000181874 001__ 181874
000181874 005__ 20180317093201.0
000181874 0247_ $$2doi$$a10.1287/moor.1090.0392
000181874 022__ $$a1526-5471
000181874 037__ $$aARTICLE
000181874 245__ $$aExtended Formulations for Packing and Partitioning Orbitopes
000181874 269__ $$a2009
000181874 260__ $$c2009
000181874 336__ $$aJournal Articles
000181874 520__ $$aWe give compact extended formulations for the packing and partitioning orbitopes (with respect to the full symmetric group) described and analyzed in Kaibel and Pfetsch [Kaibel, V., M. E. Pfetsch. 2008. Packing and partitioning orbitopes. Math. Programming, Ser. A 114(1) 1–36]. These polytopes are the convex hulls of all 0/1-matrices with lexicographically sorted columns and at most, respectively, exactly one 1-entry per row. They are important objects for symmetry reduction in certain integer programs. Using the extended formulations, we also derive a rather simple proof of the fact established in the paper mentioned above, that basically shifted-column inequalities suffice to describe those orbitopes linearly.
000181874 6531_ $$apolytope
000181874 6531_ $$asymmetry
000181874 6531_ $$aprojection
000181874 6531_ $$ashifted-column inequalities
000181874 6531_ $$aextended formulation
000181874 700__ $$0246581$$aFaenza, Y.$$g229283
000181874 700__ $$aKaibel, V.
000181874 773__ $$j34$$k3$$q686-697$$tMathematics of Operations Research
000181874 8564_ $$s263547$$uhttps://infoscience.epfl.ch/record/181874/files/0806.0233v1.pdf$$yn/a$$zn/a
000181874 909CO $$ooai:infoscience.tind.io:181874$$particle$$pSB
000181874 909C0 $$0252111$$pDISOPT$$xU11879
000181874 917Z8 $$x229283
000181874 917Z8 $$x229283
000181874 937__ $$aEPFL-ARTICLE-181874
000181874 973__ $$aOTHER$$rREVIEWED$$sPUBLISHED
000181874 980__ $$aARTICLE