar to the one for centralized MPC and
significantly larger than the one for MPC with Xy = {0}. For
longer prediction horizons, the regions of attraction converge,
as expected, to the same maximum stabilizable set.

Fig.

O1,max)

Centr. MPC
Distr. MPC
, — — — Distr. MPC X = {0}

. . . )
5 10 15 20 25 30
MPC prediction horizon

4: Comparison of the region of attraction for different

MPC configurations.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

M. Rotkowitz and S. Lall, “A characterization of convex problems
in decentralized control,” IEEE Transactions on Automatic Control,
vol. 51, no. 2, pp. 1984-1996, 2006.

A. L. Zetevié and D. D. Siljak, Control of Complex Systems, ser.
Communications and Control Engineering. =~ New York: Springer,
2010.

D. Barcelli, D. Bernardini, and A. Bemporad, “Synthesis of networked
switching linear decentralized controllers,” in 49th IEEE Conference
on Decisions and Control, Atlanta, GA, USA, 2010, pp. 2480 — 2485.
D. D. Siljak, Decentralized Control of Complex Systems, ser. Mathe-
matics in Science and Engineering. Boston: Academic Press, Inc.,
1991, vol. 184.

R. D’Andrea and G. E. Dullerud, “Distributed control design for
spatially interconnected systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 9, pp. 1478-1495, 2003.

C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control
design for systems interconnected over an arbitrary graph,” IEEE
Transactions on Automatic Control, vol. 49, no. 9, pp. 1502-1519,
2004.

K. Martensson and A. Rantzer, “Sub-optimality bound on a gradient
method for iterative distributed control synthesis,” in Proc. 19th
International Symposium on Mathematical Theory of Networks and
Systems, Budapest, Hungary, 2010.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, pp. 789-814, 2000.

A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability and
optimality of distributed model predictive control,” in 44th IEEE
Conference on Decisions and Control, Seville, Spain, 2005, pp. 6680
— 6685.

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson, “On
decentralized negotiation of optimal consensus,” Automatica, vol. 44,
pp. 1175-1179, 2008.

D. Jia and B. H. Krogh, “Distributed model predictive control,” in
Proceedings of the American Control Conference, Arlington, 2001,
pp. 2767 — 2772.

W. B. Dunbar, “Distributed receding horizon control of dynamically
coupled nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 7, pp. 1249-1263, 2006.

A. Jokic and M. Lazar, “On decentralized stabilization of discrete-time
nonlinear systems,” in American Control Conference, St. Louis, MO,
2009, pp. 5777 — 5782.

S. V. Rakovi¢, B. Kern, and R. Findeisen, “Practical set invariance
for decentralized discrete time systems,” in 49th IEEE Conference on
Decisions and Control, Atlanta, GA, USA, 2010, pp. 3283 — 3288.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1-122, 2010.

D. Bernstein, Matrix Mathematics.
Press, 2005.

Princeton: Princeton University



