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ABSTRACT

Color image sensors use color filter arrays (CFA) to capture infor-
mation at each sensor pixel position and require color demosaicing
to reconstruct full color images. The quality of the demosaicked im-
age is hindered by the sensor characteristics during the acquisition
process. In this work, we propose a bandelet-based demosaicing
method for color images. To this end, we have used a spatial mul-
tiplexing model of color in order to obtain the luminance and the
chrominance components of the acquired image. Then, a luminance
filter is used to reconstruct the luminance component. Thereafter,
based on the concept of maximal gradient of multivalued images, we
propose an extension of the bandelet representation for the case of
multivalued images. Finally, demosaicing is performed by merging
the luminance and each of the chrominance component in the mul-
tivalued bandelet transform domain. The experimental evaluation
of the proposed scheme shows beneficial performance over existing
demosaicing approaches.

Index Terms— Demosaicing, bandelet transform, CFA

1. INTRODUCTION

Fig. 1. Original ’lighthouse’ image (left) and one color per pixel
image according to the Bayer CFA (right)

As a result of the use of a color filter array (CFA), each pixel
in the image has only one color component associated with it. The
missing RGB values are calculated based on the neighboring pixels
values by an operation called demosaicing. Demosaicing is essen-
tially a form of interpolation which is carried out by combining the
color values of pixels selected within a window around the missing
value.
In general, demosaicing methods can be categorized in two groups:
the first one includes the well known interpolation techniques such
as nearest neighborhood, bilinear and bi-cubic interpolation while
the second one regroups the methods based on inter and in-channel
correlations interpolations such as the edge directed interpolation. A

good overview of the demosaicing techniques can be found in [1]
and [2]. Some demosaicing algorithms make use of an edge detec-
tion technique to locate the image singularities, and then perform
an edge-oriented directional interpolation in order to avoid interpo-
lation across edges [3] [1]. Other edge-directed techniques [4] esti-
mate edges by analyzing the variance of the color differences.
Alternative methods perform separate interpolation along horizontal
and vertical directions, respectively, and then, either the best recon-
struction is chosen [5], [6] or a fusion of both of them is performed
[7]. A number of demosaicing techniques exploit the correlation be-
tween the frequency components of the three color channels in order
to estimate the missing data [8], [9]. An alternative approach con-
sists in filtering the luminance component from the sampled color
values. Then, the estimated luminance is used to reconstruct the full
color image [10], [11].
This paper presents a bandelet-based scheme for the demosaicing of
CFA images. The reader can refer to [12] for a full detailed descrip-
tion of the Bandelet transform. First, luminance and chrominance
components of the CFA image are obtained by using the model pro-
posed in [10]. Then, the luminance is interpolated and the Bandelet
transform is computed. Consequently, the luminance component is
segmented into a quadtree where each dyadic square regroups pixels
sharing the same geometric flow direction. This geometric flow is as-
sumed to be the same for the chromatic components. Thereafter, we
propose an extension of the bandelet transform to the multispectral
images. Demosaicing is accomplished by merging the luminance
with each chrominance component. That is, for the three chromi-
nance components, a multispectral image of two channels is formed
(the first channel is the luminance while the second is the chromi-
nance). The multispectral bandelet representation of the resulting
image is computed. Then the inverse bandelet transform is com-
puted to reconstruct the color image.
The remainder of the paper is organized as follows. Section 2 re-
views the bandelet transform and proposes an extension to multi-
spectral images. Section 3 is dedicated to the description of the pro-
posed demosaicing algorithm. The experimental results are given in
section 4. Finally, this papers ends with some conclusions.

2. MULTISPECTRAL BANDELET REPRESENTATION

In this section, we present an extension of the bandelet transform to
the case of multispectral images. The resulting multispectral repre-
sentation will be used to merge the luminance component with each
chrominance band in order to reconstruct the full color image. This
step will be explained in the next subsection. The extension that we
propose is based on the concept of the multispectral gradient defined
in [13] where a first fundamental form (quadratic form) is defined
for each image point. It is to be noted that the multispectral bandelet
representation proposed here is not a transform, i.e. it does not allow
for reconstructing the original multivalued image. It is merely a way
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Fig. 2. (a) Lighthouse image, (b) Quadtree segmentation, (c) Mul-
tispectral bandelet representation, (d) Inverse multispectral bandelet
representation

of representing combined information from different bands and this
is why we refer to it by ”representation”. We start by an overview
on the quadrature form, then we present the multispectral bandelet
representation.

2.1. Quadrature form

In [13], Silvano di Zenzo proposed a method for computing the gra-
dients in multivalued images. This approach can be summarized as
follows.
Let I (x): R2 → Rm be an m-band image with components for
Ii (x) : R2 → R for i = 1, 2, 3, .....,m (m = 3 for color im-
ages). Hence, at a given image location the image value is a vector
in Rm. Considering an infinite small displacement, the difference at
two nearby points is the differential dI and its squared norm is given
by:

‖dI‖2 = dIT dI

= (Ixdx+ Iydy)
T (Ixdx+ Iydy)

= ‖Ix‖2 dx2 + 2ITx Iydxdy + ‖Iy‖2 dy2
= dXTGdX

(1)
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and dX =

(
dx
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)
.

The extrema of the quadratic form are obtained in the direction
of the eigenvectors of the matrix G and the values at these loca-

tions correspond with its eigenvalues λ+ and λ−. The eigenvectors
provide the direction of maximal and minimal changes at a given
point in the image, and the eigenvalues are the corresponding rates
of change.
Let v+ and v− be the eigenvectors corresponding to λ+ and λ− re-
spectively. For a greylevel image (m = 1), it can be easily verified
that the largest eigenvalues λ+ = ‖dI‖2 and λ− = 0. Therefore,

‖dI (X)‖ =
√
λ+v+ (X) (3)

For a multispectral image, the second eigenvalue is different
from zero. The first eigenvalue denotes the maximum square length
of the vector dI while the corresponding eigenvectors lies in the di-
rection of the maximal length. The second eigenvector lies in the
orthogonal direction. Since λ− is small when compared to λ+, we
define
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( √
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1
+√

λ+v
2
+

)
(4)

where v1+ and v2+ are the x and y-components of the vector v+.
Equation (4) will be used to merge the bandelet transform of the dif-
ferent image bands in order to obtain a single image representation.
This step is explained in the next subsection.

2.2. Multispectral Bandelet representation

In [14], Maalouf et al. proposed a multiscale bandelet-based ex-
tension of the structure tensor (2). They showed that a better edge
preserving can be obtained by substituting the horizontal and ver-
tical derivatives by the directional derivative with respect to the
direction of the geometric flow of the bandelet transform. Their
multiscale multistructure tensor is defined for an m-valued image in
the bandelet domain by:
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for i = 1, 2, .....m
(5)

The angle θi represents the angle of the optimal direction of the
geometrical flow. j is the scale of the 2D wavelet transform. Bj

i,q is
the corresponding bandelet coefficient at the square number q. The
squares in the quadtree are numbered from top to bottom and from
left to right.
In the following, we will use the structure tensor defined by equation
(5) to merge the bandelet coefficients of the multiple image channels
into one bandelet representation.
To this end, we first compute the bandelet transform of each color
channel Ii. Then, the structure tensor (5) is computed and the ap-
proximation defined by (4) is used.
Since we are seeking a unique representation we have to find a
”single-channel” representation fg having geometric structures as
close as possible to the one dimensional representation of the multi-
band gradient (5). We can state that we wish to minimize:

min
fg

∫ ∫ ∥∥∥Gj
B −∇fg

∥∥∥2 dxdy (6)

Equation(6) can be solved using Jacobi iteration, with homogeneous
Neumann boundary conditions to ensure zero derivative at the image



boundaries. The iteration steps are expressed as:
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where
∥∥Gj

B (x, y)
∥∥ is the norm of the vector defined in (4) for the

structure tensor (5) at the point (x, y).
Finally, we obtain a single bandelet representation for the m com-
ponents of the multispectral image. Fig. 2 shows an example of
the multispectral bandelet representation for a color image and the
inverse bandelet transform of the obtained representation.

3. PROPOSED DEMOSAICING TECHNIQUE

In this section, we present the proposed demosaicing technique
using the multispectral bandelet representation described in the
previous section. Let I (x, y) = [R (x, y) , G (x, y) , B (x, y)]
be the original color image of the scene and ICFA (x, y) =
[RS (x, y) , GS (x, y) , BS (x, y)] the CFA image. RS , GS and
BS are the subsampled color components. In [10], the relation-
ship between the subsampled component and the original color
components for the Bayer CFA is defined by:

RS (x, y) = 1
4
R (x, y) (1− cosπx) (1 + cosπy)

GS (x, y) = 1
2
G (x, y) (1− cosπx cosπy)

BS (x, y) = 1
4
B (x, y) (1 + cosπx) (1− cosπy)

(8)

Therefore ICFA can be expressed as:

ICFA (x, y) = 1
4
[R (x, y) + 2G (x, y) +B (x, y)]

+ 1
4
[B (x, y)−R (x, y)] (cosπx− cosπy)

+ 1
4
[−R (x, y) + 2G(x, y)−B(x, y)] (cosπx cosπy)

(9)
The multiplexed Bayer CFA image ICFA can be interpreted in

the frequency domain as a luminance component at baseband and
two chrominance components modulated to a higher frequency [10].
Let L(x, y) the luminance component, and IC1 [x, y] and IC2 [x, y]
the two chroma components we get:

ICFA [x, y] = L [x, y] + IC1 [x, y] (−1)
x+y

+IC2 [x, y] ((−1)
x − (−1)y) (10)
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In order to extract the luminance L we have used the filter pro-
posed in [10]. Once we have obtained the luminance component, a
bandelet decomposition is applied to obtain the quadtree segmenta-
tionQTL and the bandelet transformLB of the Luminance. The sec-
ond step consists of computing the chrominance signal by subtract-
ing the luminance from the multiplexed signal. Then, the chromi-
nance signal is demultiplexed by using the modulation functions pro-
posed in [10]. Consequently, we obtain the three opponent chromatic
sub-sampled signals [CR, CG, CB ].
Thereafter, three 2-valued images are formed by taking the lumi-
nance as a first channel and each of the chrominance components as
a second channel. Then, for each 2-valued image, the multispectral
bandelet representation presented above is computed. Here we used

the quadtree QTL of the luminance. We obtain three bandelet repre-
sentations for each 2-valued image. Finally, the three RGB compo-
nents are obtained by applying the inverse bandelet transform of the
three representations.

4. EXPERIMENTAL RESULTS

We evaluate our demosaicing algorithm on a set of five images partly
coming from state of the art database such as Lena (512 × 512),
Lighthouse (512 × 768), Iris (512 × 512), Caster (512 × 512) and
Haifa (512× 512). These images have been chosen because of their
content and their availability for comparisons. Fig. 3 shows an ex-
ample of applying our demosaicing approach on an image.

-a- -b-

-c- -d-

Fig. 3. a- Original ’lighthouse’ image, b- One color per pixel im-
age according to the Bayer CFA, c- Demosaiced image using our
bandelet-based approach, d- Cropped image of the reconstructed
color ”lighthouse” image

First we evaluate our demosaicing algorithm and compare with
the state-of-the-art techniques. Each image of the selected set is
sampled according to Bayer CFA pattern. The full color representa-
tions of the color images are then reconstructed using the proposed
method as well as the methods proposed in [6], [15] and [16]. The
reconstructed images obtained by using the different methods are
shown, for lighthouse, in figure 4. From these results, we can see
that the proposed method achieved good quality reconstructed im-
ages with no zippering artifact.

In order to evaluate the quality of the reconstructed images, we
have used two objective metrics: the color PSNR (CPSNR) and the
Multiscale Structural Similarity Index (MS-SSIM) [17] metric. The
MS-SSIM metric follows a top-down design by trying to model the
physical properties of the human visual system. The MS-SSIM first
decomposes images into several scales and then measures contrast
and structure in each scale. In addition, the luminance of the lowest
scale is also measured. Finally, all the data is pooled into a sin-
gle score. MS-SSIM has the advantage that it is computationally



-a- -b-

-c- -d-

Fig. 4. Reconstructed images using : a- method proposed in [16], b-
method proposed in [15], c- method proposed in [6], d- our method.

tractable while still providing reasonable correlations to subjective
measurements [17]. The CPSNR and MS-SSIM scores are shown
in table 1 from which we can see that our method achieved better
scores than the state-of-the-art techniques.

5. CONCLUSION

In this work, we proposed a new demosaicing approach for color
images. The proposed method makes use of a bandelet-based mul-
tispectral representation to represent the multivalued information
of the luminance-chrominance images obtained by using the model
proposed in [10]. The reconstructed image is obtained by taking
the inverse bandelet transform of the proposed multispectral rep-
resentation. The experimental results showed that the proposed
demosaicing approach provides good results by preserving image
details in comparison to literature.

Table 1. CPSNR and MS-SSIM (−20Log(1−MS-SSIM)) scores in
dB

CPSNR Lena Lighthouse Iris Caster Haifa
Our method 78.52 63.84 81.03 77.78 88.63
Method [6] 78.05 62.98 80.31 75.24 87.21
Method [15] 76.31 60.24 78.41 74.97 88.04
Method [16] 77.21 61.06 78.65 74.96 87.81

MS-SSIM Lena Lighthouse Iris Caster Haifa
Our method 81.23 75.36 85.34 80.31 91.06
Method [6] 80.14 74.10 83.24 78.52 89.87
Method [15] 77.63 72.34 81.62 77.32 88.06
Method [16] 78.35 73.64 82.06 77.98 88.50
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