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Abstract— Recent studies suggest that advanced optimization
based control methods such as model predictive control (MPC)
can increase energy efficiency of buildings. However, adoption
of these methods by industry is still slow, as building operators
are used to working with simple controllers based on intuitive
decision rules that can be tuned easily on-site. In this paper,
we suggest a synthesis procedure for rule based controllers that
extracts prevalent information from simulation data with MPC
controllers to construct a set of human readable rules while
preserving much of the control performance. The method is
based on the ADABOOST algorithm from the field of machine
learning. We focus on learning binary decisions, considering
also the ranking and selection of measurements on which the
decision rules are based. We show that this feature selection is
useful for both complexity reduction and decreasing investment
costs by pruning unnecessary sensors. The proposed method is
evaluated in simulation for six different case studies and is
shown to maintain the high performance of MPC despite the
tremendous reduction in complexity.

I. INTRODUCTION

About 20-40% of total primary energy usage is spent for
the heating, ventilation and cooling (HVAC) of commercial
buildings and private housing [1]. While currently most
buildings are equipped, if at all, with simple automatic
control systems, many studies have indicated the merits
of advanced building automation over current state of the
art control practice in terms of energy usage and comfort
regulation, see e.g. [2]-[5] and the references therein.

Particularly the field of model predictive control (MPC)
offers a systematic framework for optimal operation of build-
ings. Incorporating a model of the building, these controllers
can combine measurements available through on-site sensors
with weather forecast data to control the building such that
energy consumption is minimized while respecting specifi-
cations (constraints) on occupancy comfort [6], [7]. These
advanced controllers generally outperform current state of
the art solutions and thus have a huge potential in reducing
green house gas emissions when widely applied.

However, the field only slowly adapts to these advanced
optimization based control strategies mainly due to two
practical reasons. First, the resulting optimization problem,
which needs to be re-solved after new measurements are
available, requires substantial IT infrastructure both in terms
of hardware and software, and particularly, the latter comes
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with subtle issues such as licensing and maintenance. Sec-
ond, commission engineers are not trained, and will not be
in the foreseeable future, to set up complex control systems,
tune them and respond adequately to eventual malfunctions.
Contrary to the petrochemical industry, where optimization
based control of large scale dynamic systems started in the
early 1970s, a building is usually operated with no on-site
engineers carefully monitoring and supervising the correct
functioning of the employed control system.

It therefore remains a major challenge to derive control
schemes which allow both an energy efficient operation of
the building and simple implementation on the controller
side, with concise computer code and intuitive parameters for
tuning. In this work, we present a framework which allows
to extract near-optimal decision rules for binary controlled
variables automatically from simulation data generated with
advanced control schemes such as MPC, and thereby to
significantly decrease the complexity of implementation.
The resulting controller code can be run on any existing
embedded controller hardware. Furthermore, the synthesized
set of rules is readable by humans and can be easily adjusted
on-site if the controller behavior is unsatisfactory.

Moreover, the proposed scheme automatically provides
a ranking of the most important measurements needed for
accurate control by pruning sensors or data streams which
contain information irrelevant to the decisions being made.
This process of feature selection significantly saves invest-
ment costs, as it determines the most important sensors. We
show that near-optimal control is achieved with only a small
number of sensors and weather predictions, and that the
extracted rules can be in fact meaningful in practice. Note
that, as with other model based approaches, the practical
performance of the method will be limited by the accuracy
of the simulation model.

Linear interpolation of MPC control laws for continuous
inputs is the subject of [8]. Rule extraction for binary inputs
in a similar context has been considered in [9] with a
logistic regression model. Here, we propose to use a boosting
algorithm (ADABOOST, [10]) from the field of machine
learning. One very successful application of ADABOOST is,
for instance, face detection [11].

The paper is organized as follows. In Section II, we outline
the MPC formulation to be approximated. Next, we describe
ADABOOST along with feature selection in Section III. The
main contribution of the paper is Section IV, presenting
simulation studies with rule based controllers synthesized
by ADABOOST, which are shown to have a near-optimal
performance despite a significant reduction in complexity.



II. HYBRID MODEL PREDICTIVE BUILDING CONTROL
A. Hierarchical control structure

In this work, we consider a 2-level hierarchical control
scheme that employs a high level supervisory controller
(HLC) for setpoint calculation and a low level controller
(LLC) for tracking. The HLC computes an optimal plan
for a certain prediction horizon subject to parameters such
as energy price and comfort constraints, as well as mea-
surements of the current state of the building and weather
forecast data. In order to predict the building’s behavior,
the HLC employs a mathematical model of the building.
The resulting setpoint commands are then issued to the
LLC, which ensures tracking of the given setpoints despite
disturbances such as varying occupancy of the building and
imperfect weather forecast. The LLC is in practice usually
a proportional-integral-derivative (PID) controller or a rule
based controller (RBC) [3, §3]. The LLC is however not
the focus of this paper, and good tracking of the setpoints
provided by the HLC is assumed in the following. At the
next sampling instance of the HLC, the optimization is
repeated based on the current state of the system, and new
setpoint trajectories are computed. This scheme is repeated in
each sampling time, which coined the term receding horizon
control (RHC) widely used for MPC in literature.

There are two fundamentally different types of control
inputs computed by the HLC: discrete ones, which are
referred to as binary decisions in the rest of the paper,
and continuous ones. Examples for binary decisions used
throughout the paper are energy recovery and free cooling
systems. Energy recovery controls mechanical ventilation
and heat exchangers that extract energy from exhaust air,
while free cooling controls the amount of available chilled
water generated with a wet cooling tower. Both systems have
two modes of operation, LOAD and UNLOAD, for increasing
and decreasing the thermal energy stored in the building. The
HLC decides upon these modes and issues the commands
to the LLC. An example for continuous inputs is the blind
position.

B. Hybrid model predictive control formulation

In this section, we describe the main parts of our hybrid
model predictive control formulation for the high-level build-
ing controller. Details are given in [12].

1) Dynamic building model: We model the building as
one zone using a resistance-capacitance network model,
which is common to obtain a mathematical description of
the building dynamics [3], [5], [7]. The resulting discrete-
time model is bilinear (cf. [3, §5]):

xt = Az + Byu + Byv + Z (Bvujv + Bwjx) Uj
j=1
T (H
y=Cx+ Dyu+ Dyv+ Z Doy v uj
j=1

where x € R"= is the current state of the system, z €
R"™ the successor state at the next sampling time, u =

[ul dT]T € R™we x {0,1}"* with n,, = n, . + ng denotes
the continuous input variables u,. and binary input variables
d, respectively, and v € R™ is the disturbance (weather
and occupancy) acting on the system. The matrices A, B,,
By, Byu,s Bzu, C, Dy, D,, Dy, of corresponding size are
obtained in the modeling process. We linearize around the

current operating point to obtain the affine prediction model
Tn+1 = Axn + Bcuc,n + den + van +p )
Yn = éxn + Dcuc,n + Dddn + van + (j

for n = 0,...,N — 1, where N is the prediction hori-

zon. The output trajectory y := [yo,...,yn—1] is a func-
tion of the current state x = =z, the input trajectories
Ue = [Ue,0,---,Uc,n—1] and d := [d,...,dn—_1] and the

disturbance trajectory v := [vg, ..., Un_1]
2) Constraints: MPC inherently supports system con-
straints. We employ input constraints of the form

Huuc,nghu n:O7...,N—1, (3a)

d, € {0,1}" n=0,...,N—1, (3b)
while soft constraints are used for the output,

Hyy, <hy+s,, 5,20, n=0,....N—-1, (30

in order to ensure feasibility of the problem at all times. In
(3¢), slack variables s,, are used to measure the violation of
occupant comfort specifications, for example minimal room
temperature or maximum admissible CO5 level. Inequality
(3a) models actuator limitations such as minimum and max-
imum blind positions.

3) Cost function: The performance index reflects a trade-
off among various control objectives. In building control,
the cost function is usually an economic performance index
such as the cost of non-renewable primary energy (NRPE)
usage. In this paper, we consider the following quadratic
performance index to be minimized:

N-1
J(z,v,uc,d, s) := Z e +chdy + 5T Ss, . (4)
n=0
with ¢, and cg4 being the cost weights for continuous and
discrete inputs, respectively. The quadratic penalty term on
s with § > 0 allows one to trade off comfort constraint
violations vs. NRPE usage.

4) Hybrid MPC — Summary: We now summarize the finite
time constrained optimal control problem, which the HLC
has to solve at every time instant. The input trajectories
u’ and d* are determined by minimizing (4) subject to
an assumed disturbance trajectory v, e.g. a weather forecast
profile and occupancy predictions:

J*(x,0) := miré J(z,0,uc,d, s)
st xo ==, (5)
(2),(3)

Due to the integrality constraint (3b), problem (5) is in the
class of hybrid MPC (HMPC) problems.



Remark I1.1 Problem (5) neglects stochasticity in the sys-
tem and is by no means the only way to formulate a sensible
optimization problem for the control task at hand, cf. [13] for
stochastic formulations for instance. However, the proposed
approach of rules learning can be applied to any other MPC
Sformulation involving binary decision variables.

C. Problem complexity and suboptimal controllers

Any form of (5) becomes essentially a hard problem
due to the combinatorial nature of the discrete variables
involved [14]. Such problems can take a very long time
to solve even on powerful computers, as it belongs to
the class of mixed-integer quadratic programs (MIQPs),
for which currently no polynomial time algorithm exists.
However, while the time to solve (5), together with the
aforementioned practical problems, is prohibitive for an
on-line implementation, offline simulation can be carried
out using software tools with advanced heuristics such as
CPLEX', which enable the optimal solution of the problem
at hand in acceptable development and run time.

The main underlying idea of this paper is therefore to
approximate the optimal decisions recorded in simulation
such that the resulting controller as good as possible repro-
duces the behavior of the HMPC. Latter is then replaced
by the approximate or suboptimal controller in the actual
implementation. We call the process of approximating a
controller from data learning.

Remark I1.2 Since it is the binary decisions which make
problem (5) hard to solve online, we focus in this work
on learning binary decisions only. Learning of continuous
controllers has been investigated by the authors in [15].

Once the binary decisions have been made, i.e. the value of
the binary variables in (5) has been determined, the resulting
optimization problem is a quadratic program (QP), for which
very efficient methods exists that have been showed to be
applicable on embedded control systems [16], [17]. In the
following, we describe one method to synthesize simple
decision rules representing an approximate controller for
binary decisions in (5).

III. LEARNING: CLASSIFICATION USING ADABOOST

Assume that M data points from simulation,
Xi = [xlT,'iJZT} eEP=X%xV, (6)

as well as the corresponding optimal binary solutions dg ; to
the MPC problem (5), are given. The index O denotes that
we are considering the approximation of the first control
move only, since the other computed inputs are actually
never applied to the system in a receding horizon framework.
Instead of representing these decisions as zeros and ones, we
map a zero to minus one, i.e.

z=2d5, —1e{-1,1}" | 7

' www.ibm.com/software/integration/optimization/cplex-optimizer/

to match common learning algorithm formulations. We de-
note the tuple (x;, z;) as a sample.

The problem of learning a controller is then as follows:
We would like to infer ng functions g, : P — {—1,1}
from the data with minimal error for any unseen sample
x. This is generally a difficult problem as the optimization
would operate in an infinite dimensional function space,
which makes the problem fundamentally more difficult than
finding a vector in an Euclidian space, for example. Hence
one has to restrict to approximations of the learning problem
that parametrize the learned function by a finite dimensional
parameter vector [18].

Next, we are going to describe ADABOOST, which syn-
thesizes special types of discriminant functions.

A. Adaptive Boosting

ADABOOST is a classification algorithm which emerged
with the seminal paper by Freund and Schapire, [10]. The
underlying idea is that the learning problem might be too
complex for a single learning machine. Instead, one can boost
the performance of many simple learning machines, so-called
weak learners, by combining them in an appropriate way to
a single powerful learning machine. Each weak learner has
to do only slightly better than random for convergence of the
algorithm, and it can be shown that the algorithm minimizes
an exponential loss function on wrong decisions.

The weak learners are (simple) discriminant functions h; :
P — {—1,1}, which can be evaluated very fast but usually
have mediocre performance. The final discriminant function
is a linear combination of L weak learners,

L
g(x) = Z ajh; (x) ®)

which yields a strong classifier. The binary decision is
obtained by taking the sign of the discriminant function and
shifting back,

4(x) = 5 bign (g (x)) +1] - ©

An example for such a classifier is given in Fig. 1.

1) Training procedure: Training an ADABOOST classifier
is an iterative process, and the following assumption has to
be met by the weak learners.

Assumption IIL.1 The training procedure of the j™ weak

learner returns a function h; and a training error rate €;,
i.e. the fraction of misclassified points, given the training
samples (x;, z;) and importance weights w; ;, ¢ = 1,..., M,
that are used to give a relative relevance to the sample points.

At the start of the algorithm, all points are equally important,
ie. w;; = 1Vi=1,...,M. After training the j" weak
learner, its weight a; in (8) is computed according to

1 1—¢;
orley) = yow (%)
J

Intuitively, the weighting rule rates weak learners that per-
form well higher. Next, the importance weights w; are

(10)
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Fig. 1. ADABOOST example. The classifier decides on two features, R
and T, whether to switch on or off the cooling system. The data points
represent exemplary optimal decisions from an MPC controller. The final
discriminant function results from the combination of weak learners.

adjusted in order to emphasize wrongly classified data while
attenuating correctly classified samples. The data weighting
factors for weak learner j + 1 are given by

(1)

Then, the next weak learner hji1 (x) is trained using the
reweighted data. This process of weak learner weight com-
putation (10), data reweighting (11) and weak learner training
is repeated until L weak learners have been trained.

2) Choice of weak learners: Once the parameters of the
weak learners h; and the corresponding weights a; have
been found, evaluation of the control law boils down to the
evaluation of the weak learners. It is therefore desirable to
have functions h; which can be evaluated quickly.

The simplest class of weak learners which work very well
with ADABOOST are so-called decision stumps. We use these
in our case studies.

w; j1 (aj, Xi, zi) = exp (—azzihj (xi))

Definition IIL.2 (Decision stumps) A decision stump is de-
fined by

h(x) = sign (efx —d) ,

where ey, is one of the unit vectors. Its parameters in terms
of learning are the feature index k and the offset d.

12)

It turns out that, for our purposes, decision stumps are a very
good fit because of the inherent similarity of the resulting
controller to current building control practice and because
decisions stumps allow a straightforward feature selection.
We detail on both aspects in the following.

3) Resulting controller structure: It is worth noting that
each decision stump decides on one feature only, which can
be viewed as a simple if-then-else rule:

if xx > d then h (x) = +1 else h (x) = —1 end if

One rule could for example read “if room temperature greater
than 24° C then switch on the cooling system”. Recall that
each weak learner represents such a rule, so combining them
with the associated weights results in a very simple majority
voting system for the overall decision:

vote = 0;

for j = 1toLdo

if Feature[j] > Threshold[j] then
vote += weight[]j];

else
vote —-= weight[]j];
end if

end for
In the pseudocode above, Feature[j] denotes e{x and
Threshold[ j] denotes the offset d of the j‘h weak learner
in (12), respectively. Moreover, weight [j] is the weight
associated to the j weak learner, a; in (8). Once the “votes”
have been collected, the resulting decision is simply made
by evaluating the sign of the variable,

if vote > 0 then

return SWITCH_ON_COOLING
else
return SWITCH_OFF_COOLING

end if
The majority voting system is very similar to state of the art
rule based controllers (RBCs) [3, §3], where a set of rules
is combined to yield a final decision. These rules are usually
defined and tuned by experienced building control engineers,
often in a long trial and error procedure. In contrast, the
proposed rule based controller (8) can be synthesized au-
tomatically as a chain of if-then-else rules. Nevertheless,
the resulting decision rules are readable and adjustable by
humans, and thus allow intuitive insight and manual tuning,
should the controller behave unsatisfactorily on-site.

4) Feature selection with ADABOOST: The weak learners
perform an inherent feature selection by the choice of the
feature index k. The weight assigned to the weak learner
is therefore a direct indication of how important that very
decision on feature k is, and therefore weak learners with
small relative weight can be discarded from the overall
decision, effectively performing a feature selection using the
weights obtained by ADABOOST training.

IV. LEARNING BINARY DECISIONS OF HIGH LEVEL
MPC CONTROLLERS: SIMULATION RESULTS

In this section, we present the main results of this paper
based on a simulation study. We start by outlining the
simulation setup and case studies in Section IV-A. Learning
and feature selection are discussed in Section IV-B before
presenting closed-loop simulation results with learned rule
based controllers in Section IV-C. Figure 2 depicts the
particular workflow.

A. Test scenario and data generation

In order to assess the performance of the proposed
method, we simulate different case studies using BACLab,
a MATLAB-based modeling and simulation environment for
building climate control developed within the OptiControl?
project, which focuses on the development of predictive
control strategies for building climate control. We consider
six test cases with different building types and integrated
room automation (IRA) equipment at two different locations
in Europe. These test cases have been identified to have
an energy savings potential of 9-33% when using predictive
control schemes (cf. [3, §7]), while at the same time, they

2www.opticontrol.ethz.ch
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Fig. 2. Simulation strategy used to evaluate the performance of the
synthesized rule based controllers. The suboptimal controller is learned
using simulation data, overriding the binary decisions of the high level
controller.

represent typical buildings across continental Europe. The
cases are based on two building types: passive house standard
with a window area fraction of 80% on the facade, and
houses having a Swiss average insulation level and a low
window area fraction of 30%. For more details on the test
cases the reader is referred to [12].

We formulate the hybrid MPC controller as a mixed-
logic-dynamical (MLD) system using HYSDEL [19] and
YALMIP [20], taking into account the dynamics of the
building and those of the low level controller [12]. Latter
is implemented as a one step MPC controller, which is
adjusted according to the modes set by the HLC (cf. [3,
§3.3]). Since the continuous part of the building model is
bilinear, the optimal input sequence is computed iteratively
by solving a sequence of mixed-integer problems (5) and
updating the linearization of the dynamics (2) around the
current iterate. We use version 10 of CPLEX to solve the
MIQP subproblems.

To generate training data for ADABOOST, one year of
building operation under the control loop as depicted in
Fig. 2 on the right has been simulated with a step size of
one hour. In this simulation, the hybrid MPC controller acts
as the HLC, employing a prediction horizon of 24 hours.
Real weather data from the year 2007 was used to drive
the simulation and generate disturbances on the models. The
weather measurements were obtained from the Swiss Fed-
eral Office of Meteorology and Climatology (MeteoSwiss),
while weather predictions needed by the MPC controller
were obtained by MeteoSwiss’ weather forecast system,
COSMO-7 (cf. [3, §6]). During simulation, we recorded
state and output measurements as well as the binary inputs
generated by the HLC. We were particularly interested in
learning the decisions on energy recovery and free cooling.

B. Controller approximation by learning & feature selection

We have synthesized seven different approximate con-
trollers: One for each of the six test cases, denoted as MLC-1
to MLC-6, and one controller which was trained with all the
data and should serve as a controller for all cases. We denote
this controller by MLC-A. All controllers were learned using
the freely available software package GML AdaBoost Matlab

T T I
; ,cooling power reserve [ States

351 outside air temperature [ Outputs I

prediction 1h ahead [ Weather measurement

3k [ Weather prediction (air temperature) ||

cutrent solar radiation gain I \Weather prediction (solar radiation)
[ Internal gain measurement

2.5¢ occupancy prediction I Internal gain prediction (occupancy) |7

2h ahead [ Internal gain prediction (equipment)

- N I Daytime H

outSIlde. air temperature | ] Day in year

prediction 2h ahead I Hour in year

total air change rate
occupancy prediction 5h ahead
outside air temperature prediction-13h ahead
current room temperature
8101, 6
s 2 .23 1517 6 6 20 21

30

feature

Fig. 3. Feature ranking by accumulated weights for ADABOOST-based
controller for case study 4 (energy recovery mode).

Toolbox [21] with decision stumps as weak learners. We have
carried out L = 200 boosting steps.

The decision of the HLC depends on 126 variables:
state and output measurements such as room temperatures,
weather predictions for the next 72 hours, occupancy pre-
dictions, day and week, time in year etc. In order to limit
the complexity of the resulting controllers by relying only
on the most important information for the decision to be
made, feature selection has been carried out according to
the weak learners’ accumulated absolute weights, i.e. if two
weak learners decide on the same feature, their absolute
weights are added (cf. Section III-A.4).

In the following, we present and discuss results for feature
selection for MLC-4, the other cases were qualitatively
similar. The resulting ranking is shown in Fig. 3, where we
have annotated the first nine features. The most important
feature, the so-called cooling power reserve, is an output of
the system indicating the margin of supply air temperature
to the minimum temperature of 16° C required by comfort
specifications. Other highly ranked features are the current
solar radiation, weather and occupancy predictions 1-2
hours ahead and the total air change rate. Latter is the sum
of mechanical ventilation and natural convection terms. In the
training data for MLC-A, the building type index is included
as an additional feature, but it is not ranked very important.
We keep the 50 most important out of the 200 weak learners
for the closed-loop simulations presented in Section IV-C.

The selection of features seems reasonable from a practical
point of view, for both the cooling power reserve and the total
air change rate being important system quantities regarding
the ability of actuators to change the total amount of thermal
energy stored in the building. Moreover, short-term predic-
tions are more important than those further in the future,
which seems reasonable regarding the employed receding
horizon scheme. We also have found that most numerical
values of the thresholds could be justified in practice. For
example, the decisions taken on various temperatures use
a threshold of about 22° C. This seems reasonable since
the minimum room temperature is 21° C according to the
specification.

To summarize, feature selection allows one to automat-
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Fig. 4. Closed loop simulation results. MLC-x denotes the individual

controllers MLC-1 to MLC-6, applied in the corresponding test case.

ically select important measurements while neglecting less
important ones and thereby significantly reduces the control
function complexity. The selected features and thresholds in
our case study indicate that the synthesized rules are indeed
sensible in practice.

C. Closed loop performance

In order to assess the impact of suboptimality of the
approximate controllers, we simulate test cases 1-6 with the
learned controller overriding the decisions of the hybrid MPC
for the two modes energy recovery and free cooling. All
other decisions were obtained from the hybrid MPC. The
results are shown in Fig. 4. The horizontal axis counts the
comfort constraint violations in Kelvin-hours per year, while
the vertical axis depicts the NRPE usage in kWh per year and
square meter ground area of the building. If the weather, i.e.
the disturbance acting on the system, was known perfectly
in advance, the performance bound (PB) would be the best
any controller could achieve [6]. The PB therefore serves as
a reference point — the closer any controller to the PB point,
the better its performance.

We compare the learned controllers MLC-1-6 and
MLC-A to other high level controllers, namely the hybrid
MPC (HMPC), the “trivial” controller (always UNLOAD) and
the current state of the art rule based controller (RBC4).
We see that, generally, the closed loop performance of the
learned controllers is very similar to the hybrid MPC con-
troller, while the “trivial” controller performs significantly
worse on most cases. This demonstrates that the learning
is indeed effectively capturing the behavior of the optimal
controller. All learned controllers perform significantly better
than RBC4, which relies on manually designed rules. More-
over, while both RBC4 and HMPC are building-dependent,
MLC-A performs equally well on all building types with the
same 50 decision rules. This could significantly simplify the
deployment of advanced controllers in practice and shows
the effectiveness of the proposed approach.
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