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1. Introduction and Motivation

� Global 3D fluid simulations of SOL plasma turbulence are
presented
using the GBS code [1]

� Interplay between the plasma outflow from the core,
perpendicular transport and parallel losses at the limiter

� No separation between equilibrium and fluctuating
quantities

2. Progressive approach using basic plasma physics devices

� GBS has been used for simulating basic plasma physics devices of increasing complexity: linear
devices (LAPD, HelCat)[2] and Simple Magnetized Toroidal plasmas (TORPEX, Helimak) [3]

LAPD HelCat Helimak TORPEX

� Unstable linear modes, saturation mechanism, biasing effects have been analyzed
� Most of the investigations have been focused on the TORPEX device (see poster EX/P6-28)
� We are now approaching the description of the tokamak SOL, by starting from a simple setup

3. Simulation Model

� Drift-reduced Braginskii equations [4] with cold ion approximation Ti = 0
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� Local magnetic shear: ∂x → ∂x + (y/a)ŝ∂y

� Limiter on the high-field side, equatorial plane
� Localized density and temperature sources
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4. Boundary conditions at the magnetic presheath

� BC at the Magnetic
Presheath Entrance, where
Inertial Drift Approximation
breaks down [5]

� Gradients normal to the wall
dominate

� ρe � λDe � ρs � λmfp � L
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� MPE BC allow a finite current
at the limiter plates.

� Inconsistent BC at the limiter
for n,Te,ω lead to a polluted
spectrum.

� This problem is removed by
using MPE BC.
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5. Numerics

� (x , y , z) = (r , aθ∗,R0ϕ) coordinates, parallelized in x and z

� Second order centered finite difference scheme
� Arakawa scheme for the Poisson bracket operator
� Integer q constraint ⇒ grid aligned b0 ·∇ operator
� 4th order RK scheme for time integration
� φ, δψ obtained from a linear system using one of LAPACK, Pardiso, MUMPS
� Typical resolution: Nx = 128,Ny = 512,Nz = 64,∆t = 2 · 10−4R/cs,∼ 2 · 105 CPUh on HELIOS

6. Linear theory

Regions of existence of the
instabilities as a function of ν,
R/Ln and β [6]:
� Resistive Ballooning
� Inertial Ballooning
� Ideal Ballooning
� Resistive Drift Wave
� Inertial Drift Wave
� region of suppression of the Drift

Wave

7. Nonlinear simulations

A) Saturation mechanism

� Turbulence can saturate because: (a) it removes
its drive (b) Kelvin-Helmholtz saturate its growth

� Gradient-removal mechanism:
∂pe1/∂r ∼ ∂pe0/∂r → pe1 ∼ pe0/(Lpkr )
Estimating φ1 ∼ γLppe1/(kype0) and
kr ∼

�
ky/Lp the radial flux is :
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� ΓKH
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r ∼ 1/(kyLp) < 1, but KH stable if�
kyLp > 3

� In steady state, balancing perpendicular transport
and parallel losses
∂Γr/∂r ∼ Γr/Lp ∼ (p0cs)/(qR), which gives
Lp ∼ Rqγ/(kycs) in GR-saturated simulations

B) Simulations with magnetic shear

ŝ = −2

� Ln = 26.19,
Lt = 42.52,
Lp = 16.21

ŝ = −1
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Lt = 51.29,
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ŝ = 0
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ŝ = 2
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Lp = 30.00

Reduction of Lp for both positive and negative values of the shear, with respect to the shearless case,
with almost constant Γx => damping of the instability

C) EM simulations
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� Transition from Resistive to
Ideal Ballooning modes

� Saturation mechanism ⇒
transport dominated by
max(γ/n)

� In EM NL simulations, a
global mode n = 1 becomes
dominant

8. Validation Methodology and application to TORPEX

� Identification of the observables to use for the validaton
� Classification of the observables into a primacy hierarchy:

the lower the level in the hierarchy, hj , the more stringent the
comparison. Examples: 0th level: I

exp

sat
, nsim; 1st level: nexp...

� Definition of the agreement for each observables, Rj

� Global metric: χ =
�

j RjHjSj/(
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Sj = exp[−(∆obssim +∆obsexp)/(|obssim| + |obsexp|)].
� The methodology has been tested on the TORPEX devices,

using 11 observables: n(r ), Te(r ), φ(r ), skewness(r ),
kurtosis(r ), ñ, Isat , fluctuations pdf, psd, kz, spectrum, kϕ

� The results of a 2D and 3D GBS simulations have been
validated [7]
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9. Conclusions

� By using a progressive approach, GBS is now capable of evolving plasma turbulence in limited SOL
� Self-consistent boundary conditions at the limiter plates
� Identification of the linear instability phase space, turbulence saturation mechanisms, the role of

magnetic shear, and electromagnetic effects
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