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Abstract

This master thesis describes the development in the framework of Fluid-
Structure Interaction (FSI) problems of an e�cient and �exible technique treat-
ing the �uid-structure interface and mesh motion problems. The main idea is to
build, through a new hierarchical approach, a tool with accurate identi�cation
capabilities for both the structural rigid movement (translation/rotation) and the
elastic deformation (displacement), with the possibility of facing arbitrary struc-
tural and �uid discretization schemes.
Starting from a review of the state of the art methods, used for these appli-
cations, the di�erent shape representation techniques applied, like Free Form
Deformation (FFD), Radial Basis Function (RBF) and Inverse Distance Weight-
ing (IDW) are introduced and then compared to test their performances in terms
of computational costs and achievable mesh quality. Then, in order to reduce the
complexity of the geometrical model and its description, ad hoc innovative opti-
mization techniques, like a selective approach of the RBF interpolation sites as
well as a domain-decomposition approach for FFD, are presented showing clear
reductions in term of computational costs. Some applications and test-cases,
solved by using an open-source Finite Element library (LifeV), dealing with un-
steady viscous (internal and external) �ows, characterized by di�erent Reynolds
number, are shown to highlight the quality and the accuracy of the methods and
their stability. For the implementation of the schemes developed, an e�cient
C++ object oriented code language was used, relying also on Trilinos packages.

Keywords: �uid-structure interaction, mesh motion, non-conformal meshes,
shape parametrization, computational e�ciency, shape registration, surface move-
ments, free-form deformations, radial basis functions, inverse distance weighting.
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Sommario

Gli obiettivi di questa tesi consistono nell'analisi e nello sviluppo, nell'ambito
di problemi di interazione �uido-struttura, di uno strumento accurato e versatile
per un'e�ciente soluzione delle problematiche legate all'interfaccia tra la griglia
rappresentante il dominio �uido e quella rappresentante la struttura, tenendo
conto del loro movimento durante il processo di simulazione. Le motivazioni
di questo lavoro risiedono nel fatto che in questa tipologia di problemi le di�-
coltà associate all'interazione tra due diversi domini �sici nascono sia dall'utilizzo
di griglie non conformi all'interfaccia, sia dall'esigenza di mantenere una buona
qualità delle griglie a seguito della loro interazione �sica. Pertanto, alla luce di
tali considerazioni, si mostrano le motivazioni seguite per lo sviluppo di questa
metodologia, attraverso un approccio di tipo gerarchico, volto da un lato a poter
interfacciare domini descritti da schemi di analisi indipendenti con discretiz-
zazioni arbitrarie, dall'altro alla possibilità di poter descrivere sia movimenti rigidi
(traslazioni e rotazioni), sia deformazioni elastiche (spostamenti).
A seguito dell'analisi dello stato dell'arte di alcuni degli schemi utilizzati in questo
ambito, con l'obiettivo di metterne in evidenza punti di forza e criticità, vengono
introdotte le diverse tecniche di rappresentazione geometrica utilizzate, tra cui
Free-Form Deformations (FFD), Radial Basis Functions (RBF) ed Inverse Dis-
tance Weighting (IDW), e confrontate in termini di valutazione dei costi com-
putazionali, prestazioni e qualità ottenibile delle griglie. Successivamente, per
ridurre la complessità ed il numero di parametri legati alle rappresentazioni geo-
metriche adottate (per FFD ed RBF), vengono proposte delle tecniche di ottimiz-
zazione sviluppate ad hoc (basate su domain-decomposition e selezione adattiva
dei punti di controllo) che permettono, inoltre, ai �ni dell'analisi, di ottenere una
diminuzione dei tempi di calcolo.
Mediante l'utilizzo di una libreria ad Elementi Finiti disponibile in �uidodinamica
computazionale (LifeV), vengono in�ne analizzati diversi casi test, basati su prob-
lemi non stazionari di �ussi viscosi (interni ed esterni) caratterizzati da diversi
numeri di Reynolds, volti ad evidenziare l'accuratezza, l'e�cienza e la versatilità
degli schemi di calcolo proposti. Per quanto concerne la parte implementativa
è stata realizzata una libreria di supporto ed interfacciabile scritta in linguaggio
C++ orientato agli oggetti, basata su alcuni dei pacchetti di Trilinos.

Parole chiave: interazione �uido-struttura, interfaccia �uido-struttura, movi-
mentazione griglie di calcolo, free-form deformations, radial basis functions, in-
verse distance weighting.
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Introduction

In the last two decades the interest for Fluid-Structure Interaction (FSI) prob-
lems has increased signi�cantly and simulations have become more feasible thanks
to the advances in computers technology and numerical methods. Generally we
deal with a �uid-structure interaction problem when the e�ect of �uid dynamics
on elastic bodies and vice-versa is of primary interest. Many engineering appli-
cations, like aeroelastic instabilities in aircrafts [43, 44, 93, 94], turbomachinery
design [91], modeling of cardiovascular system [28, 29, 81] and high performance
boat dynamics [74], involve �uid-structure interaction phenomena whose analysis
is crucial for a safe and e�cient design and sizing procedure. The main aspect
involved in this kind of problems is the unsteady computation of the dynamics
of di�erent physical domains (i.e. multiphysics) and their coupling with moving
boundary conditions and meshes.
The �rst issue to be faced is the choice of the approach [35, 46] (either mono-
lithic or partitioned) to be used for the time integration of the coupled system of
�uid-structure equations: solving the problem in a monolithic way means solving
simultaneously �ow and structure equations, while using a partitioned approach
we get separately the solution of the �uid and structural subdomains. Mono-
lithic algorithms maintain all the non linearities of the original problem and the
coupling could be taken into account directly, which is advantageous for the sta-
bility of the simulation, while partitioned ones, although they require a coupling
algorithm for the interaction between �uid and structure domains, are more �ex-
ible by allowing the possibility of using di�erent numerical schemes and separate
solvers for both physics and coupling conditions.
The second issue to deal with is the correct transfer of physical information
between the �uid and structure subdomains [52, 92, 120]: generally, in �uid-
structure interaction simulations, due to di�erent mesh requirements for �uid and
structure, grids are not matching at the interface. The reasons for non-conformal
meshes come from di�erent requirements on the solution, as the necessity to re-
solve viscous boundary layers for the �uid, the need of di�erent mesh element sizes
for numerical stability issues, and, last but not least, the occurence of coupling
codes generated by di�erent communities. For all these reasons we should be
able to deal, through interpolation and projection operators, with �uid-structure
interface problems involving non-matching meshes and, eventually, with the pres-
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ence of gaps and overlaps between grids. The physical principle generally used
within �uid-structure interface problems is the energy conservation [89, 121] at
the interfaces, thus resulting in a conservative approach: in that way it will be
possible to de�ne an operator for transferring physical quantities (pressure loads,
displacements) from one domain to the other.
The third issue concerns the dynamic mesh handling. Dealing with FSI prob-
lems, within the framework of continuum mechanics, at each iteration we need
to move, once the structural subproblem has been solved and its domain has
been deformed, the �uid mesh accordingly to structural deformations. Thus, in
order to tackle such a problem, a mesh deformation strategy must be designed
with additional requirements like (a) preservation of mesh quality and (b) low
computational e�orts.

Summarizing, the main aspects to be faced when dealing with a �uid-structure
interaction problem are:

(i) choice of the approach and the algorithm type: either monolithic or parti-
tioned;

(ii) setting up a methodology for transferring data across interface when dif-
ferent discretization grids are used for both the �uid and the structural
domains;

(iii) employing an e�cient and accurate mesh motion procedure for moving
domains during the multiphysics interaction.

A wide variety of approaches, within monolithic and partitioned algorithms, can
be found in literature dealing with di�erent formulations of the problem and so-
lution strategies. In this work, in order to numerically solve FSI problems, we
have chosen to employ a monolithic approach based on a Geometric-Convective
Explicit (GCE) time discretization scheme. This work shows the development of
a tool dealing both with the �uid-structure interface (ii) and moving mesh (iii)
problems. Our goal, concerning the latter, is achieved through a hierarchical ap-
proach based on the kind of displacement we have to describe: in fact we can split
a generic motion into a �rst global large displacement (rigid translations and/or
rotations) and another local one, represented by small elastic deformations. At
the base of this separation we can build a standard path to be used for moving
mesh problems characterized by the use of shape representations techniques like
FFD [67, 82, 110], RBF [18, 31, 73] and IDW [124]. In particular, by inves-
tigating their limitations and advantages we will classify them into a standard
path from which we will be able to select, on the base of the displacement to
be described, the most appropriate technique to be adopted. These techniques
are based on the construction of �exible and low dimensional maps, both for
the �uid and the structure domains, by introducing a small set of control points
whose displacements induce the shape deformation.
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Figure 1: Algorithm of the FSI simulation process.

To be more speci�c, we can formalize the problem as follows: denoting by
Ω̂F ⊂ R3 and Ω̂S ⊂ R3 the initial domain con�gurations for the �uid and the
structure, respectively, thanks to the solution of the structural sub-problem we
obtain the displacement �eld ς ∈ DS leading to structural deformed domain ΩS:

ς : Ω̂S −→ ΩS (1)

by indicating with DS := H1
0 (Ω̂S) the space of kinematically admissible structural

displacements. At this point, once we update the structural con�guration we need
also to deform, before advancing the FSI simulation in time, the �uid domain
accordingly. Therefore, such a problem could be set as:

�nd the �uid displacement �eld ζ : Ω̂F → ΩF , such that ζ ∈ DF := H1
0 (Ω̂F ),

that guarantees no compenetrations at the interfaces between �uid and structure

domains, that is ΓF = ΓS,

(MMP)
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where ΓF and ΓS indicate the �uid and structure interfaces in the deformed
con�guration, respectively, and ΩF the new �uid con�guration. From a practical

Ω̂F

Ω̂S

ΩF

ΩS

ζ

ς

ΓF = ΓS

Figure 2: Schematic visualization of the condition to be satis�ed at the �uid-
structure interface.

point of view, extracting the displacement values ς on ΓS, in order to �nd ζ for
the �uid domain we proceed as follows:

(i) split ζ in two components: ζL representing local deformations, and ζG, for
global (rigid translations and rotations) ones;

(ii) identify, through an eigenvalue analysis of the structural inertia matrix for
the initial and �nal con�gurations, the global component ζG;

(iii) recover, employing FFD, RBF or IDW methods, local elastic deformation
ζL;

(iv) compute the total �uid displacement �eld as sum of the previous compo-
nents evaluated: ζ = ζG + ζL.

Then, in order to reduce the computational costs involved in (iii), ad hoc inno-
vative techniques will be proposed, like a selective approach developed to �nd
the RBF interpolation sites as well as a domain-decomposition approach used
to handle FFD techniques. In particular, concerning RBF strategies, our pur-
pose is to identify a suitable methodology, within the FSI framework, to �nd
the minimum number and the best location of control points used by such shape
parametrization techniques to describe shape deformations. In order to tackle
this problem, through the computation of the structural eigenmodes within a
bandwidth of interest, it will be possible to have an a priori knowledge of the
structural behavior, as well as its shape deformations, during the FSI simulation
process. To this end, considering each eigenmode computed as a target shape
that we should be able to describe, by means of an optimization procedure it will
be possible to identify the (possible) best set of control points to be employed
within FSI simulations.
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The goal of this thesis is to assess the quality and e�ciency of the strategies
introduced applying them to three dimensional unsteady �uid-structure interac-
tion problems of both internal and external viscous �ows; the simulations will
be performed using an open-source Finite Element (FE) library, namely LifeV
[3, 49]. The core of such a library is written in C++ language characterized by a
fully �exible hierarchical design. All the C++ object oriented modules developed
here have been collected into a tool library, and the purpose of these examples
is also to highlight the versatility of the this tool linked, here, to the FSI solver
adopted.

With respect to the previously introduced background, the whole work has
been organized with the following structure:

Chapter 1: in this �rst chapter a brief review of the state of the art of the
methods commonly used to deal with �uid-structure interface and
mesh motion problems is presented; they are analyzed to highlight
their advantages and limitations in order to outline all the features
to be introduced and/or improved by this work.

Chapter 2: we introduce the shape representation techniques used like FFD,
RBF, as well as the multivariate interpolation method employed,
namely IDW. We discuss their properties and, by applying them to
several test, we compare their computational costs and geometrical
representation capabilities. Some applications of these techniques
are also presented to highlight their potential for their use within
Reduced Order Modeling (ROM).

Chapter 3: the methodology used for the identi�cation of the structure rigid
translations/rotations is �rstly described and then tested thanks to
several examples. The optimization algorithms used for identifying
the best number and position of control points for RBF and to
handle FFD techniques are also presented and applied to some 2D
and 3D problems.

Chapter 4: this chapter provides a description of the equations and algorithms
used to solve �uid-structure interaction problems. In particular we
detail the monolithic approach and the solution strategy adopted
for the numerical FSI analysis performed with LifeV.

Chapter 5: the methods developed are tested within two problems characterized
by di�erent Reynolds numbers in laminar regime. The �rst dealing
with an FSI problem of an external �uid �ow, while the other relies
in an internal �uid �ow inside a cylindrical straight vessel.
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Chapter 1

An introduction to FSI problems

Nowadays the complexity of geometrical models is increasing for modern de-
sign applications. It is not unusual for a Computer-Aided Design (CAD) model to
use about a thousand curves and surfaces to represent complex shapes like an air-
craft. This level of complexity underscores the importance of automation, and, in
this way, the adoption of strategies in order to reduce the geometrical model order
description would be necessary. Thus, within any multidisciplinary application
like �uid-structure interaction, the problem of setting a consistent and accurate
shape parameterization strategy arises. The shape parameterization should be
also compatible with, and adaptable to, various analysis issues in the FSI frame-
work, such as the �uid-structure interface problems, which consist in the transfer
of data across non-matching grids, and the dynamic mesh handling, concerning
the motion of the �uid mesh due to the structural displacement. Therefore, at
the basis of shape parameterization strategies there is the idea of reducing the
complexity in the description of the geometry of solid objects, as well as their
deformations, such that we can represent them through low dimensional spaces,
instead of using geometrical properties themself. In literature a wide range of
applications dealing with shape parameterization strategies is present, for exam-
ple within optimization problems in aerodynamics [105] and haemodynamics [82]
�elds, and sizing procedures (e.g. sail boat design [74]). It is clear that, in such
situations, the adoption of shape parametrization strategies is necessary, since in
order to modify iteratively an initial design shape, we will need to displace only
a small set of control points that control the shape deformation, in order to gain
the optimal one. Such an approach would increase on one hand the reliability of
the optimization process, while, on the other, would reduce drastically the com-
putational e�ort spent to reach the target shape con�guration. At the basis of
these previous considerations the idea of using shape parameterization strategies
in the FSI framework relies: in such situations we deal with deformable objects,
whose deformations are governed by a multiphysics interaction with �uid �ows.
Thus, in that case, shape parametrization techniques give the possibility of rep-
resenting the dynamics of the structure and �uid mesh con�gurations by means
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of a small set of parameters whose displacements control the shape deformations.
In detail, at each FSI simulation time-step, once we solve the equations governing
the physics of the �uid �ow, we need to compute the structural deformations due
to the e�ect of the �uid motion. In this way we get, as solution of the structural
sub-problem, its deformations, resulting in a new domain (and mesh) con�gu-
ration. It is clear, in such a way, that in order to advance the FSI simulation
process in time, we need to update, also, the �uid mesh con�guration in order
to match the deformed structural one at the interface. In this framework, deal-
ing with deformable object, the adoption of shape parameterization strategies
like Free-Form Deformations, Inverse Distance Weighting and Radial Basis Func-
tions, would give to possibility of describing complex structural con�gurations
(e.g. a whole aircraft), and their deformations, by means of a small set of control
points, thus reducing signi�cantly the complexity of the geometrical model; in-
deed, in this way, we could achieve great reductions in the computational e�ort,
within the updating of �uid mesh con�guration, since to impose its deformations
we have only to move few control points.

(a) Initial con�guration. (b) Deformed con�guration.

Figure 1.1: Example of application of shape parametrization within the mesh
motion problem: deformation of a carotid artery bifurcation, discretized with
25436 grid nodes, centered by RBF adopting 12 control points (red bullets).

1.1 Motivations

Fluid-Structure Interaction problems are generally characterized by the un-
steady motion of the domains representing both the �uid and the structural parts,
due to their multiphysics interaction as shown in Figure 1.2. A possible approach
to be employed, in order to deal with such problems, consists in solving the �uid
�ow equations on a �xed grid, within a so-called Eulerian approach [38]: it is
a method of studying both the �uid motion and the mechanics of deformable
bodies by considering volumes/elements at �xed locations in space.
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Fluid

Structure

Fluid-Structure interface

Figure 1.2: Example of a FSI problem: on the left-hand-side we illustrate by
di�erent colors the domains involved in the multiphysics problem; on the right-
hand-side we report a numerical solution of the discretized problem (structural
displacement and �uid velocity) obtained with LifeV.

On the other hand, in the framework of FSI problems, a classical approach
that allows to overcome the adoption of a �xed computational grid is the Arbi-
trary Lagrangian Eulerian (ALE) method, where the �uid grid nodes are moved
arbitrary inside the �uid domain, following the movement of its boundaries, and,
in detail, of the �uid-structure interface due to structural deformations. Neverthe-
less, concerning the ALE approach, new issues arise: at each FSI time iteration,
once known the deformed shape con�guration of the structure domain, we need
to:

(i) evaluate the displacement values of the �uid nodes lying over the interface
on the basis of the known structural deformed con�guration, when dealing
with either non-conformal meshes or di�erent discretization schemes used to
represent both the �uid and the structure domains (�uid-structure interface
problem);

(ii) update the �uid mesh con�guration on the basis of the motion computed
for the nodes lying over the �uid interface (mesh motion problem);

(iii) reduce, as most as possible, the computational e�ort related to the dynamic
mesh handling;

(iv) preserve the quality of the whole �uid mesh during the mesh motion process;

(v) guarantee that the global solution does not depend on the mesh motion
procedure;

(vi) be able to deal with complex domains geometries.

Therefore, within the ALE approach, a �uid-structure interaction problem would
become not only a two �elds (�uid and structure) but even a three �elds coupling
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problem (�uid, structure and mesh). A wide range of approaches have been pro-
posed dealing with mechanical analogies [41] (spring or pseudo-solid analogy) or
based on Laplacian smoothing [56]. In this work we aim at proposing, through
a new hierarchical approach, a numerical strategy able to tackle all the issues
highlighted. In this way, through a comparison of di�erent shape parameter-
ization methods, like Free-Form Deformation, Inverse Distance Weighting and
Radial Basis Functions it would be possible to establish a standard path to be
followed, in the FSI framework, within the �uid-structure interface and mesh mo-
tion problems. Summarizing, our idea relies on the use of shape parameterization
strategies [104] in order to get both a reduction of the computational costs, and
a great accuracy for the mesh handling [33, 64], with respect to the state of the
art methods that have been used for such applications.

1.2 Background

Nowadays, an increasing number of engineering applications involve the study
of �uid-structure interaction phenomena, whose solution is crucial, and of primary
interest, for an e�cient and safe design. In particular, it is possible to high-
light the central role played by FSI analysis in those sizing procedures involving
lightweight aircrafts [42, 100], long-span suspension bridges [115], haemodynam-
ics devices [69, 71, 81] and high performance sail boats [73, 74].

Figure 1.3: Example of a FSI solution, obtained with LifeV, concerning the �uid
�ow past a high-�exible wing-like structure at low Reynolds number (Re ≈ 1000):
visualization of both the structural displacement contour and the �ow stream-
lines.

Due to the increasing global competition and, also, to the advance in computer
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technology, it has been possible in the last two decades to appreciate a spread
of numerical strategies designed to solve e�ciently FSI problems, in terms of
reliability of the achieved results with reduced computational costs. In detail,
within the framework of FSI problems, a great amount of research studies have
been devoted to the development of low-costs numerical strategies able to perform
on one hand the spatial coupling of multiphysics domains in order to deal with
arbitrary discretization schemes adopted for both the �uid and the structure,
and on the other, to reduce the computational costs involved in the dynamic
mesh handling within the ALE-based approach. Within such a framework, it is
worthwhile to survey the evolution in recent years of this scenario, in order to
highlight both the limitations and the advantages of the available state of the
art numerical strategies adopted to tackle both the �uid-structure interface and
mesh motion problems to make a comparison between them and, at the basis of
their drawbacks, to schedule the objectives to be achieved by this and related
future works.

1.2.1 Fluid-structure interface problem

In many engineering applications involving FSI phenomena, generally, we need
to be able to deal with di�erent discretization schemes adopted for both the
�uid and structure domains. In fact, in most cases, we need to use a much
�ner mesh for the �uid part instead of the structural one, due to the strict
requirements related to the numerical stability of the �ow analysis, and, moreover,
since mainly the �uid interface zone is characterized by higher velocity gradients
(e.g. boundary layer) [55]. In this way, one of the requirements of the FSI
computation is related to the possibility of handling the transfer of physical data
across non-matching grids. It is straightforward that, in order to deal with such a
problem, we need projection and/or interpolation operators. In literature many
di�erent strategies have been developed to transfer data across non-matching
grids, such as nearest neighbor interpolation [32], projection methods [25, 72, 79],
and methods based on interpolation splines [18, 112, 113]. Most often, the main
idea relies on the fact that energy should be conserved at the interface. Thus,
the coupling scheme should preserve the equivalence of virtual work performed
by �uid loads and structural forces [18]:

δW = δςT fS = δζT fF , (1.1)

being δς and δζ the nodal values of virtual displacements for the structure and
�uid domains, while fS and fF indicate the structural and �uid loads, respectively.
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(a) Di�erent discretization schemes: panels,
for the aerodynamic �eld, coupled with a
beam structural model.

(b) Non-conformal surface grids.

Figure 1.4: Visualization of possible non-matching �uid-structure grids.

In order to express the relation between the two displacement entities, it is
possible to introduce a transfer matrix H, such that:

ζ = H ς. (1.2)

When we assume that δW is equal to zero, for each arbitrary δς, we gain the
relation between the structural virtual displacements and the �uid ones

δζ = H δς. (1.3)

Thus, concerning the load transferring, thanks to (1.1) and (1.2), we obtain:

fS = HT fF . (1.4)

In this way, when a transfer matrix H exists, it is possible to obtain the so-called
�conservative� coupling approach, that relies on the fact that energy should be
conserved at the interface [18, 94, 122]. With such a strategy, only one trans-
formation matrix is needed to perform both the transfer of displacements and
pressure loads between the two discrete interfaces. On the other hand, in or-
der to tackle �uid-structure interface problems, two di�erent matrices could be
involved in transferring pressure loads and displacements, leading to a �consis-
tent� approach. In general, to obtain a consistent interpolation, a constant pres-
sure/displacement �eld should be exactly interpolated across the interfaces; in
practice, such an approach, results in the fact that the row-sum of H should be
equal to one. A wide range of coupling methods, based on multivariate interpo-
lation schemes, have been used in order to �nd the coupling matrix H. Among
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them, the Nearest Neighbor Interpolation (NNI) strategy [116] is very likely the
simplest: in this method, the generic nodal value belonging to the unknown grid,
is forced to be equal to the value of its closest node belonging to the known grid.
In this way the transformation matrix becomes a boolean matrix, with a single
one in each row, leading, indeed, to a consistent interpolation approach. Such
a strategy, although on one hand is characterized by a certain e�ciency of im-
plementation (basically based on a search algorithm), on the other su�ers from
some limitations. As a matter of fact, when the �eld to be interpolated is not
smooth enough, or when the �uid and structure grids di�er signi�cantly, (e.g. the
case represented in Figure 1.4b), the achievable results would be inaccurate. In
the framework of the numerical strategies used to deal with �uid-structure inter-
face problems, it is possible to highlight the class of Weighted Residual Methods
(WRM) [25]. With such an approach, relation (1.3) is found through the impo-
sition of the conservation of loads and displacements, using a weak formulation,
across the interface thanks to the introduction of weighting functions wi(x). In
this way, once we have introduced a set of weighting functions wi(x), denoting
by Γ the �uid-structure interface, the equality relation between the �uid and the
structure displacements on Γ could be expressed as follows:∫

Γ

wi(x) ζ(x) dγ =

∫
Γ

wi(x) ς(x) dγ. (1.5)

At this point, by introducing the expression representing the approximation for
each displacements �elds, through, for example, a Ritz-Galerkin method, we ob-
tain:

ζ(x) =

nf∑
k=1

NF, k(x) ζk, ς(x) =
ns∑
j=1

NS, j(x) ςj, (1.6)

where NF, S represent the interpolation basis functions for the �uid and the struc-
ture domains, respectively, while ζk and ςj indicate the nodal displacement values
for the �uid and the structure. In this way, we can �rstly introduce (1.6) into
(1.5), and, then, by choosing as weighting functions the ones used in (1.6), ac-
cordingly to the Galerkin method [95], we obtain:

nf∑
k=1

[∫
Γ

NF, k(x)Nβ, i(x) dγ

]
ζk =

ns∑
j=1

[∫
Γ

NS, j(x)Nβ, i(x) dγ

]
ςj, for i = 1, . . . , nβ

(1.7)

where β indicates either the �uid or the structural domain, such that nβ ∈ {ns, nf}.
It is possible to achieve (1.3) by de�ning:
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HβF =

nf∑
k=1

[∫
Γ

NF, k(x)Nβ, i(x) dγ

]
, for i = 1, . . . , nβ (1.8)

HβS =
ns∑
j=1

[∫
Γ

NS, j(x)Nβ, i(x) dγ

]
, for i = 1, . . . , nβ (1.9)

yielding:

HβF ζ = HβS ς. (1.10)

Finally, we can de�ne the transformation matrix as it follows:

ζ = H−1
βF HβS︸ ︷︷ ︸

H

ς (1.11)

A third class of strategies that have been employed in order to tackle the �uid-
structure interface problem is based on the use of Radial Basis Functions [18, 20].
Expansions in Radial basis functions allow to approximate both multivariate func-
tions and scattered data. They have been known, tested and analyzed for several
years now and many interesting interpolation properties have been identi�ed
[122]. Generally, it is possible to de�ne a radial basis function as a real-valued
function whose values depends only on the distance from the origin, such that:

φ(x) = φ̃(‖x‖), (1.12)

or alternatively on the distance from another point c, called center, that leads
to:

φ(x, c) = φ̃(‖x− c‖), (1.13)

where the norm represents, usually, the Euclidean distance. Therefore, any func-
tion φ that satis�es the property φ(x) = φ̃(‖x‖) is a radial function. Indeed, it is
possible to classify RBFs in two di�erent categories: the �rst made up of globally
supported functions, the second of compactly supported functions. In Section 2.3
we will investigate the behavior of the local/global supported basis functions, and
derive the mathematical formulation leading to the de�nition of the interpolation
matrix H of (1.3), suited for the RBF strategy. Such a shape parametrization
technique is characterized by a very high �exibility since it is possible to get it
involved both in the �uid-structure interface and mesh motion problems. Fur-
thermore, one of the greatest advantages of this method lies in its applicability
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in almost any dimension (whence its versatility) because there are generally little
restrictions on the way the data are prescribed. In literature it is possible to �nd
a wide range of its applications, spanning many �elds like numerical aeroelasticity
[44, 94], high performance sail boat design [73, 74] and haemodynamics [81], in-
volving the data-transfer across non-matching discretization schemes adopted for
the structure and the �uid grids. In such cases, RBF strategy has demonstrated
to represent an high-reliable methodology since it allows the spatial coupling
between arbitrary schemes, adopted for both the �uid and structural domains,
providing an high-accuracy of the achieved results. At the basis of the previ-
ously introduced background, the state of the art methods commonly adopted to
tackle the transfer of data across non matching �uid-structure grids within FSI
problems are:

(i) Nearest Neighbor Interpolation [116];

(ii) Weighted Residual Methods [25];

(iii) Radial Basis Functions [20].

1.2.2 Dynamic mesh handling

In this Section we focus our attention on the dynamic mesh handling within
�uid-structure interaction problems. In order to solve the governing equations
for both the �uid and structure on moving domains, accordingly to the ALE
approach, we need a mesh motion routine: in fact, due to the multiphysics in-
teraction between the �uid and the structure, during the FSI simulation the
computational grids will move, resulting in geometrically deforming boundaries.
The displacement of the interface boundary nodes is considered to be given as
solution of the structural sub-problem. Moreover, in those cases involving time-
varying boundaries, one of the most important aspects to deal with, concerns
the requirement of keeping a high mesh quality: in fact, when elements or vol-
umes of the computational grids su�er from excessive deformations, the solution
of both the �uid and the structural sub-problems would get inaccurate, leading
also to instabilities of the coupled FSI process. Therefore, the main requisites
that must be respected when handling the mesh motion problem rely on the (i)
preservation of the mesh validity (no negative Jacobian), keeping also (ii) a high
mesh quality (in terms of elements orthogonality and skewness). In literature,
a wide range of mesh deformation methods have been presented using di�erent
approaches to calculate the motion of the computational grids. When dealing
with structured meshes, the Trans�nite Interpolation technique [32] represents
the most suitable method to be adopted: within this strategy the displacement
of the interface boundary points is interpolated along grid lines through the en-
tire computational mesh to �nd the displacements of all interior mesh points.
Nevertheless, this strategy does not best suite those cases involving unstructured
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meshes, employed to deal with complex geometries (where the use of unstructured
meshes represents more often the unique choice to be adopted). One of the most
popular mesh deformation strategy, applicable to both structured and unstruc-
tured meshes, is represented by the so called spring analogy [41]: it basically relies
in the representation, by means of a linear/torsional spring, of the point-to-point
connection of every two neighboring mesh points. This method has been proved
to lack in robustness, in particular when dealing with arbitrarily unstructured
meshes, since an high mesh quality is preserved only when setting speci�c spring
sti�ness values, in a very problem-dependent way. In the framework of mesh
motion strategies for FSI, it is possible to highlight a class of techniques that
involve the solution of a partial di�erential equation, de�ned on the �uid mesh
region, with boundary conditions, expressed in terms of displacement, given on
the �uid-structure interface. Within such strategies, the most common adopted
techniques are represented by the Laplacian [56] and Solid Body Rotation Stress
(SBRS)[39] methods. Concerning the �rst, its main idea relies on the possibility of
assigning largest displacement values close to the moving boundaries while small
ones at large distances. The Laplace equation to be solved is de�ned as it follows:

∇ · (γ∇u) = 0, (1.14)

being u the displacement of the grid nodes, and γ the coe�cient of di�usivity,
considered in order to control the magnitude of the nodal displacement. Namely,
a common choice for the di�usivity coe�cient reads as:

γ =
1

‖x‖α , (1.15)

which expresses an inversely proportional relation between the di�usivity coef-
�cient and the Euclidean norm of the distance from the deforming boundary,
‖x‖, raised to the α power. In order to maintain robustness and a smooth mesh
motion, α is generally chosen to be equal to two guaranteeing a quadratically
decreasing di�usion coe�cient. Concerning SBRS, the problem to be solved to
evaluate the mesh motion is governed by the linear elasticity equation:

∇ · σ = f , (1.16)

where σ represents the stress tensor, while f the body forces term. By expressing
(1.16) in terms of strain, thanks to the elastic constitutive relation, we get:

∇ · [λTr(ε)I + 2µε] = f , (1.17)

being Tr(·) the trace operator, while λ and µ are the Lamé constants de�ned as
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it follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (1.18)

where E represents the Young modulus and ν the Poisson coe�cient [39]. We
can also write the kinematic law, between the strain and displacement �elds:

ε =
1

2
(∇u +∇uT +∇uT · ∇u), (1.19)

where it is important to observe the presence of the term ∇uT · ∇u that allows
rigid rotations of the mesh. At this point, rearranging (1.19), (1.17) and (1.16)
we obtain the �nal expression for the solid body rotation stress equation:

∇ · [µ(∇u +∇uT )− λ∇ · u ] = 0. (1.20)

In this context, E > 0 may be seen as the sti�ness of the material, where large
E indicates rigidity. Poisson's ratio ν represents a measure of how much the ma-
terial shrinks in the lateral direction as it extends in the axial one. Such robust
strategy leads to an high mesh quality although, like for the Laplacian-based
method, a tuning operation for the coe�cients λ and µ is necessary. Neverthe-
less, solving the Laplace or the SBRS equation will drive to sparse systems, such
that standard iterative techniques, like the Pre-conditioned Conjugate Gradient
(PCG) method, can be used to solve the problem.
Among the state of the art methods employed in order to handle the mesh mo-
tion problem for FSI, within an ALE approach, it is possible, �nally, to highlight
the RBF strategy. As introduced in Section 1.2.1, the application �eld of radial
basis functions is very wide, since they have been used in computer graphics,
geophysics, and in multiphysics simulations like �uid-structure interaction. Mesh
deformation strategies based on RBF interpolation result in high quality meshes,
as will be shown in Section 2.3, even in those cases involving large structure ro-
tation angles [85]. Generally, the RBF interpolation procedure is used to transfer
the known interface boundary node displacements to the interior �uid grid nodes:
it is based on the adoption of a set of interpolation sites, or control points, whose
displacement values are known, in order to get the ones related to the inner �uid
mesh. In this way it is possible to adopt, as interpolation sites, all the nodes lying
on interface boundary, since any restriction limits both the number and the lo-
cations of the control points. Therefore, one of the possible aspect to be studied,
within this strategy, consists in automating and standardizing the choice of the
interpolation sites, in terms of their number and locations. Summarizing, some
of the strategies most commonly adopted to handle the mesh motion problem
within FSI are:
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(i) Trans�nite Interpolation techniques [32];

(ii) Laplacian-based methods [56];

(iii) Solid Body Rotation Stress [39];

(iv) Radial Basis Functions [73].

At the basis of the previously introduced background we can also state the pos-
sibility of substituting the most common adopted Laplacian-based methods (for
example in LifeV [49]), within the dynamic mesh handling, by RBF strategies:
to this end, in this work we will investigate both RBF and Laplacian strategies
to handle the mesh motion problem within many examples of FSI problems (as
reported in Chapter 5).

1.3 Objectives and approaches

In many engineering applications the correct analysis of �uid-structure in-
teraction problems is crucial. In this multiphysics framework we have di�erent
�elds to be coupled that are represented not only by the �uid and the structure
domains, but, also, by their computational grids, or meshes. In fact, dealing
with an ALE approach, adopted in order to solve this complex phenomena, we
need to be able to tackle the problem related to the preservation of high mesh
quality in order to maintain a high accuracy of the �ow solver. Furthermore, in
this scenario, it is usual to adopt di�erent discretization schemes for both the
�uid and the structure: in this way the need for interface schemes arises, based
on interpolation and/or projection algorithms. The main goal of this work con-
sists in the comparison of di�erent shape parametrization schemes involved in the
framework of the FSI problems, and, in particular, to handle the dynamic mesh
motion problem and also the possibility of transferring data across non-matching
computational grids. Through the adoption of shape parametrization strategies
we would �rstly analyze their suitability for these contexts, and, at the basis of
the achieved results, to suggest a hierarchical path to be followed when dealing
with such problems. Our hierarchical approach could be seen as a result gained
at the basis of the many test-cases solved in 1D, 2D and 3D frameworks, as it
will be shown in Chapter 2. In detail, thanks to the comparison in terms of com-
putational cost and accuracy of the achieved results, we aim to identify, among
Free-Form Deformation, Radial Basis Functions and Inverse Distance Weighting,
the most suitable application �eld for each of them in the framework of both
the �uid-structure interface and mesh motion problems. Besides the implemen-
tations and the tests of these numerical strategies for FSI applications, from the
analysis of the state of the art methods summarized in Section 1.2.1 and 1.2.2,
we decided to improve some features that characterize shape parametrization
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strategies studied. In particular we aim at introducing several ad hoc procedures
able to perform a dimensionality reduction for the shape parametrization: in this
context we will introduce novel techniques to solve the curse of dimensionality,
especially for the RBF method, in terms of both the number of parameters to be
employed to control the shape deformations and their locations. Moreover, at the
basis of the possibility of dealing with FSI problems involving the multiphysics
interaction between �uid �ows and deformable free-bodies (not constrained), we
decided to develop a numerical routine able to recover the rigid movements that
will eventually characterize the structural dynamics. In fact, in those cases, the
global structural displacement could be seen as made up of two di�erent parts:
a (small) deformative component and a (big) rigid one. While for the �rst we
employ shape parametrization techniques, for the other we need to correctly iden-
tify the entity of rigid translation and/or rotations as output from the structural
solver.

Summarizing, the main goals to be achieved by this work read as:

(i) the employment, in the framework of FSI problems, of several shape parametriza-
tion techniques in order to deal with:

(a) �uid-structure interface problems;

(b) mesh motion problems;

(ii) the evaluation and comparison, through several test-cases, of their perfor-
mances in terms of computational costs and accuracy of the achievable
results, in order to establish between them a hierarchical pattern to face
the problems (a) and (b);

(iii) the development of numerical strategies in order to further reduce the di-
mensionality for the geometrical model described by shape parameterization
techniques;

(iv) the identi�cation of the rigid displacement components, translations and/or
rotations, as output from the structural solver;

(v) to validate the strategies outlined within the study of 3D FSI unsteady
problems, dealing with both internal and external �uid �ows, considering,
also, di�erent Reynolds numbers;

In order to meet the objectives outlined for this work, we have decided to
build a tool library, written in C++ code within an object-oriented framework,
to be possibly linked to the di�erent software employed to solve the set of partial
di�erential equations that govern the �uid-structure interaction problem (that
will be outlined in Chapter 4). In detail, to test the mesh-tool library developed
within FSI problems, we considered an opensource library, namely LifeV [49]: it
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would be adopted for the study of both an application in the haemodynamics
framework, concerning, in detail, an internal �uid �ows at low Reynolds number
through a high-elastic structure, as well as an external �uid �ow past a �exible
obstacle within the �eld of large structural displacements. On the basis of the
fully-�exible implementation of the numerical schemes developed, together with
the high-�delity Finite Element library adopted, it will be possible to test the
proposed hierarchical strategy to show both its accuracy and its computational
costs with respect to the results achieved.



Chapter 2

Shape parametrization techniques

This Chapter introduces some shape parametrization techniques used for
treating both �uid-structure interface and mesh motion problems. In general
shape representation strategies rely on mapping a reference domain, Ω ⊂ Rn,
through suitable parametric maps T (x,µ), x ∈ Ω, built by introducing a small
set of control points, the so-called parameters µ ∈ Rn, whose possible displace-
ments induce the shape deformations. In this way, thanks to control points
displacements, it would be possible to represent e�ciently a family of admissible
shape con�gurations. In this class of methods two strategies are represented by
Free Form Deformation and Radial Basis Functions; we can also classify the latter
with Inverse Distance Weighting techniques as methods belonging to multivariate
interpolation strategies, which is an area of data �tting used to �nd the surface
by providing an exact �t to a series of multidimensional data points. It is called
multivariate since the data points are supposed to be sampled from a function of
several variables.
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(b) RBF interpolant, Gaussian basis.

Figure 2.1: RBF interpolant, obtained by means of 13 interpolation sites (red
bullets), applied to the Octave sombrero function [4].
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By using RBF (as schematically shown in Figure 2.1), the function values
at the unknown points is estimated as a sum, weighted by mean of radial basis
functions, of the function values known at the scattered (or interpolation) points;
with IDW the interpolating surface is obtained as a weighted average of the scat-
tered points and the weight assigned to each one diminishes as the distance from
the interpolation point to the scattered one increases.

In this Chapter, in order to face the �uid-structure interface and moving mesh
problems, all the shape parametrization techniques proposed will be employed
as illustrated in Figure 2.2: in particular, we are going to apply, in order to
solve e�ciently the problem of data transferring across non-matching grids, both
IDW and RBF, while for the dynamic mesh handling we will also consider FFD
techniques.

Fluid/Structure
Interface problem

IDW

RBF

Mesh Motion
problem

FFD

IDW

RBF

Figure 2.2: Application �elds for shape parametrization techniques.

This Chapter has been organized as it follows: in Sections 2.1, 2.2 and 2.3 the
shape parametrization strategies considered, as well as IDW, are introduced and
detailed; in Section 2.4 we propose some applications of coupling schemes relying
on multivariate interpolation methods for treating the transfer of data between
non-matching grids, while in Section 2.5 we deeply analyze the mesh motion
problem and we apply the numerical schemes introduced with two- and three-
dimensional test-cases. Starting from these applications we will both compare
methods through a computational costs analysis, as shown in Section 2.4 and
2.5, and outline a selective way for their use on the base of their properties.

2.1 Free Form Deformation

In the recent past the problem of shape parametrization of solid objects
bounded by topologically complex surfaces has become of great importance and a
signi�cant issue in a few research �elds, particularly in the framework of optimiza-
tion design problems and within Reduced Order Modeling (ROM). In that way a
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variety of techniques has been developed and, among them, Free Form Deforma-
tion: employed in the beginning [110] as an important tool for computer-assisted
geometric design and animation, nowadays it is mostly adopted in several engi-
neering application �elds concerning optimal design. Indeed, within optimization
sizing procedures, when it is necessary to iterate on several shape con�gurations
to reach the optimal condition, thanks to the possibility of describing complex
solid objects shapes and their deformations by a low dimensional space, FFD
represents one of the best options to be possibly taken into account. In literature
it is possible to �nd a wide range of applications of FFD techniques used to deal
with optimization problems, and it has been adopted, particularly, within aero-
dynamics [9], haemodynamics [13] and high performance boat design [74]. With
respect to the previously introduced background it must be remarked the novelty,
introduced by this work, of applying FFD to mesh motion problems for FSI. As
shown in Figure 2.3, FFD technique does not operate directly on the geometri-
cal properties themself, but it leads to local and/or global shape deformations
thanks to the use of a parametric map TFFD(·,µ) on a reference and parameter-
independent domain con�guration Ω by introducing a small set of control points
who play the role of parameters, µ, to be perturbed (displaced) in order to obtain
the shape deformation.

(a) (b)
Figure 2.3: Example of local (a) and global (b) shape deformations obtained
using FFD technique [110].

One of the key-points of this method relies in the possibility of parametrizing
arbitrary solid object shapes and their own meshes: by introducing a perturba-
tion to the control points positions we can simply get a family of admissible shape
deformations and, consequently, of mesh deformations.

Let us now consider the FFDmathematical formulation for the three-dimensional
case: in this way, we start considering a physical reference domain Ω of coordi-
nates x = (x1, x2, x3), and D, such that Ω ⊂ D, with D representing a paral-
lelepiped that could be considered as a fasten box containing our domain. Map-
ping D through an a�ne, di�erentiable and invertible map Ψ(x), we transform
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it to the unit cube domain D̂ of coordinates x̂ = (s, t, u), with Ψ(D) = (0, 1) ×
(0, 1)×(0, 1), and we introduce a user-de�ned lattice of (L+1)×(M+1)×(N+1)
control points P0

l,m,n:

P0
l,m,n = {l/L, m/M, n/N}T , with l = 0, . . . , L (2.1)

m = 0, . . . ,M

n = 0, . . . , N

where L, M and N represent the number of control points in the x1, x2 and x3

directions, respectively.

�xed reference domain deformed parametric domain

D̂ D̂0(µ)

D

Ω Ω0(µ)

a�ne map Ψ Ψ−1

Pl,m(0)

FFD control points

T̂FFD(·,µ)

parameter vector µ

TFFD(·,µ)

FFD map

Pl,m(µ)

parameters = displacements
of control points

Figure 2.4: Schematic view of the FFD shape deformation procedure: we remark
that, although in this example we do not displace the control points lying on the
external boundaries, it is possible in general to displace them to get the deformed
parametric domain.

In order to describe possible deformations of the solid object embedded within
D we introduce a parameter vector µ l,m,n of dimensions ((L + 1) × (M + 1) ×
(N + 1)) × 3 representing control points displacements in s, t and u directions,
as schematically shown in Figure 2.5:



2.1 Free Form Deformation 19

µl

µn µm

s

u
t

Figure 2.5: Schematic visualization of unperturbed control points (red bullets)
P0
l,m,n and their admissible displacements.

Once we have introduced the parameters vector µ ∈ RNC×3, where NC rep-
resents the number of the parameters, we denote the perturbed control points
con�gurations as:

Pl,m,n(µ l,m,n) = P0
l,m,n + µ l,m,n; (2.2)

thus, it is possible to de�ne the parametric map T̂FFD : D̂0 × RNC×3 7→ D̂ as
follows:

T̂FFD(x̂,µ) =

(
L∑
l=0

M∑
m=0

N∑
n=0

bL,M,N
l,m,n (x̂)Pl,m,n(µ l,m,n)

)
, (2.3)

where

bL,M,N
l,m,n (x̂) = bLl (s)bMm (t)bNn (u) (2.4)

=

(
L

l

)(
M

m

)(
N

n

)
(1− s)L−lsl (1− t)M−mtm (1− u)N−nun

represents the tensor product of unidimensional Bernstein basis polynomials de-
�ned on D̂0:

bLl (s) =

(
L

l

)
(1− s)L−lsl,

bMm (t) =

(
M

m

)
(1− t)M−mtm, (2.5)

bNn (u) =

(
N

n

)
(1− u)N−nun.
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Finally, in order to �nd the free form deformation map TFFD(x,µ), we have to
compose Ψ and T̂FFD as schematically depicted in Figure 2.4 and formalized be-
low:

TFFD(x,µ) = (Ψ−1 ◦ T̂FFD ◦Ψ)(x,µ) (FFD map)

From a computational point of view, the whole process represented in Figure 2.4
could be split in two di�erent steps: an o�ine (expensive) stage, to be completed
before running the FSI simulation, that consists in building and storing the FFD
map on the initial reference domain, and the online (cheaper) one, involving
real-time evaluations of the map on the new domain con�guration obtained as
deformation of the initial one during the simulation process.

It must be remarked that, although FFD is characterized by high �exibility
and easiness of handling, it su�ers from some limitations. The �rst lies in the
fact that design variables may have no physical signi�cance: they are de�ned
in a parametric domain that could not be expressed into a particular unit of
measurement by de�nition. Moreover FFD is not interpolatory and, therefore, in
order to solve (MMP), parameter values could not be found directly, as will be
fully detailed in Section 2.1.1. Finally, all the control points are restricted to lie
on a regular lattice and, in that way, local re�nements could not be performed.

2.1.1 FFD application for mesh motion problems

We focus now on the application of the FFD technique in the framework of
moving mesh problems for FSI: as shown schematically in Figure 2.2, in this
work, that method will get involved only for that purpose. When dealing with
an FSI simulation, once we compute the solution (in terms of stresses and dis-
placements) of the structural sub-problem, we need to update the �uid domain
con�guration accordingly to the structural displacement. Therefore the objec-
tive is to avoid (or minimize) the presence of localized gap and/or overlap zones
that could arise between the �uid and structural domain interfaces when updat-
ing the domain con�gurations. In order to tackle this problem, by employing
FFD techniques, two �rst clear di�culties should be underlined which rely in
(i) the non-interpolatory nature of this method and in (ii) the lack of physical
links between control points perturbation and domain deformations. We can for-
malize the mesh motion problem as it follows: let's denote as Ω̂S ⊂ R3 and as
Ω̂F ⊂ R3 the initial reference domain con�gurations for the structure and the
�uid domains, respectively, and we consider their discretizations (or computa-
tional meshes) Ω̂S

h ∈ Rns×3 and Ω̂F
h ∈ Rnf×3, being ns and nf the chosen numbers

for structural and �uid grid nodes. Moreover, we assume hereafter matching
�uid-structure grids at the interface. As solution of the structural sub-problem
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initial domains con�guration deformed domains

Ω̂F

Ω̂S

ΩF

ΩS

a�ne map Ψ Ψ−1

Pl,m(0)

FFD control points

T̂FFD(·,µ)

parameter vector µ

TFFD(·,µ)

FFD map

Pl,m(µ)

parameters = displacements
of control points

Figure 2.6: FFD shape deformation procedure applied to the mesh motion prob-
lem: with ΩF and ΩS we indicate the deformed �uid and structural domains,
respectively.

we get the nodal displacement values d̂S, such that d̂S : Ω̂S
h → ΩS

h , where ΩS
h in-

dicates the �nal deformed structural mesh con�guration. By introducing ΓS and
ΓF , two linear selection operators which allow to extract from the whole list of
domain nodes those who lie on the interfaces, the mesh motion problem consists
in �nding the �uid nodal displacement values d̂F , leading to the deformed �uid
con�guration

d̂F : Ω̂F
h → ΩF

h , (2.6)

that guarantees no-compenetrations across interfaces between �uid and structure
(to avoid the situation depicted in Figure 2.7):

ΩF
h ∩ ΩS

h = ∅. (2.7)

Thus, when the goal is to move �uid domain in order to �t the updated struc-
tural con�guration at the interface, necessarily an optimization algorithm must
be employed. In detail, since to move the �uid grid nodes we need to perturb the
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Figure 2.7: Presence of gaps and overlaps across interfaces to be avoided during
the mesh motion process [33].

parameters vector µ, we can consider a cost functional:

J (µ) =‖ ΓS(ΩS
h)− ΓF (ΩF

h (µ)) ‖L2 , (2.8)

that evaluates the L2 norm of the di�erence between the structural and the �uid
grid nodes positions over the interface. Thanks to the de�nition of J (µ) we will
be able to address the �uid mesh con�guration matching the structural one at
the interface by minimizing J (µ) (as fully detailed in Algorithm 2.1). In this
way, on the basis of the considerations previously introduced, in order to solve
the mesh motion problem by employing FFD techniques we can proceed as it
follows:

1. o�ine stage:

(i) generate the �uid Ω̂F
h (x) and structure Ω̂S

h(x) meshes;

(ii) map Ω̂F
h (x) to the unit cube domain D(x̂) through Ψ (a�ne map

operator):

Ψ(ΩF
0 (x)) = (0, 1)× (0, 1)× (0, 1) = D(x̂); (2.9)

(iii) introduce, in the new parametric domain D(x̂), a lattice of
(L+ 1)× (M + 1)× (N + 1) control points P0

l,m,n;

(iv) compute and store the FFD map TFFD(x,µ);

2. online stage, for each FSI time iteration tn, with n > 0:

(i) solve the �uid sub-problem, compute pressure and velocity �elds;



2.1 Free Form Deformation 23

(ii) transfer the computed �uid solution to the structural solver to update
the boundary conditions;

(iii) solve the structural sub-problem to get d̂S, that de�nes the new struc-
tural con�guration ΩS

h(x);

(iv) evaluate the stored FFD map on Ω̂F
h (x);

(v) de�ne the parameters vector µ ∈ D = [µmin, µmax]
Nc , being D the

space of the admissible Nc parameters values;

(vi) initialize µ to zero values;

(vii) compute the new �uid mesh con�guration ΩF
h (x) by solving the fol-

lowing optimization problem:

min
µ∈D

J (µ) = min
µ∈D

‖ ΓS(ΩS
h)− ΓF (Ω̃F

h (µ)) ‖L2 . (2.10)

With respect to equation (2.10), we indicated with Ω̃F
h (x,µ) the �uid mesh con-

�guration modi�ed by mean of control points perturbations, such that for zero
values of µ we have Ω̃F

h (x,µ) = Ω̂F
h (x,µ) while, when J (µ) reaches its minimum

value, Ω̃F
h (x,µ) = ΩF

h (x,µ).

We can now describe the optimization algorithm involved for the solution of
problem (2.10). In order to �nd a set of suitable control point displacements able
to update the �uid mesh con�guration leading to no-compenetrations between
domains across the interface, we adopted a greedy algorithm [98]. In particular,
within our context, at each stage we �rstly evaluate the cost functional J (µ);
then, in the hypothesis of dealing with conformal meshes at the FS interface, we
evaluate the di�erence in the Euclidean norm between ΓS(ΩS

h) and ΓF (Ω̃F
h (µ)).

In detail, we �rstly compute:

ex, k = ΓS(ΩS
h (x,k))− ΓF (Ω̃F

h (x,k)) for k = 1, . . . , nΓ, (2.11)

ey, k = ΓS(ΩS
h (y,k))− ΓF (Ω̃F

h (y,k)) for k = 1, . . . , nΓ, (2.12)

ez, k = ΓS(ΩS
h (z,k))− ΓF (Ω̃F

h (z,k)) for k = 1, . . . , nΓ, (2.13)

being nΓ the number of nodes lying on the FS interface and {ΩS,F
h (x,k), ΩS,F

h (y,k), ΩS,F
h (z,k)}

the x, y and z coordinates of the k-th �uid and structural grid node. Moreover,
with el, k we indicate the di�erence at the interface grid node k in the l direction.
At this point by evaluating e(x), whose node-wise expression reads:

ek =
√
e2
x, k + e2

y, k + e2
z, k for k = 1, . . . , nΓ, (2.14)

we further look for the node of coordinates x̃ = (x̃, ỹ, z̃) corresponding to the
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maximum value of e(x), such that max{ek}nΓ
k=1 = ẽ for k = k̃, in order to perturb

its closest control point of a priori �xed quantity dµ along the direction:
x, if |ex, k̃| > |ey, k̃| and |ex, k̃| > |ez, k̃|;
y, if |ey, k̃| > |ex, k̃| and |ey, k̃| > |ez, k̃|;
z, if |ez, k̃| > |ex, k̃| and |ez, k̃| > |ey, k̃|.

(2.15)

This methodology lies on the idea of approximating a global minimum by com-
puting local ones. Algorithm 2.1 shows schematically all the steps involved to
solve the problem 2.10.

Algorithm 2.1 Greedy algorithm used to solve problem (2.10)

Require: initialize µ = 0, d̂F = 0
Let n = 0 → Ω̃F

h,n = Ω̂F
h,n

repeat

for k = 1, . . . , nΓ → compute ex, k, ey, k, ez, k and ek
Find x̃ s.t. max

x∈ΓF (Ω̃F
h )∩ΓS(ΩS

h )
‖ e(x) ‖

Evaluate the direction x, y or z where to perturb the control point
Move nearest control point to x̃: µn+1 = µn + dµ
Evaluate d̂Fn+1 through FFD map TFFD(x,µn+1)

Update the �uid con�guration: d̂Fn+1(Ω̃F
h,n(x,µ))→ Ω̃F

h,n+1(x,µ)

Evaluate the cost functional J =‖ ΓS(ΩS
h(x))− ΓF (Ω̃F

h,n+1(x,µ)) ‖L2

n → n + 1
until stopping criteria J ≤ TOL is met.
Set ΩF

h (x) = Ω̃F
h,n(x,µ)

As stated before, by acting in this way, the convergence to a global minimum
is not guaranteed: moreover, within applications involving FFD techniques, it
must be underlined that, generally, the optimal solution may also not exist. In
fact, when our goal is to describe with the FFD map a local displacement due to,
for example, elastic localized deformations the behavior of the methodology pro-
posed could fail, if considering a small number of parameters (control points). In
that case, we can classify our system as not observable resulting in a non-existing
optimal solution to be reached. In that way, when dealing with local displace-
ments to be described, we should consider a great number of control points in
order to guarantee the observability and the controllability of our process. Since
now we remark that the choice we have made, related to the displacement of
one control point per iteration, although it would decelerate the process leading
to convergence, it represents the unique possible way to be adopted when the
structural displacement to be recovered is localized (e.g. see example illustrated
in Figure 2.9).
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In order to clarify the mesh motion procedure proposed, now two examples of
two- and three-dimensional test-cases are shown. For both of them the goal con-
sists in updating the �uid mesh con�guration to match the simulated structural
deformation: in particular, as illustrated in Figure 2.9, for the 2D case we will
consider a localized deformation while, for the 3D, a global one. In that way it
will be possible to analyze the achievable mesh quality and computational costs
involved. Moreover, with them, we will clarify also the idea of the observability
of the systems to be studied in relation to di�erent control point settings that
will be adopted for the simulations. In our �rst example we deal with a rectangu-
lar (green) obstacle, representing the structure, inside an outer (blue) rectangle,
representing the �uid domain. We will describe, employing the FFD technique,
the imposed structural deformed con�guration (ΩS) depicted in Figure 2.9. For
this example we considered di�erent sets of control points in order to show on
one hand the achievable mesh quality, and on the other both the convergence
behavior of the greedy algorithm adopted and the computational cost related to
the di�erent numbers of parameters. Concerning the measure of the mesh qual-
ity adopted, we will consider the Jacobian measure, which calculates the partial
derivatives of the quad-element shape functions with respect to the Cartesian
coordinate system, scaled within the range [0,1] [6].
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Figure 2.8: Initial �uid-structure domain con�gurations (left) and their discretiza-
tion (right) for the 2D example considered.

Figure 2.10 illustrates some results obtained for this test-case and Table 2.1
shows the computational costs involved. From these results is possible to observe
how high is the sensitivity of the FFD technique to the number of control points:
only if we consider a large number of parameters, satisfactory results could be
achieved. One of the drawbacks of this strategy lies in the positioning of control
points: in this case it would be enough to locate few control points (by creating a
so-called �patch�) around the structure domain, but, in order to place them inside
a regular lattice de�ned on the whole domain, this number necessarily increases.
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Figure 2.9: Visualization of both the �nal deformed �uid and structure domains;
the deformed structural con�guration was obtained by means of FFD technique
by mapping only Ω̂S.

Figure 2.10: Visualization of the di�erent simulation settings considered (left)
in terms of control points adopted, red bullets, and corresponding �uid meshes
updated (right).
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We could also observe that, owing to the non-interpolatory nature of the
method, also with a number of control points of the order of �uid mesh nodes
(nf = 915), it would be never achieved the condition of perfect matching between
�uid and structural domains at the interface in the �nal deformed con�guration,
as shown in Figure 2.11. With respect to Figure 2.12, the contour plot of the mesh
quality measure considered are illustrated for all the three di�erent simulations
settings: it is possible to appreciate how the scaled Jacobian assumes values
within the range [∼ 0.7, 1], meaning high mesh qualities. The quad-elements
that compose the �uid mesh, for all the three cases considered, do not exhibit
signi�cant distortions in their deformed con�guration, leading to high quality
measures: in fact, from this point of view, we observe how FFD techniques lead
to a smooth grid deformation that, in detail, involves mostly that region of the
�uid domain closest to the deformed structural one. With respect to Figure
2.11 it is possible to notice that, once we have updated the �uid con�guration,
localized gaps between the �uid-structure interfaces are still present.

Figure 2.11: Zoom visualization of the non-matching �uid-structure interfaces
condition (simulation performed using 676 control points).

This is due to the fact that FFD, generally, should be employed to describe
global displacements instead of local ones. In Table 2.1 an analysis of the com-
putational costs involved for this numerical simulation are reported, while Figure
2.12a shows the cost functional J (µ) behavior versus the number of iterations of
the greedy algorithm adopted for all the di�erent simulation settings.

Control points J reduction [%]
CPU time

Iterations
number per iteration [s]

25 59.3% 0.01 212
126 87.1% 0.013 4000
234 89.83 % 0.02 800
456 94.52 % 0.03 1500
588 96.7 % 0.05 2000

Table 2.1: Visualization of both the FFD computational costs and the reduction
rate of the cost functional with respect to its initial value.
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We still underline the impossibility of the method proposed to achieve an
optimal result when considering a small number of control points. In fact, even
if the greedy algorithm is able to �nd a solution, which is the best related to
the insu�cient number of parameters used to control the shape deformation, the
quality of the solution may not be so good. In order to �nd satisfactory solutions a
greater number of control points should be adopted. Particular attention should
also be dedicated to the number of iterations needed by the greedy algorithm
to reach the convergence: by increasing the number of control points we also
increase the space of the admissible parameters displacements to be activated by
the algorithm, thus requiring more iterations of the greedy algorithm, as shown
in Figure 2.12a.
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(a) Convergence of the Greedy algorithm for
di�erent numbers of control points.
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(b) Visualization of the tendency of the
computational costs.

A �nal consideration, concerning the 2D example: greedy algorithm conver-
gence slope is independent of control points number after a reasonable number
of control points activated; moreover, we state the parabolic rise of CPU compu-
tational time, needed per iteration, when increasing the number of parameters.
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Figure 2.12: Mesh quality achieved for the 2D example. The computed quad-
elements Jacobian shows conservation of the grids high-quality for all the simu-
lation settings.
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In the next example, as shown in Figure 2.13, we deal with a 3D test-case
(representing a quite classical con�guration for an internal �uid �ow). As noticed
within the previous example, FFD technique lacks in describing localized shape
deformations, therefore, the aim of this test is to analyze and test FFD behav-
ior into a three-dimensional framework and, also, to highlight its suitability to
manage global shape deformations.

Figure 2.13: Fluid (blue) and structure (red) discretized domains considered for
the 3D example.

As previously done, we impose a structural deformation, illustrated in Fig-
ure 2.14, by displacing structural grid nodes from their initial positions: such
a deformed con�guration is assumed to be global, so that it involves the whole
structural domain. This deformed structural con�guration has to be considered,
also, as a target shape to be �tted at the interface by the new con�guration of
the �uid domain.

Figure 2.14: Structural deformation simulated.
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In order to study the properties of the method, for this three-dimensional
test we considered di�erent control points setting characterized by an increasing
re�nement in all the three directions. Figure 2.16 illustrates one of the con�gu-
ration adopted: in particular, here we considered L = 3 control points in the x
direction, M = 3 for y and N = 6 for z, respectively, resulting in a total number
of 54 parameters.

(a): Front view. (b): Lateral view.

Figure 2.15: Visualization of one control points setting adopted for the 3D ex-
ample analysis.

Figure 2.16: Isometric view of control points (red bullets) and �uid mesh (blue).

In Table 2.2 the main results obtained employing FFD technique in order to
update the �uid mesh con�guration are reported. We expect to obtain a bet-
ter convergence, in terms of the number of iterations needed to reach acceptable
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results, since the �nal shape to be recovered does not involve localized deforma-
tions.

Control points J reduction [%]
CPU time

Iterations
number per iteration [s]

9 59.3 % 0.01 8
125 84.7 % 0.04 10
490 87.45 % 0.20 49
972 97.55 % 0.51 362
1694 99.2 % 0.95 584

Table 2.2: FFD computational costs for the 3D example.

As the number of control points increases as better solution can be achieved: in
particular when considering 1694 control points (with a number of �uid grid nodes
nf = 4998) we could get the best result to the detriment of computational costs.
As expected, here, dealing with global shape deformations, FFD technique shows
better results than the ones gained within the 2D case: satisfactory performances
are reached by means of a smaller number of iterations to be done to reach
convergence. Moreover, when we consider 3D con�gurations, as clearly shown
in the Table above, the iteration time raises signi�cantly. In Figure 2.17a the
behavior of the functional cost J versus iteration number is depicted, while in
Figure 2.17b we evaluate the computational costs, in terms of iteration time,
increasing the number of the control points.
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(a) Greedy algorithm convergence for di�erent
control points settings.
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(b) Visualization of the computational costs
tendency.

Also for the 3D case it is possible to appreciate the sensitivity of the con-
vergence of the greedy algorithm with respect to the number of control points:
in detail the greedy algorithm needs more iterations to reach convergence as the
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number of the control points increases too. Concerning the �nal value of the
cost functional, acceptable results are achieved only by using large numbers of
parameters; �nally, we can also uphold the computational cost tendency, that, as
for the 2D case, shows a parabolic behavior by increasing control points number.

2.2 Inverse Distance Weighting

One of the most commonly used techniques for the interpolation of scattered
data is the Inverse Distance Weighting strategy [111]. With respect to Figure 2.2
we will employ this method in order to solve both the �uid-structure interface and
mesh motion problems. The IDW algorithm is an average moving interpolation
that is usually applied to highly variable data. The main idea of this interpola-
tion strategy lies in fact that it is not desirable to honour local high/low values
but rather to look at a moving average of nearby data points and estimate the
local trends [33]. The IDW technique, therefore, calculates a value for each grid
node by examining surrounding data points that lie within a user-de�ned search
radius. The node value is calculated by averaging the weighted sum of all the
points. Data points that lie progressively farther from the node in�uence much
less the computed value than those lying closer to the node. This point-to-point
interpolation technique has the �exibility to handle arbitrary mesh topologies
and, moreover, it is robust in case of large deformations. In contrast to RBF
interpolation (that will be introduced in the next Section 2.3) this method re-
sults in an algebraic expression for the internal (�ow) point displacements (�uid
mesh) as function of the boundary deformation (representing the deformation
of the structural interface). This explicit evaluation reduces the computational
costs signi�cantly and simpli�es a lot the implementation of the mesh deforma-
tion routines.

We can now consider the simplest form of inverse distance weighting interpo-
lation proposed by Shepard [111]: a generic way to �nd an interpolated value u at
a given point x from a set of samples uk = u(xk), with k = 1, 2, . . . ,N , is given by:

u(x) =
N∑
k=1

w(x,xk)
N∑
j=1

w(x,xj)

uk (2.16)

where, in general, w(x,xi) represents the weighting function:

w(x,xi) =‖ x− xi ‖−p, (2.17)

being ‖ x− xi ‖≥ 0 is the Euclidean distance between x and data point xi, and
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Figure 2.17: Visualization of the in�uence area (red) considered for the IDW
method, within the 2D example introduced in Section 2.1.1.

p is a power parameter, typically equal to 2. Such an algorithm has both clear
bene�ts and drawbacks. Among its bene�ts we could underline the easiness of
its implementation, the possibility of dealing with N -dimensional spaces and the
capability of working with any type of grid. On the other hand we have, within
its original Shepard's formulation, low performances due to high interpolation
costs (which are of the of order of O(N )): since too much weight is assigned
also to distant nodes by considering, with respect to (2.16), N equal to the total
number of grid nodes. In this way, in order to get such a situation depicted in
Figure 2.17, simple control checks could be adopted. In particular, we decided,
in order to reduce the computational e�ort, to involve in (2.16) a reduced set
of grid nodes lying in surroundings of the x, by simply implementing a selective
test based on the Euclidean distance between x and the scattered data positions
xk. Therefore, dealing with a set of scattered data N , we can build, in order to
perform the inverse distance weighting interpolation (2.16), a subset N̂ such that
N̂ ⊂ N , where each element u(x̂) ∈ N̂ satis�es the following relation [124]:

‖ x− x̂ ‖≤ R, (2.18)

where R indicates the user-de�ned radius of the sphere of in�uence adopted to
improve the performances of the method. In Sections 2.4 and 2.5 some applica-
tions of the method proposed will be presented within �uid-structure interface
and mesh motion problems, in the framework of two- and three-dimensional con-
�gurations.
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Figure 2.18: Schematic representation of the Inverse Distance Weighting inter-
polation process.

2.3 Radial Basis Functions

We focus now on the introduction of Radial Basis Functions interpolation
technique in order to face both the �uid-structure interface and mesh motion
problems, as illustrated in Figure 2.2. Interpolation with RBF nowadays has
become a powerful tool in nonlinear multivariate approximation theory through
scattered data and in the shape parametrization �eld due to its great approxi-
mation properties [20]. This technique is still based on the use of a set of pa-
rameters, the so-called �control points�, as for FFD, but RBF is interpolatory. In
fact, thanks to RBF interpolation process, the function values computed at the
control points are exactly the ones of the function to be interpolated. This is
due to the de�nition of the RBF map (2.19), which is made up of a sum of basis
functions φ, centered at each control point XC , that allow to recover the exact
function value at least over the interpolation sites1 (as shown schematically in
Figure 2.1). Another important key-point of RBF strategy relies in the way we
can locate control points: in fact, instead of FFD where control points needed to
be placed inside a regular lattice, with RBF we have no more limitations. In this
way, instead of FFD techniques, we have with RBF the possibility to perform
localized control points re�nements.

1Within RBF strategy, the terms �interpolation sites� and �control points� assume exactly
the same meaning [18].
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RBF shape parametrization technique is based on the de�nition of a map,
M(x) : Rn → Rn, that allows the possibility of transferring data across non-
matching grids and facing the dynamic mesh handling. The map introduced is
de�ned as it follows:

M(X) = p(X) +
Nc∑
i=1

γi φ(‖ X−XCi
‖), (2.19)

where p(X) is a low-degree polynomial term, γi is the weight, corresponding to
the a-priori selected Nc control points, associated to the i-th basis function, and
φ(‖ X−XCi

‖) a radial basis function based on the Euclidean distance between
the control points position XCi

and X. A radial basis function, generally, is a
real-valued function whose value depends only on the distance from the origin,
so that φ(x) = φ̃(‖ x ‖). Among the most common used radial basis functions
for modeling 2D and 3D shapes, we can consider:

(a) Gaussian splines [20]: φ(‖X‖) = e−‖X‖
2/r2

.

(b) Multi-quadratic biharmonic splines [106]: φ(‖X‖) =
√
‖X‖2 + r2.

(c) Inverted multi-quadratic biharmonic splines [20]: φ(‖X‖) = (‖X‖2 + r2)−1/2.

(d) Thin-plate splines [37]: φ(‖X‖) = ‖X/r‖2 ln‖X/r‖.
(e) Beckert and Wendland C2 basis [18]: φ(‖X‖) = (1− ‖X‖/r)4

+(4‖X‖/r + 1).

where r represents a scaling factor controlling the basis shape, the subscript
+ indicates that only positive values must be considered2. In order to show the
basis function behavior within interpolation process and to better understand
the role of the parameter r, with respect to Figure 2.18, all the basis functions
introduced are plotted. It must be remarked, in that way, the key-role played
by the scaling factor r, whose values a�ects signi�cantly [20] both the stability
and the accuracy of the interpolation process. In fact, as we increase the value
of r, we increase the in�uence area of each control point as well. Therefore, it is
standard practice to choose values of r such that each basis function includes, at
least, all the closest neighbor control and interpolation points.

2Negative values are set to zero.
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(a) Gaussian splines (GS).
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(b) Inverted multi-quadratic biharmonic
splines (IMQ).
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(c) Multi-quadratic biharmonic splines (MQ).
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(d) Thin-plate splines (TPS).
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(e) Beckert and Wendland C2 basis (B&W).

Figure 2.18: Visualization of di�erent radial basis functions considered (a)-(e)
and their sensitivity to the scaling factor r.
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With respect to (2.19), generally a linear function is chosen to represent the
polynomial term p(X) = c + QX, where, for the three-dimensional case, c ∈ R3

and Q ∈ R3×3. In detail, c and Q represent the constant and the linear terms
of the polynomial p(X), respectively. In that way we can rewrite the RBF map
expression as it follows:

M(X) = c + QX + WTd(X) (2.20)

being d(X) = {φ(‖X−XC1‖), . . . , φ(‖X−XCNc
‖)} ∈ RNc and W = [γ1, . . . , γNc ] ∈ RNc×3.

The map (2.20), at this point, is function of 3 × Nc + 12 unknowns coe�-
cients to be computed thanks to the interpolation conditions: in fact, we look
for a transformation which is de�ned by moving control points from the ini-
tial shape con�guration to the deformed one. In this way, de�ning their initial
XC = [XC1, . . . ,XCNc

] ∈ RNc×3 and the �nal YC = [YC1, . . . ,YCNc
] ∈ RNc×3

positions, the unknown Nc × 3 weights collected in W are found by ful�lling the
interpolation constraints:

M(XCi
) = YCi

, ∀i = 1, . . . ,Nc. (2.21)

When considering the polynomial term p(X) = c+Q X, in order to �nd the resid-
ual 12 unknown coe�cients, the system is completed by additional constraints,
which can represent the conservation of total force and momentum [86], such that:

Nc∑
i=1

γi = 0, (2.22)

Nc∑
i=1

γiXC1,i =
Nc∑
i=1

γiXC2,i =
Nc∑
i=1

γiXC3,i, (2.23)

being XCi
= (XC1,i, XC2,i, XC3,i). Moreover, in order to express, in our parametrized

framework, the control points position in the deformed con�guration, we can
write:

Yc(Π) = Xc + Π (2.24)

where Π ∈ RNc×3 represents the displacement of control points, which are gen-
erally located on the boundary of the shape to be deformed. Finally, within
the variables introduced, we can write the parametric RBF mapping operator
M(·,Π) : R3 → R3 as it follows:

M(X,Π) = c(Π) + Q(Π)X + W(Π)Td(X), (RBF map)
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where the coe�cients c(Π), Q(Π) and W(Π) satisfy the constraints (2.21), (2.22)
and (2.23). We can rewrite the constraint relations into a more suitable way, sig-
nally to best-�t the �uid-structure interface and mesh motion problem applica-
tions: in that way it will be possible to compute the unknown coe�cients values
as solution of a linear system such that the parametrization term is held in the
right-hand-side:  DCC 1C XC

1TC 0 0
XC 0 0


︸ ︷︷ ︸

H̃CC


W
cT

QT

 =


YC(Π)

0
0

 , (2.25)

where DCC ∈ RNc×Nc represents the interpolation matrix, component-wise DCCi,j
=

φ(‖XCi
−XCj

‖), and 1C ∈ RNc×1 represents a unit vector. It must be underlined
that when considering, with respect to (2.19), the polynomial term p(X), the
RBF interpolation problem always admits a unique solution, being the left-side
matrix symmetric and positive de�nite [20]. When dealing with interpolation
problems involving a small number of control points the system (2.25) would be
solved easily by means of suitable direct methods. Notwithstanding, di�culties
may arise due to matrix high-condition number related to both the employment
of large control points number and high scaling factor values [20]. In fact, if we
consider very wide and �at basis functions we would not be able to distinguish
the contribution of each control point on a near interpolation point, resulting in a
close to singular matrix. Once calculated through (2.25) the unknown coe�cients
of the RBF interpolant, it will be possible to evaluate the global RBF map. From
a practical point of view, in order to perform the interpolation on a set of NI
interpolation points {XIk}NI

k=1 we can directly compute their function values YI

as it follows:

YI =
[

DIC 1I XI

]︸ ︷︷ ︸
H̃IC


W
cT

QT

 , (2.26)

where DIC ∈ RNI×NC , and component-wise reads DICi,j
= φ(‖XIi −XCj

‖), with
1I ∈ RNI×1 indicating a unit vector and XI ∈ RNI×3 represents the matrix con-
taining the coordinates of the interpolation points. At this point, by introducing
expression (2.25) in (2.26) we obtain:

YI =
[

DIC 1I XI

]  DCC 1C XC

1TC 0 0
XC 0 0

−1

︸ ︷︷ ︸
H̃


YC(Π)

0
0

 (2.27)
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We can de�ne the interpolation matrix H from control points to the interpolation
ones by considering the �rst NC columns of H̃ (due to the de�nition of the vector
in the right-hand-side in (2.27), whose latest four elements are zero), such that:

YI = H YC (2.28)

By acting in this way no orthogonal projection and search algorithm is needed,
but the computation involves the inversion of a relatively small (depending on the
number of the control points) matrix. From a computational point of view, it is
not useful to assemble the whole matrix H, due to high costs involved O(NI×N 2

c ).
In that way it is better to �rst multiply H̃−1

CC , de�ned in (2.25) with [YC , 0, 0]T

and then, multiplying the resulting vector with H̃IC , de�ned in (2.26), for a
computational e�ort of order O(2NI × Nc). Moreover, the interpolation matrix
could be also evaluated once for all (o�ine) at the beginning and stored, so that
in run-time (online) the �rst method would cost only O(NI ×Nc), twice as fast
as the second approach. At that point, in order to highlight the potentiality
of this shape parametrization strategy, some applications of RBF technique are
proposed in Figure 2.19 and 2.20.

(a) Initial con�guration. (b) Final deformations.

Figure 2.19: Geometrical transformation on a carotid artery bifurcation operated
by radial basis functions with 12 control points.
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(a) Initial con�guration, from below. (b) Initial con�guration, from above.

(c) Deformations and comparison.

Figure 2.20: Simulated aeroelastic deformations on a complete commercial air-
craft con�guration operated by radial basis functions, centered in 10 control
points.

2.4 Some applications of multivariate interpola-

tion methods

We focus now on some applications of the numerical schemes proposed, in
order to investigate both their interpolation properties and computational costs.
In particular we will study two di�erent interpolation problems concerning one
and two-dimensional cases. In the �rst 1D example [33], the multivariate interpo-
lation strategies considered in this work, RBF and IDW, are compared within a
smooth analytical test-problem in order to be able to investigate their properties
separately. In that way, on an analytical-de�ned boundary, we have considered
di�erent discretization for both the �uid and structure grids. In detail the bound-
ary shape is described by:
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b(x) = 0.5 sin(2πx), x ∈ [−0.5, 0.5] . (2.29)

On this boundary we state that �uid and structural meshes are non-conformal
since they di�er by their discretization: in detail, we �x the number of �uid grid
nodes to be equal to nf = 2560, while the number of the structural ones will
change with the following law:

ns = 2k · 10, k = 0, 1, 2, 3, 4, 5, 6. (2.30)

In the structural points we imposed an assigned displacement in the form of
a cosine d(x) = cos(2πx) to obtain the �nal analytical deformed con�guration.
Within this example, we will test the capabilities of the methods proposed and we
will compare, in the framework of RBF technique, all the radial basis functions
introduced and depicted in Figure 2.18. With respect to the previously introduced
background, in Figure 2.21 we illustrate the problem settings:
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Figure 2.21: 1D interpolation problem settings.

The displacement imposed at the structural points is interpolated, thanks to
RBF and IDW techniques, in order to obtain the displacement values in the �uid
domain. With respect to Figure 2.22, the L2-error of the displacement in the �ow
point versus the number of structural points is shown, with di�erent values for
the shape in�uence factor r:
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(a) r = 0.001.
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(b) r = 0.005.

Figure 2.22: L2-error of the displacement in the �ow point obtained by considering
two di�erent values for the shape factor.

On the base of these results it is possible to underline the sensitivity of the
radial basis functions adopted, related to the shape factor r.
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Figure 2.23: Wendland and Beckert (W&B) C2 basis functions sensitivity to scale
factor r.

In particular, since both the Multi-quadratic biharmonic (MQ) and Thin-
plate splines (TPS) are globally supported functions, as shown if Figure 2.18c and
2.18d, respectively, their behavior is not in�uenced signi�cantly by changes in the
shape factor. On the contrary, being the GS, TPS andW&B compactly supported
radial basis functions, they su�er from scale factor values variations: particularly,
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for larger values of r we can achieve more accurate solutions [73]. Certain high
sensitivity to r is related to the Wendland and Beckert C2 basis functions: for
this reason we investigated their behavior considering greater values for r, as
shown in Figure 2.23. From this analysis both the MQ and TPS basis functions
would represent a good choice in terms of accuracy of the achievable solution and
non-sensitivity related to the scale parameter r. On the other hand, with respect
to Figure 2.24, they are characterized by a slightly higher computational e�ort if
compared to the other radial basis functions adopted (even if it is generally much
smaller than the time needed by the �ow solver, within the FSI problem).
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Figure 2.24: Computational e�ort for the �uid-structure interface 1D example,
with r = 0.005.

At this point, we focus our attention on the inverse distance weighting tech-
nique in order to solve the same 1D problem: as seen in Section 2.2 we consider
a parametric analysis by adopting di�erent values for the radius of in�uence R.
Since the problem to be solved is characterized by smoothness of the displacement
to be transferred between non-matching grids, we expect to obtain great results
in terms of accuracy of the solution with low computational costs as shown in
Figures 2.25 and 2.26, where it is possible to look at the improvement in the re-
sults achieved. We obtained, as expected, good results in terms of interpolation
error (comparable to the ones we achieved with RBF) with a slight computa-
tional e�ort that is quite not dependent from both the number of structural grid
nodes and from the chosen value of R. By looking at Figure 2.25 we can also
observe how the curve related to R = 0.5 shows better results, with respect to
others, when dealing with the coarse structural grid; on the other hand, for the
�nest structural discretization, the curves related to smaller values than R = 0.5
(in detail for R = 0.01, 0.05, 0.1) would provide better results. In fact, as the
number of structural grid nodes increases, to adopt smaller values for the radius
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Figure 2.25: L2 norm of the interpolation error for the parametric analysis of the
1D example using IDW technique.
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Figure 2.26: Computational costs involved using IDW technique for di�erent radii
of in�uence.

of in�uence represents a better choice, since to recover local deformations it is
preferable to weight the contribution of those nodes lying in its closeness, thus by
choosing small values for R. To better assess the interpolation properties of dif-
ferent radial bases and inverse distance weighting method, we have performed a
second 2D test [73], that, unlike the �rst one, is characterized by a not smoothed
function to be interpolated, de�ned as it follows:

f(x, y) = sin(2πx) cos(3πy) exy, x, y ∈ [−1, 1] . (2.31)



46 Shape parametrization techniques

We assumed that the solution is given over a 25×25 quadrilateral uniform struc-
tured grid (structure mesh) and it is interpolated over a uniform and structured
(�uid) grid (whose number of nodes is equal to nf = {900, 1600, 2500} for each
of the analysis that we performed), thus non-conforming to the structural one.
Also, in this case, we consider as control points for the RBF interpolation the
whole number of �uid grid nodes that compose the �uid mesh. In Figure 2.27a
and 2.27b it is possible to visualize the structural mesh realized and its function
contour plot:

(a) Structural mesh. (b) Function contour plot.

Figure 2.27: Representation of both the structural mesh (on the left-hand-
side) and the function to be interpolated (on the right-hand-side) over the non-
matching �uid grid.

In Figure 2.28 both the L2 norm of the interpolation error and the compu-
tational costs are shown. Results are in agreement with the theory: in fact, the
error decreases as the support radius increases; it is important to observe that, in
relation to Gaussian splines (GS), the error decreases only when considering small
values for the parameter r, while for larger values, the problem becomes unstable
due to the ill-conditioning of the matrix H̃CC , de�ned in (2.25). In that case
round-o� errors get ampli�ed and the interpolation becomes completely biased.
Moreover, it is possible to state the best behavior, in terms of accuracy, of the
MQ basis functions, such that they guarantee acceptable solutions independently
both from the grid nodes number and from the scale factor. It is also important
to remark the fact that the reported results have been computed without the use
of the polynomial term in the interpolation process, due to the fact that, since all
control points are coplanar, the corresponding matrix H̃CC would become singu-
lar. Concerning the computational costs, as seen for the 1D example, the CPU
time needed by the interpolation process is, for every basis considered, quite low
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with a linear increasing tendency related with the number of the �uid grid nodes.
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(a) 30× 30 �uid nodes.
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(b) 40× 40 �uid nodes.
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(c) 50× 50 �uid nodes.
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(d) Computational costs.

Figure 2.28: Results obtained within the 2D example adopting RBF method.
Comparison of the accuracy achievable with di�erent basis functions and their
computational e�ort.

Finally, it is possible to show the results obtained thanks to IDW technique:
in that case, we decided to speed-up the method by adopting, as criterion to
be used to �nd those points considered in the weighting process, not the ones
lying witin an inscribed sphere of radius R, but the closest NP points to the
interpolation one. At the base of this choice there is the fact that the function to
be transferred across non-matching grid is not smoothed and its values change a
lot from one point to the other: in such a case the adoption of a selection method
like the one proposed is more suitable. In Figure 2.29 the main results obtained
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within this example are illustrated .
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Figure 2.29: Results obtained within the 2D example adopting IDW method.
Comparison of the accuracy achievable with di�erent numbers of neighbor weight-
ing points and their computational e�ort.

With respect to Figure 2.29a, we can observe that the curve related to the
coarse �uid mesh (nf = 900) drives to best results: this is due to the fact that the
number of �uid nodes is is quite the same (instead of the other two cases where
nf = 1600, 2500) of the structural ones ns = 750, resulting in nearly conformal
�uid-structure meshes. We can conclude that, at the base of the jeopardizing
behavior of the function to be interpolated, in this case the choice of radial basis
functions strategy would be preferable. In fact, it is possible to underline that
when dealing with �uid-structure interface problems characterized by the transfer
of patchy data across interfaces, the use of RBF method represents quite a unique
choice in order to get good results with an acceptable computational e�ort [52].

2.5 Comparison within dynamic mesh handling

While in the previous section we compared, within 1D and 2D examples,
the interpolation properties of the multivariate interpolation methods in order
to solve the �uid-structure interface problem, here we focus our attention on the
potentialities of FFD, RBF and IDW techniques concerning the mesh motion
problem. In particular, we are going to compare these strategies through the
3D example introduced in Section 2.1. In this way, at the base of the results
previously achieved by adopting the FFD method, we will compare both the
computational costs and the achievable mesh quality using both the IDW and
RBF strategies. It must be remarked, concerning RBF method, that one of its
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advantages is that the same map used for transferring data across non-matching
grids, can be exploited for moving the �uid mesh, accordingly to the interface
deformation. In that way it would be enough to enlarge the set of interpolation
points to all the interior nodes of the �uid mesh. In detail we decided to test these
methods with respect to such an example, in order to assess the most suitable
strategy to be adopted within the test-case of internal �uid �ow that will be
proposed in the last chapter of this work. The analysis pattern has been organized
as it follows: we will perform a set of parametric simulations involving the RBF
strategy, by testing the di�erent basis functions with several scale factor values,
r; therefore, we will face the problem adopting the IDW method considering
di�erent values of the radius of in�uence R. Finally, at the base of the results
obtained, it will be possible to identify the most suitable strategies to be taken
into account in Chapter 5, when dealing with the FSI simulation. In Figure 2.30
are proposed the results obtained within the numerical simulations performed
using RBF.
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(a) Accuracy of RBF methods vs. scale factor
r2.
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(b) Computational costs.

Figure 2.30: Results obtained within the 3D example adopting RBF method.
Comparison of the accuracy achievable with di�erent basis functions and their
computational e�ort.

We considered, as control points, all the �uid nodes lying on the �uid-structure
interface and, indeed, in order to highlight separately the performances related
to solution of the mesh motion problem form the �uid-structure interface one,
we have chosen to deal with conformal meshes. By looking at Figure 2.30a, for
values of r greater than 0.3 the L2 norm of the error between the structural and
the �uid grid nodes positions over the interface is small (∼ 10−3) and, moreover,
it does not change from one basis function to the other. If we consider the
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interpolation errors reported in Figures 2.28 and 2.30a, it is possible to state
that Thin-Plate splines, among the other RBF basis functions, have a very small
dependence on the choice of r, since the error is quite independent from variations
in the support radius. Being TPS basis functions quite independent from r, its
related computational time, as shown in Figure 2.30b, would not change with
respect to variation of such a parameter. At the base of their better results
(which are not highly dependent from the choice of r) and from their quite low
computational costs, within RBF strategies we decided to select as basis functions
to be adopted for the FSI analysis in Chapter 5 the Multi-Quadratic biharmonic
splines and Thin-Plate splines. Finally, in Table 2.3 we report the main results
obtained thanks to the use of IDW technique by varying the value of the radius
of in�uence:

R L2 interface error CPU time [s]

0.010 1.445E−4 0.89
0.1008 1.112E−4 1.82
0.2006 8.732E−5 1.97
0.3004 6.671E−5 2.02
0.4002 2.198E−5 2.09
0.5000 1.021E−5 2.15

Table 2.3: Results obtained within the 3D example, adopting IDW method.
Comparison of the accuracy achievable with di�erent radii of in�uence R, and
their computational costs.

From these results it is possible to appreciate on one hand the accuracy of the
method, in terms of achievable L2 norm of the error (also when small values of R
are taken into account), on the other hand its cheapness in terms of computational
costs which, indeed, do not arise signi�cantly from 2D to 3D environments. At
the base of the previously obtained results we propose, within FSI moving mesh
problems, the use of IDW technique instead of both RBF and FFD. In fact, al-
though RBF leads to great results, it is whatever more expensive, and, also of
primary importance but not handled in this work, it may not be highly suitable
for a parallel computational environment due to the dense pattern of the interpo-
lation matrix H [73]. With respect to FFD technique, on the base of the results
obtained, we can state that it is unacceptably expensive since to update the �uid
mesh con�guration we have to solve an optimization sub-problem; moreover, due
to its limitation of not being interpolatory, as well as its severe restrictions on
control points locations, it seems to be not so suitable for this kind of applications.

We need to remark, at the end of this chapter, that although in this work
shape parametrization strategies (FFD and RBF) will be adopted to handle both
the mesh motion and interface problems for FSI, they represent also an excellent
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tool within Reduced Order Modeling (ROM). Within such a framework the aim
is to reduce as most as possible the computational and geometrical complexities
in systems governed by partial di�erential equations, in particular for those appli-
cations requiring an ever increasing level of accuracy leading to high-complexity
models and to a curse of dimensionality. In general, to the end of replacing a large
scale model (from a computational and a geometrical point view) by a model of
very lower dimensions, shape parametrization strategies would give the possibil-
ity to represent and describe complex geometries through low dimensional spaces
instead of using geometrical properties themself. As we have shown, RBF and
FFD represent good choices, since they allow signi�cant reductions in the num-
ber of parameters able to describe and parametrize complex geometrical models.
In literature a wide range of applications of RBF and FFD employed to handle
shape parametrization within reduced order modeling are present. For example,
in [67, 74], FFD techniques are used in optimal design of high-performance sail
boats: in that case FFD aimed at shape optimization on ship-related geome-
tries, like a bulb and a rudder of a sail boat. Indeed, within applications from
the haemodynamic framework, in [81] RBF strategy has been used within the
development of a new model reduction technique aimed at real-time blood �ow
simulations on a given family of geometrical shapes of arterial vessels: in de-
tail, to describe and parametrize a set of arterial vessel geometries. Within FSI
problems, a lot of work has also been devoted to the study of the parametric �uid-
structure coupling, like in [69, 70, 71, 97], by means FFD techniques. Indeed,
among shape optimization problems within the framework of ROM techniques,
FFD [9, 82, 105] and RBF [62, 63] have been used to parametrize geometrical
objects, with applications spanning many engineering �elds like aerodynamics,
haemodynamics and naval engineering. At the base of this brief bibliographic
survey, devoted to highlight the central role of shape parametrization techniques
within ROM strategies, relies the idea for future works where we aim at using
FFD and RBF parametrization not only to tackle the mesh motion and inter-
face problems for FSI, but also to extent their application �elds into the ROM
scenario.





Chapter 3

Dimensionality reduction for shape

parametrization

In this Chapter we focus our attention on the development of shape parametriza-
tion techniques that will allow to overcome some of the limitations that charac-
terize the state of the art of the strategies proposed, namely of FFD and RBF,
within their applications to the mesh motion problem. In particular, the �rst
issue to be faced, related to these techniques, lies in the choice of the control
points setting, and, in detail, of both the number of parameters to be taken into
account, and their locations. As we have seen in Chapter 2, both the accuracy
and the computational costs of these techniques show a signi�cant sensitivity
related to the control points pattern adopted: here we will propose, concerning
FFD and RBF, di�erent strategies in order to be able to tackle these problems in
a deterministic way, such that it will be possible to standardize this procedure,
leading to a reduction of the computational costs too. In order to tackle such
problems, in literature a wide range of empirical strategies is presented [114]:
they try to identify the best control points setting by performing a sensitivity
analysis of the achievable results considering di�erent, a priori, parameters pat-
terns, and, at the end of this simple procedure, they select the one leading to the
best results in terms of mesh quality. It is possible to understand how, in such
an empirical way, the �nal result would be a�ected by the user-de�ned choices
made when building the candidate setting con�gurations for the control points,
and, in particular, no guarantee is provided, related to the fact that the optimal
con�guration found represents really the best. Basically, here we propose, con-
cerning RBF and FFD techniques, a methodology to overcome these problems
through a high-�delity deterministic procedure: the goal in the FSI framework
will consist in the establishment of a standard path able to automatically drive
to the optimal control points setting in order to represent both the initial shape
con�guration and its deformation during the �uid-structure interaction process.
Moreover, another important issue to be taken into account when dealing with
FSI problems is related to the possibility of studying the multiphysics interaction
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between �uid and structure when the latter consists in a free-body, that, during
the simulation process, would not only get deformed, but, it could be subject to
rigid translations and/or rotations. In that way, we need to estimate the entity of
such a structure movement, in order to treat correctly the mesh motion problem
and to be able to update the �uid mesh accordingly to the structure behavior.
With respect to the previously introduced background, this Chapter has been
organized as it follows: in Section 3.1 we propose the strategy considered in or-
der to tackle the problem of the identi�cation of structural rigid translations and
rotations, showing both its possible application �elds and limitations. Within
the identi�cation of suitable control points settings for mesh motion problems
within FSI, throughout Section 3.2 we present the procedure adopted for the
adaptive selection of parameters for RBF technique. Furthermore, in Section
3.3, we propose a patch-approach for the FFD strategy, designed to overcome
the FFD limitations in performing localized control points re�nements. Finally,
Section 3.4 detail the hierarchical pattern designed for the mesh handling tool
realized, highlighting its potentialities and selective approach.

3.1 Identi�cation of free-body rigid movements

In this section we aim at dealing with those �uid-structure interaction prob-
lems involving, as structure, free-bodies (not constrained ones): in such cases,
during the simulation process, the structure would be subjected to both defor-
mations and rigid movements due to the e�ect of �uid forces acting on structural
external surfaces. Within Chapter 2 we dealt with shape parametrization tech-
niques within FSI moving mesh problems, in order to update the �uid mesh
con�guration to match the computed structural one at the interface: in that
case, the displacement to be described was related only to elastic deformations.
In such a case involving free-bodies, in order to solve e�ciently the mesh motion
problem, we should be able to know the entity of both the two displacement com-
ponents (rigid and deformative). Therefore we can split, within that framework,
the structural displacement in two di�erent components: a global large one, re-
lated to structural rigid translations and/or rotations and, the other, due to small
elastic deformations. If we denote by ς ∈ ΩS the total structural displacement
�eld, we can proceed performing its separation as it follows:

ς = ςR + ςD (3.1)

where:

(i) ςR, represents the structural rigid movements;

(ii) ςD, indicates the small deformative component.
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It is important to remark the fact that we have classi�ed as large and small, the
rigid and elastic components of the displacement, respectively, since the �rst in-
volves a perturbation of the whole structural domain, while, the second, generally
leads to localized shape deformations. Here, our goal, is to set up a methodology
in order to identify both the rigid translations and rotations, while, for the recov-
ery of the deformative component, it will be employed the shape parametrization
techniques introduced within Chapter 2. In particular we can observe that the
motion of the �uid mesh, when considering free-bodies, can be known a priori
(e.g. the case of imposed forced oscillations of an airfoil, aileron de�ections, etc.)
or it can be the output returned by the structural sub-system: here we focus on
the latter case, that leads to an identi�cation problem of the structural transla-
tions and rotations. With respect to Figure 3.1 and 3.2, we illustrate the idea of
separation of the global displacement in two di�erent components: starting from
an initial reference con�guration of a commercial aircraft, we obtain the �nal one
by simulating aeroelastic deformations and, then, applying a rigid pitch rotation.

Figure 3.1: Initial (left-red) and target (right-green) shape con�gurations of a
commercial aircraft.

Figure 3.2: Visualization of the di�erent displacement components de�ning the
�nal con�guration: deformative (left-orange) and rigid (right-blue) components.

At this point, after this brief introduction, it is possible to detail the method-
ology employed to recover both the rigid translations and rotations values. To
this end we can denote by Ω̂S

h,i ∈ Rns×3 and by Ω̂S
h,i+1 ∈ Rns×3 the structural

mesh, with ns indicating the number of structural grid nodes, at the generic
time-steps ti and ti+1, respectively, expressed into a global �xed reference coor-
dinate system T (X), with X = [xT ,yT , zT ], as illustrated in Figure 3.3. On the
basis of the knowledge of the initial and �nal structural domain grids con�gura-
tions, we would be able to �nd the unknown values of both the rigid translations,
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Figure 3.3: Structural mesh con�gurations at di�erent time steps of the FSI
simulation.

s = {sx, sy, sz}T , and rotations, θ = {θx, θy, θz}T , that occurred between ti and
ti+1. Considering both the structural discretized con�gurations, Ω̂S

h,i and Ω̂S
h,i+1,

it is possible to compute their barycenter, with respect of the coordinate system
T (X), as it follows:

xB =

ns∑
k=1

xk

ns
, (3.2)

where {xk}ns
k=1 represent the structural grid nodes coordinates. Evaluating the

expression (3.2) for both the two con�gurations, Ω̂S
h,i and Ω̂S

h,i+1, we get their
barycenter, xB i

and xB i+1
, that represent the origin of the body coordinate sys-

tems T (XB i
) and T (XB i+1

). At this point, in order to identify the values of
the rigid translations, it is possible to subtract the coordinates of the computed
barycenters as it follows:

s = xB i+1
− xB i

. (3.3)

Once computed the values of rigid translations, we can proceed evaluating the
three unknown rotations θ ∈ R3. First of all, we translate Ω̂S

h,i+1, with its coor-
dinate system T (XB i+1

), of a quantity -s, in order to match the origins of both
the systems T (XB i+1

) and T (XB i
): in this way we isolate the rigid rotation term

from the translation one. It is possible to evaluate the inertia matrices, related
to Ω̂S

h,i and Ω̂S
h,i+1, as it follows:

I =
ns∑
k=1

mk

(y2
k + z2

k) −xkyk −xkzk
−xkyk (x2

k + z2
k) −ykzk

−xkzk −ykzk (x2
k + y2

k)

 , (3.4)
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being xk, yk and zk the coordinates of each structural grid nodes, de�ned with
respect to T (XB i

), and {mk}ns
k=1 = 1. Thanks to the evaluation of (3.4) for both

Ω̂S
i and Ω̂S

i+1, we obtain Ii and Ii+1. In order to compute the orientations of each
axis belonging to T (XB i+1

) and T (XB i
), we can solve the eigenproblems related

to Ii+1 and Ii, respectively, de�ned as it follows:

Ii+1 yi+1 = λi+1 yi+1, (3.5)

Ii yi = λi yi, (3.6)

where the eigenvectors obtained as solution of the eigenproblem (3.5) represent
the orientation of the axes XB i+1

= [xTB i+1
,yTB i+1

, zTB i+1
], while the others ob-

tained from (3.6) represent the orientation of XB i
= [xTB i

,yTB i
, zTB i

]. In order
to solve this problem we have employed the LAPACK-DSYEV routine of the
Teuchos Trilinos package [58], that is generally used to compute eigenvalues and
eigenvectors for symmetrical matrices, by implementing a QR based factorization.
It is possible, at this point, to establish through the introduction of a rotation
matrix R(θ), one relation between each axes pair (e.g. between xB i+1

and xB i
).

In detail, the orthogonal rotation matrix corresponding to a clockwise left-handed
rotation, with Euler angles θx, θy, θz and x-y-z convention, is given by:

R(θ)xyz =

cos θy cos θz − cos θx sin θz + sin θx sin θy cos θz sin θx sin θz + cos θx sin θy cos θz
cos θy sin θz cos θx cos θz + sin θx sin θy sin θz − sin θx cos θz + cos θx sin θy sin θz
− sin θy sin θx cos θy cos θx cos θy

 .
Thanks to the hypothesis of small angles (in detail, −10◦ ≤ α ≤ 15◦, that leads
to cosα ' 1, sinα ' α), we get the expression of the linearized rotation matrix
R̃(θ), de�ned as it follows:

R̃(θ) =

 1 −θz θy
θz 1 −θx
−θy θx 1

 , (3.7)

where we need no more to indicate the dependency related to the order of the
applied rotations, due to the hypothesis of small angles adopted. Now we can
write three relations, one for each axes pair, in order to �nd the rigid rotation
angles occurred between the FSI simulation time-steps ti and ti+1. Thanks to the
de�nition of the linearized rotation matrix is it possible to write:

xB i+1(1)

xB i+1(2)

xB i+1(3)

 =

 1 −θz θy
θz 1 −θx
−θy θx 1

 
xB i(1)

xB i(2)

xB i(3)

 , (3.8)
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where xB i(1)
, xB i(2)

and xB i(3)
represent the components of the computed eigenvec-

tor xB,i projected on the global reference coordinate system T (X). By rewriting
(3.8) as it follows:

xB i+1(1)

xB i+1(2)

xB i+1(3)

 =

 0 xB i(3)
−xB i(2)

−xB i(3)
0 xB i(1)

xB i(2)
−xB i(1)

0


︸ ︷︷ ︸

A


θx
θy
θz

 +


xB i(1)

xB i(2)

xB i(3)

 , (3.9)

is possible to observe easily that, in order to get the unknown angles of rotations,
we need to invert the matrix A, which is clearly singular, since det(A) = 0.
Therefore, we overcome such a problem by proceeding as it follows: since the
global reference coordinate system T (X) is de�ned by:

X =
[
xT , yT , zT

]
=

 1 0 0
0 1 0
0 0 1

 , (3.10)

we can evaluate, by employing (3.8) applied to each axes pair the rotation angles,
θi+1, between T (XBi+1

) and T (X):

XBi+1
=

 1 −θz i+1
θy i+1

θz i+1
1 −θx i+1

−θy i+1
θx i+1

1

X (3.11)

and, in the same way, we can �nd θi, between T (XBi
) and T (X):

XBi
=

 1 −θz i
θy i

θz i
1 −θx i

−θy i
θx i

1

 .X (3.12)

In both (3.11) and (3.12) the angle values are given through simple algebraic
relations, that, in detail, for the case related to θi, are given by:

θx i
= zB i(2)

= − yB i(3)
,

θy i
= −zB i(1)

= xB i(3)
,

θz i
= yB i(1)

= −xB i(2)
,

(3.13)

At this point, once we have found both θi+1 and θi, it is possible to compute the
values of rigid rotations θ, between T (XBi+1

) and T (XBi
), as it follows:

θ = θi+1 − θi (3.14)

In order to better assess both the accuracy and the limits of applications of the
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method, we performed several tests by considering, as structure, a commercial air-
plane. In detail, we started considering the aircraft whose barycenter is centered
in xB i

= {0, 0, 0}T , and we imposed di�erent combinations of both translations
and rotations, to be recovered by the algorithm proposed, and simulated aeroe-
lastic deformations (as shown in Figure 3.3). Our goal consists in recovering, as
best as possible, the rigid components of the total applied displacement. With
respect to Figure 3.6, it is possible to appreciate the main results obtained:
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(b) Rotations to be recovered.

Figure 3.4: Representation of both the translations and rotations imposed simul-
taneously.
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(b) Error.

Figure 3.5: Visualization of the gained results related to the translations recovery.

Figures 3.5 and 3.6 demonstrate the quality of the strategy proposed: for
all the possible combinations of rigid translations the estimation of the error is
absolutely trivial while, concerning rotations, the results are in agreement with
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theory due to the great results obtained with the exception of large angles (even
if the errors are of the order of one degree).
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Figure 3.6: Results obtained within rotations recovery: on the left-hand-side we
make a comparison between the angles imposed and the ones estimated, while,
on the right-hand-side, we report their corresponding errors.
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3.2 Adaptive selection of RBF interpolation sites

In this section we focus our attention on the choice of the interpolation sites,
within RBF method, to handle moving mesh problems for FSI. As introduced
in Chapter 2, RBF technique relies on the use of a (possible small) set of con-
trol points whose displacements induce the shape deformation. Here, we aim at
proposing a standard methodology dealing with the identi�cation of the best set
of parameters to be taken into account, in order to employ RBF strategy within
the dynamic mesh handling. Since now, we have assumed that both the number,
and locations, of control points should be �xed a priori by the user, in a problem-
dependent way: in this Section we propose an innovative methodology that could
be employed in order to overcome such a limitation. We have seen, with respect
to Section 2.3, that the RBF accuracy and computational costs, show a quite sig-
ni�cant sensitivity related to the number of parameter adopted for the analysis:
in such a situation, when any physical criteria is adopted to choose the control
points setting, an incorrect choice of both the number of parameters and their
sites, would drive to both a loss in computational time, when we adopt excessive
number of control points, and, suddenly, inaccurate results, when the parameters
employed are not enough to describe the shape deformations. Therefore, in the
FSI framework, the main questions consist in how to represent shapes, and their
deformations, using shape parametrization strategies, like RBF. In literature a
wide range of studies is present [114], related to the identi�cation of the best
control points setting to be adopted: they are based on the idea of �nding a
possible best set by mean of several screening tests and sensitivity analysis per-
formed considering a progressive growing number of parameters, and, in a trivial
way, �nally they consider the one showing best results in terms of accuracy of the
solution computed. Such an approach, as stated before, is clearly characterized
by a certain lack in precision and uncertainty, since the parameters pattern is
established without any idea of the real (physical) shape deformations that will
occur during the FSI simulation process. Moreover, in that way, is not possible
to generalize the whole process, since the control points setting would change
in a very problem-dependent way. On the basis of this introduced background,
here, we propose a high-�delity approach designed to better assess the choice of
both the number of control points as well as their locations, through a physical
approach suited for FSI problems. The �rst issue to be faced, in order to outline
such a procedure, deals with the estimation related to the shape deformations
(structural displacements) that will occur during the FSI simulation process. If
we will be able to �nd a set of likelihood shapes to be captured by the RBF
method, the problem of �nding the best parameters set, would be solved through
an optimization algorithm, by placing control points in order to recover the target
shapes. Thus, our main idea relies on estimating these target shapes through the
computation of the structural eigenmodes : such an approach lies on the physical
principle that, during the FSI simulation, the structural behavior could be well-
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represented, and approximated, by the superposition of its normal modes. In
fact, in structural dynamics or aeroelasticity problems, such an approach is em-
ployed when we are interested in approximating the spatial displacement ς(x, t) of
the structure using much fewer degrees of freedom than is necessary to solve the
discretized equations of motion resulting from a �nite-element or �nite-di�erence
approximation. Intuitively, the �rst Nm eigenmodes represent good candidates
for a general basis to approximate the displacement since, with respect to (3.15),
the exact displacement can always be obtained as a linear combination of these
eigenmodes:

ς(x, t) =
Nm∑
i=1

Ni(x) qi(t), (3.15)

where qi(t), i = 1, . . . , Nm, represent the time-harmonic part of the solution and
Ni(x) are the so-called eigenmodes that determine completely the spatial depen-
dency of the displacement. Indeed, by introducing a �nite-element discretization
for the structural continuum, in order to obtain the eigenmodes Ni(x), we have
to solve the following generalized eigenproblem:

ω2 M ς = K ς, (3.16)

where M ∈ Rns×ns and K ∈ Rns×ns represent the mass and sti�ness matrices of
the structure, while ω indicate the eigenvalues of the structural system, whose
corresponding eigenmodes are collected within Ni(x). In the framework of our
FSI mesh motion problem, one of the issue that could arise is related to the
number of structural eigenmodes to be taken into account for our procedure: the
choice of the bandwidth Nm is highly problem-dependent and, in detail, is re-
lated to the purpose of our FSI analysis. Generally, when we are interested in the
global behavior of rigid structural system, small values of Nm could be taken into
account, while, when dealing with FSI problems high-�exible systems, Nm should
increase. In fact, as illustrated in Figure 3.7, it is possible to rank eigenmodes
with respect to the frequency ω: the more frequency increases, the more oscil-
lating (in space) eigenmodes would be evaluated. A common adopted technique,
within that issue, relies in the computation of an initial greater number of Nm

eigenmodes in order to perform, then, a sensitivity analysis evaluating the con-
tribution of each of them to the global response. In that way it will be possible
to truncate our basis, identifying the bandwidth of interest. Once we have intro-
duced the way adopted to �nd the target shapes to be described, we can proceed
detailing the strategy employed to �nd both the number of control points and
their locations. For that purpose we employed an optimization method, based
once again on a Greedy algorithm [98], that has been previously introduced in
Section 2.1.1. After we have identi�ed the Nm target shapes, the aim is to �nd
the best set of control points able to describe all these con�gurations (eigen-
modes). Generally, as stated before, higher shape complexities are related to the
high frequency eigenmodes, thus, within our procedure, we start identifying the
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parameters pattern able to describe the shape related to the Nm-th eigenmode.
In this way, we can formalize the problem for the 3D case as it follows: we denote
by Ω̂0 the initial structural discretized domain (e.g. Figure 3.7a), and by V the
space of the admissible structural con�gurations, whose elements are represented
by the eigenmodes {Ω̂k}Nm

k=1, such that dim(V) = Nm. Our goal consists in �nd-
ing the best set of parameters, Π(x) ∈ RNc×3, able to accurately capture all the
shape con�gurations belonging to V .

(a) Plate. (b) First mode, ω = 4.21E + 5 Hz.

(c) Second mode, ω = 1.05E + 6 Hz. (d) Third mode, ω = 1.75E + 6 Hz.

(e) Fourth mode, ω = 2.44E + 6 Hz. (f) Fifth mode, ω = 3.07E + 6 Hz.

Figure 3.7: Eigenmodes and generalized displacements computed for a one edge
clamped steel plate (1 m × 1 m × 0.1 m). Analysis performed usingMsc-Nastran,
a commercial Finite Element code.

In this way, we can start identifying the set of control points able to recover
�rstly the most complex shape (as an example see Figure 3.10), in the space V ,
and then, to verify if it is su�cient to describe the others. In detail, our identi�-
cation procedure will take into account as �rst target shape Ω̂Nm , and, then, the
others {Ω̂k}1

k=Nm−1. We can focus now on the use of the Greedy algorithm [98]
in order to �nd Π(x). As we have introduced, we have two iteration loops: the



64 Dimensionality reduction for shape parametrization

outer that considers the eigenmodes computed in a decreasing order (from Ω̂Nm

to Ω̂1), and an inner one, that for a �xed target shape to be captured �nds both
the number of control points and their sites. We can now deeply analyze the
inner loop devoted to the identi�cation of Π(x). At each iteration of the inner
loop, namely for each ik, we �rstly compute the nodal values of the di�erence
between Ω̂k and Ω̂

(ik)
0 , then, we identify the locations, X̃ = {x̃T , ỹT , z̃T} with

X̃ ∈ R6×3, of the nodes where the di�erences in the x, y and z directions reach
their positive maximum and negative minimum values. At that point, thanks
to the interpolatory behavior of RBF [20], it will be possible to locate, there,
a maximum of six control points: in such a way we can control the local error
between Ω̂k and Ω̂

(ik)
0 . We have indicated with Ω̂

(ik)
0 the modi�ed initial structural

con�guration, which is obtained thanks to control points displacements imposed
in order to match Ω̂

(ik)
0 (x̃, ỹ, z̃) with Ω̂k(x̃, ỹ, z̃). At each iteration, once we add

few control points, we can evaluate the cost functional J (ik), that is de�ned as it
follows:

J (ik) =

∥∥∥∥∥Ω̂
(ik)
0 − Ω̂k

Ω̂
(1)
0 − Ω̂k

∥∥∥∥∥
L2

. (3.17)

Such a functional, at each iteration ik, represents a non-dimensional measure of
how much the error between the shape recovered Ω̂

(ik)
0 and Ω̂k has been reduced

with respect to its initial value, namely between Ω̂
(1)
0 and Ω̂k. We considered as

stopping criteria, for the inner loop, a minimum value, TOL, to be reached by
the cost functional, such that J (ik) < TOL. At this point, since we have reached
convergence, we have a set of identi�ed parameters, Π(x) ∈ RNc×3, that will
be used as starting control points set for the outer loop, considering the others
eigenmodes. Generally, since the �rst eigenmode considered, whose corresponding
eigenvalue is the highest in the bandwidth selected, is the most complex from a
geometrical point of view, the set of control points found for k = Nm should be
able to describe, also, the others. Nevertheless, if necessary, when iterating on the
outer loop, it will be possible to enrich the set of parameters previously found, in
order to re�ne the accuracy of our basis made up of control points. With respect
to Figure 3.8, a schematic outline of the strategy proposed is represented, applied
to the example of the plate that we have previously introduced. It is important
to remark the fact that such a strategy should be employed o�ine, namely before
running the FSI simulation: in fact, to start the algorithm proposed, we need to
compute the structural eigenmodes within a bandwidth of interest; as result, the
algorithm provides a set of control points to be exploited for the dynamic mesh
handling within the FSI simulation, namely online. The approach proposed let
us overcome the curse of dimensionality and the arbitrary related to the choice
of parameters since we do not consider, as RBF control points, all the nodes of
the �uid-structure interface, but only a small part of them.
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Outer loop

k = Nm = 5

k = 4

k = 3

k = 2

k = 1

Compare
Ω̂k and Ω̂

(ik)
0

ik = 1

Inner loop

Find nodes
corresponding to

maximum and minimum
local errors

Place control points

Move control points

Update Ω̂
(ik)
0

ik = ik + 1

Evaluate the cost
functional J (ik)

Convergence test

J (ik) < TOL
No

Yes

Figure 3.8: Schematic outline of the algorithm proposed: we start recovering the
Nm-th eigenmode within the bandwidth selected, namely Ω̂Nm such that k = Nm,
and, when convergence has been reached, we switch to Ω̂Nm−1 and we repeat the
inner loop.
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3.2.1 Some applications of 3D examples

In this section we propose two examples that show the application of the
algorithm proposed, suited for RBF technique, to �nd both the number of control
points and their locations in order to describe accurately a family of di�erent
shapes (structural eigenmodes). In detail, we will perform these test applied to
both the case of the plate introduced in Section 3.2 and of a beam model of
the aircraft Fokker F28 [50]. Concerning the �rst one, we have identi�ed in our
bandwidth of interest (chosen to test only the behavior of the algorithm) the �rst
�fth eigenmodes, depicted in Figure 3.7. As stated before, within our procedure,
we start considering the �fth mode, and, then, we will shift to the lower ones:
in Figure 3.9 it is possible to understand the behavior of the cost functional
J (i5) versus the iterations number, within the recovery of the �fth eigenmode.
In this case, in order to show the consistence of the method, we did not �xed
any tolerance, and, for that reason, the lowest value of J (i5) is reached when
the number of control points introduced by the algorithm equals the number of
structural grid nodes (ns = 444).
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Figure 3.9: Results of convergence gained for the recovery of the �fth eigenmode.

Furthermore, once we have �xed the tolerance to TOL = 0.05 we obtained,
as result, a number of control points NC = 49. Such result has been obtained
by forcing control points to be placed over the �uid-structure interface. With
respect to Figure 3.10, it is possible to appreciate the control points sites over
the initial undeformed shape and the corresponding achievable deformations, re-
lated to di�erent inner loop iteration numbers i5 (within the recovery of the �fth
eigenmode). As outlined in Figure 3.8, with the identi�ed set of parameters
Π(x) ∈ RNC×3 it is possible to iterate on the other lower eigenmodes: we have
to check if such set Π(x) is still able to describe {Ω̂k}1

k=Nm−1. Within Table 3.1
we report the results obtained:
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Eigenmode
Number of J (ik) �nal
iterations ik value

Ω̂4 1 0.0471

Ω̂3 1 0.0114

Ω̂2 1 0.0239

Ω̂1 1 0.0100

Table 3.1: Results obtained applying the algorithm to {Ω̂k}1
k=Nm−1.

(a) i5 = 4, N
(4)
C = 21. (b) Deformed structural con�guration Ω̂

(4)
0 .

(c) i5 = 8, N
(8)
C = 44. (d) Deformed structural con�guration Ω̂

(8)
0 .

(e) i5 = 10, N
(10)
C = 49. (f) Deformed structural con�guration Ω̂

(10)
0 .

Figure 3.10: Snapshots taken from the recovery of the 5-th eigenmode: interpo-
lation sites (left-hand-side) and achievable deformations (right-hand-side).

Table 3.1 shows that the initial set of control points, built to describe the �fth
eigenmode, has also been able to represent accurately the lower ones: in that way
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no further parameters needed to be adopted. At the basis of such a result, with
respect to Table 3.1, we have a number of iterations ik = 1 for each eigenmode
considered (for k = 4, . . . , 1), since the set of parameters gained to recover Ω̂5 was
also su�cient to capture the others {Ω̂k}1

k=4. As second example, we have tested
the behavior of the algorithm proposed in relation to the eigenmodes computed
for a commercial aircraft depicted in Figure 3.11, namely the Fokker F28.

(a) Fokker 28. (b) Beam model.

Figure 3.11: Representation of the aircraft considered and its corresponding beam
model.

In order to set up the beam model, the main prerequisites that we have
followed consist in a correct representation of the mass distribution, of the inertial
properties and of the dimensions of the real aircraft [50]. On the basis of these
considerations, all the structural and nonstructural mass contributions have been
taken into account: in order to appreciate the high-�delity of the model, with
respect to Table 3.2, the comparison between the weights, of both each structural
subcomponent belonging to the beam model and the real aircraft, is reported.

Component
Beam Real

model [kg] aircraft [kg]

Wing 2576.96 2579.09
Horizontal

407.424 407.5
tail

Vertical
393.095 392.81

tail
Fuselage 3927.85 3927.81
Nacelle 569.40 569.40

Nonstructural
Weight [kg]

mass

Fuel system 600.04
Hydraulic system 80.57
Electrical system 875.90
Environmental

445.10
control system

Avionics 764.62
Flight control system 501.98

Furniture 1940.76
Oils 169.26

Table 3.2: Distribution of nonstructural masses and weights validation.
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At that point, in order to apply the algorithm developed within the choice
of RBF interpolation sites, we computed the �rst 15 eigenmodes of the aircraft:
within such bandwidth selected we will start recovering the 15-th mode and, then,
we will shift to lower ones.

(a) Undeformed con�guration. (b) 7-th eigenmode, ω = 3.68Hz.

(c) 12-th eigenmode, ω = 4.74Hz. (d) 15-th eigenmode, ω = 7.28Hz.

Figure 3.12: Representation of some eigenmodes, computed with Msc-Nastran.
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Figure 3.13: Convergence properties within the description of the �rst 15-th,
14-th and 13-th aircraft eigenmodes.
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For this example, unlike the previous one concerning the plate, the set of
control points adopted to recover the 15-th eigenmode was not su�cient, as it is
shown in Figure 3.13, to describe the others. In fact, since we �xed the tolerance
to TOL = 1E−1, the control points found for k = 15, was not able to capture the
14-th mode, resulting in a necessary enrichment of the space of parameters Π(x).
In Figure 3.13b is it possible to appreciate the growing number of control points
related to both the iterations of the inner loop (on a �xed curve) and to the outer
one (in that case we refer to di�erent curves). Thus, as shown in Figure 3.14,
we illustrate the growing number of parameters, as well as their locations, across
di�erent iterations considering the di�erent eigenmodes {Ω̂k}13

k=15: the control
points found for k = 15 are illustrated with red bullets, the ones added when
dealing with the 14-th eigenmode are represented in green, while the last ones,
identi�ed for k = 13, in blue.

(a) k = 15. (b) k = 14.

(c) k = 13.

Figure 3.14: Visualization of the growing number of control points over the frame
of the aircraft con�guration.

Once we have iterated on the 13-th eigenmode, with the identi�ed set of
Nc = 161 control points, we were able to describe accurately the lower �rst 12
ones since, at their corresponding �rst inner loop iteration, the cost functional
had values which were lower than the �xed prescribed tolerance.
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3.3 Domain-Decomposition approach for free-form

deformations

In this Section we focus our attention on free-form deformation techniques,
and, in detail, we will propose a numerical strategy that will allow us to overcome
some of its limitations. As we stated throughout Section 2.1, the most severe re-
striction related to its use within dynamic mesh handling lies in the impossibility
of performing local control points re�nements since parameters must be located
into a regular lattice embedding the solid object to be represented. The main
idea, in order to tackle such a problem, relies in considering the whole �uid do-
main as composed by di�erent elementary patches: thanks to such decomposition
we can build for each patch, or some of them, di�erent localized FFD maps in
order to manage mesh deformations within each single patch. To better assess
the method introduced and to demonstrate its e�ciency, we will test this strategy
within the 2D problem introduced within Section 2.5:
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(a) Initial con�guration.
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(b) Final con�guration.

Figure 3.15: Representation of the 2D problem setting.

In order to describe such a structural deformation, we �rstly decomposed the
undeformed �uid domain in four di�erent patches, Ω̂F (i), with i = 1, . . . , 4, such
that Ω̂F (1) ∪ Ω̂F (2) ∪ Ω̂F (3) ∪ Ω̂F (4) = Ω̂F , as illustrated in Figure 3.16, and,
then, we built a local FFD map only for Ω̂F (3).

Figure 3.16: Domain decomposition adopted for the example to be solved.
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In such a way, the problem consists in applying the Algorithm 2.1 to the patch
selected. Within this approach, since we mapped through FFD technique only
a portion of the global domain, we are now allowed to adopt a smaller number
of control points thanks to the fact that they are located in crucial sites, in the
nearness of the structural domain. Thus, we show the results obtained by means
of the patch-approach proposed, and, also, we compare them with respect to the
ones gained in Section 2.5, where we considered the FFD map extended to the
whole �uid domain Ω̂F .
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Figure 3.17: Results obtained considering di�erent numbers of control points
placed within the patch Ω̂F (3).

With respect to Figure 2.12a, where the results gained considering the FFD
map extended to the whole domain are reported, it is possible to appreciate the
accuracy of the approach, achieved by means of smaller control points number.
In this way it will be possible on one hand to reduce the number of parameters
involved within the FFD strategy, on the other we improve the quality of the
�uid mesh deformed. Nevertheless, it is necessary to remark the fact that in
order to achieve satisfactory results related to the grid quality, the user-de�ned
patch adopted, namely Ω̂F (3), should not be excessively small, in the sense that
it should not limit the space where the mesh will get deformed. Concerning the
measure of the mesh quality, within Figure 3.18 we show the scaled Jacobian
values of the deformed �uid mesh as well as its related histogram. Generally an
element is said to be �inverted� (or not valid) [128] if its related scaled Jacobian is
negative or equal to zero. On the basis of the achieved results it is possible to state
the good quality of the deformed mesh (corresponding to high scaled Jacobian
values) since this measure keeps values within the acceptable range [∼ 0.4, 1].
Furthermore, as indicated by the histogram, only a small number of elements has
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a quality indicator that equals the lower bound 0.4.

(a) Scaled Jacobian of the deformed �uid
mesh, gained with a number of control
points Nc = 194.
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(b) Histogram representing the occurrences
(number of elements) within each mesh
quality bin.

Figure 3.18: Mesh quality measure (scaled Jacobian) obtained adopting the
patch-approach proposed.

Finally, it is possible to make a comparison of the computational e�ort be-
tween the results achieved thanks to the patch-approach proposed and the ones
related to the classical FFD strategy (which consider the map extended to the
whole �uid domain). With respect to Table 3.3, the main results towards such
a comparison are illustrated: in detail it is possible to highlight the reduction,
gained thanks to the approach proposed, of the total time needed to perform the
�uid mesh deformation:

FFD on Ω̂F

NC
J Computational

reduction [%] time [s]

25 59.3 21.2
126 87.1 52.0
234 89.83 16
456 94.52 45
588 96.70 100

FFD on Ω̂F (3)

NC
J Computational

reduction [%] time [s]

25 65.4 0.38
50 84.1 0.51
78 88.5 3.38
120 93.2 0.86
194 99.3 1.20

Table 3.3: Comparison of the accuracy and computational costs between the FFD
map applications extended to the whole �uid domain (left-hand-side), and only
to one of its patch (right-hand-side).
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On the basis of the results obtained, we could review the importance of FFD
techniques used to handle mesh motion problems thanks to the new proposed
patch-approach, based on domain decomposition, since it drives, as shown in Ta-
ble 3.3, to clear reductions in the computational e�ort and it allows the possibility
of making control points re�nements.

3.4 Outline of the hierarchical pattern

In this section we detail the hierarchical strategy developed, within the FSI
framework, in order to deal with both the �uid-structure interface and the mesh
motion problems. With respect to the previously introduced background, and
in particular, on the basis of the several tests performed, we outline a standard
path suitable for shape parametrization techniques. Within sections 2.4 and 2.5
we highlighted both the limitations and the advantages of IDW, RBF and FFD
strategies: in detail, we tried to identify for each of them, the application �eld
best suited for their use. In fact, it could be possible to highlight, concerning
IDW, its great potentiality and �exibility related to the handling of the mesh mo-
tion problem, instead of the �uid-structure interface one. RBF has demonstrated
to be globally robust in dealing with both these problems, while FFD, even if it
represents an e�cient tool within shape parametrization to handle the mesh mo-
tion problem, its adoption would lead to high computational costs. Nevertheless,
we have shown that, thanks to the patch-approach within the free-form deforma-
tion strategy, we can both reduce its computational e�ort and we make FFD able
to describe local deformations, even if actually it has to be used in a problem-
dependent way, since the domain decomposition has not been automatized for
treating arbitrary domain con�gurations yet.

Fluid-structure interface problem

IDW RBF

Dynamic mesh handling

IDW RBFFFD

Figure 3.19: Possible combinations of solution strategies to be employed. The
bold arrow indicates the combination adopted: IDW for the dynamic mesh han-
dling and RBF to face the �uid-structure interface problem.

The mesh tool developed, written in C++ code, has been organized to be fully
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�exible, thanks also to the adoption of an object-oriented framework to guarantee
the possibility to choose the solution strategy desired, among the ones illustrated
in Figure 3.19.

MESH
GENERATION

FINITE ELEMENT
DISCRETIZATION

EIGENMODES
COMPUTATION

DOMAIN
DECOMPOSITION

o�ine

FLUID
SOLVER

STRUCTURAL
SOLVER

RIGID
MOVEMENTS

IDENTIFICATION

MESH MOTION

(i) IDW

(ii) RBF

(iii) FFD

online

FLUID-STRUCTURE
INTERFACE

RBF (i)
IDW (ii)

Figure 3.20: Framework of the mesh toolbox developed: we have highlighted with
two di�erent blocks those operations to be performed online and o�ine. More-
over, by di�erent colors we have clari�ed the aim of both the eigenmodes compu-
tation and the domain decomposition techniques, related either to the adaptive
choice of interpolation sites within RBF, and to the FFD strategy, respectively.
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The use of both the RBF technique, to deal with �uid-structure interface
problems, and the IDW, for the dynamic mesh handling, has proven to represent
the most e�cient and robust choice to be adopted. With respect to Figure 3.20, it
is possible to appreciate the design of the approach proposed where we have split
in two di�erent stages the whole FSI simulation process. We have highlighted the
o�ine stage, related to all these actions to be performed before running the FSI
simulation, and the online one, dealing with all these procedures to be adopted
when the simulation takes place (iteratively). Concerning the o�ine stage, once
generated the computational grids for both the �uid and the structure domains,
and their Finite Element discretizations, we underline the possibility of adopting,
either the adaptive selection of RBF interpolation sites, when this method would
be employed to handle the mesh motion problem, or the domain decomposition
technique, related to the patch-approach, when we employ the FFD method.

Preservation of mesh quality

Ability to deal with global/large deformations

Ability to deal with localized/small deformations

Ability to manage complex geometrical con�gurations

Low computational costs

FFD
FFD patch
approach RBF

RBF selective
approach IDW

Figure 3.21: Flux diagram which summarizes the main selection criteria (blue
rectangles) followed to choose the technique to be adopted within the dynamic
mesh handling.

The default path followed by our hierarchical approach is the one character-
ized by the sub-sequential blocks linked by black arrows: as default choice for the
�uid-structure interface the RBF method is adopted, while, for the mesh motion,
the IDW technique, respectively. Nevertheless, if desired, it will be possible to
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switch easily from one strategy to the other one, as illustrated in Figure 3.20 by
the dashed colored lines. Concerning the dynamic mesh handling, with respect to
the �ux diagram illustrated in Figure 3.21, since IDW has shown a good compro-
mise between the accuracy of the achievable results and its computational costs,
this multivariate interpolation strategy has been chosen to be adopted in order to
move and update the �uid mesh con�guration after structural deformations. In-
deed, although FFD and RBF have demonstrated to represent a valid alternative
to IDW, they still su�er from some limitations. Concerning FFD techniques, as
we have detailed in Section 2.1.1, it would not be adopted in those cases involving
both localized deformations as well as complex domains con�gurations since it
is not interpolatory, leading, during the mesh motion process, to an unaccept-
able presence of gaps and overlaps over the �uid-structure interface (as shown in
Figure 2.11). On the other hand, when the FSI problems involves localized de-
formations related to simple geometrical domains, the patch-approach developed
for FFD would represent a valid choice to be taken into account. Regarding the
RBF strategy, although it actually represent a robust and powerful choice (in
terms of accuracy of the achievable mesh quality), we have demonstrated that,
with respect to IDW technique, it is more expensive from a computational costs
point of view. Nevertheless, by using a selective approach for the identi�cation
of both the number of control points and their sites, the costs would get slightly
reduced. In order to treat the data transfer across non-matching grids, the RBF
strategy, based on the adoption of multi quadratic biharmonic splines has been
privileged with respect to IDW, since its use would guarantee an high-quality and
robustness of the interpolation process. At the basis of the possibility of dealing
within FSI problems with free-bodies we have included, as shown in Figure 3.20,
a block dealing with the estimation of both the rigid translations and rotations
as output from the structural solver, in order to be able to update accurately the
�uid mesh con�guration with respect to such movements too.





Chapter 4

Fluid-Structure Interaction

modeling

In this Chapter we focus on the mathematical modeling of the FSI problem.
We introduce the equations that describe both the �uid and the structure physics,
as well as the numerical strategies adopted to solve the coupled FSI problem in
a monolithic way [35]. In Section 4.1 we introduce the reference frameworks that
will be employed in order to derive the FSI model, in detail the Eulerian, the
Lagrangian and the Arbitrary Lagrangian Eulerian (ALE) formulations. Then,
through Sections 4.2 and 4.3, the equations governing the physics of both the
�uid and the structure are derived. At the basis of the mathematical model
achieved, it will be possible to further proceed by introducing, in Section 4.4,
the time discretization of both the �uid and structure problems by means of the
Geometric-Convective Explicit scheme, that will be fully detailed. Throughout
Section 4.5 the weak formulation of the FSI problem, as well as its space dis-
cretization, are proposed. Moreover we will derive the algebraic system describ-
ing the fully-discrete FSI problem as well as its solution strategy, with respect
to Section 4.6, adopted within the LifeV environment. We anticipate that for
the numerical solution of the �uid-structure problem we adopted LifeV, that is a
state of the art �nite element library providing many solution schemes for the FSI
problem. Moreover, concerning the time discretization and the discrete form of
the coupled FSI problem we will follow the approach proposed in [28, 87], while
for the algorithm part (Section 4.7) we refer to [29].

4.1 Eulerian, Lagrangian and ALE formulations

The choice of an appropriate reference system represents a key-aspect when
dealing with the mathematical modeling and the numerical simulation of contin-
uum mechanics problems characterized by moving boundaries. In general, one
of the most commonly adopted formulation within Fluid-Structure Interaction
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problems makes use of two classical descriptions of motion: the so called Ar-
bitrary Lagrangian-Eulerian (ALE) formulation relying on both the Lagrangian
and Eulerian kinematics descriptions. Such a formulation, introduced by [88],
was developed in an attempt to combine the advantages of the above classical
kinematical descriptions, and to minimize their respective drawbacks as far as
possible. At this point, before introducing the main aspects that characterize the
ALE frame, we brie�y introduce both the Lagrangian and the Eulerian descrip-
tions of motion. Lagrangian formulation is commonly adopted within structural
mechanics, and its description is based on the fact that each individual node of
the computational grid follows the material particle during motion, such that it
allows an easy tracking of free surfaces and interfaces between di�erent materials
(as shown in Figure 4.1). Moreover, it has also been extensively used within the
treatment of materials with history-dependent constitutive relations [23]. On the
other hand, purely Lagrangian methods typically result in severe mesh distortion
and the consequence is ill conditioning of the element sti�ness matrix leading
to mesh lockup or entanglement, such that the need for expensive re-meshing
arises. In the framework of Eulerian description, which is the most commonly
used strategy within �uid dynamics, the computational mesh is �xed while the
continuum moves with respect to the grid. Such a formulation allows the possi-
bility of handling with relative ease large distortion, while its weakness relies at
the expense of a precise de�nition of the interface, as well as the resolution of �ow
details. At the basis of the drawbacks of purely Lagrangian and purely Eulerian
descriptions, the ALE formulation has been developed in order to combine the
best features of both classical formulations. Within such a description the nodes
of the mesh can be either moved to follow the continuum in a Lagrangian man-
ner, or be held �xed as in the Eulerian description, or even be moved in in some
arbitrarily speci�ed way to give a continuous rezoning capability. At the basis of
this freedom in moving the computational mesh, the possibility of handling great
distortions of the continuum relies, such that we overcome both the limitations
of purely Lagrangian formulation and we improve the resolution a�orded by a
purely Eulerian approach. In Figure 4.1, we depict a schematic representation of
the Eulerian, Lagrangian and ALE descriptions. In order to introduce the math-
ematical models lying at the basis of such formulations, we need to introduce the
notation that we will adopt hereafter in this chapter. The position of a material
point in the reference (Lagrangian) con�guration is denoted by ·̂, while if we refer
to the current (Eulerian) con�guration we will omit ·̂. Furthermore, as previously
introduced, we assume that the reference con�guration is at its natural state, that
is when the Cauchy stresses are zero everywhere. Thus, let us denote by Ω̂ ⊂ R3

and Ωt ⊂ R3 the reference and current domains con�gurations, respectively, and
by x̂ ∈ Ω̂ and x ∈ Ωt the coordinates of two points belonging to the reference
and current con�gurations.
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Figure 4.1: Representation of Eulerian, Lagrangian and ALE formulations [19],
respectively.

In order to describe the kinematics of the continuum media, we adopt a
frame of reference with respect to the x̂ coordinate if we refer to a purely La-
grangian formulation, on the other hand, by adopting x, we rely on an Eulerian
description. We can further de�ne a function φ representing the motion, being
φ : Ω̂ × R+ → Ωt ⊂ R3, such that φ(x̂, t) represents a deformation evolving in
time. At the basis of such a de�nition, the relations between Lagrangian and
Eulerian frames of reference read:

x = φ(x̂, t),

x̂ = φ−1(x, t), (4.1)

where we assume that φ−1 always exists due to the hypothesis of dealing with
continuum media, such that during motion the domains would not be lacerated.
The Jacobian of such a transformation J = (∂x/∂x̂) could also be interpreted
as the relative volume increment between current and reference con�gurations,
namely: JdΩ̂ = dΩ. Moreover, we can de�ne the so-called deformation gradient



82 Fluid-Structure Interaction modeling

F, whose expression reads as:

F = ∇̂φ, component-wise Fi,j =
∂φi
∂xj

. (4.2)

As previously introduced, the description of the mechanics of continuum media
with respect to x̂, or material point, is called Lagrangian: within such a formula-
tion a scalar or vectorial �eld V̂ is de�ned Lagrangian as well, since it is de�ned
in Ω̂. By adopting an Eulerian frame of reference we need to de�ne a �xed con-
trol volume VC , such that VC ⊆ Ωt, ∀t ∈ (0, T ) ⊂ R. Furthermore, a scalar or
vectorial �eld V is called Eulerian since it is de�ned in Ωt; thus, the Eulerian
counterpart of the Lagrangian vector �eld is V (x, t), for x ∈ VC ⊂ Ωt. Within
an Eulerian approach, since x = φ(x̂, t), to express the total time derivative of
V (x, t) we need to use the chain rule:

DtV (x, t) =
dV (x, t)

dt
=
∂V

∂x

∂φ

∂t
(φ−1(x, t), t) +

∂V

∂t
. (4.3)

On the other hand, the total time derivative within a Lagrangian formulation
coincides with the partial derivative, since x̂ is expressed in the reference con�g-
uration:

dV̂ (x̂, t)

dt
=
∂V̂ (x̂, t)

∂t
. (4.4)

Thus, we can de�ne the velocity of the material point u with respect to a La-
grangian and an Eulerian formulations as it follows:

• Lagrangian: û = Dtφ(x̂, t);

• Eulerian: u = ∂tφ(φ−1(x, t), t).

A this point, in order to account for the displacement of the �uid domain we need
to introduce the ALE description, which is obtained by modifying the Eulerian
one in such a manner that the �xed control volume is no longer constant but it
follows the material particles of the moving boundaries. On this idea the ALE
formulation relies. To this end we de�ne a reference control volume Ω̂A ⊂ R3,
such that the ALE map reads:

A : Ω̂A × R+ → Ω̂A ⊂ Ωt. (4.5)

At the basis of the above de�nition we have that, for each t > 0, A maps the
reference control volume to the arbitrary domain ΩA in the deformed con�gu-
ration. Thus, for a given function which is de�ned in the current con�guration,
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g : Ωt × (0, T )→ R, we indicate by ĝ = g ◦ A−1 its counterpart within the refer-
ence one Ω̂. Furthermore, it is possible to de�ne the ALE time derivative:

∂g(x, t)

∂t

∣∣∣
x̂

=
∂ĝ(x, t)

∂t
◦ (A(x))−1. (4.6)

We can also introduce the domain velocity w, whose expression reads as:

w =
dx

dt

∣∣∣
x̂

=
∂A
∂t
◦ (A(x))−1. (4.7)

Finally, it is possible to introduce one of the key-ingredients that we will further
adopt in order to derive the �uid equations, namely the Reynolds' transport the-
orem (also known as the Leibniz-Reynolds' transport theorem) [99] that yields
the following relationship between Lagrangian and Eulerian perspectives:

d

dt

∫
Ωt

f dΩt =

∫
Ω̂

[∂f
∂t

+∇ · (fu)
]
dΩ̂ =

∫
Ω̂

∂f

∂t
dΩ̂ +

∫
∂Ω̂

f u · n dγ, (4.8)

where we indicated with ∂Ω̂ the boundary delimiting the reference domain con-
�guration.

4.2 Derivation of the �uid equations

In this Section, following the approach of [28], we report the conservation
laws for mass and momentum with respect to the Eulerian and ALE frames of
reference. In detail we will deal with an incompressible Newtonian �uid model,
such that the conservation laws that we will derive will describe the Navier-Stokes
(NS) equations as well. In order to derive the model that describes the physics of
the �uid, we prefer to �rstly introduce a general formulation for the conservation
of both a scalar, α(x, t), and vectorial, α(x, t), �elds within an Eulerian frame
of reference. At the basis of the equations introduced, in detail of (4.11) and
(4.12), later it will be possible to derive easily the other ones suited for the �uid
domain. By indicating with V ⊂ R3 an arbitrary control volume in the current
con�guration, and being ∂V its surface boundary, the momentum conservation,
in the Eulerian form, for scalar and vectorial �elds read:

D

Dt

∫
V

α(x, t) dΩt =

∫
∂V

φ(x, t) · n dγ +

∫
V

b(x, t) dΩt, (4.9)

D

Dt

∫
V

α(x, t) dΩt =

∫
∂V

Φ(x, t) · n dγ +

∫
V

b(x, t) dΩt, (4.10)
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being
∫
∂V
φ(x, t) · n dγ the �ux of α across ∂V and φ the Eulerian vector de-

termining the �ux; b and b represent the source/sink terms for the scalar and
vectorial case, respectively. At this point, using the Reynolds transport theorem,
the conservation law, in the Eulerian form, for a generic scalar �eld α reads:∫

V

∂α

∂t
dΩt =

∫
∂V

(φ− αu) · n dγ +

∫
V

b dΩt, (4.11)

while for a vectorial �eld α we get:∫
V

∂α

∂t
dΩt =

∫
∂V

(Φ−α⊗ u) · n dγ +

∫
V

b dΩt. (4.12)

In this way it is possible to further proceed writing the mass and momentum
conservation laws for the �uid domain with respect to the Eulerian frame of ref-
erence. Concerning the mass conservation, with respect to (4.11), by taking the
density of the continuum medium as the scalar �eld α and by setting to zero both
the �ux and the source/sink terms, we obtain:∫

V

∂ρF
∂t

dΩt =

∫
∂V

−ρFu · nF dγ, (4.13)

Thanks to the divergence theorem the above equation can be rewritten as it fol-
lows: ∫

V

∂ρF
∂t

dΩt =

∫
V

−ρF∇ · u dΩt. (4.14)

At this point, on the basis of the hypothesis of incompressibility of the �uid and
employing the localization argument, we get:

∇ · u = 0 in Ωt, (4.15)

which represents the mass conservation for an incompressible �uid in the Eulerian
frame of reference. In order to write the momentum conservation law, with re-
spect to (4.11), we consider α to be equal to the vectorial �eld ρFu, Φ represents
the �ux vector σF · nF , while the source/sink term b indicates the momentum
generated by the volume forces fF (per unit mass) acting on the �uid. On the
basis of this setting we can write the momentum conservation law as it follows:∫

V

∂ρFu

∂t
dΩt =

∫
∂V

(σf − ρFu⊗ u) · nF dγ +

∫
V

ρF fF dΩt. (4.16)
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Since the �uid model that we considered is the Newtonian one, through the con-
stitutive equation it is possible to relate the �uid stress tensor σF to the �uid
velocity u. Within such a model the stress tensor depends linearly on the sym-
metric part of the velocity gradient:

σF = µF (∇u + (∇u)T )− pI, (4.17)

where p denotes the �uid pressure; the above relation is generally adopted in
�uid dynamics to model Newtonian viscous �uids. By substituting the consti-
tutive relation in (4.16), and employing once again the divergence theorem we get:∫

V

∂ρFu

∂t
dΩt =

∫
V

µF∆u−∇p− ρF (u · ∇)u + ρF fF dΩt. (4.18)

By employing the mass conservation law to simplify the left-hand-side of (4.18),
as well as the localization argument for the whole equation, the momentum con-
servation law can be written pointwise as it follows:

ρF
∂u

∂t
+ ρF (u · ∇)u +∇p− µF∆u = ρF fF in Ωt. (4.19)

The governing equations, (4.15) and (4.19), gained for the �uid domain are the
Navier-Stokes equations, which in the Eulerian frame are the following:ρF

∂u

∂t
+ ρF (u · ∇)u +∇p− µF∆u = ρF fF

∇ · u = 0
(4.20)

In order to write the above system of equations with respect to the ALE frame
of reference, due to motion of the �uid domain Ωt, we apply the chain rule to the
velocity time-derivative:

∂u

∂t

∣∣∣∣
A

=
∂u

∂t
+ w · ∇u. (4.21)

Thanks to the above relation we obtain the Navier-Stokes equations within the
ALE formulation:ρF

∂u

∂t

∣∣∣∣
A

+ ρF [(u−w) · ∇]u +∇p− µF∆u = ρF fF

∇ · u = 0

(4.22)



86 Fluid-Structure Interaction modeling

4.3 Derivation of the structure equations

In this Section we will derive, thanks to the momentum conservation law,
the equation of motion for the structure with respect to a Lagrangian frame of
reference. By indicating with V an arbitrary control volume in the current con-
�guration, and being ∂V its surface boundary, the momentum conservation reads:

D

Dt

∫
V

ρS
˙̂
dS dV =

∫
V

ρSfs dV +

∫
∂V

p dS. (4.23)

where we indicated with fs and p the force terms per unit mass and per unit
surface, respectively. Thanks to the Cauchy relation, p = σn, together with the
Nanson's formula, which relates the element area between the current and the
reference con�gurations, namely ndS = JF−T n̂dŜ, it is possible to write:

D

Dt

∫
V̂

JρS
˙̂
dS dV̂ =

∫
V̂

JρSfs dV̂ +

∫
∂V̂

JσF−T n̂dŜ, (4.24)

where we adopted, also, the relation dV = JdV̂ . At this point, in order to
achieve the �nal expression of the momentum conservation law, we introduce the
�rst Piola-Kirchho� stress tensor:

ΣI = JσF−T . (4.25)

At the basis of this de�nition, and thanks to the divergence theorem as well, it
is possible to rewrite (4.24) as it follows:

D

Dt

∫
V̂

ρ̂S
˙̂
dS dV̂ =

∫
V̂

ρ̂Sfs dV̂ +

∫
V̂

∇̂ ·ΣI dV̂ . (4.26)

Finally, adopting both the localization argument and the fact that V̂ is �xed, we
obtain:

ρ̂s
∂2d̂S
∂t2

− ∇̂ ·ΣI = ρ̂Sfs, (4.27)

which represents the equation of motion for the structural sub-system. It is pos-
sible to proceed by detailing the constitutive law adopted in order to model the
mechanical behavior that describes the structure material. In this way, we intro-
duce �rstly the second Piola-Kirchho� stress tensor:

ΣII = F−1ΣI , (4.28)

this choice is due to the fact that ΣII is symmetric, it respects the axiom of frame
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indi�erence as well, and it would be adopted to write the constitutive law, instead
of ΣI . In particular ΣII is independent from rigid motions (frame indi�erence):
we can explain this concept through the introduction of a rotation tensor R, that
is orthogonal (RRT = I); by indicating with (̄.) the rotated entities, we can write:

Σ̄II = JF̄−1σ̄F̄−1 = J(F−1RT )(RσRT )(RF−T ) = ΣII , (4.29)

such that Σ̄II = ΣII . As strain tensor to be adopted in the constitutive law we
refer to the Green-Lagrange one:

∈ =
1

2
[(∇d̂s)

T +∇d̂s + ((∇d̂s)
T · ∇d̂s)]. (4.30)

If there exists a scalar valued strain energy functionW depending on∈, such that:

∂W (∈)

∂∈ = ΣII(∈), (4.31)

the material is called hyperelastic. As strain energy function we adopted the
St. Venant-Kirchho� one, that is de�ned as it follows:

W (∈) =
L1

2
(tr(∈)2 + L2tr(∈2)), (4.32)

where L1 and L2 represent the Lamé coe�cients de�ning the mechanical charac-
teristics of the material. In this way, taking the derivative of (4.31) we gain:

ΣII = L1(tr(∈))I + 2L2∈. (4.33)

Since expression (4.33) is linear, it is possible to rewrite it into a more compact
way:

ΣII = C : ∈ (component-wise ΣIIik = Cikrs∈rs), (4.34)

being C a fourth-order tensor. Instead of using, as shown in (4.32), the Lamé
constants to characterize the St. Venant-Kirchho� materials, we will refer here-
after to the Young modulus E and the Poisson ratio ν; equation (4.35) expresses
the relation held between the two sets of coe�cients:

E = L2
3L1 + 2L2

L1 + L2

, L1 =
Eν

(1− 2ν)(1 + ν)
,

ν =
L1

2(L1 + L2)
, L2 =

E

2(1 + ν)
. (4.35)
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We remark that the constitutive law introduced is nonlinear in the displacement
d̂S, since both ΣII and ∈ are nonlinear in F. In order to get the expression of
linear elasticity adopted in our formulation, we further proceed by neglecting the
terms which are of order higher than one in (4.30), leading to:

∈ =
1

2
[(∇̂d̂s)

T + ∇̂d̂s + ((∇̂d̂s)
T · ∇̂d̂s)] ≈

1

2
[(∇̂d̂s)

T + ∇̂d̂s] = ∈̃, (4.36)

where ∈̃ indicates the symmetric part of the displacement gradient and, thus, it
best suites those cases involving small deformations. At this point, we further
simplify equation (4.33):

L1(tr(∈))I + 2L2∈ = ΣII = F−1ΣI ≈ ΣI . (4.37)

Thanks to the simpli�cations introduced, �nally we get the equation of the linear
elasticity:

∂2d̂S
∂t2

− ∇̂ · (L1(tr(∈))I + 2L2∈) = ρ̂SfS. (4.38)

4.4 Coupling conditions and three �elds formula-

tion

Since we have derived, in the previous Sections, the equations that model
both the �uid and the structure physics, here we will introduce the coupling
conditions adopted to get the coupled FSI problem. With respect to Figure
5.14, we illustrate the notation that will be followed hereafter to describe the
boundaries adopted to model the coupled FSI problem. With Γ̂ we represent
the �uid-structure interface in the reference con�guration, on which the coupling
conditions are expressed as it follows:

• continuity of the velocity;

• continuity of the stress;

• continuity of the domain displacement.
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Ω̂F

Ω̂S

Γ̂

ΩF
t

ΩS
t

Γ

A

Reference con�guration Current con�guration

Figure 4.2: Notation adopted for both the domains and the Fluid-Structure in-
terface.

The last coupling condition is due to the adoption of the ALE frame to model
the �uid �ow: it indicates the geometric adherence between the �uid domain and
the material particles of the structure across Γ̂. On the basis of the previously
introduced background, the whole system of equations that holds the FSI prob-
lem reads as:

∇ · u = 0 in ΩF
t , (4.39)

ρF
∂u

∂t

∣∣∣∣
A

+ ρF [(u−w) · ∇]u +∇p− µF∆u = ρF fF in ΩF
t , (4.40)

ρ̂s
∂2d̂S
∂t2

− ∇̂ ·ΣI = ρ̂Sfs in ΩS
t , (4.41)

∂d̂S
∂t

= u ◦ At on Γ̂, (4.42)

σ̂F n̂F + ΣIn̂S = 0 on Γ̂, (4.43)

∂d̂F
∂t

= w ◦ At on Γ̂, (4.44)

where equations (4.42), (4.43) and (4.44) indicate the coupling conditions. More-
over, in this work, we decided to set to zero both the terms fF and fS, since we do
not account for the gravity forces. Once we have outlined the system of equation
governing the �uid-structure interaction problem, we can introduce a more com-
pact notation, that we will adopt in the following Sections, to describe it as being
made of three coupled sub-problems. In this way we refer to the �uid problem as:

F(uF , d̂F , d̂S) = 0, (4.45)
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where uF represents the unknown �uid variables uF = (u, p). Such a problem,
at every t > 0, relies on �nding the unknown �uid pair uF given the struc-
ture displacement d̂S, or the traction vector ΣIn̂S (or a combination of both as
well), and the �uid domain displacement d̂F . We de�ne the structure problem as:

S(uF , d̂S) = 0, (4.46)

representing the equation of motion (4.27) of the structural system. In this case
the unknown is the structural displacement d̂S, to be found for a given �uid
velocity u, or traction vector σF n̂F (or a combination of both as well). We in-
troduce the geometric problem, that is de�ned as it follows:

M(d̂F , d̂S) = 0, (4.47)

where the operatorM represents the mesh motion solver, thus de�ning the ALE
map A. Such a problem is coupled to the geometric adherence condition d̂F = d̂S
on Γ̂. This work focuses on the comparison of shape parametrization strategies
(i.e. RBF and FFD), as well the IDW technique, involved in solving such prob-
lem. Once we compute, for a given structural displacement, the new �uid mesh
con�guration, the ALE mapping can be de�ned as:

A : Ω̂F → ΩF
t

x̂ 7→ A(x̂) = x̂+ d̂F (x̂). (4.48)

Before performing the time discretization of the system of equations that holds
the FSI problem, it is worthwhile to survey the possible numerical strategies to
be adopted in order to solve it. The solution of the FSI problem can be obtained
by using either a modular (segregated) or non-modular (monolithic) strategy.
The latter approach is followed when both the �uid and the structural problems
are solved simultaneously within a single solver, while the �rst involves the adop-
tions of pre-existing �uid and structural solvers which are coupled through (4.42),
(4.43) and (4.44). In the framework of partitioned strategies we can identify ex-
plicit or implicit schemes, the latter requiring sub-iterations among the �uid and
structural solvers. Within explicit partitioned procedures the �uid and structure
sub-problems are solved once (or just few times) per time step: such an approach
is typical in aeroelasticity and rather inconvenient in haemodynamics [61]. In
fact, it can be shown that an explicit approach to FSI problems with signi�cant
added-mass e�ect (like haemodynamics where the structure and �uid densities
are similar) is instable [24]. Therefore, to avoid �uid-solid sub-iterations, we use
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a non-modular or monolithic strategy, where the �uid and the solid are treated
as a single problem. In detail, on the basis of the state of the art solvers imple-
mented within the �nite element library LifeV, we decided to adopt a monolithic
approach to solve the FSI problem using, as time discretization, a Geometric-
Convective Explicit scheme (GCE), whose hypothesis and characteristics will be
fully detailed in the next Section.

4.5 Geometry-Convective Explicit time discretiza-

tion

In this Section we focus our attention on the time discretization of the FSI
problem. In detail, the numerical scheme that we adopted is the Geometry-
Convective Explicit [12] one: such a strategy, as will be clari�ed in this Section,
would give us the possibility of studying, within a monolithic approach, the be-
havior of di�erent mesh motion strategies like RBF, FFD and IDW, since the
geometry problem (4.47) is solved separately once per time step, apart from the
coupled system of equations that govern both the �uid and the structure physics.
In order to assess the hypothesis of such an approach we need, �rstly, to pay
attention on the time discretization of the �uid problem. A large variety of
time discretization schemes of the incompressible Navier-Stokes (NS) equations
on moving domain is present in literature: nevertheless, the adoption of the ALE
formulation imposes some constraints. In fact, the way we discretize in time the
convective term in (4.19), namely ([(u − w) · ∇]u), plays a fundamental role in
determining the order of the time advancing scheme, as well as its stability prop-
erties. In this way, it is possible to highlight within the coupled FSI problem
several levels of nonlinearities, with some of them related to the choice of the
ALE frame:

i) (u ·∇)u, which is the convective term of the NS equations in �xed domains;

ii) (w · ∇)u, that represents the advective term due to the ALE formulation;

iii) d̂F = d̂F (d̂S), the dependence of the �uid domain displacement on the
structural one.

At each time-step all these nonlinearities can be solved by means of a Newton, or
Fixed Point algorithm [95]. Within this choice relies the Fully Implicit (FI) time
discretization which leads to an accurate and robust time discretization, although
it represents an expensive approach. By modifying the way the nonlinear terms
are discretized in time, we can obtain di�erent approaches. By indicating with
the superscript n+ 1 the current time-step, the nonlinearity due to (u · ∇)u can
be discretized in time, given an extrapolation u∗ of the �uid velocity from the
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previous time-step, as it follows:

(u∗ · ∇)un+1. (4.49)

Thanks to this choice the convective term (u · ∇)u becomes linear. A good
candidate to approximate u∗ corresponds to un, such that u∗ = un. Such an
approximation is suitable when the characteristic Reynolds number of the �uid
�ow is not very high (condition ful�lled when dealing with �uid �ows in laminar
regimes). Moreover this approximation for the convective term is used, e.g. in
[36, 47]. In order to deal with the second nonlinearity, namely the advective term
(w · ∇)u, it can be discretized in time as it follows:

(w∗ · ∇)un+1, (4.50)

being w∗ an explicit extrapolation of the �uid domain velocity. The way we ap-
proximate this advective term, together with (4.49) leads to a linearization of the
convective term appearing in (4.19). Concerning the third nonlinearity, due to
the moving �uid domain, is it possible to handle it by considering the �uid do-
main at the previous time-step n, as a suitable approximation of the current one,
on the basis of the hypothesis of small displacements. Its explicit treatment, to-
gether with (4.49) and (4.50), leads to the Geometric-Convective Explicit scheme
[29, 12], in which the �uid problem is linear. By following such an approach,
the coupled time-discrete system of equations written in a compact way, at the
time-step tn+1, reads:

Fn(un+1
F , d̂n+1

F , d̂n+1
S ) = 0,

Sn(un+1
F , d̂n+1

S ) = 0,

Mn(d̂n+1
F , d̂nS) = 0.

In this way it is possible to write the time discretized equations, in strong form
(with the �uid momentum equation written in non-conservative form), that de-
�ne the GCE scheme:

ρF δtu
n+1 + ρF ((un −wn+1) · ∇)un+1 −∇ · σn+1

F = ρF fn+1
F in ΩF

tn+1
,

∇ · un+1 = 0 in ΩF
tn+1

,

ρ̂Sδttd̂
n+1
S − ∇̂ ·Σn+1

I = ρSfn+1
S in Ω̂S,

δtd̂
n+1
S − un+1 ◦ Atn+1 = 0 on Γ̂,

Σn+1
I n̂S + σ̂n+1

F · n̂F = 0 on Γ̂,
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where with δt we denoted the �rst order discrete time derivative for the �uid
problem, and with δtt the second order one adopted within the structure equa-
tion. As previously introduced, the geometry problem

Mn(d̂n+1
F , d̂nS) = 0, (4.51)

is solved separately once per time step, whose solution de�nes both the ALE map
Atn+1 , and the new �uid domain con�guration ΩF

tn+1
= Atn+1(Ω̂F ). Concerning

the �uid domain velocity wn+1, it is computed as it follows:

wn+1 = δtd̂
n+1
F ◦ A−1

tn+1
. (4.52)

By adopting this approach we gain also the advantage of dealing with a linear FSI
problem, since the structural model considered relies on linear elasticity as well.
As already mentioned, we remark that the choice related to the GCE approach is
due to the �exibility given by such formulation: in fact, it isolates the geometry
(or mesh motion) problem allowing the possibility to use, and compare, all the
strategies that have been introduced in Chapters 2 and 3.

4.6 Weak formulation of the FSI problem

In this Section we will �rstly derive the weak formulation of the �uid-structure
interaction problem [36, 87] and, then, we will report, within the GCE time dis-
cretization scheme, the linear system that holds the coupled �uid-structure prob-
lem [29]. To gain the weak form of the FSI system it is previously necessary to
de�ne the following functional spaces:

UF
t := {v : ΩF

t → Rd, v = v̂ ◦ A−1
t | v̂ ∈ H1(Ω̂F )d},

US
t := {v : Ω̂S → Rd|v ∈ H1(Ω̂S)d},

U Γ̂ := H1/2(Γ̂)d,

Qt := {q : ΩF
t → R, q = q̂ ◦ A−1

t | q̂ ∈ L2(Ω̂F )},
V F
t := {v : ΩF

t → Rd, v = v̂ ◦ A−1
t | v̂ ∈ H1(Ω̂F )d, v̂|ΓF

D
= 0},

V S
t := {v : Ω̂S → Rd, v ∈ H1(Ω̂S)d, v|ΓS

D
= 0},

(4.53)

where with Lp and Hq we indicated the Banach and the Sobolev spaces, respec-
tively [95]. Moreover, d represents the space dimensions (2 for the bi-dimensional
case, 3 for the three-dimensional one), while the subscripts ΓSD and ΓFD indicate
the Dirichlet boundaries (without the interface Γ) of Ω̂S and ΩF

t . Before deriving
the weak formulation of the coupled �uid-structure problem, we prefer to better
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asses the way through the coupling conditions are enforced: concerning the ve-
locity continuity, it is imposed in its strong way, while the continuity of stresses is
imposed weakly, by equating the variational residual of the two momentum equa-
tions (of both the �uid and the structure) restricted to the interface. To clarify
the latter coupling condition we can write, �rstly, the variational formulation of
the �uid momentum equation for an arbitrary vF ∈ V F

t :

∫
ΩF

t

(
ρF
∂u

∂t

∣∣∣∣
A
· vF + ρF [(u−w) · ∇]u · vF + σF : ∇vF − ρF fFvF

)
dΩF

t +

−
∫

ΓF
N

gNF · trΓ(vF )dγ =

∫
Γ

σFnF · trΓ(vF )dγ. (4.54)

By operating in the same way for the structure problem, choosing as test function
vS ∈ V S

t :

∫
Ω̂S

(
ρ̂s
∂2dS
∂t2

· vs − (∇̂ ·ΣI) · vs − ρ̂Sfs · vs
)
dΩ̂S −

∫
ΓS
N

gNS · trΓ̂(vS)dγ =

=

∫
Γ̂

ΣIn̂S · trΓ̂(vS)dγ̂. (4.55)

With ΓSN and ΓFN we indicated the Neumann boundaries (without the interface
Γ) of Ω̂S and ΩF

t , while gNS ∈ (H1/2(ΓSN))d and gNF ∈ (H1/2(ΓFN))d represent the
given boundary data. Once we express the stress tensors in their reference con-
�guration, the stresses continuity across Γ̂ in its weak form reads:∫

Γ̂

ΣIn̂S · vΓ̂ dγ̂ +

∫
Γ̂

σ̂F n̂F · vΓ̂ dγ̂ = 0 ∀vΓ̂ ∈ U Γ̂. (4.56)

By introducing two linear continuous lift operators, namely IF : U Γ̂ → V F
t and

IS : U Γ̂ → V S
t , and by considering equations (4.54) and (4.55), it is possible to

write:

∫
Ω̂S

(
ρ̂s
∂2dS
∂t2

· IS(vΓ̂)

)
dΩ̂ +

∫
Ω̂S

(ΣI : ∇̂IS(vΓ̂)− ρ̂S · IS(vΓ̂)) dΩ̂−
∫

ΓS
N

gNS · IS(vΓ̂)dγ +

+

∫
Ω̂S

(
ρF
∂u ◦ A−1

t

∂t

∣∣∣∣
A
· IF (vΓ̂) + ρF [(u ◦ A−1

t −w ◦ A−1
t ) · ∇̂]u ◦ A−1

t · IF (vΓ̂) +

+σ̂F : ∇̂ · IF (vΓ̂)− ρ̂F f̂F · IF (vΓ̂)

)
dΩ̂−

∫
ΓS
N

gNF · IF (vΓ̂) dγ = 0 ∀vΓ̂ ∈ U Γ̂.

(4.57)
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Thus, the weak coupling condition on the stresses continuity can be achieved
by choosing test functions which, restricted to the �uid-structure interface, are
matching. To this end, we can further introduce the functional space

St := {(vF ,vS) ∈ V F
t × V S

t |trΓ̂(vF ◦ A−1
t ) = trΓ̂(vS)}

that guarantees automatically, for all the (vF ,vS) ∈ St, the stress continuity
across the interface. It is possible now, once we clari�ed the way the coupling
conditions on the velocity (in strong form) and the stresses (weakly) are enforced,
to introduce the global weak formulation of the FSI problem following [87, 115].
The weak formulation of equations (4.22) and (4.27) reads:

Weak-formulation 3.1 (FSI problem): for each t ∈ (0, T ), �nd u ∈ UF
t , p ∈ Qt

and d̂S ∈ US
t , such that u = gDF on ΓFD and d̂S = gDS on ΓSD, satisfying :

∫
ΩF

t

(
ρF
∂u

∂t

∣∣∣∣
A
· vF + ρF [(u−w) · ∇]u · vF + σF : ∇vF

)
dΩF

t +∫
Ω̂S

(
ρ̂s
∂2dS
∂t2

· vs + ΣI : ∇vs

)
dΩ̂S =

∫
ΩF

t

ρF fF · vF dΩF
t +

+

∫
Ω̂S

ρ̂Sfs · vs dΩ̂S −
∫

ΓF
N

gNF · vF dγ −
∫

ΓS
N

gNS · vS dγ̂

∀(vF ,vS) ∈ St, (4.58)∫
ΩF

t

u · ∇q dΩF
t = 0 ∀q ∈ Qt. (4.59)

We remark that, assuming matching grids and equal interpolation spaces for the
�uid velocity and structure displacement, the Dirichlet boundary conditions (con-
tinuity of velocities) are enforced strongly, by discretizing directly

∂d̂S
∂t

= u ◦ At on Γ̂, (4.60)

while the Neumann boundary conditions (on stresses) are imposed weakly, given
the boundary data gNS ∈ (H1/2(ΓSN))d and gNF ∈ (H1/2(ΓFN))d. In order to obtain
the Finite Element (FE) discretization of the FSI problem, we consider its vari-
ational formulation and we approximate, by means of �nite dimensional spaces,
the functional spaces introduced through (4.53). In this way, with the label h we
indicate the approximated spaces, spanned by a basis of shape functions de�ned
in the reference domain, {ψi}Ni=1, being N = dim(UF

t,h). In this way, the �uid
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velocity u is approximated on ΩF
t as it follows:

u(x, t) ≈ uh(x, t) =
N∑
i=1

ui(t)ψi(A−1
h,t(x)). (4.61)

We aim, now at writing the �uid-structure system yielded by the linearized and
fully discretized FSI problem. We start by introducing the unknowns for the �uid
problem: un+1

F and un+1
FΓ

. They represent the arrays of nodal values for the veloc-
ity and pressure unknowns of the inner and of the interface nodes, respectively,
since we will distinguish, in the resulting algebraic system, between the degrees of
freedom lying on the FS interface, and those who are internal to ΩF

t and Ω̂S. The
structural unknowns are d̂n+1

S and d̂n+1
SΓ

, in accord with the same notation that
we have previously introduced. Since the geometry (or mesh motion) problem
is solved separately once per time-step due to the GCE time discretization, the
�uid-structure coupled problem discretized in space leads to the following linear
system:

FFF FFΓ 0 0 0
FΓF FΓΓ 0 0 I
0 0 SSS SSΓ 0
0 0 SΓS SΓΓ −I
0 I 0 −I/∆t 0




un+1
FF

un+1
FΓ

d̂n+1
SS

d̂n+1
SΓ

λn+1


=


bFF
bFΓ

bSS
bSΓ

−I/∆tdnSΓ

 , (4.62)

that within a more compact notation reads:

An+1
FSIu

n+1
FSI = bn+1

FSI . (4.63)

With respect to system (4.62), we remark the separation within the left hand
side matrix An+1

FSI on two di�erent levels: at the �rst, within the whole matrix
structure, we identify three main blocks which represent the �uid, the structure
and the interface sub-problems; furthermore, as previously introduced, within
the �uid and structure parts, we separated those degrees of freedom lying on
the FS interface, form the others, that are inner to ΩF

t and Ω̂S. In detail, the
block (1, 1) represents the discretized �uid problem equations, the block (2, 2)
indicates the discretized solid problem, while the o�-diagonal terms enforce the
coupling conditions between the two �elds. Moreover, with respect to (4.62), the
right-hand-sides are composed by the volume forces and the terms of the time
discretization that depend on the previous time-step, while within the vector of
the unknowns un+1

FSI , the Lagrange multiplier λ has been introduced to enforce
the coupling conditions across the �uid-structure interface. On the basis of the
introduced background it is possible, �nally, to summarize the main aspects that
characterize the solution strategy for the FSI problem within a monolithic GCE
approach:
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• de�ne an appropriate extrapolation of both the geometric and convective
(4.49) terms. Concerning the �rst, on the hypothesis of small displacements,
we can handle it by considering the �uid domain at the time-step tn, as a
suitable approximation of the current one. For the latter, we approximate
(u · ∇)u as (un · ∇)un+1. In this way we split the geometric part of the
problem from the �uid-structure one;

• hence, at each time-step we solve separately the geometric problem. We
compute, by means of FFD, IDW and RBF techniques, the �uid displace-
ment dn+1

F and we move the �uid mesh accordingly;

• by using the resulting �uid mesh velocity wn+1
F , we replace the convective

term in the �uid momentum equation by [(un −wn+1
F ) · ∇]un+1;

• �nally, once we solved the geometry (mesh motion) problem, the unknowns
vector is uFSI = {uTF , d̂TS ,λT}T ; for a given unFSI , the coupled �uid-structure
problem reads in �nding un+1

FSI such that:

An+1
FSIu

n+1
FSI = bn+1

FSI .

4.7 Programming features of the FSI solver

Throughout this section we outline the solution strategy adopted within the
FSI solver employed, namely LifeV. In detail we aim at giving an overview, by
means of a block scheme, of the global pattern followed by the code in order to nu-
merically solve the FSI problem within a Geometric-Convective Explicit scheme.
To this end, as shown in Figures 4.3 and 4.4, we illustrate the whole pattern,
as well as the classes involved within such a Finite Element library, that allow
the user to solve the FSI problem. We refrain from detailing the implementa-
tive aspects of the numerical procedures, since we like better to describe the way
through such a code solves the FSI coupled problem within a monolithic CGE
scheme. Thus, to better assess the diagrams reported in Figures 4.3 and 4.4,
we report below a brief description of the objects involved within the numerical
solution of the FSI problem:

• main: it is the function used to call the methods of the classes involved in
the solution of the FSI problem. Thus it manages the numerical solution of
the FSI problems. Moreover, the BoundaryConditions and ud_functions

�les have to be set in order to properly handle the boundary conditions of
the problem;

• data: it is the �le that contains all the parameters to be properly set before
running the FSI simulation. In detail, we need to specify those parameters
that would control and menage the numerical solution of the problem. In
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detail, there, we select the mesh motion strategy to be employed. By means
of GetPot [1] the data chosen are stored within the FSIData class;

• FSISolver: it is a class that handles FSI iterations. This class contains
four main methods, namely setData, setup, initialize and iterate.
The �rst of them is used to load the data of the FSI problem, the setup

method initializes the variables of the problem, while initialize sets the
initial condition for the time scheme. The method iterate menages the
temporal loop of the FSI simulation;

• FSIOperator: this class menages the de�nition of the solver for the FSI
problem. Within such an class, the main methods are represented by:
partitionMeshes, used to manage the solid and �uid meshes, setupFEspace
that handles the FE space, setupDOF employed to manage the degrees of
freedom of the FSI problem;

• OseenSolver: it is a class used to handle the �uid domain physics, by
means of the Oseen equations [14].

• VenantKirchhoffSolver: it is a class used to handle the structure domain
physics within the hypothesis of linear elasticity.

• FSIMonolithic: this pure virtual class handles the monolithic solver for
FSI problems. The method updateSystem, basically, updates the vectors
of the previous time steps by shifting on the right their old values, while
solveJac solves the linearized FSI problem.

• FSIMonolithicGE: this class, derived from FSIMonolithic, implements the
Monolithic Geometry-Convective Explicit solver; in order to solve the ge-
ometric sub-problem, as shown in Figure 4.4, the method evalResidual

recalls the numerical strategies that have been implemented within the
class ALEMeshMotion. In detail, to face the dynamic mesh handling it is
possible to employ either the FFD, or the RBF, or the IDW strategies.
Such a choice has to be set within the data �le.

• NonLinearRichardson: this template menages the numerical solution of
the linearized coupled FSI problem by means of a Newton algorithm. In
detail it �rstly calls the method evalResidual of the FSIMonolithicGE

class to solve the geometry problem (4.47) and to compute the initial resid-
ual of (4.62); then, it calls the methods solveJac and evalResidual of
the FSIMonolithic class in order to reach the convergence for the Newton
algorithm. In detail, until Newton algorithm has not reached convergence,
at each Newton-iteration the �rst method computes the Jacobian matrix,
while the latter evaluates the residual of the system (4.62).
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main.cpp

Loading data and meshes: data FSIData
GetPot

FSISolver FSIOperator

OseenSolver

VenantKirchhoffSolver

FE discretization and set up of �uid and structure domains

Fluid

Structure

FSISolver::iterate()

FSIMonolithic::updateSystem()

NonLinearRichardson

FSIMonolithicGE::evalResidual

while (residual>tolerance)
FSIMonolithic::solveJac

FSIMonolithic::evalResidual

It calls:

FSIMonolithic::updateSolution()

The numerical solution of the FSI prob-
lem is managed by the method iterate

Figure 4.3: Block diagram illustrating the solution strategy of the FSI problem
adopted within LifeV. We provide an overview of the whole solution pattern
menaged by the main.cpp �le, thanks to a fully �exible object-oriented code
architecture. We indicate, by red color, where the class ALEMeshMotion get
involved to tackle the dynamic mesh handling.
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FSIMonolithicGE::evalResidual

• Solve the geometry (mesh motion) problem (4.47)
by means of FFD, IDW or RBF methods implemented

within the class ALEMeshMotion to compute dn+1
F

• Compute the �uid mesh velocity wn+1
F

• Assemble, with respect to (4.62), the �uid,
F, and the structure, S, blocks of An+1

FSI

• Update, with respect to (4.62), the right-hand-side
due to the applications of boundary conditions

• Solve the system (4.62) and get the �rst residual

Figure 4.4: Block diagram highlighting the numerical procedures employed by
the call of the method FSIMonolithicGE::evalResidual; in detail we illustrate
schematically the way through we have introduced within LifeV the numerical
strategies (by means of the class ALEMeshMotion) that solve the mesh motion
problem.



Chapter 5

Simulations and results

In this Chapter we will focus our attention on both the test and the perfor-
mances evaluation of the numerical strategies proposed to handle the dynamic
mesh motion problem within FSI. Here, we aim to validate the mesh handling
strategies developed within several examples of FSI problems, dealing with both
internal and external �uid �ows at low Reynolds numbers; in detail, the purpose
of these tests is to verify the applicability of the shape parametrization techniques
in such situations involving small and large structural displacements. In this way,
by considering �uid �ows in laminar regimes and high-elastic structures as well,
we will investigate on one hand the robustness of the strategies proposed, while,
on the other, we would compare their related computational costs. We remark
the fact that, although we will investigate the behavior of shape parametrization
methods with respect only to the mesh motion problem, it would be possible to
employ the toolbox developed within �uid-structure interface problems too. At
the basis of this choice there is the reason that the novelty of this work is mostly
related to the application of such parametrization strategies to mesh motion prob-
lems. Moreover, since we have carried out, as shown in Chapter 3, several strate-
gies to perform a dimensionality reduction for shape parametrization involved in
the mesh motion problem, here we aim to test also those strategies within FSI
simulations involving small and large structural displacements. This Chapter has
been organized as it follows: in Section 5.1 we will outline the main measures
to be adopted and properly monitored to quantify and verify the mesh quality;
in Section 5.2 we will propose the main results gained with respect to the FSI
simulation of an external laminar �uid �ow past an elastic obstacle, and, within
this example, it will be possible to highlight the e�ectiveness of those strategies
proposed in Chapter 3, in detail of both the adaptive choice of the RBF interpo-
lation sites, and, concerning the FFD method, its related domain-decomposition
approach. In the same way we will propose, in Section 5.3 the results obtained
with respect to an FSI simulation dealing with an internal �uid �ow.
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5.1 Measures of mesh quality

In order to test the mesh handling toolbox developed within FSI simulations,
it is worthwhile to survey all the mesh quality measures considered in this work
[6, 51, 90]. Concerning the computational grids employed in our several test, we
have considered meshes made up of tetrahedral elements. To better assess both
the meaning and the de�nitions of such quality indicators suited for this element
type, in Figure 5.1 we depict a simple tetrahedral element:

P1

P3

P2

P0

L0

L1

L5L3

L2

L4

Figure 5.1: Schematic representation of a tetrahedral element.

being Pi its vertices and Li its edges. Furthermore, it is possible to de�ne the
following edge vectors:

L0 = P1 −P0, L3 = P3 −P0,

L1 = P2 −P1, L4 = P3 −P1,

L2 = P0 −P2, L5 = P3 −P2.

In order to outline the mesh quality measures, it is previously necessary to intro-
duce the geometrical entities involved within their evaluations. In this way we
can de�ne the tetrahedron edges length as Li = ‖Li‖, whose maximum and min-
imum values are indicated by Lmax = max(Li) and Lmin = min(Li), respectively.
The volume of the element considered can be computed as:

V =
(L2 × L0) · L3

6
,

while the surface area of such element reads as:

A =
1

2
(‖L2 × L0‖+ ‖L3 × L0‖+ ‖L4 × L1‖+ ‖L3 × L2‖).
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Furthermore we can de�ne with Rin and Rout as the inradius and the circum-
radius, respectively, of the tetrahedron: in detail they represent the radii of the
circumscribed and inscribed spheres of this tetrahedron. Concerning their geo-
metrical de�nition, they are de�ned as it follows:

Rin =
3V

A
,

Rout =

∥∥‖L3‖2 · (L2 × L0) + ‖L2‖2 · (L3 × L0) + ‖L0‖2 · (L3 × L2)
∥∥

12V
.

It is possible, now, to outline the mesh quality measures considered in this work.
The �rst is the so-called edge ratio, de�ned as it follows:

ρ =
Lmax
Lmin

. (Edge Ratio)

As second measure, we can consider the estimation of the element distortion:
such a quantity measure would indicate how well-behaved the mapping from pa-
rameter space to world coordinates is. In order to perform this test, we can de�ne
a master tetrahedron whose vertices are:

P̃0 = (−1,
−
√

3

3
, −2
√

6

9
),

P̃1 = (1,
−
√

3

3
, −2
√

6

9
),

P̃2 = (0,
−2
√

3

3
, −2
√

6

9
),

P̃3 = (0, 0,
4
√

6

9
),

and its volume is represented by Vm. In this way, to evaluate the element dis-
tortion, we �rstly evaluate the Jacobian determinant of the map at the element
Gauss quadrature points, G = {gj}; thus, by considering its minimum value, we
get:

δ =
minj{det(J(gj))}Vm

V
. (Distortion)

As third mesh quality measure we considered the radius ratio, de�ned as the quo-
tient of the two radii previously introduced, Rout and Rin, normalized by 1

3
, so that
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an equilateral tetrahedron (such that {Li}5
i=0 = L̄) has this measure equal to one:

r =
Rout

3Rin

. (Radius Ratio)

A further way to assess the mesh quality relies in the evaluation of the minimum
dihedral angle: it is de�ned, in degrees, as the angle between two faces of the
tetrahedron that are adjacent along the edge Li:

βi =
180◦

π
arccos(ni1 · ni2),

being ni1 and ni2 the normal versors to the two tetrahedron faces that are adja-
cent to i-th edge. In this way the minimum dihedral angle reads as:

β = miniβi. (Minimum Dihedral Angle)

Another strategy to evaluate the mesh quality, for tetrahedral elements, is related
to the measure of the shape metric. This quality criterion measures the likeness
of the element to the reference one (e.g. an equilateral tetrahedron). Its value is
equal to one for a perfect element, while it decreases as the element becomes of
worst quality. We remark the fact that, in the case when shape metric reaches
negative values, it means that at some points negative Jacobian values has been
reached as well. The shape quality criterion is held by the following expression:

σ =
6
√

2V∑i=5
i=0 L

3
i

. (Shape)

Finally we need to check that the elements volume do not assume negative values
during the simulation process:

V > 0. (Volume)

Moreover, we need to evaluate the elements volume reduction, at the basis of
the fact that excessive contractions would address to bad mesh quality. Table
5.1 summarizes the main mesh quality measures considered: we indicate also, for
each of them, an acceptable range that would represent good elements quality:
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Criterion
Values for Acceptable

equilateral tetrahedron range

(Edge Ratio) 1 1 - 3
(Distortion) 0 0.5 - 1

(Radius Ratio) 1 1 - 3
(Minimum Dihedral Angle) 70.53◦ 40◦ - 70.53◦

(Shape) 1 0.3 - 1
(Volume) 0.1179 positive

Table 5.1: Mesh quality measures considered and their related acceptable ranges.

At the basis of the mesh quality measures introduced, together with the scaled
jacobian indicator as well (whose acceptable range is 0.4 - 0.8), throughout Sec-
tions 5.2 and 5.3 we will validate all the mesh motion strategies proposed within
the solution of many FSI problems.

5.2 External �uid �ow past �exible obstacle

In this example we will compare the techniques developed to tackle the mesh
motion problem within a FSI simulation of an external �uid �ow past a �exible
obstacle, whose numerical solution has been obtained by using the FE library
LifeV. Such an example illustrates how the �uid �ow can deform structures and
how to solve the �ow in a continuously deforming geometry using the Arbitrary
Lagrangian-Eulerian approach. The model geometry consists of a horizontal �ow
channel in the middle of which there is an obstacle, a narrow vertical structure.
The �uid �ows from left to right, except where the obstacle forces it into a narrow
path in the upper part of the channel, and it imposes a force on the structure's
walls resulting from the viscous drag and �uid pressure. The structure, being
made of a deformable material, bends under the applied load. Consequently, the
�uid �ow also follows a new path, so solving the �ow in the original geometry
would generate incorrect results. The ALE method handles the dynamics of the
deforming geometry and the moving boundaries with a moving grid. Thanks
to mesh motion strategies developed we compute new mesh coordinates on the
channel area based on the movement of the structure's boundaries and mesh
smoothing. The Navier-Stokes equations that solve the �ow are formulated for
these moving coordinates. Concerning the geometry of the problem to be studied,
we considered as dimensions for the �ow channel a height of 8 mm, a width of 7
mm, and a length of 20 mm. The vertical structure is 1 mm wide (with a square
cross section) and 5 mm high. The �uid is a water-like substance with a density
ρF = 0.998 g cm−3 and dynamic viscosity µ = 0.01 poise. In order to study the
behavior of the di�erent mesh handling strategies proposed, we assume that the
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structure consists of a �exible material with a density ρS = 2.7 g cm−3 and a
Young modulus E = 4E + 6 dyne cm−2. For the Finite Elements discretization
we considered P1 elements for the structural displacement and, also, for both the
�uid pressure and velocity variables, stabilized by Interior Penalty (IP) [21, 22].

Figure 5.2: Visualization of the domain geometry: we indicated, by di�erent
colors, all the di�erent surfaces related to the boundary conditions of the FSI
problem.

With respect to Figure 5.2, the boundary conditions applied to the problem
read as:

• �uid domain, inlet (blue): parabolic in�ow velocity pro�le;

• �uid domain, outlet (green): stress free;

• �uid domain, walls (grey): no-slip condition, u = 0;

• �uid-structure domains, interfaces (red): coupling conditions of velocities
(2.21) and stresses (2.22);

• structure domain, basis: clamped, d̂S = 0;

with respect to the notation that we have previously introduced (Chapter 4).
Regarding the simulation time, we considered t0 = 0 s, tN = 0.03 s with a time-
step ∆t = 0.001 s. Concerning the parabolic in�ow velocity pro�le, by indicating
with H and W the �ow channel height and width, respectively, its analytical
expression is de�ned as it follows:

ṽFinflow
= vmax

(
1− (x− W

2
)2 + (y − H

2
)2

(W
2

)2 + (H
2

)2

)
(5.1)
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being vmax = 100 cm s−1. In this way, during the simulation process, the in�ow
velocity pro�le has been set as:

vFinflow
=

{
ṽFinflow

100 t, if t ≤ 0.01 s

ṽFinflow
, if t > 0.01 s

(5.2)

such that for t ≥ 0.1 s we have at the inlet surface, for z = 0mm, a velocity
pro�le that reaches its maximum value vFinflow

(W
2
, H

2
, 0) = vmax. Thanks to the

simulation settings introduced, we will deal with a laminar �uid �ow, since the
Reynolds number is equal to Re = 670, by considering, as velocity, U = 2

3
vmax.

With respect to Figure 5.3, we illustrate the meshes considered for both the �uid
(left) and the structural (right) domains.

Figure 5.3: Computational meshes realized for the �uid (left) and the structural
(right) domains.

In Table 5.2 we provide the details of the elements that compose the meshes:

Nodes Triangles Thetrahedra

Fluid domain 19989 8732 106422
Structure domain 336 428 1254

Table 5.2: Details of the computational grids realized.

With respect to Figure 5.4, we report the main results obtained for this ex-
ample, in terms of both the structural displacement and the �uid �ow velocity.
On the basis of the physical results illustrated, obtained using as mesh motion
strategy the Inverse Distance Weighting technique, we can report, also, the main
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results related to the mesh quality measures, with respect to other mesh motion
strategies (RBF and Laplacian).

(a) t = 0.003 s. (b) t = 0.006 s.

(c) t = 0.010 s. (d) t = 0.015 s.

(e) t = 0.020 s. (f) t = 0.025 s.

(g) t = 0.028 s. (h) t = 0.030 s.

Figure 5.4: Visualization of the simulation results: we illustrate the structural
displacement contour, the �uid �ow velocity streamlines and, �nally, the parabolic
in�ow velocity pro�le (Re = 670).
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(a) Edge ratio.
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(b) Distortion.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.5: Mesh quality measures obtained using the IDWmesh motion strategy.
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(a) Edge ratio.
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(b) Distortion.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.6: Mesh quality measures gained using the RBF mesh motion strategy.
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(a) Edge ratio.
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(b) Distortion.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(f) Scaled jacobian.

Figure 5.7: Mesh quality measures gained using the Laplacian mesh motion strat-
egy.
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Among the mesh motion strategies considered to solve such an example, we
dealt with the RBF method based on the reduction of the interpolation sites:
to this end we illustrate in Figure 5.8 the �rst three structural eigenmodes com-
puted for the elastic beam, and, moreover, we show the main convergence results
obtained in order to locate the control points over the structure.

(a) First eigenmode. (b) Second eigenmode. (c) Third eigenmode.

Figure 5.8: Visualization of the �rst three structural eigenmodes computed for
the identi�cation of the RBF interpolation sites.
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−1

10
0

Iterations number

J

Eigenmode 2

Eigenmode 1

 

 

Eigenmode 3
Tolerance

(a) Cost functional behavior vs iterations num-
ber.

(b) Interpolation
sites.

Figure 5.9: Visualization of both the control points sites over the initial structural
shape, and the greedy algorithm convergence.

With reference to Figure 5.9, once we �xed for the greedy algorithm a tolerance
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value of TOL = 10E−1, we obtained as �nal number of control points NC = 19.
In detail, since we have considered in our bandwidth of interest the �rst three
structural eigenmodes, as schematically illustrated in Figure 3.8 we started by
recovering the third one: to this end we have found that 19 control points were
enough to recover such eigenmode. Thus, with this set of parameters found we
were also able to capture the second and the �rst eigenmodes (see Figure 5.9a),
since for i2 = 1 and i1 = 1, respectively, the initial value of the cost functional
J (de�ned in (3.17)) was already lower than the �xed tolerance. In that way
it will be possible to reduce, for the RBF mesh motion strategy involved in the
FSI simulation, the number of control points since we can consider, over the
the �uid-structure interface, not the total structural nodes number, NS

Γ = 188,
but only some of them. Regarding the FFD technique we considered only its
related domain-decomposition approach: this choice is due to the fact that in
the FFD original framework, the constraint held by placing the control points
into a regular lattice within the whole �uid domain would drive on one hand to
unacceptable computational costs, on the other to a lack in accuracy. In Figure
5.10 we illustrate in green color the part of the domain involved in the FFD
mapping and mesh motion procedure.

Figure 5.10: Representation, with green surfaces, of the local 3D box embedding
the structure domain (red), to be mapped through the FFD technique.

In detail, as dimensions for the green patch we considered a width of 4,mm,
a height of 6.5mm and, as length, 8mm. Concerning the number of control
points, we employed within the patch 18 points in the z direction, 4 in x and 10
in the y ones, respectively. At the basis of the analysis pattern introduced for
both the FFD domain-decomposition approach and the RBF strategy involving
a reduced set of the control points, with respect to Figure 5.11 and 5.12 we illus-
trate the main results concerning the comparison of the mesh quality measures
(indicated in Table 5.1) between the FSI simulation time of t = 0.03 s, related to
the maximum structural displacement, and of t = 0 s.
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(a) Edge ratio.
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(b) Distortion.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

E
le
m
en
ts

n
u
m
b
er

[
-
]

 

 

t = 0.00 s
t = 0.03 s

(c) Radius ratio.

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

E
le
m
en
ts

n
u
m
b
er

[
-
]

 

 

t = 0.00 s
t = 0.03 s

(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.11: Mesh quality measures gained using the RBF mesh motion strategy
with a reduced set of control points.
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(a) Edge ratio.
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(b) Distortion.
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(c) Radius ratio.
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(d) Minimum dihedral angle.

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

16000

E
le
m
en
ts

n
u
m
b
er

[
-
]

 

 

t = 0.00 s
t = 0.03 s
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(f) Scaled jacobian.

Figure 5.12: Mesh quality measures gained using the FFD domain-decomposition
approach mesh motion strategy.
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Regarding the mesh quality measures, reported in Figures 5.5, 5.6, 5.7, 5.11
and 5.12, we did not show the curves related to the Volume measure: during the
simulations performed, involving the di�erent mesh motion strategies, it has never
occurred to �nd negative volume values; for that reason we decided to report all
the others mesh quality measures. At this point, to better asses the accuracy
of the results achieved thanks to the adoption of such mesh motion strategies
proposed, in Figure 5.13, we report a comparison between the structural tip
displacements gained thanks to each shape parametrization technique:
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Figure 5.13: Comparison of the structural tip displacements obtained within
di�erent mesh motion strategies.

Figure 5.13 illustrates the dimensionless structural tip displacements, ob-
tained as ratio between the physical tip displacements and the structural cross
section (l = 1mm), versus the simulation time. Moreover, within the above Fig-
ure, we indicated by RBFEIG and FFDPATCH , the RBF strategy involving the
reduced set of control points and the FFD domain-decomposition approach, re-
spectively. At the basis of the results achieved, we can assess the accuracy of the
strategies proposed: in fact, all the techniques employed show the same behavior,
a part from the FFD domain-decomposition approach; nevertheless, although it
is not in perfect accord with respect to the other strategies, we can state that, if
on one hand it di�ers from the others for very small values, on the other hand
it is not interpolatory, leading to a lack in accuracy. Concerning the costs, in
Table 5.3 we report the computational e�orts related to each mesh motion strat-
egy employed: in detail, we show the mean time needed, for each FSI simulation
time-step, to update the �uid mesh con�guration on the basis of the structural
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displacement computed at each FSI iteration. From a mesh quality point of view,
all the strategies tested do not show signi�cant drops in the quality measures,
since they are kept, above all, within their acceptable range (reported in Table
5.1). As conclusion of this �rst example, we can state that the IDW technique
represents a good compromise between the accuracy of the achieved results, in
terms of mesh quality, and the computational e�ort, such that it uphold the
results gained with respect of the several test performed in Chapter 2.

Method
Computational

time [s]

Laplacian 18.11
IDW 11.92
RBF 32.01

RBFEIG 24.19
FFDPATCH 92.18

Table 5.3: Computational costs involved in the mesh motion procedure within
the FSI external �uid �ow example.

5.3 Internal �uid �ow in a cylindrical straight ves-

sel

In this Section we will show the main results obtained in the study of a laminar
�uid �ow inside a cylindrical straight vessel. The aim of this second example is to
study the behavior of the mesh motion techniques proposed, in detail IDW, FFD
and RBF strategies, and compare them with a Laplacian based method. In this
way we will �rstly show the results obtained by adopting as �uid and structural
meshes the discretizations whose characteristics are reported in Table 5.4, then,
by considering other coarser and �ner discretizations, (see Table 5.5) we will
evaluate the computational costs. Concerning the geometry of the �uid domain,
we considered for the undeformed straight cylinder a radius R = 0.5 cm and a
length L = 5 cm; for the structure domain, embedding the �uid one, we chose
an outer radius Rout = 0.6 cm, such that its thickness is t = 0.1 cm. Moreover,
for the �uid domain, we considered a density ρF = 1.0 g cm−3 and a dynamic
viscosity µF = 0.03 poise. The structure is characterized by a Young modulus
E = 6E + 6 dyne cm−2, by a density ρS = 1.2 g cm−3 and by a Poisson ratio
of ν = 0.45. Concerning the time discretization of the problem we have chosen
as time-step ∆t = 0.001 s, while the simulation time is tN = 0.01 s. For the
Finite Element discretization we considered P1 elements for both the structural
displacement, and the velocity and pressure �uid quantities, stabilized by Interior



118 Simulations and results

Penalty (IP) [21, 22]. The boundary conditions applied to the problem are de�ned
as it follows:

• �uid domain, inlet: �ux imposed;

• �uid domain, outlet: stress free;

• �uid-structure domains, interfaces: coupling conditions of velocities (2.21)
and stresses (2.22);

• structure domain, basis: embedded;

• structure domain, outer surface: stress free;

Structure domain

Fluid domain

Inlet

Outlet

Fluid-Structure interface

Structure bases

Structure outer
surface

Figure 5.14: Visualization of all the di�erent surfaces related the assignment of
the boundary conditions of the problem.

Concerning the inlet boundary condition implemented for the �uid domain,
we have imposed a variable �ux value characterized by a behavior, that, with
respect to the simulation time, is represented in Figure 5.15.
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Figure 5.15: Visualization of the inlet �ux pro�le, and its samples, considered for
the FSI simulation.

For this example we considered a structured mesh for the �uid and the struc-
ture domains, whose properties are reported in Table 5.4:

Domain Vertices Triangles Thetrahedra Total elements

Fluid 1029 952 4560 5512
Structure 840 1680 2400 4080

Table 5.4: Details of the mesh properties for the �uid and the structure domains.

In Figures 5.16, 5.17, 5.18 and 5.19 we illustrate some snapshots of the struc-
tural deformed con�guration at di�erent simulation time-steps, gained by using as
mesh motion strategies IDW, RBF, FFD and Laplacian techniques, respectively;
through Figures 5.20 and 5.21, the �uid pressure and velocity contour plots are
visualized within the application of IDW strategy. Finally, with respect to Fig-
ures 5.22, 5.23, 5.24 and 5.25 we evaluate the mesh quality measures obtained
thanks to the di�erent mesh motion strategies considered.



120 Simulations and results

(a) t = 0.001 s. (b) t = 0.002 s. (c) t = 0.003 s.

(d) t = 0.004 s. (e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s. (i) t = 0.009 s.

Figure 5.16: Visualization of the structural deformed con�gurations at di�er-
ent simulation time-steps obtained using, as mesh motion technique, the IDW
strategy.
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(a) t = 0.001 s. (b) t = 0.002 s. (c) t = 0.003 s.

(d) t = 0.004 s. (e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s. (i) t = 0.009 s.

Figure 5.17: Visualization of the structural deformed con�gurations at di�er-
ent simulation time-steps obtained using, as mesh motion technique, the RBF
strategy.
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(a) t = 0.001 s. (b) t = 0.002 s. (c) t = 0.003 s.

(d) t = 0.004 s. (e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s. (i) t = 0.009 s.

Figure 5.18: Visualization of the structural deformed con�gurations at di�er-
ent simulation time-steps obtained using, as mesh motion technique, the FFD
strategy.
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(a) t = 0.001 s. (b) t = 0.002 s. (c) t = 0.003 s.

(d) t = 0.004 s. (e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s. (i) t = 0.009 s.

Figure 5.19: Visualization of the structural deformed con�gurations at di�erent
simulation time-steps obtained using, as mesh motion technique, the Laplacian
strategy.
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(a) t = 0.001 s. (b) t = 0.002 s.

(c) t = 0.003 s. (d) t = 0.004 s.

(e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s.

Figure 5.20: Representation of the �uid-pressure contour plot, inside the whole
deformed structure, at di�erent simulation time-steps, using as mesh motion
strategy the IDW method.
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(a) t = 0.001 s. (b) t = 0.002 s.

(c) t = 0.003 s. (d) t = 0.004 s.

(e) t = 0.005 s. (f) t = 0.006 s.

(g) t = 0.007 s. (h) t = 0.008 s.

Figure 5.21: Representation of the �uid-velocity contour plot, inside the whole
deformed structure, at di�erent simulation time-steps, using as mesh motion
strategy the IDW method.
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(a) Edge ratio.
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(b) Volume.
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(c) Radius ratio.
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(d) Minimum dihedral angle.

0.4 0.6 0.8 1
0

200

400

600

800

1000

E
le
m
en
ts

n
u
m
b
er

[
-
]

 

 

t = 0.000 s
t = 0.009 s

(e) Shape.
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(f) Scaled jacobian.

Figure 5.22: Measures of the �uid mesh quality obtained by the IDWmesh motion
strategy.
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(a) Edge ratio.
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(b) Volume.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.23: Measures of the �uid mesh quality obtained by the RBF mesh motion
strategy.
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(a) Edge ratio.
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(b) Volume.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.24: Measures of the �uid mesh quality obtained by the FFD mesh motion
strategy.
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(a) Edge ratio.
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(b) Volume.
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(c) Radius ratio.
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(d) Minimum dihedral angle.
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(e) Shape.
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(f) Scaled jacobian.

Figure 5.25: Measures of the �uid mesh quality obtained using the Laplacian
mesh motion strategy.
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By the analysis of the previous results, in terms of the deformed structural
con�guration, we can appreciate the high accuracy of the mesh motion strategies
considered, since, among them, the global behavior is similar, and, moreover, the
peak values of the structural displacement are quite the same. Concerning the
mesh quality measures we can state that, during the FSI simulation, each quality
indicator keeps values within its relative acceptable range indicated in Table 5.1.
At this point, we decided to evaluate the computational costs related to the
dynamic mesh handling by considering di�erent discretizations for both the �uid
and the structural domains. In detail we will evaluate, on the basis of the di�erent
meshes whose properties are indicated in Table 5.5, the mean time (across the
di�erent time iterations) needed to update the �uid mesh con�guration due to
the structural displacement.

Domain Vertices Triangles Thetrahedra Total elements

Test #1
Fluid 437 496 1728 2224

Structure 456 912 1296 2208

Test #2
Fluid 1029 952 4560 5512

Structure 1840 1680 2400 4080

Test #3
Fluid 1869 1416 8880 10296

Structure 1176 2352 3360 5712

Test #4
Fluid 5053 2968 25560 28528

Structure 4960 5280 21600 26880

Test #5
Fluid 9452 4436 49698 54134

Structure 7072 7488 30888 38376

Test #6
Fluid 13300 5476 71196 76672

Structure 10500 9120 48960 58080

Table 5.5: Mesh properties of the many di�erent discretizations adopted for both
the �uid and the structural domains to evaluate the computational costs.

At the basis of these discretizations adopted, in Figure 5.26 we illustrate the
curves of the computational costs versus the growing number of �uid elements.
In particular, we report a comparison between IDW, RBF and Laplacian strate-
gies on the left, while, on the right-hand-side we show the behavior of the FFD
technique: concerning the latter, although it drives to a high accuracy of the de-
formed �uid mesh, from the costs point of view it is not competitive if compared
to the others. As a matter of fact if one one hand we can compare on the same
magnitude scale the times related to the IDW, RBF and Laplacian methods, the
FFD one represents a too expensive strategy. Concerning the �rst three tech-
niques (RBF, IDW and Laplacian), which are compared on the left-hand-side of
Figure 5.26, we can state that when dealing with coarse grids, the costs are equiv-
alent, but, as the �uid elements number increases, the IDW strategy represents
the cheapest (better) solution.
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Figure 5.26: Analysis of the computational costs vs. the �uid elements number:
on the left-hand-side we compare the mean time needed by the IDW, RBF and
Laplacian strategies, while, on the right-hand-side, we report only for the �rst
three meshes considered, the ones related to the FFD method.

We can conclude that the IDW strategy represents, within the dynamic mesh
handling, a good compromise between the accuracy of the achieved results and
the computational costs, driving also to a high quality of the deformed �uid grid
as well. Concerning the other shape parametrization techniques, if on one hand
they could represent a valid alternative to IDW method when dealing with coarse
meshes, as the elements number increases, they would be less competitive. Nev-
ertheless, in the framework of Reduced Order Modeling (ROM) and Reduced
Basis (RB) methods [69, 80, 96, 102], shape parametrization strategies would
play an important role, especially for those applications requiring real-time eval-
uations and/or repeated output evaluations for di�erent values of some inputs of
interest. In such situations [70, 71, 81, 82, 83], the possibility given by FFD and
RBF strategies to handle both the mesh motion issue in FSI problem, as well as
the shape parametrization to control and modify the shape con�guration, would
represent a great advance in that scenario, that both the IDW and the Laplacian
based methods do not provide at the moment.





Conclusions and future perspectives

In this work we have compared shape parametrization strategies, like Free-
Form Deformations and Radial Basis Functions, as well as Inverse Distance
Weighting techniques for the dynamic mesh handling for three-dimensional un-
steady Fluid-Structure Interaction problems. Since shape parametrization strate-
gies allow to represent shape deformations by means of low dimensional spaces
(control points), we have tested their abilities within mesh motion problems for
FSI in order to update the �uid mesh con�guration due to structural displace-
ments. Moreover, we have tested these techniques for the transfer of data across
non-matching �uid-structure grids. The result of this work is the development of
a mesh handling toolbox, able to deal with both mesh motion and �uid-structure
interface problems for FSI; moreover such a toolbox can be easily linked with
di�erent state of the art FSI solvers (like LifeV, OpenFoam, etc.) thanks to the
high �exibility of the code realized. In Chapter 1 we have detailed the motiva-
tions, as well as the objectives, that justify such a work. In Chapter 2 all the
shape parametrization strategies considered, as well as the IDW techniques, are
introduced. Furthermore, we have compared them on some one-,two- and three-
dimensional examples. In detail it was possible to highlight the great potential
of RBF technique in order to tackle both the �uid-structure interface and mesh
motion problems, even if, concerning the latter, IDW performances (in terms of
computational costs) were the best. For mesh motion problems, FFD strategies
appeared too much expensive in terms of costs. As a result of these consider-
ations, we proposed, in Chapter 3, some numerical procedures that lead to a
quite signi�cant reduction of costs with respect to both RBF and FFD tech-
niques. In detail, concerning RBF, computational costs were reduced thanks to
the adoption of a reduced set of parameters used to describe the shape defor-
mation, while, with respect to FFD, such a goal was achieved by means of a so
called �domain-decomposition approach�. Through Chapter 4 we have introduced
the mathematical model adopted for the FSI coupled problem: �rstly we have
recalled the equations describing both the �uid and structure physics, then we
have introduced the space and time discretizations. Moreover, an overview of
the Finite Element library (LifeV) adopted to numerically solve the FSI problem
is proposed. Finally, in the last chapter of this work we tested the tool library
developed by the numerical solution of many FSI test-cases (of both internal and
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external �uid �ows).

Concerning the dynamic mesh handling, among the mesh motion strategies
considered, the Inverse Distance Weighting behaved as the best one, with respect
to the achievable mesh qualities and to the computational costs. On the other
hand, in order to tackle the �uid structure interface problem, Radial Basis Func-
tions led to a great accuracy of the achieved results, even in those cases dealing
with the transfer of patchy data across non-matching grids. At the basis of these
considerations our hierarchical approach relies, gained as result of the many test
proposed within this master thesis.

Concerning the future developments of this works, the testing of the mesh
handling toolbox with respect to �uid-structure interface problems within FSI,
could be seen as a last step in order to fully validate the work developed, since in
this work we were mainly interested to face the dynamic mesh handling. More-
over, from an implementative point of view, although the code has been optimized
to work in a serial way, we are supposed to re-organize it in a parallel framework,
since we expect to improve signi�cantly the performances, in particular with re-
spect to IDW strategy. Finally, one of the greatest development of such a work
relies in the application of shape parametrization strategies within Reduced Or-
der Modeling: in detail by using FFD and RBF parametrizations not only to
tackle the mesh motion and interface problems for FSI, but also to extent their
application �elds to such problems requiring signi�cant reductions of both the
geometrical and computational complexities.



Appendices

Appendix A: List of symbols

Appendix B: List of acronyms





Appendix A

List of symbols

Introduction:

Symbol Description Unit of measure

Ω̂F Reference �uid domain con�guration -
Ω̂S Reference structural domain con�guration -
ΩF Deformed �uid domain con�guration -
ΩS Deformed structural domain con�guration -
ζ Fluid displacement �eld [cm]
ς Structural displacement �eld [cm]
ΓF Deformed �uid interface con�guration -
ΓS Deformed structural interface con�guration -
ζL local (deformative) component of ζ [cm]
ζG global (due to rigid motions) component of ζ [cm]

Chapter 1:

Symbol Description Unit of measure

E Young's modulus [dyne cm−1]
N(x) Interpolation basis function -
w(x) Weighting function -
δ(·) Pre�x used to indicate a virtual entity -
φ Radial Basis Function -
γ Di�usivity coe�cient -
Γ Fluid-structure interface -
µ, λ Lamé coe�cients -
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Symbol Description Unit of measure

ν Poisson's ratio -
c Center of the radial basis functions [cm]
f Body forces -
fF , fS External forces acting on �uid and structural nodes [ dyne ]
H Transfer matrix -
u Displacement of grid nodes [cm]
ε Strain tensor -
σ Stress tensor -
ς, ζ Structural and Fluid nodal displacements [ cm ]
Re Reynolds number -

Chapter 2:

Symbol Description Unit of measure

N Set of scattered data -
Nc Number of RBF control points -
M(·,µ) RBF interpolation map -
J Cost functional -
nf Number of �uid grid nodes -
ns Number of structural grid nodes -

nΓ
Number of nodes lying over the

-
�uid-structure interface

r Scaling factor for RBF [ cm ]
tn n-th time interation [ s ]
NC Number of control points for FFD -
R Radius of in�uence for IDW [ cm ]
T (·, µ) Parametric map -
TFFD(·, µ) FFD map -
TOL Tolerance -
D Space of admissible parameters values for FFD -
ΓF , ΓS Linear selection operators -
Ω̂ Reference domain -
Ω Current domain con�guration -
Ω̂F Reference �uid domain con�guration -
ΩF Current �uid domain con�guration -
Ω̂S Reference structure domain con�guration -
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Symbol Description Unit of measure

ΩS Current structure domain con�guration -
Ω̂h Discretized domain in the reference con�guration -
Ωh Discretized domain in the current con�guration -
d̂S Structural displacement [ cm ]
P0
l,m,n Control points initial positions [ cm ]

XC RBF control points position [ cm ]
µ Parameters vector -
Ψ A�ne, di�erentiable and invertible map -

Chapter 3:

Symbol Description Unit of measure

NC Number of control points -
Nm Number of eigenmodes considered -
J (ik) Cost functional at the ik-th iteration -
T (·) Frame of reference with respect to (·) coordinates -
ςR Rigid component of the structural displacement [ cm ]
ςD Deformative component of the structural displacement [ cm ]
ω Eigenvalue [Hz]
Ω̂(i) i-th reference domain patch -
s Rigid translations [cm]
θ Rigid rotations [deg]
I Inertia matrix -
M Mass matrix -
K Sti�ness matrix -
R Rotation matrix -
R̃ Approximated rotation matrix -
XB Body coordinates [ cm ]
θ Rigid rotations [ rad ]
Π Set of parameters -
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Chapter 4:

Symbol Description Unit of measure

p Fluid pressure [ dyne cm−2 ]
∈ Green-Lagrange strain tensor -
Γ Fluid-Structure interface -
Ωt Current (Eulerian) domain con�guration -
ρF Fluid density [ g cm−3 ]
ρS Structure density [ g cm−3 ]
µF Fluid dynamic viscosity [ poise ]
A ALE map -
d̂F Fluid domain displacement [ cm ]
d̂S Fluid domain displacement [ cm ]
˙̂
dS Structure velocity [ cm s−1 ]
F Deformation gradient -
fF Fluid volume forces [ dyne cm−3 ]
fS Structure volume forces [ dyne cm−3 ]
n Normal unit vector -
u Fluid velocity [ cm s−1 ]
x Point belonging to the current domain con�guration [ cm ]
x̂ Point belonging to the reference domain con�guration [ cm ]
w Mesh velocity [ cm s−1 ]
σF Cauchy stress tensor for �uid -
ΣI First Piola stress tensor -
ΣII Second Piola stress tensor -

Chapter 5:

Symbol Description Unit of measure

Pi Vertices of the tetrahedral element -
Li Edges of the tetrahedral element -
V Volume of the tetrahedral element [ cm3 ]
A Surface area of the tetrahedral element [ cm2 ]
ρ Edge ratio, mesh quality measure -
δ Distortion, mesh quality measure -
r Radius ratio, mesh quality measure -
β Minimum dihedral angle, mesh quality measure [ deg ]
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Symbol Description Unit of measure

σ Shape, mesh quality measure -
∆t Simulation time-step [ s ]
vFinflow In�ow velocity value [ cm s−1 ]





Appendix B

List of acronyms

Acronym Meaning

ALE Arbitrary Lagrangian Eulerian
B&W Beckert and Wendland
CAD Computer Aided Design
CFD Computational Fluid Dynamics
CMCS Chair of Modelling and Scienti�c Computing
CPU Central Processing Unit
FE Finite Element
FEM Finite Element Method
FFD Free Form Deformation
FSI Fluid Structure Interaction
GCE Geometry Convective Explicit
GS Gaussian Splines
IDW Inverse Distance Weigthing
IMQ Inverted Multi-Quadratic biharmonic splines
IP Interface Problem
MMP Moving Mesh Problem
MQ Multi-Quadratic biharmonic splines
NNI Nearest Neighbor Interpolation
NS Navier Stokes
PCG Preconditioned Conjugate Gradient
RB Reduced Basis
RBF Radial Basis Function
ROM Reduced Order Modeling
SBRS Solid Body Rotation Stress
TPS Thin Plate Splines
WRM Weighted Residual Methods
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