(PPI
 Progressive Steps towards Global Validated Simulation of Edge Plasma Turbulence

ÉCOLE POLYTECHNIQUE fédérale de lausanne
P. Ricci, A. Fasoli, I. Furno, J. Loizu, S. Jolliet, F. Halpern, A. Mosetto, B.N. Rogers ${ }^{1}$ and C. Theiler

Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland
Department of Physics and Astronomy, Dartmouth College, Hanover NH 03755

1. Introduction and Motivation

Global 3D fluid simulations of SOL plasma turbulence are presented
using the GBS code [1]
Interplay between the plasma outflow from the core, perpendicular transport and parallel losses at the limiter No separation between equilibrium and fluctuating quantities

2. Progressive approach using basic plasma physics devices

GBS has been used for simulating basic plasma physics devices of increasing complexity: linear devices (LAPD, HelCat)[2] and Simple Magnetized Toroidal plasmas (TORPEX, Helimak) [3]

LAPD

HelCat

Helimak

TORPEX

- Unstable linear modes, saturation mechanism, biasing effects have been analyzed - Most of the investigations have been focused on the TORPEX device (see poster EX/P6-28) - We are now approaching the description of the tokamak SOL, by starting from a simple setup

3. Simulation Model

- Drift-reduced Braginskii equations [4] with cold ion approximation $T_{i}=0$

$$
\begin{aligned}
& \frac{\partial n}{\partial t}=-\frac{R_{0}}{B}[\phi, n]+\frac{2}{B}\left[C\left(p_{e}\right)-C(\phi)\right]-\nabla \cdot\left(n V_{\| e} \mathbf{b}_{0}\right)+\mathcal{D}_{n}(n)+S_{n} \\
& \frac{\partial \omega}{\partial t}=-\frac{R_{0}}{B}[\phi, \omega]-V_{\|} \boldsymbol{b}_{0} \cdot \nabla \omega+\frac{B^{2}}{n} \nabla \cdot\left(j_{\|} \mathbf{b}_{0}\right)+\frac{2 B}{n} C\left(p_{e}\right)+\frac{B}{3 n} C\left(G_{i}\right)+\mathcal{D}_{\omega}(\omega) \\
& \frac{\partial \chi}{\partial t}=-\frac{R_{0}}{B}\left[\phi, V_{\| e]}-V_{\| e} \mathbf{b} \cdot \nabla V_{\| e}+\frac{m_{i}}{m_{e}}\left(\nu \frac{j_{\|}}{n}+\mathbf{b} \cdot \nabla \phi-\frac{1}{n} \mathbf{b} \cdot \nabla p_{e}-0.71 \mathbf{b} \cdot \nabla T_{e}-\frac{2}{3 n} \mathbf{b} \cdot \nabla G_{e}\right.\right. \\
& \left.+\frac{1}{n} G_{e} \nabla \cdot \mathbf{b}\right)+\mathcal{D}_{V_{\| e}}\left(V_{\| e}\right) \\
& \begin{array}{l}
\frac{\partial V_{\| i}}{\partial t}=-\frac{R_{0}}{B}\left[\phi, V_{\| i}\right]-V_{\| \mid \boldsymbol{b}} \cdot \nabla V_{\| i}-\frac{1}{n} \mathbf{b} \cdot \nabla p_{e}-\frac{2}{3 n}(\vec{b} \cdot \nabla) G_{i}-\frac{G_{i}}{n} \nabla \cdot \mathbf{b}_{0}+\mathcal{D}_{V_{\| i}}\left(V_{\| i}\right) \\
\frac{\partial T_{e}}{\partial t}=-\frac{R_{0}}{B}\left[\phi, T_{e}\right]-V_{\| e} \mathbf{b} \cdot \nabla T_{e}+\frac{4 T_{e}}{3 B}\left[\frac{1}{n} C\left(p_{e}\right)+\frac{5}{2} C\left(T_{e}\right)-T_{e} C(\phi)\right]
\end{array} \\
& +\frac{2 T_{e}}{3}\left[0.71 \nabla \cdot\left(j_{\|} \mathbf{b}_{0}\right)-\nabla \cdot\left(V_{\| e} \mathbf{b}_{0}\right)\right]+\mathcal{D}_{T_{e}}\left(T_{e}\right)+\mathcal{D}_{T_{e}} \|^{\left(T_{e}\right)}+S_{T_{e}} \\
& \text { with } \\
& \nabla_{\perp}^{2} \phi=\omega, \vec{\nabla}_{\perp}^{2} \delta \psi=\frac{4 \pi e}{c} n\left(V_{\| i}-V_{\| e}\right), \chi=V_{\| e}+\frac{m_{i}}{m_{e}} \frac{\beta}{2} \delta \psi,[A, B]=\mathbf{b} \cdot(\nabla A \times \nabla B) \\
& G_{i}=-3 \eta_{0} i\left[\frac{2}{3} \mathbf{b}_{0} \cdot \nabla V_{\| i}-\frac{1}{3} V_{\| i} \nabla \cdot \mathbf{b}_{0}+\frac{1}{B} \hat{C}(\phi)\right] \\
& G_{e}=-3 \eta_{0 e}\left[\frac{2}{3} \mathbf{b}_{0} \cdot \nabla V_{\| e}-\frac{1}{3} V_{\| e} \nabla \cdot \mathbf{b}_{0}+\frac{1}{B}\left(-\frac{1}{n} \hat{C}\left(p_{e}\right)+\hat{C}(\phi)+\frac{2}{3} n C\left(p_{e}\right)-\frac{2}{3} C(\phi)\right)\right] \\
& \mathbf{b} \cdot \nabla A=\mathbf{b}_{0} \cdot \nabla A+\frac{\beta_{e}}{2} \frac{R_{0}}{B}[\delta \psi, A], C(A) \equiv \frac{B}{2}\left(\nabla \times \frac{\mathbf{b}}{B}\right) \cdot \nabla A \\
& \text { - Circular concentric magnetic surfaces: } \\
& \vec{B}_{0}=\frac{B_{a} R_{0}}{R} \vec{e}_{\varphi}+\frac{B_{a} \epsilon}{q \sqrt{1-\epsilon^{2}}} \vec{e}_{\theta} \\
& \text { - Local magnetic shear: } \partial_{x} \rightarrow \partial_{x}+(y / a) \hat{s} \partial_{y} \\
& \text { - Limiter on the high-field side, equatorial plane } \\
& \text { - Localized density and temperature sources } \\
& \text { around } x_{0}
\end{aligned}
$$

4. Boundary conditions at the magnetic presheath

Presheath Entrance, where Inertial Drift Approximation breaks down [5]

- Gradients normal to the wall dominate
$-\rho_{e} \ll \lambda_{D e} \ll \rho_{s} \ll \lambda_{m f p} \ll L \quad \begin{aligned} & V_{\| e}=\sqrt{T_{e}} \exp \left(\Lambda-\phi / T_{e}\right) \\ & V_{\| i}=c_{S}\end{aligned}$

MPE BC allow a finite current at the limiter plates. - Inconsistent BC at the limiter for n, T_{e}, ω lead to a polluted spectrum.

- This problem is removed by using MPE BC.

[6] A. Mosestto et etal. accepted on Phys. Plasmas

7. P. Riccie etal. Rhys. Plasmas 16, 055703 (2009); P. Ricci et al.

5. Numerics

- $(x, y, z)=\left(r, a \theta_{*}, R_{0} \varphi\right)$ coordinates, parallelized in x and z
- Second order centered finite difference scheme
- Arakawa scheme for the Poisson bracket operator
- Integer q constraint \Rightarrow grid aligned $\mathbf{b}_{0} \cdot \nabla$ operator
- 4th order RK scheme for time integration
- $\phi, \delta \psi$ obtained from a linear system using one of LAPACK, Pardiso, MUMPS
- Typical resolution: $N_{x}=128, N_{y}=512, N_{z}=64, \Delta t=2 \cdot 10^{-4} R / c_{s}, \sim 2 \cdot 10^{5}$ CPUh on HELIOS

7. Nonlinear simulations

A) Saturation mechanism
-Turbulence can saturate because: (a) it removes
its drive (b) Kelvin-Helmholtz saturate its growth
Gradient-removal mechanism:
$\partial p_{e 1} / \partial r \sim \partial p_{e 0} / \partial r \rightarrow p_{e 1} \sim p_{e 0} /\left(L_{p} k_{r}\right)$
Estimating $\phi_{1} \sim \gamma L_{p} p_{e 1} /\left(k_{y} p_{e 0}\right)$ and
$k_{r} \sim \sqrt{k_{y} / L_{p}}$ the radial flux is :
$\Gamma_{r}=\left\langle p_{e 1} \frac{\partial \phi}{\partial y}\right\rangle \sim \frac{p_{e 0}}{L_{p}} \frac{\gamma}{k_{r}^{2}} \sim \frac{\gamma p_{e 0}}{k_{y}}$

- KH gives $\phi_{1} \sim \gamma /\left(k_{y} k_{r}\right), k_{r} \sim k_{y}, \Gamma_{r} \sim \frac{\gamma p_{e 0}}{L_{p} k_{y}^{2}}$
$\Gamma_{r}^{K H} / \Gamma_{r}^{G R} \sim 1 /\left(k_{y} L_{p}\right)<1$, but KH stable if
$\sqrt{k_{y} L_{p}}>3$
In steady state, balancing perpendicular transport and parallel losses

$L_{p} \sim R q \gamma /\left(k_{y} c_{s}\right)$ in GR-saturated simulations
B) Simulations with magnetic shear

Reduction of L_{p} for both positive and negative values of the shear, with respect to the shearless case with almost constant $\Gamma_{X}=>$ damping of the instability

8. Validation Methodology and application to TORPEX

- Identification of the observables to use for the validaton
- Classification of the observables into a primacy hierarchy:
the lower the level in the hierarchy, h_{j}, the more stringent the comparison. Examples: $0^{\text {th }}$ level: $l_{\text {sat }}^{\text {exp }}, n^{\text {sim; }} 1^{\text {st }}$ level: $n^{\text {exp }} \ldots$ - Definition of the agreement for each observables, R_{j}
- Global metric: $\chi=\sum_{j} R_{j} H_{j} S_{j} /\left(\sum_{j} H_{j} S_{j}\right)$, with
$H_{j}=1 /\left(1+h_{j}^{\text {exp }}+h_{j}^{\text {sim }}\right)$,
$S_{j}=\exp \left[-\left(\Delta o b s^{s i m}+\Delta o b s^{\text {exp }}\right) /\left(\left|o b s^{\text {sim }}\right|+\left|o b s s^{e x p}\right|\right)\right]$. - The methodology has been tested on the TORPEX devices, using 11 observables: $n(r), T_{e}(r), \phi(r)$, skewness (r), kurtosis(r), $\tilde{n}, I_{\text {sat }}$, fluctuations pdf, psd, k_{z}, spectrum, k^{\prime}
The results of a 2D and 3D GBS simulations have been validated [7]

9. Conclusions

- By using a progressive approach, GBS is now capable of evolving plasma turbulence in limited SOL - Self-consistent boundary conditions at the limiter plates
- Identification of the linear instability phase space, turbulence saturation mechanisms, the role of magnetic shear, and electromagnetic effects

