Non-convex optimization for robust multi-view imaging
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Abstract—We study the multi-view imaging problem where one has
to reconstruct a set of [ images, representing a single scene, from a few
measurements made at different viewpoints. We first express the solution
of the problem as the minimizer of a non-convex objective function where
one needs to estimate one reference image, ! foreground images modeling
possible occlusions, and a set of [ transformation parameters modeling
the inter-correlation between the observations. Then, we propose an
alternating descent method that attempts to minimize this objective
function and produces a sequence converging to one of its critical
points. Finally, experiments show that the method accurately recovers
the original images and is robust to occlusions.

I. PROBLEM FORMULATION

In multi-view imaging, we have in hand [ observations
Yi,...,Yy1 € R™ of a reference image xy € R™. As these obser-
vations are done from different viewpoints, the image xo undergoes
geometric transformations. We consider here transformations repre-
sented by few parameters (e.g., homography) and denote 8; € R?
the parameters associated to the j™ observations. The reference image
transformed according to 6; is estimated using, e.g., a cubic spline
interpolation and is equal to S(6;)xo, with S(0;) € R™*™,

To handle realistic applications, we also assume that parts of
the reference image might sometimes be occluded. We model these
occlusions using [ foreground images 1, ...,2; € R", and assume
that the image “viewed” by the j™ observer is S(8;)xo + x;.

Finally, we model the acquisition device using a linear operator
A € R™*™, and the observation model satisfy

Y1 AS(6:) A ... O zo n1
e A B B N IR O
Y AS(6;) 0 ... A x; n;
where nq,...,n; € R™ represent additive measurement noise.

To reconstruct the images 7 = (ax,...,«]) and the trans-
formation parameters 87 = (6],...,0]) from the observations
y" = (y{,...,y]), we wish to solve the following problem

min{L(x,0) = V2|1 +k|A@) z—yll3+ > ie,(65)}, )

1<5<l
which is non-convex. The matrix W € RAD»XU+Dn ¢ plock-
diagonal and built by repeating [ + 1 times, e.g., the Haar wavelet
basis on the diagonal, x > 0 is a regularizing parameter, A(0) €
R"™* I+ s the matrix appearing in (1), (©,)1<j< are closed
convex subsets of R?, and i¢ ; is the indicator function of ©;.

II. NON-CONVEX OPTIMIZATION

To solve problem (2), we propose an alternating descent method
producing a sequence of estimates (wk, 0" )ken, which converges to
a critical point of L. The algorithm is inspired by recent results in
non-convex optimization [1]], [2]], and consists of two main steps that
sequentially decrease the value of the objective function.

First, we update the images while keeping the parameters fixed. Let
(x*, 8%) be the estimates obtained after k iterations, and (A% )ren >
0 be a decreasing sequence. The next estimate satisfies

L Ak
" € argmin L(z, 0") + { (VT (z — x)),
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Fig. 1. From left to right: 3¢ initial image; 3" reconstructed image; estimated
reference image @o; SNR vs. m/n for the proposed method (red) and the
BP problem (black). The curves represent the mean SNR over 30 simulations,
and the vertical lines represent the error at 1 standard deviation.
where h is a smooth approximation of the ¢;-norm. We noticed
that the addition of the cost term A% A(WT(x — x*))/2 produces
a reconstruction of the images in coarse-to-fine scales fashion and
improves the accuracy of the estimated transformation parameters.
Then, we update the transformation parameters by minimizing a
quadratic approximation of ||A(8) 2 —y||3. To simplify notations, we
. . _ k+1 k+1 2
introduce [ new functions Q;(0;) = [|A;S(8;)zy " +A;x; " —yl2,
with j = 1,...,1. Let | € R7*? be the identity matrix, and A\g > 0.
Assuming that the entries of S(0;) are differentiable with respect to
6;, the next estimates 9;-”1 is chosen as the minimizer of
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where ¢ is the smallest positive integer such that Qj(G;-C o+
XollOFF — 6F)3/2 < Q;(6)) + P;(6;"'). In the above
equations, the matrix HY = 2(AJS)T (AJ}) with J) =
k k k41
(96,,5(05),...,00,,5(85)) xgt! € R"™9.

III. EXPERIMENTS AND CONCLUSION

P;(0;) = VQ;(67)"(6; — 65) + (6, — 65) (6; - 7).

qj

We test the proposed method using 5 images of the same scene,
taken from different viewpoints, and containing occlusions. We gen-
erate 5 measurement vectors using the compressed sensing technique
of [3]]. Fig. |I| shows the 3" initial image next to the corresponding
reconstructed image from m = 0.3n measurements. The estimated
reference image, free of occlusions, is also presented. We also show
the curves of the reconstruction SNR as a function of m/n obtained
with our method and by solving the Basis Pursuit (BP) problem,
which does not benefit from the correlation between measurements.
Our method exhibits better reconstruction qualities.

We have presented a method for the joint reconstruction of a
set of misaligned images. Our algorithm is an alternating descent
method that produces a sequence converging to a critical point of L.
Experiments show that the method correctly estimates the underlying
reference image o, is robust to occlusions, and benefits from the
inter-correlation between measurements.
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