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Precision and scaling in morphogen gradient read-out
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Morphogen gradients infer cell fate as a function of cellular position. Experiments in Drosophila
embryos have shown that the Bicoid (Bcd) gradient is precise and exhibits some degree of scaling.
We present experimental results on the precision of Bcd target genes for embryos with a single,
double or quadruple dose of bicoid demonstrating that precision is highest at mid-embryo and
position dependent, rather than gene dependent. This confirms that the major contribution to
precision is achieved already at the Bcd gradient formation. Modeling this dynamic process, we
investigate precision for inter-embryo fluctuations in different parameters affecting gradient
formation. Within our modeling framework, the observed precision can only be achieved by a
transient Bcd profile. Studying different extensions of our modeling framework reveals that scaling
is generally position dependent and decreases toward the posterior pole. Our measurements confirm
this trend, indicating almost perfect scaling except for anterior most expression domains, which
overcompensate fluctuations in embryo length.
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Introduction

Bicoid (Bcd) is a well studied morphogen involved in the
patterning of the anterior–posterior (AP) axis of the Drosophila
embryo (Driever and Nüsslein-Volhard, 1988a, b). Zygotic
downstream genes read out this gradient and their expression
domains determine the basic body plan of the embryo along
this axis. The positions of these domains are remarkably
insensitive to fluctuations in the external environment
(Houchmandzadeh et al, 2002; Crauk and Dostatni, 2005;
Lucchetta et al, 2005) and their relative proportions are
maintained across embryos of different sizes. The latter feature
is referred to as scaling and occurs within a single species
(Houchmandzadeh et al, 2002; Lott et al, 2007) and also across
different species (Gregor et al, 2005, 2008; Lott et al, 2007).

Recent experiments also show that the Bcd gradient itself is
rather precise and that its length scale correlates to some
extent to the embryo size (Gregor et al, 2007a; He et al, 2008).
These new findings suggest that the precision and scaling of
Bcd target genes may, at least in part, be attributed to that of
the morphogen gradient itself. Therefore, we focus here on
single morphogen models that aim at explaining the precision
and scaling of Bcd target genes at the level of the morphogen

gradient. However, it is likely that other mechanisms (e.g. Bcd
interactions with the staufen gene (Aegerter-Wilmsen et al,
2005), gap genes interactions (Jaeger et al, 2004a, b, 2007;
Jaeger and Reinitz, 2006; Manu et al, 2009a, b), Bcd interac-
tions with maternal Hunchback and the terminal system
(Ochoa-Espinosa et al, 2009) or bistability (Lopes et al, 2008))
also contribute to further increase robustness in AP patterning.

In this work, we assess the spatial precision of expression
domains for the gap genes Krüppel (Kr), Giant (Gt) and
Hunchback (Hb), as well as the pair-rule gene Even-skipped
(Eve) in more than 150 staining images of embryos with a
single, double and quadruple dose of bcd. Our data indicate
that the precision is maximal at mid-embryo as well as position
dependent rather than gene dependent. This provides inde-
pendent support for the conclusions drawn from direct
measurements of Bcd (Gregor et al, 2007a; He et al, 2008)
that the morphogen gradient itself is the main contributor to
the precision of the target genes. It motivates our subsequent
analytical investigation of noise propagation during Bcd
gradient formation within a single morphogen modeling
framework. Our analysis shows that fluctuations in the
parameters affecting morphogen production, degradation,
diffusion as well as nuclear trapping can give rise naturally
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to highest precision at mid-embryo, provided the Bcd gradient
is decoded at pre-steady-state. Finally, we investigate the
scaling of the morphogen gradient in a variety of models that
couple the embryo size to parameters affecting gradient
formation. To single out the most likely scenario, we measure
scaling at the level of the target genes. We find that expression
domain boundaries posterior to B40% embryo length (L)
exhibit almost perfect scaling, whereas in the more anterior
region we observe over-compensation to fluctuations in
embryo size. This effect appears to be position dependent
rather than gene dependent. Interestingly, it is in good
agreement with a model that explicitly includes the nuclear
trapping of Bcd. We conclude that the formation of the Bcd
gradient itself is likely to be a main contributor to robust
patterning along the AP axis and that pre-steady-state
decoding and nuclear trapping are efficient means to increase
robustness.

Results

The gap and pair-rule gene expression domains
are precise

We studied staining images of 154 Drosophila melanogaster
embryos at cleavage cycle 14 (see Methods in Bergmann et al,
2007). Using image processing tools described in ‘Materials
and methods’, we measured the relative positions x/L of the
protein domains of Gt, Hb, Kr and Eve. We screened both wild-
type embryos with two copies of bcd and mutant strains with
one or four bcd copies resulting in shifted expression domains.
We observed that in mid-embryo, the standard deviation of the
relative domain localizations, s(x/L), is between 1 and 2%
and it tends to be higher (2–4%) toward the anterior and
posterior poles (Figure 1).

These results are in good agreement with previous results on
the Hb domain (Houchmandzadeh et al, 2002). Importantly,
they show that the precision of the target genes has the same
magnitude and positional trend as that of Bcd according to
Gregor et al (2007a). Moreover, our experimental analysis
shows that precision is more position dependent than gene
dependent. Indeed, when expression domains are shifted
because of different bcd mRNA dosages, the precision of the
domain seems to change according to the new domain
position. Overall, all the investigated domains follow similar
precision trends. This suggests that a major contribution to the
precision of the Bcd target genes can be attributed to the
morphogen gradient itself. We note that position dependent
precision may also arise as an experimental artifact when
analyzing embryos with different orientations and varying
ages (times classes T5–T8 of nuclear cycle 14) or because of
imperfect scaling (cf. Supplementary Text S3). However,
estimating the maximal contributions of such effects we still
find that higher precision at mid-embryo is statistically signi-
ficant (cf. Supplementary Text S1; Supplementary Figure S4).

Modeling precision in a single morphogen
framework

Given the aforementioned pieces of evidence for achieving
precision at the level of the gradient formation, we consider a
French-flag model (Wolpert, 1969) in which a single morpho-
gen gradient induces expression domain boundaries in a
concentration-dependent manner (see Materials and meth-
ods). During the first stages of embryonic development, 13
nuclear divisions occur about every 10 min. Gregor et al
(2007b) have recently shown that nuclear concentrations
stabilize at cycle 10. From a robustness perspective, this means
that Bcd read-out is based on a similar number of molecules
and so the associated stochastic noise does not change
significantly from cycle 10 on. Therefore, we focus here on
the noise propagated from the external Bcd gradient and
investigate the fluctuations in domain localization when
perturbing the various parameters characterizing the gradient
formation (i.e. production, degradation, diffusion and nuclear
trapping rates).

We want to assess the variation in domain position Dx,
which is induced by embryo-to-embryo fluctuations of
magnitude Dq in a parameter q affecting the morphogen
gradient formation. Dx can be estimated analytically to first
order in Dq

Dx ¼ dx

dq

����
����Dq ¼ qM

qx

� ��1

� qM

qq

�����
�����Dq ð1Þ

where we used that the threshold concentration is fixed,
yielding dM¼(qM/qx)dxþ (qM/qq)dq¼0. This estimate can be
computed for any morphogen distribution M(x, t) with explicit
dependence on q. Here, we consider the time-dependent
solution of a model in which Bcd is produced at the anterior
pole with production rate s0, diffuses according to a uniform
diffusion constant D, is degraded at uniform rate a and is
trapped and released by the nuclei in the embryo at rates kn,
k�n, respectively (see Materials and methods). In Figure 2, we
plotted the imprecision measure Dx for small fluctuations
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Figure 1 Measuring precision of Bcd target genes. Measure of imprecision
s(x/L) of the gap and pair-rule gene expression domains as a function of position
x along the AP axis (see Supplementary Dataset S1). Errors (bars) were
estimated by computing the standard deviation across 50 independent
(semi-automated) markings of expression domain boundaries. For Gt (filled
triangles) and Kr (empty triangles), we show results for their left (v) and right
(x) boundaries, as well as for the center (n) of their expression domain. The Hb
(&) domain is characterized by the boundary where its concentration drops and
the Eve stripes (J) by the position at which their intensity is maximal. Color
code: 1xbcd (red), 2xbcd¼wild type (green), 4xbcd (blue).
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(5%) in each of these parameters (Figure 2A–D) as well as a
combination of fluctuations in the production and diffusion
rates (Figure 2E) (numerical simulations gave very similar
results, data not shown). We choose ti¼100 min as the time
when patterning is initiated, but qualitatively our results only
depend on the relation between ti and the Bcd decay time
t¼1/a (for ti � t the gradient has not yet reached steady-
state). We find that fluctuations in s0 (Figure 2A) give rise to
decreasing Dx toward the posterior pole if the pre-steady-state
gradient is read out (i.e. for small a). In contrast, for
fluctuations in D or a, Dx increases toward the posterior pole
(Figure 2B and C). Thus, in the case of Bcd pre-steady-state
decoding (bluish curves) and fluctuations both in the
production and degradation or diffusion rates (Figure 2E),
maximal precision of the Bcd gradient around mid-embryo can
arise naturally, as was indeed observed directly by Gregor et al
(2007a) and indirectly by our analysis (cf. Figure 1). In
contrast, for high decay rates (reddish curves) the gradient
rapidly equilibrates such that fluctuations in the production

rate give rise to uniform noise in Bcd concentrations,
preventing the possibility of minimal noise in the central
region. Interestingly, fluctuations in the nuclear trapping rate
alone also yield higher precision around mid-embryo
(Figure 2D) if the Bcd gradient is decoded early in pre-
steady-state. However, the position with highest precision is
sensitive to the decoding time, shifting more toward the
posterior pole for later decoding.

Our modeling approach provides a proof of principle that
maximal precision at mid-embryo can arise if the gradient is
decoded before steady-state. However, we cannot rule out that
other mechanisms may yield such a pattern of precision even
for a steady-state Bcd gradient (e.g. in the wing disc, it was
shown that cell-to-cell variability in the production, diffusion
and degradation rates can yield higher precision around mid-
field, Bollenbach et al, 2008).

In our analysis, we assumed the classical French-flag model
(Wolpert, 1969) in which domain boundaries are determined
from critical morphogen concentrations. This is a simplifica-
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Figure 2 Modeling precision of nuclear Bcd. Predicted positional variability at t¼100 min for various Bcd degradation rates a¼{1, 0.3, 0.1, 0.03, 0} min�1 and their
corresponding diffusion constants D¼{167, 55, 17, 5, 3} mm2/s, ensuring l¼0.2L at t¼150 min (numerical fit); 5% noise was added to the Bcd profile at the level of
(A) the production rate, (B) the diffusion constant, (C) the degradation rate and (D) the nuclear trapping rate. In (E), a combination of noise was added to the Bcd profile
(17% on the production- and 6% on the diffusion rates; all contributions are assumed to be independent). (L¼1 for all embryos.)
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tion and recent work by the Reinitz group (Jaeger et al,
2004a, b, 2007; Jaeger and Reinitz, 2006; Surkova et al, 2008;
Manu et al, 2009a, b) showed that the gap gene expression
domains are established by a highly dynamic process
characterized by drifting domain boundaries. In our modeling,
we neglected the gap gene dynamics and rather focused on
how precision can be achieved already at the level of the Bcd
gradient, as suggested by our data (as well as those reported in
Gregor et al, 2007a; He et al, 2008). Thus, we assume that the
positional information is transmitted relatively early to the gap
genes, around cycle 10 (as suggested in Lucchetta et al, 2008).
The precision and proper scaling of this read-out is then
maintained (and possibly refined) by the gap genes indepen-
dently of Bcd, because of their cross- and auto-regulation
(Bergmann et al, 2007). Meanwhile, the Bcd gradient may
continue to evolve and eventually decays at the onset of
gastrulation (e.g. by activation of its PEST domain, Niessing
et al, 1999).

Modeling scaling

We next sought to extend our modeling framework to
accommodate also scaling. To quantify scaling analytically at
the morphogen level, we define a scaling coefficient S(x, t) for
a position x and time t

S � dx

dL
� L
x

ð2Þ

Perfect scaling corresponds to S¼1. In this case, fluctuations in
embryo length, dL/L, are exactly compensated by fluctuations
in position, dx/x, implying perfectly conserved proportions.
We use the terms hypo- and hyper-scaling to refer to So1
and S41, respectively. A position that hypo-scales does not
compensate enough for a change in embryo size, meaning that
in a bigger embryo the absolute position is not shifted enough
posteriorward to keep the correct proportions. In contrast,
hyper-scaling is the tendency to overcompensate for a change
in embryo size.

Scaling is a property of the external gradient, which is then
transmitted to the nuclear concentrations (cf. equation (7)).
Assuming that the threshold concentration is fixed (implying
dM¼(qM/qx)dxþ (qM/qL)dL¼0) it follows from equation (2)
that the scaling coefficient is

S ¼ � qM

qx

� ��1

� qM

qL
� L
x

ð3Þ

The above definition of scaling is generic and can be computed
for any morphogen distribution M(x, t) with explicit depen-
dence on L. Here, we consider a model in which the embryo
length impacts the generation of the morphogen gradient
through the nuclei density. Specifically, assuming that at
decoding time all embryos have the same number of nuclei
independent of their size (which agrees with the deterministic
doubling of nuclei at each cycle), the nuclei density N depends
on the embryo size like NpL�n, where nA[1;3] (n¼3
corresponds to a uniform distribution of nuclei, whereas
n¼2 is true if nuclei are distributed on a shell with a fixed
width, Gregor et al, 2007b). In this scenario, we find that
scaling is time dependent and position dependent (Figure 3B;
see Supplementary Figure S9 for the dependence of scaling on

N/K and n). Specifically, anterior domain boundaries hyper-
scale, in particular if decoding occurs relatively late, whereas
posterior domains show very good scaling for a wide range of
decoding times.

We also investigated three other models that give rise to
scaling by coupling the nuclear degradation, cytoplasmic
degradation or the morphogen production rate to the embryo
length (cf. Supplementary Text S2). We find that their scaling
behavior is qualitatively similar (in the sense that S decreases
toward the posterior pole) but more sensitive to the Bcd
decoding time (Supplementary Figure S8).

The gap and pair-rule gene expression domains
scale with embryo size

The model we investigated above predicts that scaling should
be position dependent rather than gene dependent and close to
perfect except for anterior most domains. To test these two
predictions experimentally on our collection of staining
images, we adapted the continuous definition of the scaling
coefficient S(x, t) in equation (2) for discrete measurements as
follows:

S � b̂ �
�L

�x
¼ covðx; LÞ

varðLÞ �
�L

�x
ð4Þ

where b̂ is the estimated slope from a linear regression
x¼aþ bL of the domain positions xi (with mean value x̄) onto
their respective embryo sizes Li (with mean value L̄) (see
Figure 3A). In our data, the relative embryo size fluctuations
were of the order of 10–15%. The results of our scaling analysis
for Gt, Hb, Kr and Eve in embryos with single, double and
quadruple bcd dosage are presented in Figure 3B. We observe
that anterior domains indeed tend to hyper-scale, whereas
mid-embryo and posterior domains show good scaling
(P-valueo0.00021, cf. Supplementary Text S1; Supplementary
Figure S5). Moreover, the magnitude of the scaling coefficient
depends mainly on the position of the respective domain
(boundary) rather than the associated gene. This is in good
agreement with the model discussed above, whereas in the
other models we investigated (cf. Supplementary Text S2) it is
difficult to obtain close to perfect scaling both at mid-embryo
and toward the posterior pole.

Perspectives

Precision and scaling are important to achieve robust pattern
formation. Our new position-dependent measures provide a
unified quantification of scaling for both functional descrip-
tions of gradient profiles derived from models (equation (2))
and experimentally determined expression domains (equation
(4)). These measures will be useful to address scaling also in
different systems like the wing-disk. Importantly, our mea-
sures clearly identify perfect scaling (S¼1) corresponding to
the correct preservation of proportions, which is not necessa-
rily equivalent to perfect correlation (see Supplementary Text
S4 for a detailed discussion).

Interestingly, our experimental analysis using embryos with
different bcd dosages showed that both precision and scaling
are more position dependent than gene dependent, suggesting
that the morphogen gradient itself has an important function
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to set robust domain boundaries. As our study showed,
gradient formation of a single morphogen can naturally ensure
maximal robustness only in a limited patterning domain. For
Bcd, this appears to be mid-embryo, where most of its targets
are expressed. Outside of this domain, other systems and
mechanisms may have evolved to cooperate in maintaining
and potentially increasing robustness. Considering precision
and scaling as position- (and possibly time-) dependent
features will allow to better characterize and develop models
for these systems.

Materials and methods

Image analysis

We use an interface developed in MATLAB (Supplementary Figure S1)
to extract and analyze expression profiles from the staining images of
different Bcd target genes, yielding quantitative information on the
positions of each protein domain (Bergmann et al, 2007). A total of 154
staining images were analyzed using a semi-automated analysis tool
where the position of the anterior and posterior poles were marked 50
times for each embryo. On the basis of this input, the software
extracted a rectangular region from the image from which it generated
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Figure 3 Measuring scaling of Bcd target genes. (A) Scaling of the Eve stripes for wild-type bcd mRNA dosage, co-stained with Hb. For each stripe in each embryo
(images on top), fluctuations in the domain position Dx/x̄ are plotted against fluctuations in embryo size DL/L̄. Scaling coefficients are then estimated by linear
regression. Errors show 68% confidence intervals from the regression analysis. (B) Measured scaling coefficients of the gap and pair-rule gene expression domains as a
function of position x along the AP axis (see Supplementary Dataset S2). Errors (bars) represent 68% confidence intervals from the linear regression. For Gt (filled
triangles) and Kr (empty triangles), we show results for their left (v) and right (x) boundaries, as well as for the center (n) of their expression domain. The Hb (&)
domain is characterized by the boundary where its concentration drops and the Eve stripes (J) by the position at which their intensity is maximal (filled circles represent
Eve co-stained with Hb, as in (A)). Color code: 1xbcd (red), 2xbcd¼wild type (green), 4xbcd (blue). We also show scaling as predicted by our model (grayscale).
Parameters are chosen such that the profile is closest to an exponential decay with length scale l¼0.2L at t¼150 min (see Supplementary Figure S12 for temporal
evolution).
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protein concentration profiles and automatically determined the
positional information of the gap and pair-rule gene expression
domains. Thus, for each embryo, its total length and the domain
localizations were characterized by a mean value and a standard
deviation computed from the 50 markings. The right boundary of the
anterior Hb expression domain was defined as the position at which
the decline in the Hb concentration is the steepest. Gt and Kr domains
were described similarly by their left and right boundaries, whereas
the position with maximal staining intensity characterized their center.
As the Eve stripes are not so broad, we only extracted the position at
which the Eve intensity was maximal. (All the staining images are
available for download at http://www.unil.ch/cbg/morphogen/
Images_paper.zip)

We also developed a second, almost fully automated analysis tool
that only requires human input for selecting which of the two poles is
the anterior one (while their position was detected automatically).
This tool was used to analyze the expression domain positions of a set
of 119 embryos, which included 78 (51%) from the first analysis.
Precision and scaling results turned out to be very similar for the two
analysis approaches, suggesting that measurement errors and inter-
embryo variation (e.g. because of different embryo orientations) can
be safely neglected (Supplementary Figure S6). We also note that part
of the observed fluctuations in embryo size may be induced by the
fixation procedure. However, computing precision and scaling by
considering embryos on different slides separately yielded similar
results (Supplementary Figure S7), suggesting that fixation or other
batch effects have no positional bias toward either of the embryo poles.

Modeling

We consider a model in which Bcd is produced at the anterior pole with
production rate s0, diffuses according to a uniform diffusion constant
D, is degraded at uniform rate a and is trapped and released by the
nuclei in the embryo at rates kn, k�n, respectively. The corresponding
coupled partial differential equations for the free morphogen
concentration M(x, t) and the nuclear concentration Mn(x, t) read
(Bergmann et al, 2007; Coppey et al, 2007; Gregor et al, 2007b):

qM
qt ¼ D q2M

qx2 þ s0dðxÞ � aM þ k�nMn � knM � N
qMn

qt ¼ �k�nMn þ knM � N

(
ð5Þ

where N is the nuclei density and s0d(x) the source term localized at
x¼0 (anterior pole). We consider zero-flux (Neumann) boundary
conditions at the posterior pole and that there is no morphogen at the
initial time (t¼0). Assuming that nucleo-cytoplasmic exchanges occur
rapidly (qMn/qt|ME0), as demonstrated by the experiments reported
in Gregor et al (2007b), the following effective diffusion equation holds
for the free morphogen (Bergmann et al, 2007; Coppey et al, 2007;
Gregor et al, 2007b):

qMðx; tÞ
qt

¼ ~D
q2Mðx; tÞ

qx2
� ~aMðx; tÞ þ ~s0dðxÞ ð6Þ

where D̃¼D/(1þ (N/K)), ~a ¼ a=ð1þ ðN=KÞÞ and s̃0¼s0/(1þ (N/K))
(with K¼k�n/kn). At time t¼150 min (corresponding to nuclear cycle
14), the morphogen profile is numerically fitted to an exponentially
decaying gradient with length scale l¼0.2L. Thus, given a degradation
rate, the diffusion constant is adjusted accordingly (see caption of
Figure 2 for numerical values). We account for the presence of the
nuclei by setting N/K¼1 (i.e. to be specific, we assume that the
probability that external Bcd is trapped equals the probability that
nuclear Bcd is released; yet our qualitative results for precision are
robust with respect to the exact choice of N/K).

According to the nuclear trapping model (equation (5)), the nuclear
concentration cn, which determines the precision and scaling of Bcd
target genes, is given by (see also Coppey et al, 2007)

cn ¼
Mn

N � vn
¼ M

K � vn
ð7Þ

where nn is the nuclear volume. Importantly, according to equation (7)
the fluctuations in the nuclear concentrations cn are proportional
to those in the external gradient, provided we can neglect variability
in nn and K.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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