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Abstract—We study the multi-view imaging problem where one has
to reconstruct a set of l images, representing a single scene, from a few
measurements made at different viewpoints. We first express the solution
of the problem as the minimizer of a non-convex objective function where
one needs to estimate one reference image, l foreground images modeling
possible occlusions, and a set of l transformation parameters modeling
the inter-correlation between the observations. Then, we propose an
alternating descent method that attempts to minimize this objective
function and produces a sequence converging to one of its critical
points. Finally, experiments show that the method accurately recovers
the original images and is robust to occlusions.

I. PROBLEM FORMULATION

In multi-view imaging, we have in hand l observations
y1, . . . ,yl ∈ Rm of a reference image x0 ∈ Rn. As these obser-
vations are done from different viewpoints, the image x0 undergoes
geometric transformations. We consider here transformations repre-
sented by few parameters (e.g., homography) and denote θj ∈ Rq
the parameters associated to the j th observations. The reference image
transformed according to θj is estimated using, e.g., a cubic spline
interpolation and is equal to S(θj)x0, with S(θj) ∈ Rn×n.

To handle realistic applications, we also assume that parts of
the reference image might sometimes be occluded. We model these
occlusions using l foreground images x1, . . . ,xl ∈ Rn, and assume
that the image “viewed” by the j th observer is S(θj)x0 + xj .

Finally, we model the acquisition device using a linear operator
A ∈ Rm×n, and the observation model satisfy y1

...
yl

 =

 AS(θ1) A . . . 0
...

...
. . .

...
AS(θl) 0 . . . A


 x0

...
xl

+

 n1

...
nl

 , (1)

where n1, . . . ,nl ∈ Rm represent additive measurement noise.
To reconstruct the images xᵀ = (xᵀ

0, . . . ,x
ᵀ
l ) and the trans-

formation parameters θᵀ = (θᵀ1 , . . . ,θ
ᵀ
l ) from the observations

yᵀ = (yᵀ
1 , . . . ,y

ᵀ
l ), we wish to solve the following problem

min
(x,θ)
{L(x,θ) = ‖Ψᵀx‖1 +κ‖A(θ)x−y‖22 +

∑
16j6l

iΘj (θj)}, (2)

which is non-convex. The matrix Ψ ∈ R(l+1)n×(l+1)n is block-
diagonal and built by repeating l + 1 times, e.g., the Haar wavelet
basis on the diagonal, κ > 0 is a regularizing parameter, A(θ) ∈
Rlm×(l+1)n is the matrix appearing in (1), (Θj)16j6l are closed
convex subsets of Rq , and iΘj is the indicator function of Θj .

II. NON-CONVEX OPTIMIZATION

To solve problem (2), we propose an alternating descent method
producing a sequence of estimates (xk,θk)k∈N, which converges to
a critical point of L. The algorithm is inspired by recent results in
non-convex optimization [1], [2], and consists of two main steps that
sequentially decrease the value of the objective function.

First, we update the images while keeping the parameters fixed. Let
(xk,θk) be the estimates obtained after k iterations, and (λkx)k∈N >
0 be a decreasing sequence. The next estimate satisfies

xk+1 ∈ argmin
x

L(x, θk) +
λkx
2
h(Ψᵀ(x− xk)),
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Fig. 1. From left to right: 3rd initial image; 3rd reconstructed image; estimated
reference image x0; SNR vs. m/n for the proposed method (red) and the
BP problem (black). The curves represent the mean SNR over 30 simulations,
and the vertical lines represent the error at 1 standard deviation.

where h is a smooth approximation of the `1-norm. We noticed
that the addition of the cost term λkx h(Ψᵀ(x − xk))/2 produces
a reconstruction of the images in coarse-to-fine scales fashion and
improves the accuracy of the estimated transformation parameters.

Then, we update the transformation parameters by minimizing a
quadratic approximation of ‖A(θ)x−y‖22. To simplify notations, we
introduce l new functions Qj(θj) = ‖AjS(θj)x

k+1
0 +Ajx

k+1
j −y‖22,

with j = 1, . . . , l. Let I ∈ Rq×q be the identity matrix, and λθ > 0.
Assuming that the entries of S(θj) are differentiable with respect to
θj , the next estimates θk+1

j is chosen as the minimizer of

Pj(θj) = ∇Qj(θkj )
ᵀ
(θj − θkj ) + (θj − θkj )

ᵀ Hkj + 2iλθI

2
(θj − θkj ),

where i is the smallest positive integer such that Qj(θk+1
j ) +

λθ‖θk+1
j − θkj ‖22/2 6 Qj(θ

k
j ) + Pj(θ

k+1
j ). In the above

equations, the matrix Hkj = 2
(
AJkj

)ᵀ (
AJkj

)
with Jkj =(

∂θ1j S(θkj ), . . . , ∂θqj S(θkj )
)
xk+1

0 ∈ Rn×q.

III. EXPERIMENTS AND CONCLUSION

We test the proposed method using 5 images of the same scene,
taken from different viewpoints, and containing occlusions. We gen-
erate 5 measurement vectors using the compressed sensing technique
of [3]. Fig. 1 shows the 3rd initial image next to the corresponding
reconstructed image from m = 0.3n measurements. The estimated
reference image, free of occlusions, is also presented. We also show
the curves of the reconstruction SNR as a function of m/n obtained
with our method and by solving the Basis Pursuit (BP) problem,
which does not benefit from the correlation between measurements.
Our method exhibits better reconstruction qualities.

We have presented a method for the joint reconstruction of a
set of misaligned images. Our algorithm is an alternating descent
method that produces a sequence converging to a critical point of L.
Experiments show that the method correctly estimates the underlying
reference image x0, is robust to occlusions, and benefits from the
inter-correlation between measurements.
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