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Abstract: We show that a stationary asymptotically flat electro-vacuum solution of
Einstein’s equations that is everywhere locally “almost isometric” to a Kerr–Newman
solution cannot admit more than one event horizon. Axial symmetry is not assumed.
In particular this implies that the assumption of a single event horizon in Alexakis–
Ionescu–Klainerman’s proof of perturbative uniqueness of Kerr black holes is in fact
unnecessary.
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1. Introduction

The goal of the present paper is to provide a justification for the intuitively obvious fact
that

A stationary electro-vacuum space-time that is everywhere almost isometric to
Kerr–Newman can admit at most a single event horizon.

Roughly speaking, we do not expect small perturbations of the metric structure to allow
the topology (of the domain of outer communications) of the solution to change greatly.
Or, slightly differently put, we expect that Weyl’s observation for multiple-static-black-
hole solutions remain true in the stationary case, that along the axes connecting the
multiple black holes, the local geometry should be very different from what is present
in a Kerr–Newman solution. In practice, however, one needs to be specific about what
almost isometric means. This shall be described later in this Introduction. As a direct
consequence of the main result from this paper, we can slightly improve the main theorem
of Alexakis et al. [AIK10a] to remove from it the assumption that the space-time only
has one bifurcate event horizon. A secondary consequence of the current paper is that
it casts some new light on the tensorial characterisations of Kerr and Kerr–Newman
space-times due to Mars [Mar99] and the first author [Won09b].

1.1. History and overview. The greater setting in which this paper appears is the study
of the “black hole uniqueness theorem”. Prosaically stated, the theorem claims that

The only nondegenerate stationary1 electro-vacuum asymptotically flat space-
times are described by the three-parameter Kerr–Newman family.

The nondegeneracy here refers to conditions on the geometry of the event horizon,
or constraints on some asymptotic constants, or both, of the solution. That a certain
nondegeneracy is required is already necessitated by the existence of the Majumdar–
Papapetrou solutions (see, e.g. [HH72]), which represent static multiple-black-hole so-
lutions in which the gravitational attraction between the black holes are balanced out by
their mutual electromagnetic repulsion. In the present paper all black holes are nonde-
generate or subextremal; as shall be seen the argument depends strongly on the presence
of nondegenerate bifurcate event horizons. For the degenerate case we refer the readers
to [HH72,CT07,CN10,FL10,NH12] and the references therein.

The expectation that one such theorem may be available goes back at least to Carter’s
lecture [Car73], where a first version of a “no hair” theorem was proven; the hypotheses
for this theorem assume, in particular, that the space-time is axisymmetric in addition to
being stationary. For static2 solutions a general uniqueness theorem was already estab-
lished without additional symmetry assumptions by Israel [Isr67,Isr68]. By appealing
to Hawking’s strong rigidity theorem (see the next paragraph), however, one can assume
(with some loss of generality) that any reasonable stationary black-hole space-time is in

1 Admitting a Killing vector field that becomes the time-translation at spatial infinity.
2 Admitting a hypersurface-orthogonal Killing vector field that is the time-translation at spatial infinity.
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fact axisymmetric. This additional symmetry can be used to great effect: for the Kerr–
Newman solutions the stationary Killing field is not everywhere time-like due to the
presence of the ergoregions. Thus a symmetric reduction of Einstein’s equations with
just a stationarity assumption (as opposed to a staticity one) is insufficient to reduce
the hyperbolic system of equations to an elliptic one, for which uniqueness theorems
are more readily available (or widely known). With the additional axial symmetry, the
equations of motions for general relativity can be shown to reduce to that of a harmonic
map [Bun83,Maz82,Car85,Rob75], for which elliptic techniques (maximum principle
etc.) can be used to obtain the uniqueness result. For a modern discussion one can consult
Heusler’s monograph [Heu96] in which various natural generalisations of this method
are considered. For some more historical notes and critical analyses of these more clas-
sical results, see [Chr94,Chr96]. More recently, Costa in his PhD dissertation [Cos10]
gave a complete and modern derivation of the black hole uniqueness theorem, in the for-
mulation which is amenable to the approach described above (namely first establishing
axial symmetry and then obtaining uniqueness using elliptic methods).

One of the main shortfalls of the above approach is that Hawking’s rigidity theorem,
as originally envisioned, requires that the space-time be real analytic. Thus the result
established for black hole uniqueness is conditional on either the space-time being a
priori axisymmetric, or real analytic. To overcome this problem, Ionescu and Klainer-
man initiated a program to study the black hole uniqueness problem as a problem of
“unique continuation”; namely, one considers the ill-posed initial value problem for
the Einstein equations with data given on the event horizon and tries to demonstrate a
uniqueness property for the solution in the domain of outer communications (outside
the black hole; the problem of extending to the inside of the black hole, which does
not suffer from the obstruction of the ill-posedness of the initial value problem, has
been considered before by other authors [FRW99,Rac00]). Their first approach to this
problem [IK09b,IK09a] (see also the generalisation by the first author [Won09a]) pro-
vided a different conditional black hole uniqueness result: instead of demanding the
space-time be axisymmetric or real analytic, the extra condition is provided by, roughly
speaking, prescribing the geometry of the event horizon as an embedded null hypersur-
face in the space-time. Through unique continuation, this boundary condition suffices
to imply that the so-called Mars-Simon tensor [Mar99,Won09b] vanishes everywhere,
which shows that the exterior domain of the space-time is everywhere locally isometric to
a Kerr(-Newman) black hole. A second approach to this problem was later taken together
with Alexakis [AIK10a,AIK10b], where under the assumption that the Mars-Simon ten-
sor is “small” one can extend Hawking’s rigidity theorem to the non-analytic case (see
also the generalisation by the second author [Yu10]). By appealing to the axisymmetric
version of the black hole uniqueness theorem, this last theorem returns us to a statement
similar to Carter’s original “no hair” theorem: there are no other stationary electro-
vacuum asymptotically flat space-times in a small neighbourhood of the Kerr–Newman
family. One of the technical assumptions made in [AIK10a] is that the space-time ad-
mits only one connected component of the event horizon; in this paper we remove that
assumption.

The arguments described in the previous paragraph relied upon a tensorial local
characterisation of the Kerr–Newman space-times due to Mars and then to the first author
[Mar99,Won09b]. In those two papers, that a region in a stationary solution to Einstein’s
equations is locally isometric to a Kerr(-Newman) space-time is shown to be equivalent
to the vanishing of certain algebraic expressions relating the Weyl curvature, the Ernst
potential, the Ernst two form, and the electromagnetic field. It is clear from the algebraic
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nature of the expressions that if the metric of a stationary solution and the electromagnetic
field are C2 close to that of a Kerr–Newman space-time in local coordinates, the algebraic
expressions will also be suitably small. The converse, however, is not obviously true: the
demonstrations in [Mar99,Won09b] construct local coordinate systems by first finding
a holonomic frame field. Hence exact cancellations, and not just approximate ones, are
necessary to guarantee integrability. As already was used in [AIK10a], and generalised
further in the current paper, we show what can be interpreted as a partial converse. In
particular, we show that one can reconstruct a scalar function to serve as an analogue
of the r coordinate of Boyer-Lindquist presentation of the Kerr–Newman metric, and
thereby make use of many of its nice properties. Critically used in [AIK10a] and [Yu10]
is that the level surfaces of this “analogue-r” have good pseoduconvexity properties for
a unique continuation argument; in this paper we use the property that the “analogue-r”
function behaves like the distance function from a large sphere near infinity, and cannot
have a critical point outside the event horizons.

That analogues of the r coordinate play important roles in black hole uniqueness
theorems is not new. They typically appear as the inverse of the Ernst potential, and
are used implicitly in Israel’s proofs for the static uniqueness theorems [Isr67,Isr68]
(see also [Rob77,Sim85,uA92] which share some motivation with the present paper).
Incidentally, the proof by Müller zum Hagen and Seifert [MS73] of non-existence of
multiple black holes in the static axi-symmetric case also employs the properties of
some analogue of this r function; whereas we (as will be indicated) use a mountain-pass
lemma to drive our non-existence proof, Müller zum Hagen and Seifert employed a force
balance argument that is somewhat reminiscent of the recent work of Beig et al. [BGS09].

In the present paper we show that multiple stationary black hole configurations can-
not be possible were the solution everywhere (in the domain of outer communications)
locally close to, but not necessarily isometric to, a subextremal Kerr–Newman solu-
tion. We would be remiss not to mention the literature concerning the case where the
“smallness parameter” of being close to Kerr–Newman solutions is replaced by the
restriction of axisymmetry. (Which, in particular, would apply assuming a smooth ver-
sion of Hawking’s rigidity theorem is available. Note also that the static case behaves
somewhat better; see previous paragraphs). On the one hand we have the construction
(see [Wei90,Wei92,Wei96] and references therein) of solutions with multiple spinning
black holes sharing the same axis of rotation, which may be singular along the axis
(see also [Ngu11] for an analysis of their regularity property). This construction uses
again the stationary and axial symmetries to reduce the question to the existence of
certain harmonic maps with boundary conditions prescribed along the axis of symmetry
and the event horizon. On the other hand we also have the approach by studying the
Ernst formulation of Einstein’s equations in the stationary-axisymmetric case, and us-
ing the inverse scattering method to obtain a non-existence result in the two-body case;
see [NH09,NH12] and references therein. As the methods employed in the approaches
mentioned above are rather orthogonal to ours (for showing non-existence the general
approach in the stationary axisymmetric case is to show the lack of regularity along the
axis connecting the multiple black holes), it is hard to compare the results obtained, es-
pecially in view of the fact that the objects involved are not supposed to exist as smooth
solutions.

One last remark about the theorem proved in this paper. A posteriori, by combining
the results of the present paper with [AIK10a] and the axisymmetric uniqueness result
of [Cos10], we have that the only space-times that satisfy our hypotheses are in fact
the Kerr–Newman solutions. Hence while it is a priori necessary to state our theorem
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and perform our computations in a way that admits the possibility that such additional
non-Kerr–Newman solutions exist, one should not try too hard to precisely imagine such
additional solutions.

1.2. Main idea of proof. We will not state the full detail of the main theorem until
Sect. 2.2, seeing that we need to first clarify notations and definitions. Suffice it to say
for now that under some technical assumptions (a subset of that which was assumed in
[AIK10a]) and a smallness condition (that the space-time is everywhere locally close
to Kerr–Newman), the event horizon of a stationary asymptotically flat solution to the
Einstein-Maxwell equations can have at most one connected component.

We obtain the conclusion by studying a Cauchy hypersurface of the domain of outer
communications of such space-time. We show that its topology must be that of R

3 with a
single ball removed. We argue by contradiction using a “mountain pass lemma” applied
to the function we denote by y, representing the real part of the inverse of the Ernst
potential. We will show

• Firstly, the function y is well-defined in the domain of outer communications. Noting
that y is defined by the inverse of the values of a smooth function, we need to show
that the Ernst potential does not vanish. This will occupy the bulk of the paper.

• Secondly, we need to show that y satisfies the hypotheses of a mountain pass lemma.
To do so we use quantitative estimates derived from the smallness conditions. On the
domain of outer communications of Kerr–Newman space-time, the function y attains
its minimum precisely on the event horizon, and does not admit any critical points
outside the event horizon. We show that these properties remain approximately true
for our solutions.

• Lastly, to conclude the theorem, we observe that were there to be more than one “hole”
in the Cauchy hypersurface, the function y must be “small” along two disconnected
sets (the event horizons), and “big” somewhere away from those two sets. By the
mountain pass lemma y must then have a critical point, which gives rise to the
contradiction.

Our proof given in this manuscript is essentially perturbative. The eventual goal,
however, is to arrive at a “large data” theorem which bypasses the smallness requirement
in (KN). At present it is not clear to the authors how to proceed. While it is probable
that the eventual proof for the black hole uniqueness theorem does not in fact make use
of the characterisation tensors (see the next section), we hope the readers would forgive
us for hoping that, given the topological nature of the current argument, a “large data”
version of the presented theorem may be approachable if one were to find a suitable
geometric flow which acts “monotonically” (in a suitable sense) on the characterisation
tensors.

2. Preliminaries

We begin with definitions. A space-time (M, gab) — that is, (i) a four-dimensional,
orientable, para-compact, simply-connected manifold M endowed with (ii) a Lorentzian
metric gab with signature (−+ ++) such that (M, gab) is time-orientable — is said to be
electro-vacuum if there exists a (real) two-form Hab on M called the Faraday tensor such
that the Einstein-Maxwell-Maxwell (to distinguish it from non-linear electromagnetic
theories such as Einstein-Maxwell-Born-Infeld [Kie04a,Kie04b,Spe08]) equations are
satisfied:
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Ricab = 2Hac Hb
c − 1

2
gab Hcd Hcd

(= (H + i∗H)ac(H − i∗H)b
c),

∇a(H + i∗H)ac = 0,

where ∗ is the Hodge-star operator: ∗H := 1
2εabcd Hcd with εabcd the volume form

for the metric gab. On a four-dimensional Lorentzian manifold, Hodge-star defines an
endomorphism on the space of two-forms which squares to negative the identity. Hence
we can factor over the complex numbers and call a complex-valued two-form Xab
(anti-)self-dual if ∗Xab = (−)iXab. (See Sect. 2.1 in [Won09b] for a more detailed
discussion of self-duality.) Observe that Hab + i∗Hab is anti-self-dual. So equivalently
we say the space-time is electro-vacuum if there exists a complex, anti-self-dual two-
form Hab such that

Ricab = 4HacH̄b
c, (2.0.1a)

∇aHac = 0. (2.0.1b)

One can easily convert between the two formulations by the formulae 2Hab = Hab +
i∗Hab, and Hab = Hab + H̄ab.

Throughout we will assume the electro-vacuum space-time (M, gab,Hab) admits
a continuous symmetry, that is, there exists a vector field ta on M such that the Lie
derivatives £t gab = 0 (ta is Killing) and £tHab = 0.

We will use Cabcd to denote the Weyl curvature, and Cabcd = 1
2 (Cabcd + i∗Cabcd)

its anti-self-dual part (see Sect. 2.2 of [Won09b]). For an arbitrary tensor field Za1...ak
b1...b j

we write Z2 for its Lorentzian norm relative to the metric gab, extended linearly to
complex-valued fields. Hence for real Z , Z2 may carry either sign; for complex Z , Z2

can be a complex number. We also define

Iabcd := 1

4
(gacgbd − gad gbc + iεabcd)

the projector to, and induced metric on, the space of anti-self-dual two-forms. We also
introduce the short-hand

(X ⊗̃Y)abcd := 1

2
(XabYcd + YabXcd)− 1

3
IabcdXe f Ye f (2.0.2)

which combines two anti-self-dual two-forms to form an anti-self-dual Weyl-type tensor.
Two important product properties of anti-self-dual two-forms that will be used fre-

quently in computations are

XacX̄b
c = XbcX̄a

c, (2.0.3)

XacYb
c + YacXb

c = 1

2
gabXcdYcd . (2.0.4)

Lastly the symbols� and�will mean to take the real and imaginary parts respectively.

2.1. The “error” tensors. Now, since H solves Maxwell’s equations, it is closed. Car-
tan’s formula gives

dιtH + ιt dH = £tH,

and hence by our assumptions ιtH is a closed form. Since we assumed our space-time
is simply connected (a reasonable hypothesis in view of the topological censorship
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theorem [FSW93] since we will only consider a neighbourhood of the domain of outer
communications), up to a constant there exists some complex-valued function � such
that d� = ιtH.

Observe that since ta is Killing, ∇atb is anti-symmetric. Define F̂ab = ∇atb +
i
2εabcd∇ctd . Now we define the complex Ernst two-form

Fab := F̂ab − 4�̄Hab. (2.1.1)

One easily checks that F also satisfies Maxwell’s equations, by virtue of the Jacobi
equation for the Killing vector field ta (which is to say, ∇c∇atb = Riemdcabtd ) which
implies that ∇aF̂ab = −Ricabta . Thus analogous to how � is defined, we can define
(again up to a constant) σ to be a complex valued function, which we call the Ernst
potential, such that dσ = ιtF .

The main objects we consider are

Definition 2.1.2. The characterization or error tensors are the following objects defined
up to the free choice of four normalizing constants: the two complex constants in the
definition of σ and �, a complex constant κ , and a real constant μ. We define the
two-form B and the four-tensor Q by

Bab := κFab + 2μHab, (2.1.3a)

Qabcd := Cabcd +
6κ�̄− 3μ

2μσ
(F⊗̃F)abcd . (2.1.3b)

Remark 2.1.4. The necessity of normalisation of � and σ is familiar from classical
physics: potential energies are relative and not absolute. As it turns out, the choice of
the four normalisation constants entails compatibility with asymptotic flatness (that of
the potentials � and σ ) and partial restrictions on the mass, charge, and angular mo-
mentum parameters of the corresponding Kerr–Newman solution. In the asymptotically
flat case where space-like infinity is defined and where we can read off the asymptotic
mass and charge, the “correct” choice (see Assumption (KN) below) of the normalising
constants are such that � and σ vanish at space-like infinity and μ and κ are the mass
and charge parameters respectively, as these are the choices for which B and Q vanish
in Kerr–Newman space-time. When considering just a domain in space-time when the
asymptotically flat end is not accessible, we do not have a canonical method of choosing
the four constants; see also Theorem 2.1.5 below.

These tensors are the natural generalization of the Mars-Simon tensor [Mar99,Sim84,
IK09a] which characterizes Kerr space-time among stationary solutions of the Einstein
vacuum equations. (Indeed, for vacuum space-times we can set H and � to be zero
identically; then choosing κ = 0 we have that B vanishes and Q is exactly the Mars-
Simon tensor.) More precisely, we have the following theorem due to the first author
[Won09b].

Theorem 2.1.5. Let (M, gab,Hab) be an electro-vacuum space-time admitting the sym-
metry ta. Let U ⊂ M be a connected open subset, and suppose there exists a normali-
sation such that on U we have σ �= 0, B = 0, and Q = 0. Then we have

t2 + 2�σ +
|κσ |2
μ2 + 1 = const. and μ2F2 + 4σ 4 = const.
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If, furthermore, both the above expressions evaluate to 0, and ta is time-like somewhere
on U, then U is locally isometric to a domain in Kerr–Newman space-time with charge
κ , mass μ, and angular momentum μ

√
A, where

A :=
∣∣
∣
μ

σ

∣∣
∣
2
(
�∇ 1

σ

)2

+

(
� 1

σ

)2

is a constant on U.

Remark 2.1.6. Algebraically the definitions given herein are normalized differently from
the definitions in [Won09b]. For κ �= 0 by rescaling one can see that the statements in
the above theorem are algebraically identical to the hypotheses in the main theorem in
[Won09b]. For κ = 0 it is trivial to check that the conditions given above reduces to the
case given in [Mar99].

Remark 2.1.7. The condition that ta is time-like somewhere on U can be relaxed to
the condition that there is some point in U where ta is not orthogonal to either of the
principal null directions of F . Also note that asymptotic flatness is not required for the
theorem; in the asymptotically flat case, using the normalisation described in Remark
2.1.4, the vanishing of B and Q automatically ensures that the expressions involving
t2 . . . and μ2F2 . . . vanishes.

In view of Theorem 2.1.5, we expect to use the tensors B and Q as a measure of
deviation of an arbitrary stationary electro-vacuum solution from the Kerr–Newman
family. Indeed, the main assumption to be introduced in the next section is a uniform
smallness condition on the two tensors. In fact, we say that

Definition 2.1.8. A tensor Xa1...ak is said to be an algebraic error term if there exists

smooth tensors A(1)
a1...ak

bc, A(2)
a1...ak

bcd , and A(3)
a1...ak

bcde such that

Xa1...ak = A(1)
a1...ak

bcBbc + A(2)
a1...ak

bcd∇bBcd + A(3)
a1...ak

bcdeQbcde.

Remark 2.1.9. In the course of the proof, we shall see explicit expressions for all the
algebraic error terms that play a role in the analysis. For these error terms, the tensors
A(∗)∗ can be controlled by the background geometry. See Assumption (KN) below as
well as Proposition 3.2.3.

Morally speaking, an algebraic error term is one that can be “made small” by putting
suitable smallness assumptions on the error tensors. In view of the indefiniteness of
the Lorentzian geometric, the smallness needs to be stronger than smallness in the
“Lorentzian norm”; see Assumption (KN) in the next section. Of course, we note that
should the black hole uniqueness theorem be proved in the smooth category (as opposed
to the state-of-the-art that only holds for real-analytic space-times), then with some
reasonable conditions imposed on the space-time B and Q must vanish identically.

Following the definition by Eq. (2.1.3a), we immediately have

Lemma 2.1.10. The exterior derivative dV of the potential sum V := κσ + 2μ� is an
error term.

For conciseness, we will also use the notation

P0 := 2κ̄�− μ, (2.1.11)
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and define the real-valued quantities y, z such that

y + i z := −σ−1

when the right-hand side is finite. For motivation, we mention the main lemma used in
proving Theorem 2.1.5.

Lemma 2.1.12 (Mars-type Lemma [Won09b]). Under the assumptions of Theorem 2.1.5
with the requirement that the two expressions evaluate to 0, we have gab∇a y∇bz = 0
and

(∇z)2 = 1

μ2

A− z2

y2 + z2 (∇ y)2 = 1

μ2

A + |κ/μ|2 + y2 − 2y

y2 + z2

for the constant A as given in Theorem 2.1.5.

Compare the above lemma to Lemma 2.3.12 which gives the analogous statement
under the condition B and Q are small, but not necessarily vanishing. For the expression
involving (∇z)2, we note that A is now no longer a constant, but almost so. For the
expression involving (∇ y)2, we apply (2.3.10b) of Corollary 2.3.9 and pick up a few
additional error terms. For the statement about orthogonality of∇ y and∇z, see (2.3.10a)
of Corollary 2.3.9.

2.2. Geometric assumptions and the main Theorem. Now we provide the precise set-up
for our main theorem.

(TOP) We assume that there is a embedded partial Cauchy hypersurface � ⊂ M which
is space-like everywhere. To model the multiple black holes we assume, in view
of the Topology Theorem [GS06], that � is diffeomorphic to R

3\∪k
i=1 Bi , which

is the Euclidean three-space with finitely many disjoint balls removed. We denote
the diffeomorphism by

	 : R
3\ ∪k

i=1 Bi → �

and require that k is the total number of black holes. Each Bi is a ball centered
at bi with radius 1

2 . We also require that |bi − b j | > 3 when i �= j . On R
3 we

use the usual Euclidean coordinate functions (x1, x2, x3) with the convention
r = √

(x1)2 + (x2)2 + (x3)2. Thus for large enough R0 the set E(R0) := {p ∈
R

3\ ∪k
i=1 Bi |r > R0} is unambiguously R

3 with a large ball removed.
Furthermore we assume that for sufficiently large R0, the Killing vector field ta

is transverse to E(R0), and thus by integrating along the symmetry orbits we
extend a diffeomorphism

	̃ : R× E(R0) → Mend,

where Mend is an open subset in M which we call the asymptotic region. In
particular this defines local coordinates (x0, x1, x2, x3) on Mend with t = ∂0.

(AF) In view of the dipole expansions in [MTW73] (see also [BS81]), we assume
the following asymptotic properties for the metric and Faraday tensors in the
local coordinates on Mend. The notation Ok(rm) stands for smooth functions f
obeying |∂β f | � rm−|β| for any multi-index β with 0 ≤ |β| ≤ k. The metric
components are
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⎧
⎨

⎩

g(0)(0) = −1 + 2Mr−1 + O4(r−2)

g(0)(i) = −2
∑3

j,k=1 εi jk S j xkr−3 + O4(r−3)

g(i)( j) = (1 + 2Mr−1)δi j + O4(r−2)

, (2.2.1)

where (S1, S2, S3) form the angular momentum vector and εi jk is the fully anti-
symmetric Levi-Civita symbol with 3 indices. M > 0 is, of course, the ADM
mass. Using the gauge symmetry of the Maxwell-Maxwell equations, we shall
apply a charge conjugation and assume that the space-time carries a total electric
charge q ≥ 0 and no magnetic charge. Then components of the Faraday tensor
read

⎧
⎨

⎩

H(i)(0) = q
r3 xi + O4(r−3)

H(i)( j) = q
Mr3

∑3
k=1 εi jk

(
3

∑3
l=1 Sl xl

r2 xk − Sk
)

+ O4(r−4)
. (2.2.2)

We define the total angular momentum of the space-time to be

a2 := (S1)2 + (S2)2 + (S3)2

M2 , (2.2.3)

and require the non-extremal condition

q2 + a2 < M2 (2.2.4)

to hold.
(SBS) Define E := I−(Mend)∩I+(Mend) to be the domain of outer communications.

We assume that E is globally hyperbolic and

� ∩ I−(Mend) = � ∩ I+(Mend) = 	(R3\ ∪k
i=1 B ′i ) (2.2.5)

where B ′i are balls of radius 1 centered at bi , i.e. they are concentric with the
balls Bi but have twice the radii. Furthermore, we require that

	(∪k
i=1∂ B ′i ) = ∂I−(Mend) ∩ ∂I+(Mend),

in other words, that � passes through the bifurcate spheres of all black holes.
(Physically this suggests that the black holes are “space-like” relative to each
other.) Note that our choice of coordinates in (TOP) implies that the bifurcate
spheres are pairwise at least coordinate-distance 1 apart. We denote by h0

i =
	(∂ B ′i ). Write h+ = ∂I−(Mend) and h− = ∂I+(Mend); let h0 = ∪k

i=1h
0
i , and

denote by h±i the connected component of h± containing h0
i . We shall assume

each h±i is a smooth, embedded, null hypersurface, and require that h+
i and h−i

intersects transversely at h0
i . We remark that the existence of ta ensures that each

h±i is non-expanding by Hawking’s Area Theorem (see, e.g. [CDGH01, Thm.
7.1]), i.e. has vanishing null second fundamental form, and that ta is tangent to
each h±i (see [Won09a, Chap. 2] for a more detailed discussion of these facts).
We assume that the orbits of ta are complete in E and are transverse to E ∩�.
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(KN) Under the asymptotic flatness, we shall fix � and σ by requiring that they as-
ymptotically vanish as r ↗ +∞, and we set μ = M and κ = q in the definition
of Q and B. Fix, once and for all, a coordinate system (x0, x1, x2, x3) in a
tubular neighbourhood of � such that it agrees with the coordinate system at
Mend (perhaps after enlarging R0) and such that the x1, x2, x3 functions when
restricted to � agrees with that induced by 	. We require that the metric g, its
inverse, its Christoffel symbols, the Faraday tensor H and the Killing vector
field ta are uniformly bounded in the coordinates. We then impose the following
smallness assumption along �: for some ε sufficiently small (depending only
on M, q, a, the number R0, and the uniform bound above) we have the bound

∑

0≤α,β,γ,δ≤3

|Q(α)(β)(γ )(δ)| +
∑

0≤α,β≤3

|B(α)(β)|

+
∑

0≤α,β,γ≤3

|∂(γ )B(α)(β)| < ε|P0| (2.2.6)

(recall that P0 is defined by (2.1.11)) where ∂ denotes coordinate derivative, and
(a) denotes coordinate evaluation of the tensor object.

Our main theorem is

Theorem 2.2.7 (Non-existence of multi-black-holes). Under the assumptions (TOP),
(AF), (SBS), and (KN), k (the number of components of the horizon) must equal 1. In
other words, there can only be one black hole.

Remark 2.2.8. Under the above definitions, we can recover the Einstein-vacuum case
directly as a corollary. Note that by a priori setting, in the hypotheses to Theorem 2.2.7,
q = 0 and taking the Faraday tensor Hab ≡ 0, we restrict ourselves to stationary
Einstein-vacuum solutions with only vacuum perturbations.

Remark 2.2.9. We should compare the smallness condition (2.2.6) to that given in
[AIK10a]. The contribution from the electromagnetic field requires us to introduce the
term P0 on the right-hand side. In the pure vacuum case, we see from its definition that
P0 = −μ = −M < 0 and can be absorbed into ε. If we compute P0 using the explicit
Kerr–Newman metric, we see that in the exterior region E , we have that |P0| > M2−q2

(where the minimum is achieved at the “poles” of the bifurcate sphere) and is bounded
away from zero uniformly for subextremal parameters. Hence for bona fide small pertur-
bations (in the sense that we are given a fixed coordinate system and in this coordinate
system the metric g, its inverse, the Killing field t , and the Faraday tensor H are all
uniformly C2 close to that of a background Kerr–Newman solution) the right-hand-side
of (2.2.6) can be replaced by a fixed constant. The factor of P0 is needed to control some
error terms in the case of a hypothetical electro-vacuum space-time that is not a bona
fide small perturbation in the sense above, yet still has suitably small error tensors; see
Proposition 3.2.3 and Lemma 2.3.3.

In addition, (2.2.6) seemingly requires one more derivative compared to the condi-
tion assumed in [AIK10a]. However, observe that in the vacuum case we can choose
κ = 0 and set Bab ≡ 0 automatically. In that case our Qabcd agrees with the vacuum
Mars-Simon tensor, and there is no derivative loss when restricted to the special case.
That matter fields are “one derivative worse” than the metric is a recurring theme in
mathematical relativity, see, in a different context, [Sha11].
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2.3. Algebraic lemmas. In this section we document some algebraic manipulations that
will be useful in the sequel. Note that unless specified, none of the four assumptions
(TOP), (AF), (SBS), and (KN) are used. The identities we derive, of course, will only
hold when both sides of the equal sign are well-defined. Part of the bootstrap in the
proof of the main theorem shall be demonstrating that all the quantities in these identities
remain finite and smooth.

First we note some immediate consequences of Eq. (2.1.3a) that measure the differ-
ences between F̂ , F , and H in terms of B:

2�̄Bab − μF̂ab = P̄0Fab, (2.3.1a)

κF̂ab − Bab = 2 P̄0Hab. (2.3.1b)

Hence

P̄0∇cFab = 2∇c(�̄Bab)− μ∇cF̂ab −∇c P̄0Fab

= 2∇c(�̄Bab)− 2κ∇c�̄Fab − 2μCdcabtd

−2μ(Ricd
egc

f − Ricc
egd

f )Ie f abtd

via the Jacobi equation for the Killing vector field ta (see, e.g. Eq. (C.3.6) of [Wal84]).
Thus

1

2
P̄0∇cF2 = 2Fab∇c(�̄Bab)− 2κF2∇c�̄− 2μQdcabFabtd

+
3P̄0

σ
(F⊗̃F)dcabFabtd − 2μ(Ricdegcf − Riccegd f )Fe f td

= 2Fab∇c(�̄Bab)− 2μQdcabFabtd − 2κF2H̄dctd +
2 P̄0

σ
F2Fdctd

−4[H̄da(Bea − κFea)Fec − H̄ca(Bea − κFea)Fed ]td

= 2Fab∇c(�̄Bab)− 2μQdcabFabtd − 4(H̄daFec − H̄caFed)Beatd

−2κF2H̄dctd +
2 P̄0

σ
F2Fdctd + 2κH̄dcF2td ,

from which we conclude

P̄0σ
4∇c

( F2

4σ 4

)

= Fab
[
∇c(�̄Bab)− μQdcabtd

]
− 2(H̄daFec − H̄caFed)Beatd . (2.3.2)

In other words

Lemma 2.3.3. The quantity P̄0σ
4∇c(F2/4σ 4) is an algebraic error term.

Next we show that

Lemma 2.3.4. The following identities hold:

(
∇ 1

σ

)2

= F2

4σ 4 t2, (2.3.5)

−|κ|2t2 = �(2κ̄V ) + |P0|2 + const., (2.3.6)
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also

− t2 − 1 = 1

μ2
|V − κσ |2 + σ + σ̄ + const., (2.3.6′)

and lastly

�
1

σ
= − F2

2σ 3 (1 + const. + σ̄ )

+
�̄

μσ 2 F · B − 1

μ2

F2

σ 3 V (V − κσ), (2.3.7)

where the constants in (2.3.7) and (2.3.6′) are the same.

Remark 2.3.8. Under the asymptotic flatness assumption (AF), our normalization con-
vention fixes � and σ to vanish at spatial infinity; by definition V also tends to zero,
while P0 tends to −μ. Hence under this assumption, the free constant in (2.3.6) will be
|κ|2 − μ2, and the constants in (2.3.6′) and (2.3.7) will both be 0.

Proof. The first equation (2.3.5) can be directly derived by appealing to the definitions:
noting that∇aσ = Fbata , we obtain (∇σ)2 = 1

4F2t2 by (2.0.4). The second expression
follows from

∇at2 = 2tb�F̂ab = −2�
(

2

κ
P̄0∇a� +

1

κ
∇a V

)
= − 1

κκ̄
∇a |P0|2 + ∇a�(

2

κ
V ).

The computation for (2.3.6′) is slightly less trivial:

∇at2 = 2tb�F̂ab = − 2

μ
� (

2�̄∇a V − P̄0∇aσ
)

= − 2

μ
� (

2�̄∇a(V − κσ) + μ∇aσ
)

= −2�
(

1

μ2 (V − κσ)∇a(V − κσ) + ∇aσ

)
.

And lastly we observe

�
1

σ
= ∇a∇a

1

σ
= −∇a

(
1

σ 2 Fbatb
)

= − 1

σ 2 Fba∇atb +
2

σ 3 FbaFcatbtc

= 1

2σ 2 FbaF̂ba +
1

σ 3 F2t2

= �̄

μσ 2 FbaBba +
F2

2σ 3

(
t2 − 1

μ
σ P̄0

)

= �̄

μσ 2 FbaBba +
F2

2σ 3

(
t2 + σ − 2κσ

μ2 (V − κσ)

)
.



978 W. W.-Y. Wong, P. Yu

Applying (2.3.6′) we see

t2 + σ − 2κσ

μ2 (V − κσ) = t2 + σ +
2

μ2
|V − κσ |2 − 2

μ2 V (V − κσ)

= −
(

1 + const. + σ̄ +
2

μ2 V (V − κσ)

)
.

Combining the expressions we obtain (2.3.7) as claimed. ��
In view of Remark 2.3.8, and recalling the definition (y + i z)−1 = −σ we have the

following expressions

Corollary 2.3.9. Under the asymptotic flatness assumption (AF),

gab∇a y∇bz = t2

2
�e1, (2.3.10a)

(∇ y)2 − (∇z)2 =
y2 + z2 − 2y + |κ|2

μ2

μ2(y2 + z2)
+
|V |2 − 2�(κσ V̄ )

μ4 + t2�e1, (2.3.10b)

�y +
2

μ2

1− y

y2 + z2 = 2�
(

σ(1 + σ̄ )e1 +
1

σ 2 e2 − 8σ�̄e3

)
, (2.3.10c)

�z +
2

μ2

z

y2 + z2 = 2�
(

σ(1 + σ̄ )e1 +
1

σ 2 e2 − 8σ�̄e3

)
, (2.3.10d)

where the terms e1, e2, e3 are given by

e1 = 1

μ2 +
F2

4σ 4 , e2 = 1

μ
�̄F · B, e3 = 1

μ

F2

4σ 4 V ; (2.3.11)

each has the property that its exterior derivative is an algebraic error term up to a
multiplicative factor of σ−4.

The following lemma is a refinement of a proposition first due to Mars in the vacuum
case [Mar99] (see also Lemma 10 in [Won09b] for a version in charged space-times).
In order to capture the exact contributions from the error tensors, we forgo the tetrad
formalisms used by Mars and by the first author in their papers, and instead work directly
and covariantly with the tensors, improving upon the approach taken by Alexakis et al.
[AIK10a]. As a consequence, the proof is lengthy, and we defer its presentation to
Appendix A.

Lemma 2.3.12 (Main lemma). Define the quantity A := μ2(y2 + z2)(∇z)2 + z2, then A
is “almost constant”. More precisely,

∇aA = 4μ2

|σ |2∇
bz�

(
tc

σ 2 P̄0
∇aBcb − μ

σ 2 P̄0
Qdacbtctd

)
+ 2∇az�

(
κ̄ σ̄

μ2σ
V

)

+μ2t2(z∇a y−y∇az)�e1−�
[

2e1μ
2

|σ |2 ∇az

(
σ t2+

i

μ
�(σ̄ 2 P0)

)]

− z∇az

μ2 (|V − κσ |2 − |κσ |2) + �
[

4μ3

|σ |2σ 2 P̄0
∇bz(e5)ab

]

+�
[

4μ

|σ |2σ 2 Fcb�(�̄Ba
c)∇bz − μP0σ̄

σ
�(e1)∇aσ−1

]
, (2.3.13)
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where e5 is defined in (A.4) in the Appendix. Each term on the right hand side either
contains an algebraic error term, or contains a factor of V or e1, whose derivatives are
algebraic error terms.

2.4. Null decomposition. In regions whereF2 �= 0, the Ernst two-form is non-degenerate
and anti-self-dual, and has two distinct, future directed, principal null directions la and
la , which we will normalize to gablalb = −1. So there exists a complex-valued scalar
function f such that

Fab = f
(

lalb − lalb + iεabcdlcld
)

.

Immediately we have F2 = −4 f 2.
We can then decompose ∇a y and ∇az by noting that ∇a(−σ−1) = σ−2Fbatb.

∇a y = ± 1

μ

(
l · tla − l · tla

)
+ �

[
e4

(
l · tla − l · tla + iεbacd tblcld

)]
, (2.4.1a)

∇az = ± 1

μ
εbacd tblcld + �

[
e4

(
l · tla − l · tla + iεbacd tblcld

)]
, (2.4.1b)

e4 =
(

f

σ 2 ∓
1

μ

)
. (2.4.1c)

The ± signs in the above signal two equivalent local definitions. We will always make
use of the one with the smaller |e4|; with this choice, we can estimate e4 by e1. Indeed,
( f/σ 2 − 1/μ)( f/σ 2 + 1/μ) = −F2/4σ 2 − 1/μ2 = −e1. So e4 satisfies an equation of
the form

∣∣e4
∣∣ ∣∣e4 ∓ 2/μ

∣∣ = ∣∣e1
∣∣.

By assumption that |e4| ≤ |e4 ∓ 2/μ| with the appropriate sign, hence we have that
|e4| <

√|e1|. Now, if μ ≥ 1/
√|e1|, we have that |e4| ≤ μ|e1|. On the other hand, if

1
μ
≥ √|e1|, we have that

|e4| ≤ 1

μ
�⇒

∣∣
∣∣e4 ∓ 2

μ

∣∣
∣∣ ≥

1

μ

by the triangle inequality. And so in either case we can conclude

|e4| ≤ μ|e1|. (2.4.2)

This in particular implies that up to an error controlled by e4, the gradient ∇az is space-
like, which will imply, via Lemma 2.3.12, that z is almost bounded.

3. Domain of Definition of the Function y

The first step in the proof of Theorem 2.2.7 is to establish that the function y is well-
defined and smooth to the exterior of the black hole. More precisely, we claim that

Proposition 3.0.1. Under the hypotheses of Theorem 2.2.7, where the constant ε in
assumption (KN) is taken to be appropriately small, the function σ does not vanish on
Ē , the closure of the domain of outer communication. In particular, this implies that y
is smooth on E and extends continuously to Ē .
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We devote the current section to the proof of the above proposition. This proposition
is an analogue of Proposition 3.4 in [AIK10a]. While the basic ideas for the proof via a
“bootstrap” argument from infinity is the same, because of the more complicated forms
of error terms coming from the electromagnetic coupling, we choose to give a different
presentation to make clear the roles played by the various algebraic error terms. In
particular, it is necessary in our analysis that the right-hand side of (2.2.6) contains P0
which could a priori vanish. In the analysis performed in the vacuum case [AIK10a], the
term P0 is automatically a non-zero constant.

As will be indicated in (3.1.1) we have an asymptotic expansion of |σ | ≈ M/r , hence
there is some large radius R∗ (which we fix once and for all) such that the following are
true:

(1) σ does not vanish on �\	 ◦ B(R∗);
(2) for every R > R∗, on the boundary 	 ◦ ∂ B(R), we have that |σ | ≈ M/R ≥ R−2.

For R > R∗, define

r0(R) := inf
{

r ∈ [0, R] : |σ | ≥ R−2 on � ∩	 [B(R)\B(r)]
}

. (3.0.2)

Note that by construction r0(R) < R∗ for all R > R∗. It suffices to show that there
exists R̃ > R∗ such that r0(R̃) = 0. We do so by bootstrap: for R̃ >

√
2R∗ sufficiently

large, we show that on �∩	
[

B(R̃∗)\B(r0(R̃))
]

we have in fact the improved estimate

|σ | ≥ 2R̃−2.

3.1. Asymptotic identities. To show that the bootstrap assumptions are satisfied near
infinity, we observe that by our assumptions (TOP), (which ensures that t = ∂0 in
Mend) and (AF) we can compute the following asymptotic expansions. (We remark
again that below, the parentheses in the indices denote coordinate evaluation in the
coordinates induced by 	 introduced in assumption (TOP).) The inverse metric is given
by

g(0)(0) = −1− 2M

r
+ O4(r

−2),

g(0)(i) = −2
3∑

j,k=1

εi jk
S j xk

r3 + O4(r
−3),

g(i)( j) = δi j − 2M

r
δi j + O4(r

−2).

The Faraday tensor has

H (0)(i) = qxi

r3 + O4(r
−3),

H (i)( j) = q

Mr3

3∑

k=1

εi jk

(
3
∑3

l=1 Sl xl

r2 xk − Sk

)

+ O4(r
−4),
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which implies that the real part of the potential � is O3(1/r) and the imaginary part is
O3(1/r2) (after normalising to vanish at spatial infinity). This means that asymptotically
F is given just by the contribution of F̂ , that is

F(0)( j) = M

r3 x j + O3(r
−3) + i

(
1

r3 S j − 3
∑3

k=1 Sk xk

r5
x j + O3(r

−4)

)

,

F(i)( j) = 1

r3

3∑

k=1

εi jk Sk − 3
∑3

k=1 Sk xk

r5

3∑

m=1

εi jm xm + O3(r
−4)

+i
3∑

k=1

εi jk

(
M

r3 xk + O3(r
−3)

)
.

Now we can compute σ : integrating the expression for F0 j we have that

σ = −M

r
+ O4(r

−2) + i

(∑3
k=1 Sk xk

r3 + O4(r
−3)

)

. (3.1.1)

This means that y + i z = −σ−1 = −σ̄ /|σ |2 has

y = r

M
+ O4(1), (3.1.2a)

z =
∑3

k=1 Sk xk

M2r
+ O4(r

−1). (3.1.2b)

From above, we compute A = M2(y2+z2)(∇z)2+z2 (see Lemma 2.3.12 and assumption
(KN)),

A = |S|2
M4 + O3(r

−1), (3.1.3)

and we remark that M2A converges to a2, the square of total angular momentum (see
assumption (AF)).

We also need to compute F2. The leading order contribution comes from

3∑

j=1

(�F(0)( j))
2g(0)(0)g( j)( j) −

3∑

i, j=1

(�F(i)( j))
2g(i)(i)g( j)( j) ≈ −4M2

r4 .

This implies that

F2

4σ 4 = − 1

M2 + O3(r
−1),

or (see Corollary 2.3.9 and assumption (KN))

e1 = O3(r
−1). (3.1.4)
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3.2. Controlling algebraic errors. Given the behaviour of various quantities at spatial
infinity by the (AF) assumption, we can control the quantities in the interior region by
integrating their derivatives from the asymptotic region. More precisely, we have the
following lemma for scalar functions:

Lemma 3.2.1. Let R0, α be fixed positive reals, and suppose that 0 < δ < R−(α+1)
0 . Let

f be a function defined on R
3 such that

3∑

j=1

|∂ j f | ≤ δ

everywhere and

| f | ≤ Cr−α

on R
3\B(R0). Then for the same C as above,

| f | ≤ (C + π/2) min(δ
α

α+1 , r−α).

Proof. Since R0δ
1

1+α < 1 by assumption, there exists R̄ > R0 such that R̄δ
1

1+α = 1.
To the exterior of B(R̄) we have that | f | ≤ Cr−α . To the interior we have by the
fundamental theorem of calculus

| f (x)| ≤
∣
∣∣∣ f

(
x R̄

|x |
)∣

∣∣∣ +
π

2
(R̄ − |x |) · |∂ f | ≤ C R̄−α +

π

2
R̄δ = (C + π/2)δ

α
α+1 .

The factor of π/2 is due to the fact that the straight-line path between coordinate x and
the exterior of B(R̄) in the radial direction may pass through several black-hole regions.
Modifying the paths so that they remain in � introduces at most a factor of π/2 to the
path length. ��
Remark 3.2.2. The C + π/2 is not sharp; the sharp estimate depends on optimising
π B/2 + C B−α for B. For the purpose of this paper, it suffices that (C + π/2)− C is a
universal constant independent of δ for δ sufficiently small.

Now we are in a situation to prove

Proposition 3.2.3 (Main error estimate). Under the assumptions of the main theorem,
there exists a constant C0 depending only on M, q, a and a constant C1 depending on
the uniform bound on g, g−1, the Christoffel symbols, and H (see assumption (KN))
such that the following estimates are true in �\	 ◦ B(r0(R)) for R > R∗:

e1 ≤ C0 min(C1ε
1/2 R4, r−1),

e2 ≤ C0C1ε,

e3 ≤ C0 min(C1ε
1/2 R4, r−1),

e4 ≤ C0 min(C1ε
1/2 R4, r−1),

e5 ≤ C0C1ε|P0|,
V ≤ C0 min(C1ε

1/2, r−1),∣
∣∣∣A−

( a

M

)2
∣
∣∣∣ ≤ C0 min(C1ε

1/4 R6, r−1).
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Remark 3.2.5. The quantities e1, e2, e3 are defined in Corollary 2.3.9; the definition and
some basic analysis of e4 appears in Sect. 2.4; the error term e5 is defined in (A.4) and
appears in the Main Lemma 2.3.12; and V is the potential associated with B as defined
in Lemma 2.1.10.

Proof. In the following �0,�1 denote that the left hand side is bounded by the right-
hand side up to multiplicative constants C0 and C1 respectively. (The C0, C1 can change
from line to line in the proof.)

For e1, by the defining condition (3.0.2) for r0(R) (upon whose value we will boot-
strap), by Lemma 2.3.3, and by the assumption (KN), we have

|∂e1| �1 εR8,

and the decay condition

|e1| �0 r−1,

which implies by Lemma 3.2.1,

|e1| �0 min(C1ε
1/2 R4, r−1).

This immediately implies the same bound for e4. (See Sect. 2.4.)
For e2, it follows directly from the definition that

|e2| �1
ε

M
.

Similarly, e5 can be directly bounded by |P0|
M2 C1ε.

For V , its derivative is a direct error term, hence |∂V | ≤ C0C1ε. Its decay rate is
C0/r , which implies by Lemma 3.2.1 that

|V | �0 min(C0C1ε
1/2, r−1).

An estimate for e3 can be directly obtained from the estimate for V , if we use the
bootstrap assumption (3.0.2). However, this will lead to a term where R is not paired
against ε, which will cause difficulties for closing the bootstrap argument. Instead, we
estimate it directly from its derivatives: from the product rule we have that

|∂e3| ≤ C0C1 R8ε.

On the other hand, we know that the asymptotic behaviour of e3 can be read-off from
(3.1.4) and that of V , that is asymptotically |e3| �0 r−1. This implies via our technical
lemma again

|e3| �0 min(C0C1 R4ε1/2, r−1).

Lastly we estimate A. From the asymptotic behaviour computed in the previous
section, we have that at the asymptotic end A − (a/M)2 �0 r−1. Its derivative we
estimate using Lemma 2.3.12, where the following points are observed:

• The terms y, z are size σ−1 or R2.
• The terms ∇ y and ∇z are size 1

|σ |2∇σ̄ or C1 R4.

• The term V we (roughly) estimate by C0C1ε
1/2.

• The term e1 we (roughly) estimate by C0C1ε
1/2 R4.
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This gives us

|∇aA| ≤
∣∣∣
∣
4μ2

|σ |2∇
bz�

(
tc

σ 2 P̄0
∇aBcb − μ

σ 2 P̄0
Qdacbtctd

)
+ 2∇az�

(
κ̄ σ̄

μ2σ
V

)

+μ2t2(z∇a y − y∇az)�e1 − �
[

2e1μ
2

|σ |2 ∇az

(
σ t2 +

i

μ
�(σ̄ 2 P0)

)]

− z∇az

μ2 (|V − κσ |2 − |κσ |2) + �
[

4μ3

|σ |2σ 2 P̄0
∇bz(e5)ab

]

+�
[

4μ

|σ |2σ 2 Fcb�(�̄Ba
c)∇bz − μP0σ̄

σ
�(e1)∇aσ−1

] ∣∣
∣∣

≤ C0C1

[
R12ε+ R4ε1/2+ R10ε1/2 + R10ε1/2 + R6ε1/2 + R12ε + R12ε + R8ε1/2

]

≤ C0C1 R12ε1/2,

where we used that ε will be small and R large. Integrating using Lemma 3.2.1 we get
∣∣∣∣A−

( a

M

)2
∣∣∣∣ ≤ C0 min(C1 R6ε1/4, r−1).

��
Applying the above estimates to Corollary 2.3.9, we obtain immediately the following

Corollary 3.2.6. The following almost identities are true:
∣∣∣
∣�y +

2

M2

1− y

y2 + z2

∣∣∣
∣ ≤ C0C1 R4ε1/2, (3.2.7a)

∣∣∣∣∣∣
(∇z)2 −

a2

M2 − z2

M2(y2 + z2)

∣∣∣∣∣∣
≤ C0C1 R6ε1/4, (3.2.7b)

∣
∣∣∣∣∣
(∇ y)2 −

a2

M2 + q2

M2 + y2 − 2y

M2(y2 + z2)

∣
∣∣∣∣∣
≤ C0C1 R6ε1/4. (3.2.7c)

3.3. Closing the bootstrap. To close the bootstrap, that is, to obtain the improved decay
estimate |σ | ≥ 2R̃−2 for sufficiently small ε and sufficiently large R̃ on the domain

ER̃ := �∩	
[

B(R∗)\B(r0(R̃))
]
, it suffices to consider the domain WR̃ := ER̃∩{|σ | ≤

4R̃−2}. Consider first (2.3.6′). By studying the asymptotic limit, we have that the constant
term is 0. On WR̃ then we have

∣∣∣t2 + 1
∣∣∣ ≤ C0 R̃−2 + C0C1ε

1/2.

So for sufficiently large R̃ > 3R∗ (now depending on C0) and sufficiently small ε (now
depending on C0 and C1) we have that t2 < −1/2. In particular the Killing vector field
is time-like. Now using that t (y) = t (z) = 0, we have that ∇ y and ∇z are space-like
in WR̃ .
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Since ER̃ has compact closure, we have that WR̃ has compact closure. Using that

t2 ≤ −1/2 on this set, we have that
∑3

i=1 |∂iσ
−1| ≤ C1

[|(∇z)2| + |(∇ y)2|]. The right-
hand side we bound by Corollary 3.2.6, and the fact that in WR̃ we have the upper bound
(y2 + z2)−1 = |σ |2 ≤ 16R̃−4. This leads to

3∑

i=1

|∂iσ
−1| ≤ C0C1(1 + R̃−4 + R̃6ε1/4), (3.3.1)

so by the fundamental theorem of calculus, integrating from the boundary of WR̃ where
|σ | ≥ 4R̃−2,

|σ−1| ≤ 1

4
R̃2 + C0C1(1 + R̃−4 + R̃6ε1/4)R∗

≤ 1

4
R̃2 + C0C1 R̃ + C0C1 R̃−3 + C0C1 R̃7ε1/4,

where the R∗ denotes the maximum coordinate distance one has to integrate (since
WR̃ ⊆ 	 ◦ B(R∗)). By choosing R̃ sufficiently large, and

ε1/4 � R̃−6, (3.3.2)

we can bound the right-hand side

|σ−1| ≤ 1

2
R̃2 (3.3.3)

as desired.

Remark 3.3.4. The value R̃ > R∗ > R0 is chosen to be sufficiently large relative to the
constants C0 and C1 measuring the sizes of the asymptotic M, q, a and uniform bounds
on the metric etc. The value ε is now required to be sufficiently small relative to C0, C1,
and R̃, which implies that ε only needs to be sufficiently small relative to C0 and C1.
See also assumption (KN).

Remark 3.3.5. After the bootstrap argument above, R̃ should be considered a fixed con-
stant depending on C0 and C1. That is to say, it is understood that the right-hand sides
of the almost identities in Corollary 3.2.6 can be made arbitrarily small by choosing
sufficiently small ε.

4. Proof of the Main Theorem

Now that we know the function y can be smoothly defined on the entirety of our partial
Cauchy surface � and extended smoothly past the horizons h0, we can study the local
behaviour of y near a bifurcate sphere h0

i . We will, in fact, demonstrate that

• y is almost constant on the bifurcate sphere, and
• y increases as we move off the horizon.

One expects that, given that the local deviation of our space-time from the Kerr–Newman
solutions is not too large (as required by assumption (KN); see also Theorem 2.1.5), the

constant which approximates y on the bifurcate sphere is 1
M

(
M +

√
M2 − a2 − q2

)
,

the value taken by y on the corresponding Kerr–Newman black hole. For the Kerr–
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Newman solution, this value is also the largest value of y at which the function y can
attain a critical point; this is captured in Lemma 2.1.12. In the case under consideration
in this paper, we instead use the approximate identities of Corollary 3.2.6 to conclude
that at critical points of the function y, the value of y cannot be too much greater than
its value on the horizon. Together with the above two bullet points and a mountain-pass
lemma, we can derive a conclusion which morally states that y cannot have a critical
point in the domain of outer communications, and hence there must only be one black
hole.

In the sequel we implement the above heuristics in detail.

4.1. Near horizon geometry. We wish to study the behaviour of y near the bifurcate
spheres; without loss of generality we consider a small neighborhood of h0

1 in M (see
Assumption (SBS) for definitions). We begin by establishing a double null foliation of
the neighborhood and briefly recalling some implications of a non-expanding horizon
(for more detailed discussion please see [AIK10a,AIK10b,Won09a]). In the sequel we
will always implicitly work in a small neighborhood of h0

1, whose smallness depends on
M, q, a, and the uniform bounds on the metric, its inverse, the Christoffel symbols, and
the Faraday tensor in Assumption (KN), but independent of the smallness parameter ε.

Along h±1 let L± be future-directed geodesic generators of the respective null hy-
persurfaces. We choose to normalise g(L+, L−) = −1 on h0

1. Along h±1 we define the
functions u∓ by L±(u∓) = 1 and u∓|h0

1
= 0. The level sets of u∓ are topological

spheres, and are space-like surfaces. Extend L∓ to h±1 to be the unique future-directed
null vector orthogonal to the level sets of u∓ and satisfying g(L−, L+) = −1. Now
extend L∓ off h±1 geodesically, and declare L±(u±) = 0. This defines a double-null
foliation u± with associated null vector fields L± in the neighborhood of h0

1.
Along h±1 the null second fundamental form g(∇X L±, Y ) = −g(L±,∇X Y ) (for X, Y

vector fields tangent to h±1 ) vanishes identically due to the horizons being non-expanding
(see, e.g. [Won09a, §2.5]). This implies that F̂ · L± ∝ L± along the horizons:

�F̂(X, L±) = g(∇X t, L±) = 0,

and the imaginary part follows once it is realised that the Hodge dual of L± ∧ X can
be written as L± ∧ Y for some Y also tangent to h±1 . Furthermore, Raychaudhuri’s
equation then guarantees that H ·L± ∝ L± along the horizon, using that Ric(L±, L±) =
(H · L±)a(H̄ · L±)a [Won09a, §2.5]. Together these imply (via the definition (2.1.1))
that L± are in fact the null principal directions of F on h0

1.
Furthermore, observe that since ta is tangent to h±1 which intersect transversely, we

must have ta is tangent to h0
1. This implies that g(L±, t) = 0 along h0

1.

Proposition 4.1.1. For ε sufficiently small, along h0
1,

∣∣
∣∣My −

(
M +

√
M2 − a2 − q2

)∣∣
∣∣ � ε1/4.

Remark 4.1.2. The quadratic polynomial y2 − 2y + a2+q2

M2 plays a recurring role in our
argument. We note that the two roots to the polynomial are

y± = 1

M

(
M ±

√
M2 − a2 − q2

)
.
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That we need to ensure the existence of two distinct roots, one larger than, and one
smaller than 1 is why sub-extremality is assumed in (AF). (Of course, the extremal
Kerr–Newman black holes have very different horizon geometry, and we should not
expect an analysis based on the bifurcate spheres to carry over in that case.)

Remark 4.1.3. The proposition and its proof are largely the same as Lemma 4.1 in
[AIK10a]; we sketch the proof here for completeness.

Proof. Since L± along h0
1 are the null principal directions of F , we can apply the results

of Sect. 2.4. In particular, we have that the orthogonality of L± to the Killing vector
field t on the horizons implies the exact identity (that the following two equations do not
contain error terms is very important in the sequel)

L+(y) = L+(z) = 0 on h+
1, (4.1.4a)

L−(y) = L−(z) = 0 on h−1 . (4.1.4b)

These imply that on h0
1,

∇a y = �
[
ie4εbacd tb(L−)c(L+)d

]
(4.1.5)

is of size ε1/2 by Proposition 3.2.3 and Remark 3.3.5. This implies that (∇ y)2 = O(ε1/4).
So using Corollary 3.2.6 we obtain that along the horizon

a2+q2

M2 + y2 − 2y

M2(y2 + z2)
= O(ε1/4).

By the bootstrap argument, we have that (y2 + z2)−1 is bounded above by a constant
depending only on C0, C1 (see Remark 3.3.5 again), hence we have that on h0

1,

y2 − 2y +
a2 + q2

M2 = O(ε1/4).

Observe further that by (4.1.5), if X, Y are vector fields tangent to h0
1, we have that

X (Y (y)) = � [
i X (e4)ε(t, Y, L−, L+) + ie4 X (ε(t, Y, L−, L+))

]
.

From the definition of e4 in Sect. 2.4, we see immediately that ∇ae4 can be controlled
by e1 and ∇ae1. That is to say, we have that the Hessian of y along h0

1 is also of
order ε1/4.

This gives two possibilities: either |y − y+| � ε1/4 or |y − y−| � ε1/4; it suffices to
eliminate the second alternative. To do so we consider the first inequality in Corollary
3.2.6. Provided ε is sufficiently small (especially compared to

√
M2 − a2 − q2), that

|y− y−| � ε1/4 along h0
1 would imply �y < 0 in a small neighborhood of the bifurcate

sphere. We use this fact to show that y must decrease as we move off the horizon.
Define ỹ by setting ỹ = y along h−1 , and requiring that L+ ỹ = 0. This guarantees

that in a small neighborhood of h0
1, ỹ is bounded by suph0

1
y. Using that the Hessian of

y tangent to h0
1 is also an error term, this implies that |�ỹ| � ε1/4; that is to say, the

main contribution to �y comes from L−(L+ y). Using that y and ỹ agree on h±1 , we
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can write y = ỹ + u+u− ŷ, where ŷ is a smooth function in a small neighborhood of h0
1.

Furthermore, on h0
1 we have that �(y − ỹ) = −2 ŷ, hence along h0

1 we have
∣∣∣
∣∣
ŷ − 1− y

M2(y2− + z2)

∣∣∣
∣∣
� ε1/2,

and in particular for all ε sufficiently small

ŷ|h0
1
≥ 1− y−

2M2(y2 + z2)
> 2Ch > 0.

By continuity, on a sufficiently small neighborhood of h0
1 we have that ŷ ≥ Ch . Now

using that in the domain of outer communications, by construction we have u+u− < 0,
this implies that

y ≤ ỹ + u+u− ŷ ≤ y− + O(ε1/4)− |u+u−|Ch

in the small neighborhood of h0
1. Now consider all points in this neighborhood for which

−u+u− ≥ δ > 0 for some fixed δ. Then for all ε sufficiently small, at these points we
have y < y− − 1

2 Chδ. By the asymptotic behaviour of y (growing to +∞), this implies
that y|�∩E achieves a minimum value that is at most y−− 1

2 Chδ. But this implies (using
that ta is transverse to � ∩ E) that y attains a critical point at a value y− − 1

2 Chδ, which
is impossible for sufficiently small ε by Corollary 3.2.6. This concludes the proof that
y must be close to y+ on the horizon. ��
Remark 4.1.6. The same argument in the contradiction step of the proof can be used to
show that, given y is close to y+ on the horizon, there exists some topological sphere
in � ∩ E that encloses h0

1 and some δ > 0 (δ depends on M, q, a, and the uniform
bounds on the metric, its inverse, its Christoffel symbols, and the Faraday tensor) such
that restrict to that sphere y > y+ + 2δ > suph0

1
y + δ provided ε is sufficiently small.

In particular, we define ŷ as above. But now using that y ≈ y+ on the horizon we
have that for all ε sufficiently small,

ŷ|h0
1
≤ 1− y+

2M2(y2
+ + z2)

< −2Ch < 0,

which allows us to conclude that

y ≥ ỹ + u+u− ŷ ≥ y+ − O(ε1/4) + |u+u−|Ch .

Choosing 2δ sufficiently small to be attained by |u+u−|Ch , then choosing ε even smaller
we get that y would increase to at least y+ + δ off the horizon.

4.2. Concluding the proof. Having established our technical results about the behaviour
of y near the horizon sphereh0

1 (and hence by symmetry for anyh0
i ), we conclude our main

theorem by appealing to a finite dimensional mountain pass lemma (see Appendix B).

Proof of Theorem 2.2.7. Assume, for contradiction, that there are at least two black
holes. By Proposition 4.1.1 and Remark 4.1.6 we know that for sufficiently small ε, we
can find δ > 0 such that y|h0 < y+ + δ and there exists a topological sphere S ⊂ � ∩ E
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(using that we have a lower bound on the coordinate-distance between h0
1 and h0

2; see
(TOP)) such that h0

1 and h0
2 are in disjoint subsets of �\S and such that y|S > y+ + 2δ.

By the asymptotic growth of y we know that y satisfies the Palais-Smale condition. So
applying Lemma B.1 to the function y on the manifold (� ∩ E)∪ h0, y attains a critical
point in �∩E , where the value of y is at least y+ +2δ. Using that ta is transverse to �∩E ,
again we have that ∇ y = 0 there. For sufficiently small ε this leads to a contradiction
with Corollary 3.2.6 together with Remark 4.1.2. ��

Acknowledgements. The authors would like to thank Piotr Chruściel for his cogent comments on the manu-
script, as well as the two anonymous referees for their suggestions.

Appendix A. Proof of the Main Lemma

In this appendix we shall give the proof of Lemma 2.3.12, which claims that A =
μ2(y2 + z2)(∇z)2 + z2 is “almost constant”. We start directly with the definition

∇aA = 2μ2(y∇a y + z∇az)(∇z)2 + 2z∇az + 2μ2(y2 + z2)∇bz∇a∇bz. (A.1)

The focus will be on the third term in the expansion, which contains the Hessian of z.
Therefore we compute ∇2

a,bσ
−1:

∇a∇bσ
−1 = −∇a(σ−2∇bσ) = 2σ∇aσ−1∇bσ

−1 − σ−2∇a∇bσ.

Next use

∇a∇bσ = ∇aFcbtc

= Fcb∇atc +
tc

P̄0

(
2∇a(�̄Bcb)− 2κ∇a�̄Fcb

)

−2μtctd

P̄0

(
Cdacb +

(
Ricd

ega
f − Rica

egd
f
)

Ie f cb

)
.

We can expand I by the definition, use Einstein’s equation (2.0.1a) to replace the Ricci
tensor, and use the definitions (2.1.3a) and (2.1.3b) to obtain that

∇a∇bσ − 2tc

P̄0
�̄∇aBcb +

2μ

P̄0
Qdacbtctd

= 1

2
FcbF̂a

c +
1

2
Fcb

¯̂Fa
c +

4μ

P̄0
∇a�̄∇b� +

3

σ
(F⊗̃F)dacbtd tc

−2μtctd

P̄0

(
HdlH̄c

l gab −HdlH̄b
l gac −HalH̄c

l gdb + HalH̄b
l gcd

)

−2μtctd

P̄0

(
iH̄elεeacbHdl − iHelεedcbHal

)
.

For the terms in the last line, we can use the identity for self-dual two-forms

iX̄ khεwyzk = gh
wX̄yz + gh

y X̄zw + gh
z X̄wy (A.2)
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which gives

−2μtctd

P̄0

(
iH̄elεeacbHdl − iHelεedcbHal

)

= −2μtctd

P̄0

(HacH̄bd − 2HdaH̄cb −HdbH̄ac −HdcH̄ba + HabH̄dc
)
,

where by (anti)symmetry, after the contraction against tctd , the last two terms in the
parenthesis evaluate to zero. Hence we can simplify

∇a∇bσ − 2tc

P̄0
�̄∇aBcb +

2μ

P̄0
Qdacbtctd

= 1

2
FcbF̂a

c +
1

2
Fcb

¯̂Fa
c +

4μ

P̄0
∇a�̄∇b� +

3

σ
(F⊗̃F)dacbtd tc

−2μ

P̄0

(
∇� · ∇�̄gab + HalH̄b

l t2 − ∇l�H̄bl ta −∇l�̄Hal tb
)

−2μ

P̄0

(∇b�∇a�̄−∇a�∇b�̄
)
.

In the following we will also group terms proportional to tb on the left-hand-side of the
expression, since in (A.1), the ∇a∇bz term is multiplied against ∇bz, and we have that
tb∇bz = 0 by our assumption that t is a symmetry.

Directly expanding the terms

(F⊗̃F)dacbtctd = FdaFcbtctd − 1

3
IdacbF2td tc

= σ 4∇aσ−1∇bσ
−1 − 1

12
F2t2gab +

1

12
F2tatb,

we arrive at

∇a∇bσ
−1 +

2tc

σ 2 P̄0
∇aBcb − 2μ

σ 2 P̄0
Qdacbtctd +

1

4σ 3 F2tatb +
2μ

σ 2 P̄0
∇l�̄Hal tb

= −σ∇aσ−1∇bσ
−1 +

1

4σ 3 F2t2gab − 1

2σ 2 Fcb

(
F̂a

c + ¯̂Fa
c
)

− 2μ

σ 2 P̄0

(
∇a�∇b�̄+∇b�∇a�̄−∇� · ∇�̄gab +∇l�H̄bl ta−HalH̄b

l t2
)
. (A.3)

To apply to (A.1), we next multiply (A.3) by ∇bz = −�∇bσ−1. We first consider
the terms on the last line, where the expression inside the parenthesis is real-valued. So
we can consider multiplication by ∇σ−1 instead of by ∇z. Observe that

∇a�∇b�̄ + ∇b�∇a�̄−∇� · ∇�̄gab + ∇l�H̄bl ta −HalH̄b
l t2

= Hpr H̄qs tmtn · (gapgbq grm gsn + gbpgaq grm gsn

−gpq gabgrm gsn − gapgbq gmngrs − gbq grs gangpm)

since the last two terms in the parenthesis has a grs product, we can apply (2.0.3) to
swap the p and q indices
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= Hpr H̄qs tmtn · (gapgbq grm gsn + gbpgaq grm gsn

−gpq gabgrm gsn − gaq gbpgmngrs − gbpgrs gangqm)

=
(

κκ̄

4μ2 F pr F̄qs − κκ̄

4μ2 F pr F̄qs + Hpr H̄qs
)

tmtn · (gapgbq grm gsn

+gbpgaq grm gsn − gpq gabgrm gsn − gaq gbpgmngrs − gbpgrs gangqm).

Inside the first parenthesis, we have that − κκ̄
4μ2 F pr F̄qs + Hpr H̄qs is an error term by

using (2.1.3a). So we define the algebraic error term,

(e5)ab =
(

Hpr H̄qs − κκ̄

4μ2 F pr F̄qs
)

tmtn · (gapgbq grm gsn

+gbpgaq grm gsn − gpq gabgrm gsn − gaq gbpgmngrs − gbpgrs gangqm). (A.4)

We next consider the left-over term given byF pr F̄qs . Using that∇bσ
−1 = σ−2Fubtu ,

we consider

F pr F̄qsFbututmtn(gapgbq grm gsn + gbpgaq grm gsn − gpq gabgrm gsn

−gaq gbpgmngrs − gbpgrs gangqm).

The first and the third terms inside the parenthesis cancel each other. We can use product
property (2.0.4) with gbp to obtain

1

4
F2tr tmtnF̄qs(gaq grm gsn − gaq gmngrs − grs gangqm).

The first two terms cancel each other, and the third vanishes as F̄ is antisymmetric. From
this we conclude that

∇bz
(
∇a�∇b�̄ + ∇b�∇a�̄− ∇� · ∇�̄gab + ∇l�H̄bl ta −HalH̄b

l t2
)
= ∇bz(e5)ab

is essentially an algebraic error term.
Next we consider the third term on the right-hand side of (A.3). We can replace F̂

by F using (2.3.1a), and have

Fcb�F̂a
c = 1

μ
Fbc�(P̄0Fa

c) + (e6)ab,

where

(e6)ab = 2

μ
Fcb�(�̄Ba

c).

Now

FbcFa
c = 1

4
F2gab,
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and using that FbcF̄a
c is real valued, we have

FbcF̄a
c∇bz = �σ−2FbcF̄a

cFdbtd

= −1

4
�σ−2F2F̄actc

= −1

4
|σ |4�

(
σ−4F2∇a σ̄−1

)

= 1

4
|σ |4�(σ−4F2)∇a y − 1

4
|σ |4�(σ−4F2)∇az;

here we can use (2.3.5) and get

= |σ |4
t2 �(∇σ−1)2(∇a y + i∇az)− |σ |4

4
σ−4F2∇az,

so we get, using (2.3.10a) from Corollary 2.3.9,

− 1

σ 2∇bzFcb�F̂a
c = − 1

σ 2 (e6)ab∇bz − P̄0

8μσ 2 F2∇az

+
P0σ̄

2

2μ
�(e1)∇aσ−1 +

P0σ̄
2

8μσ 4 F2∇az

= F2

4μσ 4 i�
(
σ̄ 2 P0

)
∇az − 1

σ 2 (e6)ab∇bz +
P0σ̄

2

2μ
�(e1)∇aσ−1.

Next, we can consider adding in the second term on the right-hand side of (A.3), and
expanding P0 = κ̄

μ
(V − κσ)− μ from the definition,

1

4σ 3 F2t2∇az +
1

4μσ 4 F2i�
(
σ̄ 2 P0

)
∇az

= (e1 − μ−2)∇az

[
σ t2 +

i

μ
�

(
κ̄

μ
V σ̄ 2 − |κσ |2

μ
σ̄ − μσ̄ 2

)]
,

where e1 is as defined in Corollary 2.3.9,

= (e1 − μ−2)|σ |2∇az

[
σ̄−1t2 +

i

μ
�

(
κ̄

μ

σ̄

σ
V − |κσ |2

μ
σ−1 − μ

σ̄

σ

)]
.

Noting that V is controllable by Lemma 2.1.10, and using (2.3.6′) to replace t2, we have

σ̄−1t2 +
i

μ
�

(
κ̄

μ

σ̄

σ
V − |κσ |2

μ
σ−1 − μ

σ̄

σ

)

= (y − i z)

(
1

μ2 |V − κσ |2 + σ + σ̄ + 1

)

+i�
(

κ̄ σ̄

μ2σ
V

)
+

i z

μ2 |κσ 2| − i�
(

(y + i z)2

y2 + z2

)

= y

(
1

μ2 |V − κσ |2 + σ + σ̄ + 1

)
+ i�

(
κ̄ σ̄

μ2σ
V

)

−i z − i z

μ2

(
|V − κσ |2 − |κσ |2

)
− i z

(−2y)

y2 + z2 − i
2yz

y2 + z2 .
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The first term is purely real: recalling that for our purpose we are interested in the
imaginary part of this expression, its contribution will appear with a factor of e1. The
second and fourth terms are controlled by Lemma 2.1.10; the last two terms cancel.
So essentially we are only left with the third term, −i z. In other words, up to some
controllable errors, the imaginary part of the sum of the second and third terms on the
right-hand side of (A.3) contributes μ−2z|σ |2∇az, which corresponds precisely to the
second term on the right-hand side of (A.1).

Lastly, we deal with the first term on the right-hand side of (A.3). We directly compute
that

−σ∇aσ−1∇bσ
−1∇bz = |σ |2(y∇a y + z∇az − i z∇a y + iy∇az)(∇b y∇bz + i(∇z)2)

= |σ |2i(y∇a y + z∇az)(∇z)2

−|σ |2i(z∇a y − y∇az)
t2

2
�e1 + real-valued terms.

The first of the terms corresponds to the first term on the right-hand side of (A.1), and
the second term gives the error.

So, collecting everything into one expression, we have that

∇aA = 4μ2

|σ |2∇
bz�

(
tc

σ 2 P̄0
∇aBcb − μ

σ 2 P̄0
Qdacbtctd

)
+ 2∇az�

(
κ̄ σ̄

μ2σ
V

)

+μ2t2(z∇a y−y∇az)�e1−�
[

2e1μ
2

|σ |2 ∇az

(
σ t2+

i

μ
�(σ̄ 2 P0)

)]

− z∇az

μ2 (|V − κσ |2 − |κσ |2) + �
[

4μ3

|σ |2σ 2 P̄0
∇bz(e5)ab

]

+�
[

4μ

|σ |2σ 2 Fcb�(�̄Ba
c)∇bz − μP0σ̄

σ
�(e1)∇aσ−1

]
. (A.5)

Appendix B. A Mountain Pass Lemma

The mountain pass theorem is perhaps most well known for its application in calculus
of variations in the form given by Ambrosetti and Rabinowitz [AR73]; but a finite
dimensional version goes back at least to Courant in 1950 [Cou77]. Here we give (for
not being able to find the exact statement needed elsewhere) a version that is similar
in statement to Katriel’s topological mountain pass theorem [Kat94] but with a proof
following Jabri [Jab03, Chap. 5] and Nicolaescu [Nic07, Chap. 2].

Lemma B.1. Let S̄ denote a (possibly non-compact) finite dimensional connected smooth
paracompact manifold with boundary, with S its interior and ∂S the (possibly empty)
boundary. Suppose we are given f ∈ C∞(S, R) ∩ C0(S̄, R) such that f −1((−∞, a])
is compact for any a ∈ R (the Palais-Smale condition). Suppose further that there exist
two real values s− < s+ and a closed subset C � S such that

• f |∂S ≤ s−;
• f |C ≥ s+;
• C separates S̄ with at least two of the connected components intersecting { f ≤ s−}.
Then f attains a critical point in S where the critical value is at least s+.
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Proof. Let S1, S2 be two components of { f ≤ s−} separated by C (in the sense that
every connected set containing both S1 and S2 must intersect C ; the pair is guaranteed
to exist by assumption). Consider the collection � of compact, connected subsets of S̄
that contains S1 ∪ S2. Let m : � → R be defined by m(T ) = supT f . Let (Tn) be
a minimising sequence for m on �. Observe that since each Tn ∩ C �= ∅ necessarily
m(Tn) ≥ s+. Noting that ∪∞j=k Tj ⊂ { f ≤ m(Tk)} is a closed subset of a compact set,

the limiting set T∞ = ∩∞k=1∪∞j=k Tj is compact as the intersection of a decreasing family
of compact sets, and we have that

s+ ≤ m(T∞) ≤ m(T ) ∀T ∈ �.

Let W = {x ∈ T∞ : f (x) = m(T∞)}; we show that W contains a critical point using
gradient flow: fix, once and for all, a smooth Riemannian metric g on S. Then as W is
compact, |d f |g attains a minimum α on W . If α = 0 we are done. Suppose α �= 0, let η be
a non-negative bump function supported inside {2m(T∞) > f > (s+ + s−)/2, |d f |g >

α/2} with η|W = 1. Then under the flow of−η∇ f , T∞ is mapped to another connected
compact subset T ′ of S̄. Since −η∇ f vanishes on S1, S2, the set T ′ ∈ �. But since
−η|∇ f |2g ≤ 0 and−η|∇ f |2g|W ≤ −α2 < 0, we have that the flow strictly decreases m,
that is m(T ′) < f (W ) = m(T∞), which leads to a contradiction. ��
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