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Abstract—Suppose we are given two independent strings of
data from a known finite alphabet. We are interested in testing
the null hypothesis that both the strings were drawn from the
same distribution, assuming that the samples within each string
are mutually independent. Among statisticians, the most popular
solution for such a homogeneity test is the two sample chi-square
test, primarily due to its ease of implementation and the fact
that the limiting null hypothesis distribution of the associated test
statistic is known and easy to compute. Although tests that are
asymptotically optimal in error probability have been proposed
in the information theory literature, such optimality results are
not well-known and such tests are rarely used in practice. In this
paper we seek to bridge the gap between theory and practice.
We study two different optimal tests proposed by Shayevitz
[1] and Gutman [2]. We first obtain a simplified structure of
Shayevitz’s test and then obtain limiting distributions of the test
statistics used in both the tests. These results provide guidelines

for choosing thresholds that guarantee an approximate false
alarm constraint for finite length observation sequences, thus
making these tests easy to use in practice. The approximation
accuracies are demonstrated using simulations. We argue that
such homogeneity tests with provable optimality properties could
potentially be better choices than the chi-square test in practice.

I. INTRODUCTION

Suppose we are given two independent strings of data

xm := (x1, x2, . . . , xm) and yn := (y1, y2, . . . , yn) drawn

from the same known finite alphabet Z := {z1, z2, . . . , zN}.

We are interested in testing homogeneity, i.e., whether or not

both these strings are drawn i.i.d. from the same distribution

in P(Z), the collection of all multinomial probability distri-

butions on Z. In other words this hypothesis testing problem

fundamentally aims to identify whether or not the two collec-

tions of samples are drawn from the same population. This

is a fundamental problem in statistics with various practical

applications [3].

This problem can be interpreted as a binary hypothesis

testing problem with a composite null hypothesis representing

the situation where both strings are drawn from identical

distributions and a composite alternate hypothesis where both

the strings are drawn from distinct distributions. Thus one can

define two different probabilities of error, viz., the probability

of false alarm under the null hypothesis and the probability of

missed detection under the alternate hypothesis. A reasonable

approach to solve this problem is to identify some testing

procedure that optimizes the trade-off between these two

quantities. Although it is intractable to solve this problem

exactly, two different results satisfying two different notions

of asymptotic optimality are known in the information theory

literature [1] [2]. However, the most commonly used solution

for this homogeneity testing problem is the two sample chi-

square test [4] originally proposed by Pearson [5]. In this paper

we first obtain a simplified structure for the test proposed in

[1]. We then proceed to identify the limiting behavior of the

test statistics used in the optimal tests of [1] and [2]. Such

limiting results can be used to approximate the thresholds for

these tests for a target false alarm probability, thus providing a

practical alternative to the popular two sample chi-square test

which does not have any known optimality properties.

A. Notation

For any probability mass function π ∈ P(Z) we use π(z)
to denote the probability of symbol z ∈ Z. We sometimes

also use the notation π to denote the vector of probabilities

(π(z1), π(z2), . . . , π(zN )) and 〈π, f〉 to denote the inner prod-

uct
∑N

i=1 π(zi)f(zi) for any function f defined on Z. For

two distributions π, ν ∈ P(Z) the Kullback-Leibler divergence

between π and ν is given by

D(π‖ν) =
∑

z∈Z

π(z) log
π(z)

ν(z)
.

We use Γx
m to denote the empirical distribution of xm and Γy

n

to denote the empirical distribution of yn. We use Pπ1,π2 to

denote the probability measure when the first string is drawn

from distribution π1 and the second string is drawn from

distribution π2. When both strings are drawn from the same

distribution µ we use Pµ for the probability measure. We use

N (a,B) to denote a Gaussian random vector with mean a and

covariance matrix B and χ2
d to denote a chi-square random

variable with d degrees of freedom.

B. Outline

In Section II we describe the mathematical problem state-

ment and describe the known results. We provide a simplified

version of a known optimal test [1] in Section III. We then

present our new results on the weak convergence of the various

test statistics in Section IV. We discuss how these results can

be used for selecting test thresholds in Section V and conclude

in Section VI.



II. PROBLEM DESCRIPTION

Suppose we are given two independent strings of data

xm := (x1, x2, . . . , xm) and yn := (y1, y2, . . . , yn) drawn

from the same known finite alphabet Z. We think of xm as

the first m observations from an i.i.d. sequence x and yn as

the first n observations from another i.i.d. sequence y. We are

interested in testing whether or not both these sequences are

drawn from the same distribution in P(Z). For each m,n ∈ Z

let φm,n : Zm × Z
n 7→ {0, 1} represent a test on the first m

observations from x and first n observations from y. The test

outcome φm,n(x
m, yn) = 0 represents a decision in favor of

the null hypothesis that both x and y are drawn from the same

distribution and the outcome φm,n(x
m, yn) = 1 represents

a decision in favor of the alternate hypothesis that x and y

are drawn from different distributions. For any distribution

µ ∈ P(Z) of the observations under the null hypothesis, the

probability of false alarm is given by

pFA(φm,n|µ) = Pµ(φm,n(x
m, yn) = 1).

Similarly for any distinct distributions π1, π2 ∈ P(Z) the

probability of missed detection is given by

pMD(φm,n|π
1, π2) = Pπ1,π2(φm,n(x

m, yn) = 0).

In the classical Neyman-Pearson formulation of hypothesis

testing one seeks to minimize the probability of missed de-

tection subject to an upper bound on the probability of false

alarm. In our problem since we do not know the values of

µ, π1 or π2, it is not possible to solve this problem exactly.

Instead, we have to use an asymptotic version. For this purpose

we consider the limit as m,n → ∞. We further assume

that m scales linearly in n as m = λn for some λ ≥ 1.

In this setting we use φn(x, y) to denote the test outcome

φλn,n(x
λn, yn). We define two kinds of error exponents. The

false alarm error-exponent and the missed-detection exponent

are defined respectively as

EFA(φ|µ) := lim inf
n→∞

−
1

n
log pFA(φn|µ)

EMD(φ|π1, π2) := lim inf
n→∞

−
1

n
log pMD(φn|π

1, π2).

Two versions of asymptotically optimal tests are known in

literature.

Shayevitz [1] studied this problem in the context of a

two-sensor network. The null hypothesis corresponds to the

scenario in which both sensors observe noise and the alternate

hypothesis corresponds to the scenario in which some phe-

nomenon is present which leads to both sensors making ob-

servations from distinct distributions. One of the contributions

of [1] is a solution to the following optimization problem:

supφ EMD(φ|π1, π2)

s.t. lim
n→∞

pFA(φn|µ) = 0 for all µ ∈ P(Z). (1)

The following sequence of tests solves the problem (1):

φA
n (x, y) = I

{

inf
µ∈P(Z)

max{D(Γx
λn‖µ), D(Γy

n‖µ)} ≥ δn

}

(2)

where δn = |Z| logn

n
and I denotes the indicator function.

Gutman [2] studied this problem in the context of multihy-

pothesis testing with training sequences. He used the following

optimality criterion

supφ EMD(φ|π1, π2)

s.t. EFA(φn|µ) ≥ η for all µ ∈ P(Z) (3)

and showed that the following sequence of likelihood ratio

tests solves problem (3):

φB
n (x, y) = I

{

λD(Γx
λn‖

1
2 (Γ

x
λn + Γy

n))

+D(Γy
n‖

1
2 (Γ

x
λn + Γy

n)) ≥ δ̃n

}

(4)

where δ̃n = η + O( logn
n

). Interestingly, both the optimal

sequences of tests of (2) and (4) do not depend on the true

values of π1 and π2.

Although these optimal solutions are known, the test usually

used by statisticians is the two sample chi-square test. The chi-

square distance between two distributions is defined as

χ2(π, ν) :=
∑

z∈Z

2(π(z)− ν(z))2

(π(z) + ν(z))
, π, ν ∈ P(Z).

The two sample chi-square test is given by

φC
n (x, y) = I

{

χ2(Γx
λn,Γ

y
n) ≥ δ̂n

}

(5)

where δ̂n is chosen to approximately meet the false alarm

constraint based on the weak convergence of the test statistic.

The main reason for popularity of the chi-square test is

the fact that the test statistic is easy to compute and that the

limiting behavior of the test statistic is known, which makes

it possible to set an approximate threshold for a target false

alarm probability, or to compute the p-value of the test statistic

[3]. We observe that in both the optimal tests (2) and (4), the

guarantees on the false alarm probability (pFA) hold only in

the asymptotic sense as the sequence length goes to infinity.

In (2) we are guaranteed that pFA will eventually go to zero

and in (4) we are guaranteed that pFA decays as exp(−nη).
However, in practice one has access to only a finite number of

data points and is interested in guaranteeing a constant upper

bound on the false alarm probability. For this, we need to be

able to choose the thresholds of these tests to meet a given

target false alarm level for a given sequence length. In the

following sections we derive weak-convergence results for the

test statistics used in (2) and (4) and demonstrate that these

results give good approximations to the actual false alarm

probabilities in these tests. We first obtain a simplified form

of the test of (2).

III. SIMPLIFIED FORM OF TEST φA

The test statistic used in the test φA of (2) can be simplified

a great deal via the following lemma.

Lemma III.1. For any distributions µ1, µ2 ∈ P(Z), the

infimum in

inf
ν∈P(Z)

max{D(µ1‖ν), D(µ2‖ν)} (6)



is achieved at a point ν∗ that satisfies D(µ1‖ν∗) = D(µ2‖ν∗).
Furthermore, ν∗ can be expressed in the form ν∗ = αµ1 +
(1− α)µ2 for some 0 ≤ α ≤ 1.

Proof: Define the function f12(ν) :=
max{D(µ1‖ν), D(µ2‖ν)}. Since f12(u) is finite when

u is the uniform distribution on Z we see that the value of

the optimization problem in (6) is finite. It is also easy to see

that without loss of optimality we can restrict the infimum

to P12(Z) := {ν ∈ P(Z) : supp(ν) ⊆ supp(µ1) ∪ supp(µ2)}.

This is because for any ν ∈ P(Z) its restriction ν12 onto

supp(µ1) ∪ supp(µ2) satisfies D(µ1‖ν12) ≤ D(µ1‖ν) and

D(µ2‖ν12) ≤ D(µ2‖ν). Now P12(Z) is a compact set,

the function f12(.) is bounded below by 0 on P12(Z),
and moreover the function f12(.) is continuous in the

relative interior of the set P12(Z). Thus the infimum in

infν∈P12(Z) f12(ν) is achieved since the optimal value is finite

by the argument above.

Now (6) can be equivalently written as a convex problem:

minτ,ν τ

s.t. D(µ1‖ν) ≤ τ, D(µ2‖ν) ≤ τ,
∑

x∈Z

ν(x) = 1, ν(x) ≥ 0, for all x ∈ Z.

Let ν̂ represent the optimizer of this problem. Considering

the first order condition for optimality in a Lagrange-relaxed

version of this problem it follows that there exists scalars ℓ1,

ℓ2, and κ such that

ℓ1µ
1(x) + ℓ2µ

2(x) = κν̂(x), for all x ∈ Z

which implies that the optimizer ν̂ can be expressed as an

affine combination of µ1 and µ2. Now by the definition of

f12(.) it further follows that ν̂ can be expressed as a convex

combination of µ1 and µ2.

From the above lemma it follows that the test (2) can

equivalently be written as

φA
n (x, y) = I {D(Γx

λn‖αnΓ
x
λn + (1− αn)Γ

y
n) ≥ δn} (7)

where αn ∈ [0, 1] satisfies

D(Γx
λn‖αnΓ

x
λn+(1−αn)Γ

y
n) = D(Γy

n‖αnΓ
x
λn+(1−αn)Γ

y
n).

Furthermore, it is obvious that given Γx
λn and Γy

n the value of

αn can be easily computed by binary search since the function

g(α) := D(Γx
λn‖αΓ

x
λn + (1 − α)Γy

n) − D(Γy
n‖αΓ

x
λn + (1 −

α)Γy
n) is a monotonically decreasing function of α, and αn

can be approximated by the value of α at which the function

g(.) is approximately zero. Now let Zn := D(Γx
λn‖αnΓ

x
λn +

(1−αn)Γ
y
n). Thus the test of (2) is just a threshold test on Zn.

Although the test (2) looks complicated, the discussion above

implies that the test statistic is in fact quite easy to compute.

IV. WEAK CONVERGENCE RESULTS

In the classical Neyman-Pearson hypothesis testing prob-

lem, one chooses the threshold that guarantees some bound

on the false alarm probability of the test. Although it is not

tractable to obtain an exact evaluation of the false alarm

probability as a function of the threshold, we will now show

that in the asymptotic regime, it is possible to obtain weak-

convergence results on the test statistics that can be used to

approximate the false alarm probability. All our results are

based on the following basic lemma.

Lemma IV.1. Suppose we are given a string x of observations

of length λn and another independent string y of length n both

drawn i.i.d. from the same distribution µ ∈ P(Z) such that µ

has full support over Z. Let Γx
λn denote the empirical distri-

bution of the observations in x and Γy
n denote the empirical

distribution of the observations in y. Let h : P(Z)×P(Z) 7→ R

be a continuous real-valued function whose gradient and

Hessian are continuous in the neighborhood of (µ, µ). If the

directional derivative satisfies ∇h(µ, µ)T (ν1−µ, ν2−µ) = 0
for all ν1, ν2 ∈ P(Z), then

2n(h(Γx
λn,Γ

y
n)− h(µ, µ))

d.
−−−−→
n→∞

[WT
λ ,WT ]M

[

Wλ

W

]

where M = ∇2h(µ, µ) and Wλ and W are independent ran-

dom vectors distributed as Wλ ∼ N (0, Σ
λ
) and W ∼ N (0,Σ)

with Σ = diag(µ)− µµT.

Proof: Let Gn,x := n
1

2 (Γx
λn − µ) and Gn,y := n

1

2 (Γy
n −

µ). We know that Γx
λn and Γy

n can be written as empirical

averages of i.i.d. vectors. Hence, they satisfy the central limit

theorem which says that,

Gn,x = n
1

2 (Γx
λn − µ)

d.
−−−−→
n→∞

Wλ (8)

Gn,y = n
1

2 (Γy
n − µ)

d.
−−−−→
n→∞

W (9)

where the distributions of W and Wλ are as defined in the

statement of the lemma. Considering a second-order Taylor’s

expansion and using the condition on the directional derivative,

we have, for n large enough,

2n(h(Γx
λn,Γ

y
n)− h(µ, µ))

= [GT
n,x, G

T
n,y]∇

2h(Γ̃x
n, Γ̃

y
n)

[

Gn,x

Gn,y

]

where Γ̃x
n = γΓx

λn + (1− γ)µ and Γ̃y
n = γΓy

n + (1− γ)µ for

some γ = γ(n) ∈ [0, 1]. We also know by the strong law of

large numbers that Γx
λn and Γy

n and hence Γ̃x
n and Γ̃y

n converge

to µ almost surely. By the continuity of the Hessian, we have

∇2h(Γ̃x
n, Γ̃

y
n)

a.s.
−−−−→
n→∞

∇2h(µ, µ). (10)

By applying the vector-version of Slutsky’s theorem [7],

together with (8), (9) and (10), we conclude that

[GT
n,x, G

T
n,y]∇

2h(Γ̃x
n, Γ̃

y
n)

[

Gn,x

Gn,y

]

d.
−−−−→
n→∞

[WT
λ ,WT ]∇2h(µ, µ)

[

Wλ

W

]

,

thus establishing the lemma.

As an immediate consequence of the above lemma we have

the following result:



Lemma IV.2. Suppose we are given a string x of observations

of length λn and another independent string y of length n both

drawn i.i.d. from the same distribution µ ∈ P(Z) such that µ

has full support over Z. Let Y n
1 := D(Γx

λn‖
1
2 (Γ

x
λn+Γy

n)) and

Y n
2 := D(Γy

n‖
1
2 (Γ

x
λn +Γy

n)). Then the following results hold:

8nλ

1 + λ
Y n
1

d.
−−−−→
n→∞

χ2
N−1, (11)

8nλ

(1 + λ)2
(λY n

1 + Y n
2 )

d.
−−−−→
n→∞

χ2
N−1, (12)

n(Y n
1 − Y n

2 )
d.

−−−−→
n→∞

0. (13)

Proof: To prove (11) we apply Lemma IV.1 to the

function h(π, ν) := D(π‖ 1
2 (π + ν)). It is easily verified

that the gradient and Hessian satisfy the necessary regularity

conditions. Computing the Hessian at (µ, µ) we obtain

M =





diag
(

1
4µ

)

−diag
(

1
4µ

)

−diag
(

1
4µ

)

diag
(

1
4µ

)





where diag
(

1
4µ

)

denotes a diagonal matrix with the i-th

diagonal entry given by 1
4µi

. Applying the conclusion of

Lemma IV.1 we obtain

2nY n
1

d.
−−−−→
n→∞

(Wλ −W )T diag

(

1

4µ

)

(Wλ −W ).

Equivalently we can write 8nλ
1+λ

Y n
1

d.
−−−−→
n→∞

WT diag
(

1
µ

)

W.

It can be shown using the result of [8, Lemma III.7] that

WT diag
(

1
µ

)

W has a χ2
N−1 distribution thus proving (11).

Similarly for proving (12) we apply Lemma IV.1 to the

function h(π, ν) := λD(π‖ 1
2 (π + ν)) + D(π‖ 1

2 (π + ν)).
Computing the Hessian at (µ, µ) we see that the new Hessian

is just (1 + λ) times M . Thus the result of (12) by a similar

argument as before.

Now if we apply Lemma IV.1 to the function h(π, ν) :=
D(π‖ 1

2 (π+ ν))−D(ν‖ 1
2 (π+ ν)), we see that the Hessian at

(µ, µ) vanishes. Hence (13) follows.

We are now ready to obtain the weak convergence behavior

of the test statistic Zn used in the test of (7).

Proposition IV.3. Assume that the data strings xm and yn are

drawn i.i.d. according to some fixed distribution µ ∈ P(Z)
such that µ has full support on Z. Further assume that m

grows linearly in n as m = λn. Let αn and Zn be as before

with Zn = D(Γx
λn‖αnΓ

x
λn + (1 − αn)Γ

y
n). Then if m grows

linearly in n as m = λn, we have

8nλ

1 + λ
Zn

d.
−−−−→
n→∞

χ2
N−1 (14)

Proof: Let Y n
1 := D(Γx

λn‖
1
2 (Γ

x
λn + Γy

n)) and Y n
2 :=

D(Γy
n‖

1
2 (Γ

x
λn + Γy

n)). From Lemma III.1 we have

min{Y n
1 , Y n

2 } ≤ Zn ≤ max{Y n
1 , Y n

2 }. (15)

Now if Wn := min{Y n
1 , Y n

2 }, then we have |Wn − Y n
1 | ≤

|Y n
1 − Y n

2 |. Hence by (13) we have n(Wn − Y n
1 )

d.
−−−−→
n→∞

0.

Combining with (11) we get 8nλ
1+λ

Wn
d.

−−−−→
n→∞

χ2
N−1. By a

similar argument it also follows that Vn := max{Y n
1 , Y n

2 }

satisfies 8nλ
1+λ

Vn
d.

−−−−→
n→∞

χ2
N−1. Thus by (15) we see that nZn

is sandwiched between two random quantities having the same

weak convergence behavior. Thus nZn should also have the

same weak convergence limit.

We now consider the test of (4) proposed in [2]. The test

statistic in this test can be expressed as:

Yn := λD(Γx
λn‖

1
2 (Γ

x
λn + Γy

n)) +D(Γy
n‖

1
2 (Γ

x
λn + Γy

n)).

In the following theorem we characterize the limiting behavior

of this test statistic.

Proposition IV.4. Assume that the data strings xm and yn

are drawn i.i.d. according to some fixed distribution µ ∈ P(Z)
such that µ has full support on Z. Let Yn := λD(Γx

λn‖
1
2 (Γ

x
λn+

Γy
n)) +D(Γy

n‖
1
2 (Γ

x
λn + Γy

n)). Then we have

8nλ

(1 + λ)2
Yn

d.
−−−−→
n→∞

χ2
N−1 (16)

Proof: This is exactly the result of (12) in Lemma IV.2.

Similarly, we can also identify the limiting behavior of the

chi-square test statistic used in (5) via the results of Lemma

IV.1. Although this result is well known in statistics literature,

we provide a simple proof for completeness.

Proposition IV.5. Assume that the data strings xm and yn

are drawn i.i.d. according to some fixed distribution µ ∈ P(Z)
such that µ has full support on Z. Let Xn := χ2(Γx

λn,Γ
y
n).

Then we have
nλ

1 + λ
Xn

d.
−−−−→
n→∞

χ2
N−1 (17)

Proof: We apply Lemma IV.1 to the function f(π, ν) =
χ2(π, ν). It is easily verified that the gradient and Hessian

satisfy the necessary regularity conditions. Computing the

Hessian at (µ, µ) we obtain

M =





diag
(

2
µ

)

−diag
(

2
µ

)

−diag
(

2
µ

)

diag
(

2
µ

)



 .

Following the same steps as in the proof of (11) in Lemma

IV.2, the conclusion follows.

We observe from Propositions IV.3, IV.4 and IV.5 that the

limiting distribution of the test statistics of all the three tests

φA of (7), φB of (4) and φC of (5) under the null hypothesis

depend only on the support size of the true distribution µ and

not on the specific value of µ. In the following section we

discuss how these weak convergence results can be used to

select the test thresholds for a target false alarm probability.

V. APPROXIMATE THRESHOLDS

The weak convergence behavior of the test statistics in the

three tests we have considered can be used to approximately

choose the test threshold for a target false alarm probability.

For example in the chi-square test φC of (5) if under the null
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Fig. 1. False alarm probabilities of the various tests are shown along with
the χ

2 approximation of these error probabilities obtained using the weak
convergence result.

hypothesis the observations are drawn from some distribution

µ ∈ P(Z) with full support, then the test statistic Xn satisfies

lim
n→∞

Pµ{
nλ

(1 + λ)2
Xn > x} = 1− F (x)

where F (x) denotes the cdf of a chi-square random variable

with N − 1 degrees of freedom. This relation can be used

to approximate the threshold to be used in (5) for a target

false alarm probability, by approximating the true probability

with the limiting probability. Similarly, the thresholds for the

optimal tests φA of (7) and φB of (4) can be chosen using the

weak convergence of their respective test statistics.

In order to estimate the accuracy of the approximation

obtained from the weak convergence, we simulated the three

tests using a uniform distribution over an alphabet of size 8 for

µ. In Figure 1 we have plotted the false alarm probabilities of

the three tests as a function of the sequence length n obtained

by simulations. In the same figure we also have a plot of

the approximate value of the false alarm probability computed

using the weak convergence approximation suggested in the

previous paragraph. Clearly, that the error predictions obtained

via the weak-convergence approximations are quite accurate

for values of n greater than 45.

VI. SUMMARY AND FUTURE WORK

We have studied the homogeneity testing problem for

multinomial distributions. Although optimal results have been

proposed for this problem in information theory literature, such

results are not well-known among statisticians and such tests

are rarely used in practice. In this paper, we have simplified

the structure of one of these tests and also identified the

limiting behavior of the test statistics used in both the tests.

These results can be used to approximate the thresholds for

these tests. Such homogeneity tests with provable optimality

properties could potentially be better choices than the chi-

square test in practice.

In terms of future work it would be of interest to identify

the optimal tests for this problem in the setting in which the

alphabet size is allowed to increase with the sample size. Such

a setup is relevant in problems involving data from continuous

alphabet distributions which could be first quantized and then

tested. The literature (see, e.g., [9] and references therein) on

the simpler single sample goodness-of-fit problem could be

a good starting point for such an investigation. A different

direction for future work is to extend these results on two-

sample tests to more general k-sample tests and to evaluate

the asymptotic efficiency of these tests.
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