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Introduction

The aim of this master thesis is to study and develop a stabilized reduced basis method suitable
for the approximation of the solution of parametrized advection-diffusion PDEs with high
Péclet number, that is, roughly, the ratio between the advection coefficient and the diffusion
one.

Advection-diffusion equations are very important in many engineering applications, because
they are used to model, for example, heat transfer phenomena [27] or the diffusion of pollutants
in the atmosphere [7, 46]. In such applications, we often need very fast evaluations of the
approximated solution, depending on some input parameters. This happens, for example,
in the case of real-time simulation. Moreover, we need rapid evaluations also if we have to
perform repeated approximation of the solution, for different input parameters. An important
case of this many-query situation is represented by some optimization problems, in which the
objective function to optimize depends on the parameters through the solution of a PDE.

The reduced basis (RB) method meets our need for rapidity and it is also able to guarantee
the reliability of the solution, thanks to sharp a posteriori error bounds. We can find in
literature many works about the application of the RB method to advection-diffusion problems,
e.g. in [15, 45, 51], but they mainly deal with equations in which the Péclet number is low.
Some results about the advection dominated case (i.e. high Péclet number) can be found
in [7, 8, 44, 46], in which some stabilization techniques are used. The need for stabilization
arise from the fact that the finite element (FE) approximated solution - that the RB method
aims to recover - shows strong instability problems that have to be fixed.

In this work we want to go further in the study of the stabilization of the RB method for
advection dominated problem in both steady and unsteady case. As regards the steady case,
we first compare two possible stabilization strategies, by testing them on some test problems,
in order to design an efficient stabilized reduced basis method. We will then test this method
using the piecewise quadratic FE approximation as reference solution, instead of the usual
piecewise linear one. Finally, we extend the method designed for the steady case to the time
dependent case and we will carry out some numerical tests.

The structure of the work is the following:

Chapter 1 At first we give a brief introduction to parametrized elliptic coercive problems
and then we introduce the associated RB approximation method. We will describe in
detail this method, with a particular focus on the sampling strategies, the a posteriori
estimates and the successive constraint method for the approximation of the (parametric)
coercivity constant.

Chapter 2 After a concise overview of some classical stabilization method for the FE
approximation of advection dominated problems, we make a comparison between two
possible stabilization strategies for the RB method, by mean of some numerical tests.
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Introduction

Finally we perform some test using the piecewise quadratic FE solution as the reference
one.

Chapter 3 We introduce the general RB method for parabolic problems and then we
design a suitable stabilization technique, based on a stabilization method for the FE
approximation of advection dominated parabolic problems. We finally perform some
numerical test to assess the efficiency of the method.

The computations in this work have been performed in Matlab R© software [39] using the
MLife (finite elements) library [53] and an enhanced version (co-developed at CMCS, EPFL)
of the rbMIT c© library [24, 41]. These libraries have been extended while carrying out this
work, implementing the stabilization methods we have studied and used.

This thesis has been carried out in the framework of the Erasmus Student Placement project
with an internship of 4 months at École Polytechnique Fédérale de Lausanne, Mathematics
Institute of Computational Science and Engineering .

Pavia and Lausanne, September 2012
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Chapter 1

Reduced basis method for elliptic
coercive PDEs

The reduced basis (RB) method is a reduced order modelling (ROM) technique which provides
rapid and reliable solutions for parametrized partial differential equations (PPDEs), in which
the parameters can be either physical or geometrical.

The need to solve this kind of problems arises in many engineering applications, in which
the evaluation of some output quantities is required. These outputs are often function of the
solution of a PDE, which can in turn depend on some input parameters. The aim of the RB
method is to provide a very fast computation of this input-output evaluation and so it turns
out to be very useful especially in real-time or many-query contexts.

There are several options about the type of reduced basis to use. In this work we will focus
on Lagrange basis, but it would be possible to choose Taylor basis [42], Hermite basis [28] and
proper orthogonal decomposition (POD) basis [50]. Moreover, we will use only hierarchical
RB spaces [50].

Roughly speaking, given a value of the parameter, the (Lagrange) RB method consists in
a Galerkin projection of the continuous solution on a particular subspace of a high-fidelity
approximation space, e.g. a finite element (FE) space with a large number of degrees of
freedom. This subspace is the one spanned by some pre-computed high-fidelity solutions
(snapshots) of the continuous parametrized problem, corresponding to some suitably chosen
values of the parameter.

Let us start considering elliptic coercive PPDEs. Denoting with µ the p-vector parameter,
belonging to the parameter space D ⊂ Rp, our problem is to find u(µ) in an Hilbert space X
such that

a(u(µ), v;µ) = F (v;µ) ∀v ∈ X (1.1)

where a(·, ·;µ) and F (·;µ) are a coercive bilinear and a linear form, respectively, depending
on the parameter µ. We introduce now the hypothesis that the map D → X defined by
µ 7→ u(µ) is smooth, and so the p-dimensional manifold

M = {u(µ) ∈ X |µ ∈ D}. (1.2)

turns out to be smooth too. In order to adopt a RB approach, we have to define the underlying
high-fidelity truth approximation space. To do so, we define XN as a linear space of finite
dimension N , typically very large, in which we will define the truth approximated solution
uN (µ). In this work, we will chose as XN the classical lagrangian FE space and we will use

1



2 Chapter 1. Reduced basis method for elliptic coercive PDEs

as truth solution the (stabilized) FE one. Other possible choices of truth solution can be
found in literature, like spectral element [35] and finite volumes [19]. Acting in this way we
can consider the “truth” manifold

MN = {uN (µ) ∈ XN |µ ∈ D} (1.3)

where uN (µ) is the high-fidelity approximation of (1.1). The goal of the RB method will be
to provide a low-order approximation of the latter manifold.

The reduced basis method requires the following components [45]

1. Rapidly convergent global approximation by Galerkin projection on a N -dimensional
subspace of XN spanned by solutions of the governing PPDE corresponding to N
suitably selected values of the parameter µ. To get a significant reduction of the
computational cost, it is crucial that N � N .

2. Rigorous and sharp a posteriori error estimators for the error between the RB solution
and the “truth” one. This estimation is fundamental for both the certification of the
method and the sampling procedure used to build the reduced basis. Moreover we need
to require that the computation of these error bounds is inexpensive.

3. Decoupling of the computation in two stages: an expensive Offline stage, to be performed
only once, and a very inexpensive Online one, in which is actually performed the input-
output evaluation.

Intuitively, we can figure the approximation of the truth manifold by mean of the Lagrangian
RB method as sketched in figure 1.1. The black line is the truth manifold in the N -dimensional
space XN . The black dots represent the snapshot solutions, which act like Lagrangian
interpolation nodes. Finally, the red dashed “interpolant” is our RB approximation, that is
built by linear combination of snapshot solutions.

uN (µ1)

uN (µN)

XN

MN

Figure 1.1: Intuitive representation of the truth manifold (1.3) (black line) and its RB approximation (red
dashed line)

1.1 Elliptic coercive parametrized PDEs

Let µ belong to the parameter domain D, a subset of RP . Let Ω be a regular bounded
open subset of Rd (d = 1, 2, 3) and X a suitable Hilbert space. Given a parameter value



1.1 Elliptic coercive parametrized PDEs 3

µ ∈ D, let a(·, ·;µ) : X × X → R be a bilinear form and let F (·;µ) : V → R be a linear
functional. As we will consider only second order elliptic PDE, the space X will be such that
H1

0 (Ω) ⊂ X ⊂ H1(Ω). Formally, our problem can be written as follows:

find u(µ) ∈ X s.t.
a(u(µ), v;µ) = F (v;µ) ∀v ∈ X. (1.4)

Let us now define the norms and the inner products we will use. Let asym be the symmetric
part of a. We define:

((v, w))µ := asym(v, w;µ) ∀v, w ∈ X
|||v|||µ := asym(v, v;µ)

1
2 ∀v ∈ X.

(1.5)

The latter forms are of course µ-dependent, but for our purposes we will need norms and
inner products that do not depend on the parameter. Thus we choose a particular value of
the parameter µ ∈ D and we define:

(v, w)X := ((v, w))µ + τ (v, v)L2(Ω) ∀v, w ∈ X
‖v‖X := ((v, v)X)

1
2 ∀v ∈ X

(1.6)

with τ > 0. We will further discuss about the choice of τ and µ.
The coercivity and continuity assumption on the form a can now be expressed by, respec-

tively:

∃α0 > 0 s.t. α0 ≤ α(µ) = inf
v∈X

a(v, v;µ)

‖v‖2X
∀µ ∈ D (1.7)

and
+∞ > γ(µ) = sup

v∈X
sup
w∈X

|a(v, w;µ)|
‖v‖X‖w‖X

∀µ ∈ D. (1.8)

We shall make now an important assumption: the affine dependency of a on the parameter
µ. With affine, we mean that the form can be written in the following way:

a(v, w;µ) =

Qa∑
q=1

Θq
a(µ)aq(v, w) ∀µ ∈ D. (1.9)

Here, Θq
a : D → R, q = 1, . . . , Qa, are smooth functions, while aq : X ×X → R, q = 1, . . . , Qa,

are µ-independent continuous bilinear forms. This assumption will turn out to be crucial for
performing the Offline-Online decoupling of the computation. At last we assume that also the
functional F depends “affinely” on the parameter:

F (v;µ) =

QF∑
q=1

Θq
F (µ)F q(v) ∀µ ∈ D, (1.10)

where, also in this case, Θq
F : D → R, q = 1, . . . , QF , are smooth functions, while F q : X → R,

q = 1, . . . , Qa, are continuous linear functionals.
Recalling that XN is a conforming finite element space1 with N degrees of freedom, we

can now set the truth approximation of the problem (1.4):

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XN .
(1.11)

1Conforming finite element space means that XN ⊂ X.
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As we are considering the conforming FE case, conditions similar to (1.7) and (1.8) are fulfilled
by restriction. More precisely, as regards the coercivity of the restriction of a to XN ×XN ,
we define:

αN (µ) := inf
vN∈XN

a(vN , vN ;µ)

‖v‖2X
∀µ ∈ D (1.12)

and, as we are considering a restriction, it easily follows that:

α(µ) ≤ αN (µ) ∀µ ∈ D. (1.13)

Similarly, for the continuity, we can define

γN (µ) := sup
vN∈XN

sup
wN∈XN

|a(vN , wN ;µ)|
‖vN ‖X‖wN ‖X

∀µ ∈ D. (1.14)

and it holds that:
γN (µ) ≤ γ(µ) ∀µ ∈ D. (1.15)

In this work we will consider as truth approximation space XN a classical finite element
space [43].

1.1.1 Geometrical parametrization

An important feature of the the RB method is that it can be used even when the parameter is
“geometrical”, i.e. the domain of the equation depends on some parameters [26,34,36,37,38].

As we will see in the next section, to apply the reduced basis method we need a problem
like (1.4), in which the forms involved have to be defined on a parameter independent space.
To overcome this difficulty, the idea is to assume that the original parametrized domain is the
image of a reference parameter-independent domain through a suitable transformation. By
doing so, the parametric dependence actually moves from the domain to the coefficients of
the equation.

Let us now call original problem (subscript o) the one defined on the original domain
Ωo(µ). It reads as follows:

find uo(µ) ∈ Xo(µ) s.t.
ao(uo(µ), vo;µ) = Fo(vo;µ) ∀vo ∈ Xo(µ)

(1.16)

where Xo(µ) is a functional space on Ωo(µ), satisfying the condition H1
0 (Ωo(µ)) ⊂ Xo(µ) ⊂

H1(Ωo(µ)). Moreover ao(·, ·;µ) and Fo(·;µ) are a bilinear and a linear form, respectively, on
Xo(µ). We assume that the bilinear form ao satisfies conditions (1.7) and (1.8).

To set the reference domain we choose a particular value of the parameter, µref ∈ D, and
define Ω = Ωo(µref ) as the reference domain. The latter is related to the original domains
through a parametric transformation T (·;µ) such that T (Ω;µ) = Ωo(µ).

We will now focus only on a particular classes of transformations and problems, as it is
done in [45, 50]. First of all, for all µ ∈ D we introduce a domain decomposition of Ωo(µ)
such that:

Ωo(µ) =

Ldom⋃
l=1

Ωl
o(µ) (1.17)

where the subdomains Ωl
o(µ), l = 1, . . . , Ldom are mutually non overlapping open subsets of

Ωo(µ), that is:
Ωl
o(µ) ∩ Ωl′

o (µ) = ∅ 1 ≤ l < l′ ≤ Ldom. (1.18)
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The need for domain decomposition can arise from modelling reasons, for instance it could
happen that the PDE describes a particular application so that different regions of the domain
correspond to different materials properties. This can lead to a PDE in which the coefficients
show significant discontinuities or the PDE itself can have different form depending on the
subdomain. However, a domain decomposition can be set to allow the construction of maps
T which guarantees that the forms involved depend “affinely” on the parameter. We will now
focus on this second aspect by introducing the piecewise affine transformations.

In order to define the global mapping from the reference domain to the original one, we start
by defining the maps between subdomains. For each µ ∈ D we define T l(·;µ) : Ωl → Ωl

o(µ),
l = 1, . . . , Ldom, such that:

T l(Ωl;µ) = Ωl
o(µ) 1 ≤ l ≤ Ldom,

T l(x;µ) = T l
′
(x;µ) ∀x ∈ Ωl ∩ Ωl′ , 1 ≤ l < l′ ≤ Ldom.

(1.19)

We can now define the global mapping T (·;µ) : Ω→ Ωo(µ) by gluing together the local maps
T l, that is:

T (x;µ) := T l(x;µ) ∀x ∈ Ωl ∩ Ω. (1.20)

We assume also that:

i) the maps T l, l = 1, . . . , Ldom, are individually bijective and affine;
ii) the map T is continuous.

Each local map T l can be described by

T li (x,µ) = Cl
i(µ) +

d∑
j=1

Gl
ij(µ)xj x ∈ Ωl, 1 ≤ i ≤ d (1.21)

where Cl : D → Rd and Gl : D → Rd×d are smooth maps which associate to each value of the
parameter a vector in Rd and an invertible d× d matrix, respectively. Roughly speaking, the
matrix Gl(µ) scales and rotates the reference domain, whereas Cl

i(µ) is a translation vector.
For each µ ∈ D, we denote with J l(µ) the determinant of the matrix Gl(µ). From now on
we consider d = 2.

1.1.2 Advection-diffusion-reaction operators

After having introduced the geometry transformations, we have now to discuss the choice of
the operators. An important class that can be effectively treated within an “affine” framework
is the one of advection-diffusion-reaction operators:

Lv = ∇ · (ν(µ)∇v) + β(µ) · ∇v + γ(µ)v (1.22)

being ν(µ) the 2× 2 diffusivity tensor, β(µ) the advection field in R2 and γ(µ) the reaction
coefficient. The bilinear form defined on the original domain associated to (1.22) is, for each
vo, wo ∈ Xo(µ)

a0(vo, wo;µ) =

Ldom∑
l=1

∫
Ωlo(µ)

(
∂vo
∂xo 1

∂vo
∂xo 2

vo
)
Ko,l(µ)


∂wo
∂xo 1

∂wo
∂xo 2

wo

 (1.23)
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where Ko,l : D → R3×3, l = 1, . . . , Ldom, is a smooth mapping such that, for every µ ∈ D, the
matrix Ko,l(µ) has the form:

Ko,l(µ) =

(
ν(µ) β(µ)

0 γ(µ)

)
. (1.24)

We want to point out that (1.23) satisfies the affinity assumption (1.9), but it is defined
on a parameter dependent space. Our goal is now to obtain a formulation of the problem in
which all the forms are defined on the reference domain.

Denoting with X the space Xo(µref ), given a value µ ∈ D, for each vo ∈ Xo(µ) we can
define v ∈ X as v = vo◦T (·,µ) (note that we have actually defined a one-to-one correspondence
between X and Xo(µ)). We can now track back the integrals in (1.23) obtaining:

a(v, w;µ) :=

Ldom∑
l=1

∫
Ωl

(
∂v
∂x1

∂v
∂x2

v
)
Kl(µ)


∂w
∂x1

∂w
∂x2

w

 (1.25)

with v and w belonging to X. In (1.25) Kl(µ), l = 1, . . . , Ldom, represents the transformed
operator. The latter can be explicitly written in this way:

Kl(µ) = J l(µ)G̃l(µ)Ko,l(µ)(G̃l(µ))T (1.26)

where

G̃l(µ) =

(
(Gl(µ))−1 0

0 1

)
. (1.27)

Similarly we can require that the linear form fo(·;µ) : Xo(µ) → R in (1.16) is, for all
v ∈ Xo(µ):

Fo(vo;µ) =

Ldom∑
l=1

∫
Ωlo(µ)

Fo,l(µ) vo. (1.28)

Here Fo,l, l = 1, . . . , Ldom, is a function D → R.
Acting exactly as before, we can obtain a linear form defined on the reference space X.

This form turns out to be, for v ∈ X:

F (v;µ) =

Ldom∑
l=1

∫
Ωl(µ)

Fl(µ) v (1.29)

where, for l = 1, . . . , Ldom, the parametric coefficient Fl(µ) is

Fl(µ) = J l(µ)Fo,l(µ). (1.30)

It is important to note that after this discussion we have actually managed to rewrite
the problem (1.16) in the form of (1.4), from which we can obtain the truth approximation
formulation like in (1.11).

For further details about the construction of the domain decomposition performed, for
example, by the rbMIT c© software we refer to [50]. For more complex classes of geometries,
which involve non-affine mappings, we need to resort to some interpolation technique (e.g.
empirical interpolation method) in order to recover the “affinity” assumption [1, 10,16,34].
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1.2 The Reduced Basis method

As already mentioned before, the RB method aims to approximate the truth solution uN (µ)
of (1.11) by performing a Galerkin projection on a low-dimensional subspace of XN spanned
by solutions of (1.11), that we will call snapshot solutions, computed for a well-chosen set of
parameter values. In this section we will at first explain the main features of the RB method
and then we will illustrate the method used to choose the snapshots, highlighting in particular
the a posteriori error estimates used.

1.2.1 Main features

Let us suppose that we are given a problem in the form (1.4) and its truth approximation
(1.11). We recall that the dimension of the finite element space XN is N . We introduce now,
given an integer Nmax � N , a sequence of subspaces of XN . For N = 1, . . . , Nmax, let XNN
be a N -dimensional hierarchical subspace of XN such that:

XN1 ⊂ XN2 ⊂ · · · ⊂ XNN ⊂ · · · ⊂ XNNmax . (1.31)

We will call these subspaces “RB spaces”. Theoretically, the hierarchical choice of the subspaces
would not be necessary. Nevertheless, it turns out to be very useful because it allows a better
exploitation of the memory during the computation and, as a consequence, this improves the
efficiency of the method.

As mentioned at the beginning of this chapter, we focus on Lagrange RB spaces. In order
to define them, we need to introduce a set of Nmax parameter values:

S = {µ1, . . . ,µNmax} (1.32)

and so we can define for N = 1, . . . , Nmax:

XNN = span{uN (µn) | 1 ≤ n ≤ N}. (1.33)

The idea behind this definition is to interpolate the truth manifold (1.3) in correspondence of
the parameter values belonging to S.

We observe that, by definition, the spaces defined in (1.33) satisfy the hierarchical prop-
erty (1.31).

Before going ahead, we want to discuss a little about non-hierarchical RB spaces. A
possible choice of such approximation spaces, in the case P = 1, can be [50]:

XNN = span{uN (µnN ) | 1 ≤ n ≤ N} (1.34)

where, if we assume that D = [µmin, µmax] and µmin > 0,

µnN = µmin exp

{
n− 1

N − 1
ln

(
µmax

µmin

)}
, 1 ≤ n ≤ N, 2 ≤ N ≤ Nmax. (1.35)

As we can see from the definition of the µnN , for each value of N we need to recompute all
the N snapshot solutions uN (µnN ). Although affected by this practical problem, the spaces
(1.34) still have good approximation properties. Indeed, it has been proved (for a particular
case) that the ratio between the approximation error (i.e. the energy norm of the difference
between the truth solution and the RB one) and the energy norm of the truth solution does
not depend on N and it exponentially decays as N →∞ [41].
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Galerkin projection

Given a value µ ∈ D of the parameter and a dimension N , 1 ≤ N ≤ Nmax , of the RB space,
we define the RB solution uNN (µ) such that:

a(uNN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XNN . (1.36)

Recalling that N � N , we emphasize the fact that to find the RB solution we need just
to solve a N ×N linear system, instead of the N ×N one of the FE method.

If the bilinear form a is symmetric, is straightforward to prove (via Galerkin orthogonality)
the following best “fit” approximation result:

|||uN (µ)− uNN (µ)|||µ ≤ inf
wN∈XN

N

|||uN (µ)− wN |||µ. (1.37)

Similar estimates can be obtained in the case in which the bilinear form is not symmetric, the
main difference is a µ-dependent constant which multiplies the right-hand side [7, 8].

In order to discuss the Offline-Online computational decoupling, we write explicitly the
linear system associated to (1.36). First of all we apply the Gram-Schmidt process [47] with,
respect to the inner product (·, ·)X defined in (1.6), to the snapshots u(µn), n = 1, . . . , Nmax,
spanning the RB spaces. We denote with ζNn , n = 1, . . . , Nmax, the mutually orthonormal
functions obtained. The RB solution can be now expressed by

uNN (µ) =

N∑
m=1

uNN m(µ)ζNm (1.38)

then, choosing ζNn as v in (1.36), we obtain

N∑
m=1

a(ζNm , ζ
N
n ;µ)uNN m(µ) = F (ζNn ;µ) (1.39)

ant this can be done for n = 1, . . . , N , thus obtaining a N ×N linear system [45].

Offline-Online computational decoupling

Given the system (1.39), we can now resort to the affine assumptions (1.9) and (1.10) to
construct an efficient Offline-Online procedure. The system (1.39) could be rewritten

N∑
m=1

 Qa∑
q=1

Θq
a(µ)aq(ζNm , ζ

N
n )

uNN m(µ) =

QF∑
q′=1

Θq′

F (µ)f q
′
(ζNn ) (1.40)

for n = 1, . . . , N . The system we have obtained can be expressed in matrix form Qa∑
q=1

Θq
a(µ)Aq

N

uN (µ) =

QF∑
q′=1

Θq′

F (µ)Fq
′

N (1.41)

where
(uN (µ))m = uNN m(µ),

(
Aq
N

)
nm

= aq(ζNm , ζ
N
n ),

(
FqN
)
n

= f q
′
(ζNn ) (1.42)

for m,n = 1, . . . , N .
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In order to compute the matrices Aq
N and Fq

′

N we can recall that ζNn belongs to XN for
n = 1, . . . , N and so it holds that:

ζNn =
N∑
i=1

ζNn i ϕi 1 ≤ i ≤ N, (1.43)

being {ϕ}Ni=1 the base of the FE space XN . Denoting with Z the N × N matrix whose
columns are the coordinates of ζN1 , . . . , ζNN with respect to {ϕ}Ni=1. Then we have that

Aq
N = ZTAq

NZ 1 ≤ q ≤ Qa
Fq

′

N = ZTFq
′

N 1 ≤ q′ ≤ QF
(1.44)

where
(Aq
N )ij = aq(ϕj , ϕi), (Fq

′

N )i = F (ϕi). (1.45)

It is crucial to note that in (1.41) the matrices Aq
N and Fq

′

N do not depend on the parameter.
So, a good computational strategy is to compute and store them once for all. The computation
and storage of the µ-independent structures is called “Offline” stage. More precisely in this
stage we compute and store:

• FE stiffness matrices Aq
N , for q = 1, . . . , N , and FE right-hand side terms Fq

′

N , for
q′ = 1, . . . , N ;
• snapshot solutions and the corresponding orthonormal basis {ζNn }Nmaxn=1 ;
• RB stiffness matrices Aq

N , for q = 1, . . . , N , and RB right-hand side terms Fq
′

N , for
q′ = 1, . . . , N .

We recall that our aim is to obtain, given a new value µ ∈ D, a fast and reliable
approximation of uN (µ). To do this, we need to evaluate the coefficients Θq

a(µ) and Θq
F (µ)

in order to assemble the N ×N system in (1.41). Once this system has been solved, the RB
solution is obtained trough the relation (1.38). The operations done to perform the evaluation
µ 7→ uNN (µ) constitute the “Online” stage.

Let us now analyse the computational cost of the Online stage. First of all we have to
consider a cost of O(QaN

2) + O(QFN) to get the matrix and the right-hand side of the
system (1.41), then we need O(N3) operations to solve it [45, 47]. At last we have to do
O(N) operations to perform the product in (1.38) to obtain the solution. As regards the
memory used, during the Online stage the storage cost is O(QaN

2
max) +O(QFNmax), thanks

to the hierarchical space assumption (1.31). The latter assumption allow us to store the RB
system matrices related to the RB space XNNmax so, if we want to use RB spaces of dimension
N ≤ Nmax. we need just to take the principal submatrices (or subvectors) of the already
stored ones.

The most important thing to note is that the Online stage cost is completely independent
from N .

1.2.2 Sampling strategies

We are now going to discuss about the greedy procedure [45,50] used to explore the parameter
space and to construct the RB space. Let us define the train samples set Ξtrain as a finite
subset of D, with cardinality |Ξtrain| = ntrain. We need that ntrain is large enough to ensure
that Ξtrain is a good “approximation” of the parameter space D. This means that the results
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of the greedy are almost insensitive to further refinement of the parameter sample [50]. The
choice of the train samples is done by using Monte Carlo methods with respect to a uniform
or a log-uniform density.

In order to perform a greedy procedure, we need a sharp and computationally inexpensive
a posteriori error estimator µ 7→ ∆N (µ), that is

|||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ) ∀µ ∈ D, 1 ≤ N ≤ Nmax (1.46)

that we will define and discuss in section 1.2.3. The basic idea of the algorithm is, at each
step:

1. find the value µ̃ ∈ Ξtrain for which the estimator ∆N is maximized;

2. add to the Lagrangian basis the solution uN (µ̃), to be computed.

By acting in this way, in the (N + 1)-th iteration, we are adding to the N already chosen basis
the solution that is worst approximated by Galerkin projection onto XNN . The algorithm stops
when the maximum estimated error is less then a prescribed tolerance ε∗tol. We introduce
also a secondary stopping criterion by setting Nmax as the maximum number of basis we are
willing to accept. If the tolerance has been obtained with a number of basis Ñ less than Nmax

we set Nmax = Ñ . The algorithm can be implemented as follows:

Algorithm 1 Greedy
S1 = {µ1}; compute uN (µ1);
X1 = span{uN (µ1)};
for N = 2 : Nmax do
µN = argmaxµ∈Ξtrain ∆N−1(µ);
εn−1 = ∆N−1(µN );
if εn−1 ≤ ε∗tol then
Nmax = N − 1;

end if
compute uN (µN );
SN = SN−1 ∪ {µN};
XNN = XNN−1 ⊕ span{uN (µN )};

end for.

Several options have been recently proposed to improve the sampling strategy [11, 13] For
further details about the convergence rates of this algorithm, we refer to [2].

1.2.3 A posteriori error estimates

One of the most important features of the reduced basis method is the a posteriori error
estimation. As we have seen in section 1.2.2, the estimators ∆N , N = 1 . . . , Nmax, play a
crucial role in the construction of the RB space. For our purposes, a good a posteriori error
estimator have to fulfil the following characteristics:

• It has to be rigorous, in the sense that the inequality

|||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ)

must hold for all µ ∈ D. This is a fundamental requirement to ensure reliability to the
RB method.
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• It has to be sharp. An overly conservative error bound can cause inefficient approximation
spaces, that is with a dimension N unnecessarily high.
• It has to be computationally efficient. The computation of the error bound must be
very inexpensive both to speed up the Offline stage (i.e. greedy algorithm) and to allow
its use in the Online stage. The computational cost should be independent of N .

Before defining the error estimator we will use, we need some preliminaries [45]. First of
all we observe that the error e(µ) := uN (µ)− uNN (µ), that belongs to XN , satisfies

a(e(µ), vN ;µ) = r(vN ;µ), ∀v ∈ XN , (1.47)

where r(·;µ) ∈ (XN )′ is the RB residual

r(vN ;µ) = F (vN ;µ)− a(uNN (µ), vN ;µ), ∀vN ∈ XN . (1.48)

As r(·;µ) is a continuous linear functional defined onXN , we can apply the Riesz representation
theorem and get ê(µ) ∈ XN such that:

r(vN ;µ) = (ê(µ), vN )X ∀vN ∈ XN , (1.49)

and

‖r(vN ;µ)‖(XN )′ = sup
vN∈XN

|r(vN ;µ)|
‖vN ‖X

= ‖ê(µ)‖X . (1.50)

Now we introduce a lower bound αNLB : D → R for the coercivity constant (1.12) such that:

0 < αNLB(µ) ≤ αNµ, ∀µ ∈ D,
the computational cost to evaluate µ 7→ αLB(µ) is independent of N .

(1.51)

To get this lower bound we can resort to the Successive Constraints Method (SCM) [25,50]
that we will discuss in section 1.2.4.

Now we are ready to give the definition of our a posteriori error estimator. Let us then
define the estimator for the energy norm of the error:

∆N (µ) :=
‖ê(µ)‖X

(αNLB(µ))
1
2

. (1.52)

We next introduce the effectivity associated to the estimator:

ηN (µ) :=
∆N (µ)

|||uN (µ)− uNN (µ)|||µ
∀µ ∈ D. (1.53)

We can prove the following result [50]:

Proposition 1.2.1. For any N = 1, . . . , Nmax and for any µ ∈ D the effectivity satisfies

1 ≤ ηN (µ) ≤
√

γ(µ)

αNLB(µ)
(1.54)
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The left inequality means that the error bound is rigorous, while the right one is related
to the sharpness of the estimate. Note that the upper bound on the effectivity in (1.54) is
independent of N and hence stable with respect to RB “refinement”. As the method we are
using to construct the coercivity lower bound αNLB is designed in such a way that

αN (µ)

αNLB(µ)
≤ C ∀µ ∈ D, (1.55)

where C is a constant, recalling (1.13) we can observe that:

ηN (µ) ≤
√

γ(µ)

αNLB(µ)
≤
√

αN (µ)

αNLB(µ)

γ(µ)

α(µ)
≤
√
C
γ(µ)

α(µ)
(1.56)

which means that the upper bound for the sensitivity does not depend on the finite element
approximation.

Computation of the dual norm of the residual

In order to compute the error bound, we want to show how the dual norm of the residual, that
is ‖ê(µ)‖X , can be computed. The goal will be to build a procedure with a computational
cost independent of N , by exploiting the affine assumptions (1.9) and (1.10).

First of all let us expand the residual. Given vN ∈ XN , we have:

r(vN ;µ) = F (vN ;µ)− a(uNN (µ), vN ;µ)

=

QF∑
q=1

Θq
F (µ)F q(vN )−

Qa∑
q=1

Θq
a(µ)aq

(
N∑
m=1

uNN m(µ)ζNm , v
N

)

=

QF∑
q=1

Θq
F (µ)F q(vN )−

N∑
m=1

uNN m(µ)

Qa∑
q=1

Θq
a(µ)aq(ζNm , v

N ).

(1.57)

Recalling (1.49), we have:

ê(µ) =

QF∑
q=1

Θq
F (µ)Fq +

N∑
m=1

uNN m(µ)

Qa∑
q=1

Θq
a(µ)Lqm (1.58)

where Fq and Lqm are such that:

(Fq, vN )X = F q(vN ) ∀ vN ∈ XN , 1 ≤ q ≤ QF ,
(Lqm, vN )X = −aq(ζNm , vN ) ∀ vN ∈ XN , 1 ≤ q ≤ Qa, 1 ≤ m ≤ N. (1.59)

From this expression of the error, we easily obtain that:

‖ê(µ)‖2X =

QF∑
q=1

QF∑
q′=1

Θq
F (µ)Θq′

F (µ)(Fq,Fq′)X +

Qa∑
q=1

N∑
m=1

Θq
a(µ)uNN m(µ)

{

2

QF∑
q′=1

Θq′

F (µ)(Fq′ ,Lq)X +

Qa∑
q′=1

N∑
m′=1

Θq
a(µ)uNN m′(µ)(Lqm,Lq

′

m′)X

}
.

(1.60)

It is now possible to see that we can compute and store the parameter independent
quantities once for all. These quantities are:
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• the FE “pseudo-solutions” Fq, and Lqm;

• the scalar products (Fq,Fq′)X , (Fq′ ,Lq)X and (Lqm,Lq
′

m′)X .

The cost of their computation depends on Qa, QF , N and Nmax.
Once we have the latter quantities, we can evaluate µ 7→ ‖ê(µ)‖2X at a very low com-

putational cost. Given a new value µ ∈ D we need just to evaluate the Θ functions and
then perform the weighted sum of the already stored quantities. The operation count is
O(N2Q2

a +NQaQF +Q2
F ) and it does not depend on N .

1.2.4 Lower bound for the coercivity constant

As we mentioned in section 1.2.3 when we defined the a posteriori error estimator, we have
now to introduce the Successive Constraint Method (SCM) [25] for the evaluation of the
coercivity lower bound αNLB.

First of all, we note that the computation of the discrete coercivity constant (1.12) is
actually a generalized minimum eigenvalue problem. Denoting with {ϕi}Ni=1 a lagrangian FE
base for XN , we can define the mass matrix M corresponding to the scalar product (1.6)
such that:

Mij = (ϕi, ϕj)X 1 ≤ i ≤ j ≤ N . (1.61)

We can also define, for q = 1, . . . ,N , the µ-dependent symmetric matrix B(µ) associated to
the symmetric part of the bilinear form a:

(B(µ))ij = asym(ϕi, ϕj) 1 ≤ i ≤ j ≤ N . (1.62)

Denoting with v the coordinate vector of vN ∈ XN with respect to the given base, we have
that:

a(vN , vN ;µ)

‖vN ‖2X
=
asym(vN , vN ;µ)

‖vN ‖2X
=

vTB(µ)v

vTMv
(1.63)

and then the problem

given µ ∈ XN , compute

αN (µ) = inf
vN∈XN

a(vN , vN ;µ)

‖vN ‖2X
(1.64)

is equivalent to find the minimum generalized eigenvalue of the following generalized eigenvalue
problem:

B(µ)v = λMv. (1.65)

that can be treated by the Lanczos method [9]. To improve the efficiency, we define the norm
(1.6) by setting

τ = inf
vN∈XN

a(vN , vN ;µ)

‖vN ‖2X
(1.66)

as done in [50].
Before introducing the SCM, let us call asym,q the symmetric part of the form aq defined

in (1.9).
We define now an objective functional J obj : D × RQa → R as

Jobj(µ; y) =

Qa∑
i=1

Θq
a(µ) yq, (1.67)
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where y = (y1, . . . , yQa). An equivalent formulation of the problem (1.64) can be:

given µ ∈ XN , compute

αN (µ) = inf
y∈Y

Jobj(µ; y)
(1.68)

where

Y =

{
y ∈ Rq|∃wNy ∈ XN s.t. yq =

asym,q(wNy , w
N
y )

‖wNy ‖X
, 1 ≤ q ≤ Qa

}
. (1.69)

We then define the “bounding box”

B =

Qa∏
q=1

[
inf

vN∈XN

asym,q(vN , vN )

‖vN ‖2X
, sup
vN∈XN

asym,q(vN , vN )

‖vN ‖2X

]
; (1.70)

from the continuity hypothesis, B is bounded. At last we define the coercivity constraint
sample

CJ = {µ1
SCM , . . . ,µ

J
SCM}, (1.71)

where µiSCM ∈ D for i = 1, . . . , J , and we denote with CM,µ
J the set of M ≥ 1 points in

CJ closest to µ ∈ D, with respect to the usual Euclidean norm in Rp. If M > J , we set
CM,µ
J = CJ .
Now, given µ ∈ D we define the “lower bound” set YLB(µ;CJ ,M) ⊂ Rq as

YLB(µ;CJ ,M) =

y ∈ Rq|y ∈ B;

Qa∑
q=1

Θq
a(µ

′)yq ≥ αN (µ′) ∀µ′ ∈ CM,µ
J

 . (1.72)

We have the following lemma [50]

Lemma 1.2.2. Given CM,µ
J ⊂ D and M ∈ N

Y ⊂ YLB(µ;CJ ,M) ∀µ ∈ D. (1.73)

Once we have this lemma, we can define our lower bound

αNLB(µ;CJ ,M) = min
y∈YLB(µ;CJ ,M)

J obj(µ; y) (1.74)

and we easily obtain [50] that

Proposition 1.2.3. Given CM,µ
J ⊂ D and M ∈ N

αNLB(µ) ≤ αN (µ) ∀µ ∈ D. (1.75)

It is important to note that the (1.74) is a Linear Program (LP) problem, with Qa design
variables and 2Qa +M (one-sided) inequality constraints. It is fundamental to observe that
the computational cost for evaluate µ 7→ αNLB(µ), given B and the set {αN (µ′)|µ′ ∈ CJ}
is independent of N . This observation, together with Proposition 1.2.3, shows that our
requirements (1.51) are fulfilled.
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In order to perform a “greedy” construction of the coercivity constraint samples, we
introduce an upper bound for the coercivity constant. We define the set

YUB(µ;CJ ,M) =
{
y∗(µ′) |µ′ ∈ CM,µ

J

}
(1.76)

where
y∗(µ′) = argmin

y∈Y
J obj(µ; y). (1.77)

In case of non-uniqueness, any minimizer suffices.
We define our upper bound in the following way:

αNUB(µ;CJ ,M) = min
y∈YUB(µ;CJ ,M)

J obj(µ; y). (1.78)

As by construction YUB(µ;CJ ,M) ⊂ Y, for given CJ ⊂ D and M ∈ N, it holds that:

αNUB(µ;CJ ,M) ≥ αN (µ) (1.79)

for any µ ∈ D.

Greedy selection of the coercivity constraint samples

We illustrate now a greedy algorithm [25, 50] for the construction of the set CJ . Similarly
to how we did in section 1.2.2, we define a finite “train” sample ΞSCMtrain ⊂ D, such that
|ΞSCMtrain | = nSCMtrain . We also set a tolerance εSCM ∈ (0, 1).

The algorithm is the following:

Algorithm 2 SCM
J = 1;
C1 = {µ1

SCM};
while maxµ∈ΞSCMtrain

[
αN
UB(µ;CJ ,M)−αN

LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]
> εSCM do

µJ+1
SCM = argmaxµ∈ΞSCMtrain

[
αN
UB(µ;CJ ,M)−αN

LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]
;

CJ+1 = CJ ∪ µJ+1
SCM ;

J = J + 1;
end while
Jmax = J .

Let us observe that our construction of the lower bound guarantees the condition (1.55).
We can indeed see that:

αN (µ)

αNLB(µ;CJ ,M)
=

αN (µ)

αNUB(µ;CJ ,M)− (αNUB(µ;CJ ,M)− αNLB(µ;CJ ,M)

≤ αN (µ)

αNUB(µ;CJ ,M)

1

1− εSCM
≤ 1

1− εSCM
∀µ ∈ Ξtrain,SCM

(1.80)

Note that, by requiring εSCM ∈ (0, 1), we guarantee that αNLB(µ;CJ ,M) is positive. In
our computations we chose a tolerance εSCM = 0.85.

Once we have set M ∈ N and we have performed the greedy selection of the set CJmax , for
all µ ∈ D we can denote the lower bound with αNLB(µ), as we actually did in section 1.2.3.
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Computational cost

During the Offline stage the following computations are performed:

i) 2Qa eigenproblems over XN to build the “continuity constraint” box B. Cost: O(2QaN ).
ii) Jmax eigenproblems over XN to form the set {αN (µ)|µ′ ∈ CJmax}. Cost: O(JmaxN ).
iii) JmaxQa inner products over XN to compute

{
y∗(µ′) |µ′ ∈ CM,µ

J

}
. Cost: O(JmaxQaN ).

iv) nSCMtrain Jmax lower bound LP’s of size 2Qa + M and the associated enumerations to
compute the upper bounds. Cost: O(nSCMtrain JmaxQaM).

Note that the global Offline computational cost does not depend on the product nSCMtrainN ,
so we can choose large train sets and truth approximation spaces with high dimension N
without worsening too much the computational efficiency.

In the online stage, for each evaluation µ 7→ αLB(µ) we have to:

i) perform a sort of the Jmax point of CJ in order to build CM,µ
J ;

ii) evaluate the Θ functions;
iii) solve the resulting LP to obtain the lower bound.

As usual in our Online procedures, the computational cost is independent of N .
Finally, we want to say that the SCM can be efficiently applied also to compute the inf-sup

lower bound for non-coercive problems [45, 52]. Moreover, several improvements for the SCM
have been recently proposed [6, 23,33].



Chapter 2

Stabilized reduced basis method for
advection dominated PDEs

In this chapter we will study the performance of the RB method in the approximation of
advection diffusion equations, especially when the advection effects are much stronger than
the diffusive ones (advection dominated problems). Since such problems give rise to numerical
instability, we will need to resort to some classical stabilization methods [48].

As the advection-diffusion equations are often used to model heat transfer phenomena, we
can find in literature many results about the RB approximation of heat transfer problem such
as Graetz problem or “thermal fin” problem [15,45,49,51]. However, the latter works consider
only the case in which the Péclet number - that is, roughly speaking, the ratio between the
advection coefficient and the diffusion one - is low, in a sense that we will specify in section 2.1.

The stabilization methods have been used in the RB framework in some works about
the approximation of steady advection reaction equations and steady control problems
[7, 8, 44, 46]. In these papers we can also find some applications to environmental science
problems concerning, in particular, air pollution.

In our work we want to go further in the study of the stabilized RB method for advection
diffusion problems. After a brief introduction of some stabilization method (section 2.1), we
want to observe and analyse what happens when we “stabilize” only the Offline stage of the
RB method, thus producing “stable” basis function to be interpolated in the Online stage by
projecting with respect to the non-stabilized advection diffusion operator. We will see that
the latter strategy is not satisfactory, but we will also see that if we “stabilize” both stages we
can obtain very good RB approximations. In the last section of this chapter (section 2.3) we
will apply the stabilized RB method - with both stages stabilized - using a piecewise quadratic
polynomial truth approximation space.

2.1 Stabilization methods

In this chapter we will illustrate some stabilization methods for advection-diffusion equations.
We will focus in particular on equations of the form

−ε∆u+ β · ∇u = f in Ω ⊂ R2 (2.1)

This is a particular case of the general problem Lu = f , when L is the diffusion-advection-
reaction operator defined in (1.22). When the advective β · ∇u term dominates the diffusive
term −ε∆u, that is when |β| � ε, the classical FE approach can be very unsatisfactory,

17
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because the approximated solution can show strong instability phenomena, especially along
the direction of the advection field. In the next sections we will illustrate and analyse some
stabilization method, able to fix this lack of stability.

2.1.1 Advection dominated problems

Let us make precise assumption on our setting. As mentioned before, we will focus on
equations like (2.1) where:

• the diffusion coefficient ε : Ω→ R belongs to L∞(Ω) and it exists ε0 > 0 such that

ε(x) ≥ ε0 ∀x ∈ Ω; (2.2)

• the advection field β : Ω→ R2 belongs to (L∞(Ω))2;
• f : Ω→ R2 is an L2(Ω) function.

In order to guarantee the well-posedness of our problem, we suppose also that the following
inequality holds:

0 ≥ divβ(x) ≥ −d1 ∀x ∈ Ω. (2.3)

where d1 is a positive real constant.
We suppose now that we are given a regular triangulation Th (for the definition see [43]),

where h is the maximum element diameter (mesh size). For any element K ∈ Th, we can then
define the local Péclet number [43]:

PeK(x) :=
|β(x)|hK

2ε(x)
∀x ∈ K, (2.4)

where hK is the diameter of K.
We say that we are dealing with an advection dominated problem if it holds that:

PeK(x) > 1 ∀x ∈ K, ∀K ∈ Th. (2.5)

To give just an example of what can happen in an advetion dominated situation, we
consider the following problem:{

−ε∆u+ (1, 1) · ∇u = 1 in Ω := (0, 1)× (0, 1)
u = 0 on ∂Ω

(2.6)

If the coefficient ε is “large”, e.g. ε = 1
10 , the FE method yields a good approximation of the

solution, as it can be seen in figure 2.1a. On the contrary, if we choose a “smaller” value of
the same coefficient, e.g. ε = 1

300 , the FE solution is highly affected by spurious oscillations,
as we can see in figure 2.1b. The mesh used in these computations has a size h ≈ 0.06.

Theoretically, to avoid instability problems, it would be sufficient to reduce the mesh
size h in order to lower the local Péclet number. Unfortunately, a “small” mesh size yields a
significant increase of the computational cost, that can become unaffordable. Just to give an
example, we can try to approximate the problem (2.6), with ε = 1

300 , by using a refined mesh
(figure 2.3b) with size h ≈ 0.004. In this case we have that the local Péclet number (2.4) is
always smaller than 1. The solution that we obtain is reported in figure 2.2. In figure 2.3
there is a visual comparison between the meshes used to compute the solutions shown in
figures 2.1 and 2.2.
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(a) ε = 1
10

(b) ε = 1
300

Figure 2.1: FE solutions of (2.6) for different values of the diffusion coefficient ε. h ≈ 0.06

Figure 2.2: FE solutions with refined mesh (h ≈ 0.004) andε = 1
300

.

Several stabilization methods have been developed to fix the approximated solution without
resorting to mesh refinement [48]. The basic idea behind these methods is to add some sort
of artificial diffusion, in order to smooth the “jumps” (boundary or internal layers) that the
exact solution can show. Let us note also that ε0 is the coercivity constant of the bilinear
form associated to the equation (2.1) while, when we are in an advection dominated situation,
‖β‖L∞(Ω) is actually the continuity constant. So, enforcing somehow the coercivity constant
we can obtain a better Céa error estimate [48].

A first proposal can be to add to the left-hand side of the equation one of the following
additional diffusion terms:

Lad u = −h‖β‖L∞(Ω)∆u, (2.7)

Lsd u = − h

‖β‖L∞(Ω)
div[(β · ∇u)β]. (2.8)

The term (2.7) corresponds to the so called artificial diffusion method [48]. By adding
this term, we are increasing the diffusion in all directions, producing then an unnecessary
“crosswind” smoothing of the solution. To reduce the amount of diffusion introduced, we
could use the term (2.8), which add diffusion only along the wind direction, thus avoiding the
crosswind smoothing. The latter method is called streamline upwind diffusion method [48].
Both these methods are only weakly consistent, with a consistency error of O(h). As a
consequence, these methods can be useful only with P1 FE approximation. For further details
about these methods we refer to [48].
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(a) h ≈ 0.06 (b) h ≈ 0.004

Figure 2.3: Visual comparison between the different meshes we used (zoom on [0, 0.1]× [0, 0.1]).

2.1.2 Strongly consistent stabilization methods

As we mentioned in the previous section, the main problem of the artificial diffusion and the
streamline upwind diffusion methods is the fact that they are not consistent, which deteriorates
the accuracy of the polynomial space used in the FE approximation. A way to avoid this kind
of problem is to use a strongly consistent stabilization method. Several methods have been
proposed and many of them can be considered as particular cases of the general class that we
are going to introduce.

Let us consider now the advection-diffusion operator defined on H1
0 (Ω):

Lv = −ε∆v + β · ∇v ∀v ∈ H1
0 (Ω). (2.9)

We can split the operator L into its symmetric and skew-symmetric parts:

symmetric part: LS = −ε∆v − 1

2
(divβ)v (2.10)

skew-symmetric part: LSS = β · ∇v + (
1

2
divβ)v (2.11)

and the following relation holds:
L = LS + LSS . (2.12)

Symmetric and skew-symmetric parts can be recovered using the formulae:

LS =
L+ L∗

2

LSS =
L− L∗

2

(2.13)

where L∗ is the adjoint operator.
We consider now the weak form of the problem (2.1), that is:

find u ∈ H1
0 (Ω) s.t.

a(u, v) = F (v) ∀v ∈ H1
0 (Ω)

(2.14)

where: a is the bilinear form associated to the advection diffusion operator

a(v, w) =

∫
Ω
ε∇v · ∇w + β · ∇v w, v, w ∈ H1

0 (Ω), (2.15)
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while F is the linear form defined by:

F (v) =

∫
Ω
fv, v ∈ H1

0 (Ω). (2.16)

As in the previous section, let us suppose that we are given a regular triangulation Th.
We consider the following piecewise polynomial approximation space:

Pr(Th) = {v ∈ H1(Ω) | v|K ∈ Pr(K),K ∈ Th} (2.17)

where Pr(K) is the space of polynomials of degree r on the element K. We will denote with
XN the space Pr(Th)∩H1

0 (Ω), where N is its dimension, i.e. the number of degrees of freedom.
We define the stabilization terms:

s(ρ)(vN , wN ) =
∑
K∈Th

δK

(
LvN ,

hK
|β| (LSS + ρLS)wN

)
K

φ(ρ)(vN ) =
∑
K∈Th

δK

(
f,
hK
|β| (LSS + ρLS)wN

)
K

(2.18)

where (·, ·)K is the scalar product in L2(K). The weights δK > 0, K ∈ Th, have to be chosen
as well as the parameter ρ ∈ R, which identifies the method.

We can consider now the stabilized problem:

find uN ∈ XN s.t.

a(uN , vN ;µ) + s(ρ)(uN , vN ) = F (vN ) + φ(ρ)(vN ) ∀vN ∈ XN .
(2.19)

Note that this formulation is strongly consistent, i.e. the continuous solution of (2.14) satisfies
the variational equality (2.19).

We have actually defined a family of strongly consistent methods that can be identified
through the parameter ρ, as we have said before. Several possible choice of ρ have been studied
in literature. A first choice can be to set the parameter ρ equal to zero, thus defining the so
called Streamline Upwind/Petrov Galerkin (SUPG) method [4, 21, 30, 31]. Another possibility
is to choose ρ = 1 and the corresponding method is called Galerkin/Least-Squares (GALS)
method [22]. The choice ρ = −1 leads to the Douglas-Wang/Galerkin (DWG) method [14].

Remark 2.1.1. If the polynomial approximation space chosen is P1(Th) and the advection field
is divergence free, any choice of the parameter ρ yields the same method.

Before going on with the analysis of the SUPG method, in figure 2.4 we show how this
method can approximate the solution of (2.6) with ε = 1

300 . The mesh used is the one shown
in figure 2.3a, with h ≈ 0.06. We recall that the approximated solution given by the standard
FE method was very unsatisfactory (see figure 2.1b). Comparing figure 2.4 with 2.2 it is
evident the smoothing of the boundary layer performed by the stabilization method.

Analysis of the SUPG method

As in this work we will focus mainly on the SUPG method, we will now analyse its properties.
Denoting with ||| · ||| the energy norm associated to the bilinear form a, which turns out

to be
|||v|||2 = ε‖∇v‖2L2(Ω) +

1

2
‖(−divβ)

1
2 v‖2L2(Ω) ∀v ∈ H1

0 (Ω), (2.20)
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Figure 2.4: FE solutions for different values of the diffusion coefficient ε.

we define the SUPG norm on H1
0 (Ω) as

‖v‖2SUPG = |||v|||2 +
∑
K∈Th

δK

(
LSSv,

hK
|β|LSSv

)
K

∀v ∈ H1
0 (Ω). (2.21)

It holds that the SUPG bilinear form is coercive with respect to the SUPG norm. This
is straightforward, even without any requirement on the parameters δK , if the polynomial
approximation space is P1(Th) and the advection field is divergence free, as the energy norm
of the SUPG bilinear form is actually the SUPG norm. In general, we have the following
theorem, as it is shown in [48]:

Theorem 2.1.1 (Stability). We assume that we are dealing with the advection dominated
case (2.5) and that for any element K ∈ TK parameter δK satisfies the conditions

0 < δK < C−1
r (2.22)

where Cr is the constant of the inverse inequality∑
K∈Th

h2
K

∫
K
|∆vN |2 ≤ Cr‖∇vN ‖2L2(Ω) ∀vN ∈ XN (2.23)

in which r stands for the degree of the piecewise polynomial approximation space. Moreover,
if the advection field is not divergence free, we suppose that we have a positive constant d0 > 0
such that

0 > −d0 ≥ div(β.) (2.24)

and we require that

δKhK ≤
β(x)

−div(β(x))
∀x ∈ K. (2.25)

Then the bilinear associated to the SUPG method is coercive with respect to the advection-
diffusion energy norm, that is:

a(vN , vN ) + s(0)(vN , vN ) ≥ 1

2
‖vN ‖SUPG. (2.26)

The theorem 2.1.1 easily yields the following result [48]:
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Proposition 2.1.2. It exists C > 0, independent of h, such that

‖uN ‖SUPG ≤ C‖f‖L2(Ω), (2.27)

where uN is the solution of (2.19) with ρ = 0.

Acting like in [14,48], it is also possible to prove the following convergence theorem:

Theorem 2.1.3 (Convergence). Assume that the advection dominated condition (2.5) holds
and assume also that the space XN satisfies the following approximation property: for each
v ∈ H1

0 (Ω) ∩Hk+1(Ω) there exists v̂N ∈ XN such that

‖v − v̂N ‖L2(K) + hK‖∇(v − v̂N )‖L2(K) + h2
K‖D2(v − v̂N )‖L2(K)

≤ Chr+1
K |v|Hr+1(K)

(2.28)

for each K ∈ Th. Then the SUPG method has the following order of convergence:

‖u− uN ‖SUPG ≤ Chr+
1
2 |u|Hr+1(K) (2.29)

provided that u ∈ Hr+1(K).

Proof. First of all we point out that if we choose the approximation space (2.17), for any
v ∈ H1

0 (Ω) ∩Hk+1(Ω) there exist an element v̂N fulfilling the condition (2.28). Indeed, it is
possible to choose

v̂N = Πr
hv (2.30)

where Πr
h is the piecewise polynomial interpolation operator (see [43] for the definition).

We can now define
σN := uN − ûN , η := u− ûN . (2.31)

and we observe that
u− uN = η − σN . (2.32)

We want now to estimate the quantity ‖σN ‖SUPG. We observe that, from Theorem 2.1.1 and
Galerkin orthogonality, we have

1

2
‖σN ‖2SUPG ≤ a(σN , σN ) + s(0)(σN , σN ) = a(η, σN ) + s(0)(η, σN ). (2.33)

In order to make effective estimates, we write explicitly the right-hand side of (2.33):

a(η, σN ) + s(0)(η, σN ) = ε

∫
Ω
∇η · ∇σN +

∫
Ω
β · ∇η σN

+
∑
K∈Th

δK

(
−ε∆η + β · ∇η, hK|β| (β · σ

N +
1

2
divβσN )

) (2.34)

Let us start by estimating the first term of the sum:

ε

∫
Ω
∇η · ∇σN ≤ ε

8
‖∇σN ‖2L2(Ω) + 2ε‖∇η‖2L2(Ω). (2.35)
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As regards the second term, we have to rewrite it a little before making effective estimates:∫
Ω
β · ∇η σN =−

∫
Ω

1

2
η(divβ)σN

−
∑
K∈Th

∫
K

√
hKδK
|β|

(
β · ∇σN +

1

2
(divβ)σN

)√ |β|
hKδK

η,

(2.36)

then, by using the Young inequality, we obtain:

∫
Ω
β · ∇η σN ≤ 1

4
‖σN ‖2SUPG + 2‖η‖2L2(Ω) + 2

∑
K∈Th

∥∥∥∥∥∥
√
|β|
hKδK

η

∥∥∥∥∥∥
2

L2(K)

. (2.37)

Finally, we have to care about the stabilization term in (2.34). Also in this case we can resort
to the Young inequality and obtain

∑
K∈Th

δK

(
−ε∆η + β · ∇η, hK|β| (β · σ

N +
1

2
(divβ)σN )

)
≤ 1

8
‖σN ‖2SUPG + 2

∑
K∈Th

δK

∫
K

hK
|β| (−ε∆η + β · ∇η)2

≤ 1

8
‖σN ‖2SUPG + 4

∑
K∈Th

δKhK

∥∥∥∥∥ ε√
|β|

∆η

∥∥∥∥∥
2

L2(K)

+ 4
∑
K∈Th

δKhK‖∇η‖2L2(K)

≤ 1

8
‖σN ‖2SUPG +

∑
K∈Th

δK‖β‖L∞(Ω)h
3
K ‖∆η‖2L2(K) + 4

∑
K∈Th

δKhK‖∇η‖L2(K)

(2.38)

and in the last inequality we used the advection dominated condition (2.5). From inequalities
(2.33), (2.35), (2.37), (2.38) we obtain that

1

8
‖σN ‖2SUPG ≤ 2ε‖∇η‖2L2(Ω) + 2‖η‖2L2(Ω) + 2

∑
K∈Th

∥∥∥∥∥∥
√
|β|
hKδK

η

∥∥∥∥∥∥
2

L2(K)

+
∑
K∈Th

δK‖β‖L∞(Ω)h
3
K ‖∆η‖2L2(K) + 4

∑
K∈Th

δKhK‖∇η‖2L2(K). (2.39)

Exploiting the condition (2.28) and the inverse inequality (2.23), we obtain that

‖σN ‖SUPG ≤ Chr+
1
2 |u|Hr+1(Ω). (2.40)

Using again the condition (2.28), we easily have that

‖η‖SUPG ≤ Chr+
1
2 |u|Hr+1(Ω). (2.41)

Thus, by triangular inequality we can conclude that

‖u− uN ‖SUPG ≤ ‖η‖SUPG + ‖σN ‖SUPG ≤ Chr+
1
2 |u|Hr+1(Ω). (2.42)
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Remark 2.1.2. As pointed out in [14], if the advection dominated condition (2.5) is not fulfilled
for all K ∈ T we locally lose even the hr convergence rate of the standard FE method. To
recover at least the standard convergence rate, we need that the coefficient CK in∑

K∈Th

CK ‖∆η‖2L2(K) (2.43)

in (2.38) must scale, at least, as h2. A possible way to overcome this trouble is to act
on the weights δK , distinguishing between the elements for which PeK > 1 and PeK ≤ 1.
Unfortunately, in a RB context, this strategy does not allow an immediate affine representation
(1.9) of the bilinear form. We will return on this point in section 2.2.2.

2.2 Stabilized reduced basis: introduction and numerical tests

The main goal of this section is to design an efficient stabilization procedure for the RB
method. More specifically, we will make a comparison between an Offline-Online stabilization
method and an offline-only stabilized one when used to approximate the solution of an
advection-diffusion problem:

−ε(µ)∆u(µ) + β(µ) · ∇u(µ) = 0 on Ωo(µ) ⊂ R2.

Offline-Online means that the Galerkin projections are performed, in both Offline and
Online stage, with respect to the SUPG stabilized bilinear form that is

astab(w
N , vN ) =

∫
Ω
ε∇wN · ∇vN + (β · ∇wN )vN

+
∑
K∈Th

δK

∫
K

(−ε∆wN + β · ∇wN )(hK
β

|bβ| · ∇v
N )

(2.44)

with wN , vN ∈ XN ⊆ Pr(Th), where Th is a triangulation of Ω. This is a bilinear coercive
form, so we can apply the already developed theory in order to use the reduced basis method.
The alternative method we want to study - the Offline-only stabilized method - consists in
using the stabilized form (2.44) only during the Offline stage and then projecting, during the
Online stage, with respect to the standard advection-diffusion bilinear form. The underlying
heuristic idea is to be able to build stabilized basis, to avoid the Online stabilization.

In both these approaches we have to provide an affine expansion like (1.9) of the involved
bilinear forms and right-hand side operators. If this is not possible in an exact way, we could
resort to some interpolation techniques (e.g. empirical interpolation [1, 10, 16, 34]). As we
always need an affine expansion, the advantage of using the Offline-only method could be a
certain reduction of the computational cost, that could be significant if the number of affine
terms is very high.

We will start from the study of some quite simple test problems, for which is straightforward
to obtain the affine expansion. The first one, in section 2.2.1, does not represent a particular
application, it is just a problem that shows strong instability effect that can be effectively
fixed by the chosen stabilization method. The second test case, shown in section 2.2.2, is a
Poiseuille-Graetz problem [27,45].

Let us make a remark about the notation we will use from now on. First of all, we will
write explicitly the FE space dimension N only when it will be necessary. Moreover, as we
will use only the SUPG stabilization method, we will omit the value of ρ in the stabilization
terms.
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2.2.1 First test case

We begin by studying a problem depending only on one “physical” parameter, actually the
global Péclet number. Let Ω be the unit square in R2, that is (0, 1)× (0, 1). The domain is
sketched in figure 2.5. The problem is the following one:

− 1

µ
∆u(µ) + (1, 1) · ∇u(µ) = 0 in Ω

u(µ) = 0 on Γ1 ∪ Γ2

u(µ) = 1 on Γ3 ∪ Γ4

(2.45)

with µ > 0. Note that µ is the Péclet number of our problem, so we will be interested in the
case in which µ is high.

(0, 0) (1, 0)

(1, 1)(0, 1) Γ4

Γ1

Γ2

Ω Γ3

Figure 2.5: First testcase: domain. On the blue sides we impose u = 0, while on the red ones u = 1.

In order to pursue a finite element approximation, we need to write a suitable weak
formulation of the problem:

find u(µ) ∈ V := {v ∈ H1(Ω) | v|Γ1 = 1, v|Γ0 = 0} s.t.
a(u(µ), v;µ) = 0 ∀v ∈ H1

0 (Ω)
(2.46)

where:
a(w, v;µ) :=

∫
Ω

1

µ
∇w · ∇v + (∂xu+ ∂yu) v. (2.47)

We know from the general theory of PDEs that the problem (2.46) admits a unique solution.
Let Th be a proper triangulation of Ω. The finite element approximation of the problem

turns out to be:

find uh(µ) ∈ Vh := {vh ∈ Pr(Th) | vh|Γ1 = 1, vh|Γ0 = 0} s.t.
a(uh(µ), vN ;µ) = 0 ∀vN ∈ XN

(2.48)

with XN defined as the subspace of Pr(Th) (see (2.17) for its definition) made up by the
functions that vanish on the boundary of Ω. Finally, let us define the function gh as a lifting
in Pr(Th) of the Dirichlet boundary condition. We can now define uN (µ) = uh(µ)− gh, that
belongs to XN . Thus we obtain the final FE formulation of our problem:

find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ) ∀v ∈ XN .
(2.49)

where
F (vN ;µ) := −a(gh, v

N ;µ). (2.50)
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When the parameter µ takes “small” values we do not have instability problems. More
precisely, we can obtain stable solutions if

PeK :=
µhK√

2
< 1 ∀K ∈ Th (2.51)

that is when the advection dominated condition (2.5) is not fulfilled. In figure 2.6 the
approximated P1-FE solution obtained for µ = 6 is shown. We can use the RB method
to approximate the solution of the problem (2.45) for a parameter range from 1 to 10. In
figure 2.8 we report the energy norm of the difference between the RB solution and the FE
solution (RB approximation error) as a function of the parameter µ. More precisely, in 2.8 we
show the linear interpolation of the RB approximation error computed for of 50 equispaced
parameter values between 1 and 10. The vertical dashed lines are plotted in correspondence
of the parameter values selected by the greedy algorithm [45]. It is evident that the RB
approximation error tends to vanish in correspondence of the parameter values selected by the
greedy algorithm. This phenomenon is clearly expected because, since we are using Lagrange
basis, our RB solution “interpolates” exactly the truth manifold (1.3) in the “interpolation
nodes” represented by the snapshot solutions. In figure 2.7 we show some representative RB
solution computed in correspondence of some value of the parameter µ. The dimension of the
RB space is N = 8.

Figure 2.6: First test case, low Péclet number. FE solution for µ = 6.

(a) µ = 2 (b) µ = 6 (c) µ = 10

Figure 2.7: First test case, low Péclet number. representative RB solutions for different values of the parameter.

More interesting is when the Péclet number assumes higher values, for which the condition
(2.51) is not fulfilled. In figure 2.9 the solution obtained by using a FE approximation with
µ = 600 is represented. Even in this case we can perform a RB approximation of the solution,
but the RB solutions reflect all the instability problems of the FE solution, as we can see in
figure 2.10. For this simple case, if we let the parameter range from 100 to 1000 the greedy
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Figure 2.8: First test case, low Péclet number. RB approximation error as a function of the parameter.

algorithm converges and the energy norm of the difference between the RB solution and the
FE solution behaves as for lower values of the Péclet number, as we can see in figure 2.11.
This happens because the “target” of the RB approach is to approximate the exact continuous
solution of the problem by trying to recover the FE solution using a significantly lower number
of degrees of freedom. The point is now that the FE solution is not a good approximation of
the exact one.

Figure 2.9: First test case, high Péclet number. FE solution for µ = 600 (zoom on [0.5, 1]× [0.5, 1]).

A possible way to fix this instability problems could be to use some stabilization methods.
We chose to use the SUPG stabilization method. First of all, we have to impose the stabilization
correction to the weak formulation (2.48). We thus define the following bilinear form:

s(wh, vh;µ) :=
∑
K∈Th

δK

∫
K

(
− 1

µ
∆wh + (1, 1) · ∇wh

)(
hK√

2
(1, 1) · ∇vh

)
(2.52)

with wh, vh ∈ Pr(Th). We chose, as before, to use P1 finite elements, that is r = 1. As
piecewise linear functions have null laplacian, the latter form reduces to:

s(wh, vh;µ) =
∑
K∈Th

δKhK√
2

∫
K

(∂xwh + ∂ywh)(∂xvh + ∂yvh) (2.53)

again with wh, vh ∈ Pr(Th). As we discussed in the section 2.1, for our choice of polynomial
approximation space, we do not need to fulfil any requirement on the weights delta. We then
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(a) µ = 400 (b) µ = 600 (c) µ = 800

Figure 2.10: First test case, high Péclet number. representative RB solutions for different values of the
parameter (zoom on [0.5, 1]× [0.5, 1]).
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Figure 2.11: First test case, high Péclet number. RB approximation error expressed as a function of the
parameter

set δK = 1 for each element K ∈ T If we define usN (µ) = ush(µ)− gh we can obtain the final
formulation of the stabilized FE problem:

find usN (µ) ∈ XN s.t.

a(usN (µ), vN ) + s(usN (µ), vN ) = F (vN ) + F s(vN ) ∀v ∈ XN .
(2.54)

where F is the same as in (2.50) and fs is

F s(vN ) := −s(gh, vN ). (2.55)

Let us call astab the bilinear form and fstab the right-hand side, that is

astab = a+ s

Fstab = F + F s
(2.56)

In figure 2.12 is shown a SUPG stabilized FE solution for µ = 600.
Now we can try the two different approaches described before: the Offline-Online and

the Offline-only stabilization. As regards the first one, we have just to perform the whole
RB standard method simply using astab instead of a. The Offline-only approach consists in
using the form astab during the Offline stage, in order to obtain stable reduced basis, and to
perform the Online Galerkin projection with respect to the form a. Formally, denoted by XN

the space spanned by the reduced basis, the Offline-Online solution usN (µ) ∈ XN satisfies

astab(u
s
N (µ), vN ;µ) = Fstab(vN ) ∀ vN ∈ XN (2.57)
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Figure 2.12: First test case, high Péclet number. SUPG solution for µ = 600 (zoom on [0.5, 1]× [0.5, 1]).

while the Offline-only solution uN (µ) ∈ XN is such that

a(uN (µ), vN ;µ) = F (vN ) ∀ v ∈ XN . (2.58)

By using the norm induced by astab to carry out the Offline stage, we are actually taking
the SUPG stabilized FE solution usN (µ) as the “exact” one. So it makes sense to measure
the performance of the method by evaluating the difference between the RB solution and the
stabilized FE one.

The Offline-Online method, as expected, produces stable RB solutions, as shown in figure
2.13, and the actual error, with respect to the stabilized FE solution, is smaller than the
tolerance guaranteed by the greedy algorithm (ε∗tol = 10−5), as we can see in figure 2.15. On
the contrary, the behaviour of the Offline-only approach is very unsatisfactory. As we can see
in figure 2.14, even though the reduced basis are stable, the Offline-only RB solutions show
large oscillations.

(a) µ = 400 (b) µ = 600 (c) µ = 800

Figure 2.13: First test case, high Péclet number. representative Offline-Online RB solutions for different
values of the parameter (zoom on [0.5, 1]× [0.5, 1]).

In order to exclude the possibility that this instability is only due to the advection-diffusion
operator (with high Péclet number) while we project on the reduced basis space, we set up an
RB approximation by using a locally refined mesh. In this case, “locally” means that we refine
the mesh in the area in which we expect that the boundary layer will arise. Acting in this
way, we can obtain Offline stable reduced basis without resorting to any stabilization method
because the condition (2.51) is now satisfied, at least where we actually have instability
problems. Obviously, by increasing the number of degrees of freedom, we quite increase
the computational cost. The Offline algorithm produces 14 basis and it takes 711 seconds
while the stabilized Offline algorithm takes only 114 seconds and builds 8 basis. The RB
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(a) µ = 400 (b) µ = 600 (c) µ = 800

Figure 2.14: First test case, high Péclet number. representative Offline-only RB solutions for different values
of the parameter (zoom on [0.5, 1]× [0.5, 1]).
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Figure 2.15: First test case, high Péclet number. comparison of the RB approximation error obtained for the
two different stabilization strategies; here the error is expressed as a function of the parameter.

solutions obtained for the same parameter range as before (figure 2.16) do not show instability
phenomena, so an explanation of the behaviour of the Offline-only method tested before
has to be found analysing the “inconsistency” between the different methods used in the two
stages, as we will do further. The distance in energy norm1 between the FE solution and the
RB one is showed in figure 2.17 (we recall that ε∗tol = 10−5). Comparing figure 2.16 and figure
2.13 we can also see how the stabilization method tends to “smooth” the boundary layer.

Before going on, in table 2.1, we report informations about the computations performed
in this section. In all the numerical tests we used a tolerance ε∗tol = 10−3 on the greedy
algorithm.

2.2.2 Graetz-Poiseuille test case

We now focus on a different situation, a Graetz problem [15, 27, 45, 51], in which we have
two parameters: one physical (the Péclet number) and one geometrical (the length of the
domain). The Graetz problem deals with steady forced heat convection (advective phenomenon)
combined with heat conduction (diffusive phenomenon) in a duct with walls at different
temperature. Let us define µ = (µ1, µ2) with both µ1 and µ2 are positive real numbers. Let
Ωo(µ) be the rectangle (0, 1 + µ2)× (0, 1) in R2. The domain is shown in figure 2.18.

The problem is to find a solution u(µ), representing the temperature distribution, such

1i.e. the norm induced by the symmetric part of the original advection-diffusion bilinear form.
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Figure 2.16: First test case, high Péclet number. RB solution with locally refined mesh for µ = 400 (zoom on
[0.8, 1]× [0.8, 1]).
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Figure 2.17: First test case, high Péclet number. RB approximation error for locally refined mesh, expressed
as a function of the parameter.

D N Offline stab. Offline time (s) N Online stab. Online time (s)

[100, 1000]
2605 yes 114 8

no 1.78 · 10−3

yes 1.95 · 10−3

[1, 10] 2605 no 86 14 no 1.83 · 10−3

[100, 1000] 2605 no 98 14 no 1.81 · 10−3

[100, 1000] 21313 no 711 14 no 1.79 · 10−3

Table 2.1: First time dependent test case. Numerical tests

that: 
− 1

µ1
∆u(µ) + 4 y(1− y)∂xu(µ) = 0 in Ωo(µ)

u(µ) = 0 on Γo 1(µ) ∪ Γo 2(µ) ∪ Γo 6(µ)
u(µ) = 1 on Γo 3(µ) ∪ Γo 5(µ)
∂u

∂ν
= 0 on Γo 4(µ).

(2.59)

In order to use an RB approach, we need to set a reference domain Ω that we choose as
Ω = (0, 2)× (0, 1), that is the original domain Ωo(µ) corresponding to µ2 = 1. It is useful
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(0, 0) (1, 0) (1 + µ2, 0)

(1 + µ2, 1)(1, 1)(0, 1) Γo 6

Γo 1

Γo 2 Γo 3

Γo 5

Γo 4Ωo 1 Ωo 2

Figure 2.18: Graetz problem. parametrized domain. Buondary conditions: homogeneous Dirichlet on the blue
sides, u = 1 on the red sides, homogeneous Neumann on the dashed side.

to subdivide the reference domain into subdomains, so we define Ω1 = (0, 1) × (0, 1) and
Ω2 = (1, 2)× (0, 1). Now, as we have seen in section 1.1.1, we need the affine transformation
that maps the reference domain into the original one [45,50], so we define:

T 1(µ) : Ω1 → R2

T 1

((
x
y

)
;µ

)
=

(
x
y

) (2.60)

that is the identity map, and

T 2(µ) : Ω1 → R2

T 2

((
x
y

)
;µ

)
= G2

(
x
y

)
−
(
µ2

0

) (2.61)

where

G2 =

(
µ2 0
0 1

)
.

If we glue together these two transformations, for each µ ∈ D we actually define a transforma-
tion T (µ) of the whole domain Ω. Note that T (µ) is a continuous one-to-one transformation.

The weak formulation of the Poiseuille-Graetz problem is the following one:

find uo(µ) ∈ Vo := {vo ∈ H1(Ωo) | v|Γd,1o = 1, v|
Γd,0o

= 0} s.t.
a(uo(µ), vo;µ) = 0 ∀v ∈ H1

0 (Ω)
(2.62)

where:
a(wo, vo;µ) :=

∫
Ωo

1

µ1
∇w · ∇v + 4 y(1− y)∂xu v. (2.63)

We set the standard FE problem, exactly as we did in (2.48), introducing then the
stabilization term. To do so, let us define a mesh Th on the reference domain Ω and let us
call T 1

h and T 2
h the restrictions Th to Ω1 and Ω2, respectively. We can also define a mesh on

Ωo(µ) just by taking the image of Th through the transformation T (·,µ), that is:

Th,o(µ) = {Ko(µ) = T (K;µ) | K ∈ Th}.

We can now write the stabilization term, for the P1-FE case, to be added to the left-hand
side:

s(wh, vh;µ) :=
∑

Ko(µ)∈Th,o(µ)

δKo(µ)

∫
Ko(µ)

(4 y(1− y)∂xwh)
(
hKo(µ)∂xvh

)
(2.64)
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Now we have to set the problem onto the reference domain, thus our problem turns out to
be:

find u(µ) ∈ V := {vh ∈ P1(Ω) | vh|Γd,1 = 1, vh|Γd,0 = 0} s.t.
a(uh(µ), vN ;µ) + s(uh(µ), vN ;µ) = 0 ∀vN ∈ XN

(2.65)

where XN is defined as in the previous section, a is:

a(wh, vh;µ) :=

∫
Ω1

1

µ1
∇wh · ∇vh + 4 y(1− y)∂xwh vh

+

∫
Ω2

1

µ1µ2
∂xwh∂yvh +

µ2

µ1
∂xwh∂yvh + 4µ2 y(1− y)∂xwh vh

(2.66)

and s is:

s(wh, vh;µ) :=
∑
K∈T 1

h

hK

∫
K

(4 y(1− y)∂xwx) ∂xvh

+
∑
K∈T 2

h

hK√
µ

2

∫
K

(4 y(1− y)∂xwx) ∂xvh.

(2.67)

By introducing a lifting of the Dirichlet boundary condition we can obtain the stabilized
FE formulation (2.54). We point out that for K ∈ T 2

h we are choosing δKo(µ) such that
δKo(µ) hKo(µ) = hK

√
µ2. The underlying idea is that we would like to choose δKo(µ) = 1 but we

have to consider how the element diameter transforms, that is hKo(µ) ≈ hK
√
J(µ) = hK

√
µ2.

This rescaling is done mainly for preserving the convergence rate of the SUPG method. We
need to make an assumption like this also because it would not make any sense, in an RB
point of view, to compute Online every exact value of hKo(µ). Indeed, the Online stage of the
RB method actually forgets about the triangulation.

Recalling remark 2.1.2, we want to observe that by using a weighting that depends on
both parameter and element size we lose the affinity assumption (1.9) on the bilinear form, or
better, we lose that assumption with a number of affine terms Qa independent of N . So, if
we are facing problems in which the advection dominated condition (2.5) is not fulfilled for
all K ∈ Th and we want to rigorously recover the convergence order of the FE method, in
order to resort to a weighting δ = δ(x,µ) (as proposed in [14]) we probably need to exploit
some interpolation techniques involving the empirical interpolation [1]2. In this case it would
be also worth to be checked if it were possible to define a weighting that does not depend on
each hK , but on the mesh size h, under suitable regularity assumptions [31].

We would like also to recall that the convergence performances of the stabilization method
depend on the regularity properties of the mesh. So, as the meshes Th,o(µ) we are actually
using to stabilize on the original domains are the image through T of the triangulation defined
on the reference domain, we should guarantee that the transformation T does not worsen the
properties of the reference triangulation In our numerical tests the reference domain will be
the one corresponding to µ2 = 1 and we will let the parameter range from 0.5 to 4, so we will
not have an excessive deformation. We will also use a quite coarse mesh (mesh size h = 0.06)
and high values for µ1 (from 10000 to 20000) in order to have significant instability problems.
The point is that the boundary layer arise in an area in which the norm of the advection field

2We have to remark that the weighting proposed in [14] is discontinuous in both x and µ even if the
coefficients ε and β are smooth.
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(an thus the value of the local Péclet number) is relatively small. In figure 2.19 we show the
local Péclet number computed on the reference domain (µ2 = 1) in correspondence of the
quadrature point used to compute the FE matrices, and thus the RB ones. We would like to
point out that even if the advection field vanishes as we get close to the boundary, the Péclet
number that is actually considered is just the one computed in the quadrature points. The
lowest value assumed by the local Péclet number is then 1.79, while the highest is 307.

Figure 2.19: Local Péclet number computed in the quadrature points of the reference domain (µ2 = 1.)

In figure 2.20 we show a solution computed using the standard FE method wich shows
instability, while in figures 2.21 and 2.22 we show some solutions obtained respectively by
Offline-Online stabilization and Offline-only stabilization.

Figure 2.20: Graetz-Poiseuille test case. FE solution (non-stabilized) for µ = (15000, 3)

(a) µ1 = 12500

(b) µ1 = 17500

Figure 2.21: Graetz-Poiseuille test case. Representative Offline-Online RB solutions for µ2 = 3 and several
values of µ1.

Finally, in figure 2.23 we show the error curves of the two methods. As in the previous
test-case, we can see that only the Offline-Online stabilization produces satisfactory results,
even if in this case the Offline-only methods has slightly better performances. Here we used a
tolerance3 on the greedy algorithm ε∗tol = 10−3.

In table 2.2, we report some figures about the numerical tests performed using the
parameter space D = [10000, 20000] × [0.5, 4]. The tolerance for the greedy algorithm is
ε∗tol = 10−3.

3The tolerance is on the stabilized energy norm, that is greater than the non-stabilized one.
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(a) µ1 = 12500

(b) µ1 = 17500

Figure 2.22: Graetz-Poiseuille test case. Representative Offline-only RB solutions for µ2 = 3 and several
values of µ1.
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(a) µ2 = 2.5
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(b) µ2 = 3.5

Figure 2.23: Graetz-Poiseuille test case. Comparison of the RB approximation error obtained for the two
different stabilization strategies; here the error is expressed as a function of the parameter µ1, given a value
of µ2.

N Offline stab. Offline time (s) N Online stab. Online time (s)

1309 yes 168 15
no 0.97 · 10−3

yes 1.04 · 10−3

1309 no 341 22 no 1.81 · 10−3

Table 2.2: First time dependent test case. Numerical tests

2.2.3 Discussion on the results

Observing the results obtained up to now, it seems that the best way to perform stabilization
is the Offline-Online one. But let us try to understand why the Offline-only has a bad
behaviour.

Let us introduce some notation. Let us call energy norm the norm on H1
0 (Ω(µ)) induced

by the symmetric part of the advection diffusion operator a and stabilized energy norm the
one induced by the symmetric part of astab. In symbols:

||| · |||µ =
√
asym(·, ·;µ)

||| · |||µ,stab =
√
asymstab (·, ·;µ).
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First of all we have to note that by performing the Offline stage using the stabilized
operator and the standard a posteriori error estimators, we are actually assuring that the
“reliable” RB approximation is the Offline-Online one. This is because of the fact the greedy
algorithm guarantees that

|||usN (µ)− usN (µ)|||µ,stab ≤ ε∗tol ∀µ ∈ Ξtrain
4

so the Offline procedure actually allows us to control only the error committed by the
Offline-Online stabilization.

Thus we have to find some estimates for the difference in norm between uN (µ) and usN (µ).
We can try by splitting the difference in this way:

|||uN (µ)− usN (µ)|||µ ≤ |||uN (µ)− usN (µ)|||µ + |||usN (µ)− usN (µ)|||µ. (2.68)

Of course, it holds that

|||usN (µ)− usN (µ)|||µ ≤ |||usN (µ)− usN (µ)|||µ,stab ≤ ε∗tol
therefore we have to provide an estimate of the distance with respect to the energy norm
between uN (µ) and usN (µ). To do so we can simply start from the definition:

|||uN (µ)− usN (µ)|||2µ =a(uN (µ)− usN (µ), uN (µ)− usN (µ);µ)

=F s(uN (µ)− usN (µ))− s(usN (µ), uN (µ)− usN (µ);µ)

=− s(usN (µ) + gh, uN (µ)− usN (µ);µ)

(2.69)

where gh is the lifting of the Dirichlet boundary data. For the SUPG stabilization with P1

elements, the following bound holds:

|s(usN (µ) + gh, uN (µ)− usN (µ))| ≤ hmax ‖β · ∇(usN (µ) + gh)‖L2(Ωo(µ))

·
∥∥∥∥ β|β| · ∇(uN (µ)− usN (µ))

∥∥∥∥
L2(Ωo(µ))

≤ hmax ‖β · ∇(usN (µ) + gh)‖L2(Ωo(µ))

· |uN (µ)− usN (µ)|H1
0 (Ωo(µ)).

where hmax(µ) = maxK∈Th hK
√
J(T (·,µ)). As the energy norm is equivalent to | · |H1

0
, we

have that:
|v|H1

0 (Ωo(µ)) ≤ C(µ) |||v|||µ ∀v ∈ H1
0 (Ωo(µ)). (2.70)

We can also bound the L2-norm of the streamline derivative of the Offline-Online stabilized
RB solution with that of the FE stabilized solution:

‖β · ∇(usN (µ) + gh)‖L2(Ωo(µ)) ≤ ‖β · ∇(ush(µ))‖L2(Ωo(µ))

+ ‖β · ∇(usN (µ)− usN (µ))‖L2(Ωo(µ))

≤ ‖β · ∇(ush(µ))‖L2(Ωo(µ)) + C(µ)‖β‖L∞(Ωo(µ))ε
∗
tol.

(2.71)

Putting together the results obtained above, we can write a proper upper bound for the
distance with respect to the energy norm between uN (µ) and usN (µ):

|||uN (µ)− usN (µ)|||µ ≤hmax(µ)C(µ)‖β · ∇(ush(µ))‖L2(Ωo(µ))

+
(
1 + hmax(µ)C(µ)2‖β‖L∞(Ωo(µ))

)
ε∗tol.

(2.72)

4Ξtrain is the set of values of µ used by the greedy algorithm to choose the basis. See section 1.2.2.
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Figure 2.24: First test case. upper bound (2.73) compared to the true error

Remark 2.2.1. We point out that the bound in (2.72) depends on the L2 norm of the streamline
derivative. This means that the Offline-only method has better performances when applied to
problems in which the strongest variations occur along a direction orthogonal to the advection
field. This could happen in the cases in which the boundary layers are parallel to the advection
field, e.g. the Graetz-Poiseuille problem. The “improvement” of the approximation is confirmed
by the numerical results shown in figures 2.15 and 2.23.

Remark 2.2.2. A very similar computation shows that the error |||usN (µ) − usN (µ)|||µ is
actually the same as |||uN (µ)− usN (µ)|||µ.

We can also note that the argument used to prove the a priori estimate (2.72) actually
proves the following, sharper but not properly “a priori”, result:

|||uN (µ)− usN (µ)|||µ ≤ hmax(µ)C(µ)‖β · ∇(usN (µ) + gh)‖L2(Ωo(µ))

+ |||usN (µ)− usN (µ)|||µ.
(2.73)

We performed some numerical tests for the bound in (2.73). The results are shown in
figures 2.24 and 2.25. Concerning the first test case we set:

C(µ) =
√
µ

and for the Graetz-Poiseuille problem:

C(µ) =
√
µ1.

With these choices, (2.70) is actually an equality.
We can see that the bound is very sharp in the first test case, while in the Graetz problem

the bound tends to overestimate the real error by an order of magnitude.
The sharpness obtained for at least one test case leads us to state that the Offline-only

approach is not a good approximation method. One problem is that the Offline stage, as
described in chapter 1, is tailored to minimize the error between the Offline-Online solution
and the stabilized FE one.

At last, we want to show that the upper bound for the first test case remains sharp even
if we reduce the mesh size, as we did at the end of the first section. Even if it would not be
needed, we can use a stabilized method to perform the Offline stage with a very fine mesh.
This situation is formally the same as in the case “coarse mesh - Offline stabilization”, so it
make sense to test if the upper bound (2.73) remains sharp. In figure 2.26 we show the error
between the Offline-only RB solution and the the stabilized FE one.
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(a) µ2 = 2.5
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(b) µ2 = 3.5

Figure 2.25: Graetz-Poiseuille test case. upper bound (2.73) compared to the true error.
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Figure 2.26: First test case. upper bound (2.73) compared to the true error
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2.3 Stabilized reduced basis: higher order polynomial approx-
imation

In the previous section our aim was to study a good stabilization strategy for the RB method.
It turned out that the Offline-Online method seems to be an effective choice.

In this section we want to test our stabilization method also for higher order polynomial
approximation spaces, i.e. piecewise quadratic polynomials. To do so, we introduce a different
test problem, also used in [21]. Let Ω be the unit square in R2, as sketched in figure 2.27, and
let us define µ = (µ1, µ2), where µ1, µ2 ∈ R. The problem is the following one:

− 1

µ1
∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω

u(µ) = 1 on Γ1 ∪ Γ2

u(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5.

(2.74)

(0, 0) (1, 0)

(1, 1)(0, 1) Γ4

Γ1

Γ2

Ω Γ3

Γ5

Figure 2.27: Domain of the problem (2.74). On the blue sides we impose u = 0, while on the red ones u = 1.

Let us note that µ1 represents the Péclet number of the advection-diffusion problem,
while µ2 is the angle between the x axis and the direction of the constant advection field. The
bilinear form associated to the problem is:

a(w, v;µ) =

∫
Ω

1

µ1
∇w · ∇v + (cosµ2 ∂xw + sinµ2 ∂yw)v. (2.75)

We introduce again a triangulation Th on the domain Ω and we consider Pr(Th), that is
the piecewise polynomial interpolation space of order r (r = 1, 2). Now we can define, for
r = 1, 2, our stabilization term:

sr(wh, vh;µ) =−

∑
K∈Th

δrK

∫
K

1

µ1
∆wh (cosµ2, sinµ2) · ∇vh

r−1

+
∑
K∈Th

δrK

∫
K

(cosµ2, sinµ2) · ∇wh (cosµ2, sinµ2) · ∇vh.
(2.76)

in which the value of the weights δrK is to be assigned.
Acting as we did in section 2.2, we define grh ∈ Pr(Th) a lifting of the boundary conditions

and then we can obtain our final FE approximation problem:

find usNr(µ) ∈ XNr s.t.

arstab(u
sNr(µ), vN ) = F rstab(v

Nr) ∀v ∈ XNr .
(2.77)

where XNr , arstab and F
r
stab are defined as in (2.54) and (2.56) (the only difference is that now

there is the dependency on the polynomial degree r).
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As regards the weights δrK , we made different choice for the two different polynomial order.
As we saw in section 2.1.2, if r = 1 we do not have any restriction on the weights, so we
choose

δ1
K = 1 ∀K ∈ Th. (2.78)

On the contrary, if r = 2, the stability result we saw in section 2.1 (Theorem 2.1.3) shows that
δ2
K has to be sufficiently small. To set properly the weights, we follow the choice proposed
in [14]. First of all we need to slightly redefine the “element size” hK , as suggested in [20]:

h2
K =

4AK√
3
∑3

i=1 |xi,K − xc,K |2
∀K ∈ Th (2.79)

where, for each element K ∈ Th, AK is the area, xc,K is the barycentre and xi,K , for i = 1, 2, 3,
is the i-th vertex. We also redefine, for any element K ∈ Th, the local Péclet number for the
P2-FE approximation as:

PeK(x,µ) =
|β(x,µ)|hK
C2 ε(x)

∀x ∈ (2.80)

where C2 is the constant of the inverse inequality (2.23). It can be proved that, by defining
the element size as in (2.79), the best value for the constant C2 is 48 [20]. Finally, we set:

δ2
K =

1

2
∀K ∈ Th. (2.81)

It can also be proved that a stability condition like (2.26) and theorem 2.1.3 still hold, even
with the latter definitions [14].

We did different choices also for the tolerance ε∗tol of the greedy algorithm. We recall, at
first, that theorem 2.1.3 states that for stabilized P1-FE approximation the error scales as h

3
2 ,

whereas for stabilized P2-FE it scales as h
5
2 . Here h stands for the mesh size

h = max
K∈Th

hK (2.82)

using, as hK , either the element diameter or the quantity defined in (2.79) depending on the
polynomial order of the approximation we are using (P1-FE and P2-FE, respectively). We
note then that the total error between the exact (continuous) solution and the stabilized RB
one is

‖u(µ)− usN (µ)‖SUPG ≤ ‖u(µ)− usN (µ)‖SUPG + |||usN (µ)− usN (µ)|||µ
≤ C(u(µ),µ)hk+ 1

2 + ε∗tol.
(2.83)

Therefore we choose a value for the tolerance ε∗tol of the same order of magnitude as the FE
approximation error.

In table 2.3 we report some figures about the tests we have performed. The first observation
is that the variations of the advection direction have more influence on the dimension N of
the reduced basis than the variations of the Péclet number. This is because by varying the
direction of the advection field, the solution shows strong variations in energy norm. We
think that it is worth to be noted also that if we reduce the mesh size, increasing then the
number of the degrees of freedom N , the number N of basis function that we need to achieve
the same tolerance increases too. Our (heuristic) explanation of this phenomenon is that, by
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r µ1 ∈ µ2 ∈ N Offline time (s) h ε∗tol N

1 {104} [π6 ,
π
3 ] 2605 458 0.03 10−3 21

1 {105} [π6 ,
π
3 ] 2605 649 0.03 10−3 21

1 [104, 105] [π6 ,
π
3 ] 2605 224 0.03 10−3 37

1 [104, 105] {π4 } 2605 131 0.03 10−3 3
1 {104} [π6 ,

π
3 ] 10577 1170 0.015 10−3 30

1 {105} [π6 ,
π
3 ] 10577 2036 0.015 10−3 33

2 {104} [π6 ,
π
3 ] 2605 829 0.06 10−4 28

2 {105} [π6 ,
π
3 ] 2605 3701 0.06 10−4 29

2 [104, 105] [π6 ,
π
3 ] 2605 2776 0.06 10−4 65

2 [104, 105] {π4 } 2605 189 0.06 10−4 4
2 {104} [π6 ,

π
3 ] 10577 2188 0.03 10−4 39

2 {105} [π6 ,
π
3 ] 10577 7382 0.03 10−4 44

Table 2.3: Numerical tests

r N N RB Offline time (s) RB Online time (s) FE time (s)

1 2605 21 649 2.15 · 10−3 1.31
1 10577 33 2036 2.56 · 10−3 4.41
2 2605 29 3701 2.48 · 10−3 0.63
2 10577 44 7382 3.57 · 10−3 2.41

Table 2.4: Comparison of the computational times.

reducing the mesh size, we are able to capture more information about the sharp layers, but
this means in turn that the “number” of the possible configurations of the system, depending
on the parameter, rises. As a consequence, we will need more basis functions to obtain the
same accuracy. This behaviour of the stabilized method have been highlighted also in [8].

We note also that the Offline time is often much higher for the P2 approximation. This is
because of the SCM, which needs more iterations in the P2 case than in the P1 one.

In figure 2.28, 2.29, 2.30 and 2.31 we show a visual comparison among the tested methods.
All the RB approximations are obtained using a parameter space D = {105} × [π6 ,

π
3 ]. In

table 2.4 we compare the RB and FE computational costs of the considered representative
solutions5.

5For the FE computational cost, we are not taking into account the meshing time. We are considering only
the assembling and the resolution phases of the linear system.
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(a) P1-RB solution.

(b) P1-FE solution

Figure 2.28: P1-RB and P1-FE approximated solution of (2.74), with µ = (105, π
4

) and mesh size h = 0.03
(N = 2605).

(a) P1-FRB solution

(b) P1-FE solution

Figure 2.29: P1-RB and P1-FE approximated solution of (2.74), with µ = (105, π
4

) and mesh size h = 0.015
(N = 10577).
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(a) P1-RB solution

(b) P1-FE solution

Figure 2.30: P1-RB and P1-FE approximated solution of (2.74), with µ = (105, π
4

) and mesh size h = 0.06
(N = 2605).

(a) P1-RB solution

(b) P1-FE solution

Figure 2.31: P1-RB and P1-FE approximated solution of (2.74), with µ = (105, π
4

) and mesh size h = 0.03
(N = 10577).



Chapter 3

Stabilized reduced basis method for
time-dependent problems

In this chapter we want to apply to time dependent problems the stabilized RB method
introduced for steady problems in the previous chapter. The RB method for time dependent
problem has been already studied in several works, e.g. [15, 45, 49, 51], but, as regards the
advection diffusion equations, we can only find applications with low Péclet number. In this
work we are going to test a method that can be effectively applied to advection diffusion
problems with high Péclet number.

It section 3.1 we introduce the general RB setting for parabolic problems, highlighting the
a posteriori error estimation techniques and the sampling strategies, while in section 3.2 we
show the SUPG stabilization method for parabolic problems. Finally, in section, 3.3, we show
and discuss some numerical tests.

3.1 Reduced basis method for linear parabolic equations

Like in section 1.1, we define the parameter domain D as a closed subset of RP and we call µ
any general P -tuple belonging to D. Again, let Ω be a bounded open subset of Rd (d = 1, 2, 3)
with regular boundary ∂Ω and let X be a functional space such that H1

0 (Ω) ⊂ X ⊂ H1(Ω).
For each admissible value of the parameter, i.e. for each µ ∈ D, we define the continuous
bilinear forms

a(·, ·;µ) : X ×X → R,
m(·, ·;µ) : L2(Ω)× L2(Ω)→ R.

(3.1)

We suppose that the form a satisfies the coercivity and affinity assumptions (1.7) and (1.9),
respectively. We assume also that the mass form m satisfies an affinity assumption like the
following one:

m(v, w;µ) =

Qm∑
q=1

Θm
q (µ)mq(v, w) (3.2)

where, like in (1.9), Θm
q : D → R, q = 1, . . . , Qm, are smooth functions whereas mq : L2(Ω)×

L2(Ω) → R, q = 1, . . . , Qm, are continuous µ-independent bilinear forms. Finally, for each
µ ∈ D, we define the right-hand side continuous linear form F (·;µ) : X → R which satisfies
the affine assumption (1.10). Let us finally denote our time domain with I = [0, T ], where T
is the final time.

45
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We want to spend some words to explain why we need the affine assumption (3.2) also on
the mass term. As we saw in chapter 1, the parameter can be geometrical, that is the original
domain of the problem Ωo(µ) might depend on the parameter. As in section 1.1.1, let us then
suppose that both the original domain and the reference one are divided in subdomains, like
in (1.17) and (1.18). The original mass form, that is the L2 scalar product on the original
domain, becomes:

mo(vo, wo;µ) =

Ldom∑
l=1

∫
Ωlo(µ)

vowo ∀ vo, wo ∈ Xo(µ) (3.3)

where Xo(µ) is the original test function space. Tracking back the latter integrals on the
reference domain Ω trough the map T defined in (1.20) and (1.21), as we did in section 1.1.2
for the bilinear form ao, we obtain:

m(v, w;µ) =

Ldom∑
l=1

∫
Ωl
v w J l(µ) ∀v, w ∈ X. (3.4)

where J l(µ) is the (local) Jacobian of the transformation T .
We can now define our continuous problem:

find u(·;µ) ∈ C0(I;L2(Ω)) ∩ L2(I;X) s.t.
m(∂tu(t;µ), v) + a(u(t;µ), v;µ) = g(t)F (v;µ) ∀v ∈ X, ∀t ∈ I
given the initial value u(0;µ) = u0 ∈ L2(Ω).

(3.5)

where g : I → R is a control function such that g ∈ L2(I). We want now to explain in which
situations we need such a control function. Let us suppose that the problem we are trying to
approximate is of the form:

∂tu(µ) + Lu(µ) = h in Ω
u(·, t;µ) = 0 on ∂Ω, ∀t ∈ I

+ initial conditions
(3.6)

where L is a differential operator and h ∈ L2(Ω× I). If we suppose that h(x, t) = g(t)f(x) for
each (x, t) ∈ Ω× I, with g ∈ L2(I) and f ∈ L2(Ω), we obtain a weak formulation like (3.5).
Another situation can be the following one:

∂tu(µ) + Lu(µ) = 0 in Ω
u(·, t;µ) = h(·, t) on ∂Ω, ∀t ∈ I

+ initial conditions
(3.7)

in which L is again a differential operator, while h is a sufficiently regular function defined on
the boundary ∂Ω. We can assume for example that h(x, t) = g(t)f(x) for each (x, t) ∈ Ω× I,
with g ∈ L2(I) and f ∈ H 1

2 (∂Ω). Denoting with f̃ a H1(Ω) lifting of the boundary datum f ,
we obtain a weak formulation like (3.5) in which the functional F is given by:

F (v) = −a(f̃ , v) ∀v ∈ X, (3.8)

where a is the bilinear form associated with the differential operator L.
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3.1.1 Discretization and RB formulation

To discretize the time-dependent problem (3.5) we follow the approach used in [17,40,45] that
is to use finite differences in time and FE in space discretization [48].

We start by discretizing the spatial part of the problem. We thus define the FE truth
approximation space XN and we denote its basis with {ϕi}Ni=1. The semi-discretized problem
reads as

for each t ∈ I, find uN (t;µ) ∈ XN s.t.

m(∂tu
N (t;µ), vN ;µ) + a(uN (t;µ), vN ;µ) = g(t)F (vN ) ∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(3.9)

To obtain a fully discretized problem, we subdivide the time interval I into J subintervals
of length ∆t = T/J and we define tj = j∆t, j = 1, . . . , J . We then replace the time derivative
in (3.9) with a backward finite difference approximation. The fully discretized problem we
are considering is:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.
1

∆t
m(uN j(µ)− uN j−1(µ), vN ;µ) + a(uN j(µ), vN ;µ) = g(tj)F (vN ) ∀vN ∈ XN ,

given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(3.10)

We will denote with u(µ) the solution array, that is:

uN (µ) = (uN 1(µ), . . . , uN J(µ)) ∈
(
XN

)J
. (3.11)

The latter problem is the Backward Euler-Galerkin discretization of (3.5). Of course, this
is not the only way to discretize the time-dependent problem (3.5), for example we can resort
to other theta-methods (e.g. Crank-Nicholson) or to higher order methods [48].

The RB formulation of the problem (3.10) is based on hierarchical RB spaces as we did in
the steady case in section 1.2.1, that is: given an integer Nmax we define a finite sequence
{XNN }NmaxN=1 of subspaces of XN such that (1.31) holds. The way these subspaces are generated
will be described in detail in section 3.1.2, for the moment let us say that the basis functions
of XNN are built by properly combining snapshots in time and space. As in chapter 1, we use
the following notation

XNN = span{ζNn | 1 ≤ n ≤ N}. (3.12)

We assume also that the functions ζNn are mutually orthonormal with respect to the scalar
product (·, ·)X .

The RB problem is then:

for each 1 ≤ j ≤ J , find uN j
N (µ) ∈ XNN s.t.

1

∆t
m(uN j

N (µ)− uN j−1
N (µ), vN ;µ) + a(uN j

N (µ), vN ;µ) = g(tj)F (vN ) ∀vN ∈ XNN ,

given the initial condition uN 0
N s.t.

(uN 0
N , vN )L2(Ω) = (uN 0, vN )L2(Ω) ∀vN ∈ XNN .

(3.13)
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Again, as in (3.11), we define

uNN (µ) = (uN 1
N (µ), . . . , uN J

N (µ)) ∈
(
XN

)J
. (3.14)

Let us try to obtain the matrix formulation of the RB problem (3.13). First of all, we
recall that, for each j = 1, . . . , J , the RB solution uN j

N ∈ XNN can be expressed as:

uN j
N =

N∑
m=1

uN ,jN m(µ)ζNm . (3.15)

Then, by taking vN = ζNn , n = 1, . . . , N , in the RB formulation (3.13) we have

1

∆t
m(uN j

N (µ), ζNn ;µ)+a(uN j
N (µ), ζNn ;µ) = g(tj)F (ζNn ;µ)+

1

∆t
m(uN j−1

N (µ), ζNn ;µ) (3.16)

that is, recalling the affine assumptions (1.9), (1.10) and (3.2):

N∑
m=1

 1

∆t

Qm∑
q=1

Θq
m(µ)m(ζNm , ζ

N
n ) +

Qa∑
q=1

Θq
a(µ)a(ζNm , ζ

N
n )

uN j
N (µ)

= g(tj)

QF∑
q=1

Θq
F (µ)F q(ζNn ) +

N∑
m=1

 1

∆t

Qm∑
q=1

Θq
m(µ)mq(ζNm , ζ

N
n )

uN j−1
N (µ). (3.17)

We can thus obtain the matrix formulation: 1

∆t

Qm∑
q=1

Θq
m(µ)Mq

N +

Qa∑
q=1

Θq
a(µ)Aq

N

ujN (µ)

= g(tj)

QF∑
q=1

Θq
F (µ)Fq +

 1

∆t

Qm∑
q=1

Θq
m(µ)Mq

N

uj−1
N (µ). (3.18)

where AN , FN are defined in (1.42) and (1.44), while(
uN ,jN (µ)

)
m

= ujN m(µ),
(
Mq

N

)
nm

= mq(ζNm , ζ
N
n ), (3.19)

for n,m = 1, . . . , N and j = 1, . . . , J . Denoting again with Z the N × N matrix whose
columns are the coordinates of the reduced basis ζN1 , . . . , ζNN with respect to {ϕi}Ni=1, it holds
that:

Mq
N = ZTMq

NZ 1 ≤ q ≤ Qm (3.20)

where Mq
N is the q-th affine term of the FE mass matrix, that is(

Mq
N
)
ij

= mq(ϕj , ϕi) 1 ≤ i, j ≤ N , 1 ≤ q ≤ Qm. (3.21)

Like in the steady case, during the Offline stage we have to compute and store the FE
matrices, the snapshots solutions and the RB matrices. The only difference between the
time-dependent case and the steady case is that in the former we have also to deal with the
matrices associated to the mass term, which arise as a consequence of the time-dependency.

The Online operation count is the following [40,45]:
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• O((Qa +Qm)N2) to get the left-hand side matrix;
• O(QFN +QmN

2) to compute the right-hand side;
• O(N3 + JN2) to perform a factorization of the left-hand side matrix (e.g. LU factoriza-

tion [47]) and to solve the J linear systems (3.18);
• O(JN) to perform the scalar products (3.15).

Once again, we stress the point that the Online computational cost is independent of the
dimension N of the underlying FE element truth approximation.

3.1.2 Sampling strategy and a posteriori error estimates

To construct the reduced basis in the time-dependent case, we will follow the so called POD-
greedy approach [19,40,45]. It consists in using a greedy technique to explore the parameter
space D and the POD (Proper Orthogonal Decomposition) method to deal with the time
evolution.

Before describing in detail such a sampling strategy, for the sake of completeness, we will
give a brief general introduction to the POD method.

POD method

As described for example in [32], given K elements wk, k = 1, . . . ,K, in a linear space W , the
POD method returnsM functions χm ∈W , m = 1, . . . ,M , withM < K,that are orthonormal
with respect to a given scalar product (·, ·) and such that the space

PM = span{χm | 1 ≤ m ≤M} (3.22)

is optimal in the sense that:

PM = argmin
YM⊂span{wk | 1≤k≤K}

(
1

K

K∑
k=1

inf
v∈YM

‖wk − v‖2
) 1

2

, (3.23)

where YM denotes a M -dimensional linear space and ‖ · ‖ is the norm induced by the scalar
product (·, ·). We note that it also holds:

inf
v∈YM

‖wk − v‖2 = ‖wk − πYM v‖2 (3.24)

where πYM is the orthogonal projection on YM , with respect to the scalar product (·, ·).
We show now an effective procedure to compute the orthonormal basis {χm | 1 ≤ m ≤M}

[18, 32].

1. Given the vector system {wk | 1 ≤ k ≤ K}, we compute the K × K symmetric and
positive definite matrix CPOD defined by

CPODij =
1

K
(wi, wj). (3.25)

2. We compute the first M eigenvalues λm, m = 1, . . . ,M , of CPOD and the correspondent
eigenvectors {ψm, 1 ≤ m ≤M}.
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3. We obtain the orthonormal basis {χm | 1 ≤ m ≤M} using the formula:

χm =
1√
λm

K∑
k=1

(ψm)k wk 1 ≤ m ≤M, (3.26)

where (ψm)k is the k-th component of the eigenvector ψm.

As regards the error, we can define

EM :=
1

K

K∑
k=1

‖wk − πPMwk‖2 (3.27)

and the following equality holds [32]:

EM =

K∑
k=M+1

λk. (3.28)

It was already obvious from the definition that EM → 0 as M increases, but the equality
(3.28) turns out to be useful for the choice of M . If we fix a tolerance εPODtol , we can set M as:

M = min

M̃

tr(CPOD)−

M̃∑
k=1

λk


1
2

≤ εPODtol

 (3.29)

where tr(CPOD) is the trace of the matrix CPOD.
To indicate the POD procedure, we adopt the following compact notation:

{χm | 1 ≤ m ≤M} = POD({wk | 1 ≤ k ≤ K},M). (3.30)

POD-greedy method

We introduce now the POD-greedy method [19,45] used to build the reduced basis for the
time dependent problem (3.10). First of all, let us define the norm:

|||vN (µ)|||t−dep =

m(vN J(µ), vN J(µ);µ) +

J∑
j=1

a(vN j(µ), vN j(µ);µ)∆t

 1
2

(3.31)

for all sequences vN (µ) = (vN 1(µ), . . . , vN J(µ)) ∈
(
XN

)J .
Let us denote with e(µ), µ ∈ D, the difference between the truth solution uN (µ) and the

RB one uNN (µ). In order to pursue an effective greedy strategy, as we did in section 1.2.2, we
assume that we have a sharp and computationally inexpensive a posteriori error estimator
µ 7→ ∆t

N (µ) such that

|||e(µ)|||t−dep ≤ ∆t
N (µ) ∀µ ∈ D, 1 ≤ N ≤ Nmax. (3.32)

Like in the steady case, section 1.2.2, we define a finite subset Ξtrain of D, large enough to be
considered an approximation of the parameter space D.

The N -th step of the POD algorithm can be roughly described as follows:
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1. find the value µ̃ ∈ Ξtrain that maximize the estimator ∆t
N−1 ;

2. compute the FE solution of the problem (3.10), taking µ = µ̃;

3. apply the POD method to {uN j(µ) | 1 ≤ j ≤ J} and obtain {χm | 1 ≤ m ≤M};

4. apply the POD method to {χm | 1 ≤ m ≤M} ∪ {ζNn | 1 ≤ n ≤ N − 1}, where {ζNn | 1 ≤
n ≤ N − 1} is the already computed reduced basis;

5. set the output of the latter POD as the new reduced basis.

Concerning the stopping criteria, we will use the same used in the steady case, that is:

• Prescribed tolerance on the greedy. Given a tolerance ε∗tol, the POD-greedy stops if

∆t
N (µ) ≤ ε∗tol. (3.33)

• Maximum RB dimension. The algorithm stops if N reaches the value Nmax, even if the
tolerance ε∗tol is not satisfied.

The POD-greedy procedure [40,45] is shown in algorithm 3. In this algorithm there are
two “tuning” values, M1 and M2, to be chosen. As regards M1, we can set a POD tolerance
εPODtol and then use (3.29). The parameter M2 has to be set less than M1, otherwise, at each
step, the second POD would not be effective (the dimension of the “reduced” space would be
greater then the initial one).

Algorithm 3 POD-greedy algorithm
Z = ∅;
S = {µ0}; µ∗ = µ0;
while N ≤ Nmax do
{χm | 1 ≤ m ≤M1} = POD({uN j(µ) | 1 ≤ j ≤ J},M1);
Z = Z ∪ {χm | 1 ≤ m ≤M};
N = N +M2;
{ξn | 1 ≤ n ≤ N} = POD(Z, N);
XN = span{ζn | 1 ≤ n ≤ N};

end while.

For the sake of completeness, we must observe that the a posteriori error estimator ∆t
N

should depend also on the control function g. Then, we have to choose a particular control
function with which the greedy algorithm is performed [17]. Recalling that our problem is
linear, for every input control function g we can recover the solution uN (µ) by convolution

uN ̃(µ) =

̃∑
j=1

g(tj)ũN ̃−j(µ) (3.34)

where ũN (µ) is the impulse response, that is the solution of (3.10) in which it is used an
impulse control g̃, such that:

g̃(t0) = 1, g̃(tj) = 0 1 ≤ j ≤ J.1 (3.35)
1In the continuous problem, an impulse conrol function is a Dirac delta centered in t = 0.
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It is important to note, in (3.34), that the function uN ̃(µ), for ̃ = 1, . . . , J , is a linear
combination of the impulse response ũj(µ), j = 1, . . . , J . This means that, to obtain a good
approximation of the solution corresponding to any control function g, it is sufficient that the
RB method approximates well the (parametric) impulse response [17].

As a consequence of the presence of an “unknown” control function that can be set Online,
theoretically the error e(µ) should depend also on g. We must point out that the following
inequality is not valid:

|||e(µ; g)|||t−dep ≤ ε∗tol ∀µ ∈ Ξtrain (3.36)

for every choice of g, but we can provide error estimators such that:

|||e(µ; g)|||t−dep ≤ ∆t
N (µ; g) ∀µ ∈ Ξtrain, (3.37)

for every choice of g.
Improvements to the POD-greedy algorithm have been proposed in e.g. [12].

A posteriori error estimates

We are dealing now with the a posteriori error estimators to be used in the greedy algorithm.
In our work we will follow the choice presented in [17], but other possibility have recently
been proposed [54,55].

The first ingredient we have to introduce is the dual norm of the residual:

εN (tj ;µ; g) := sup
vN∈XN

rN (vN ; tj ;µ; g)

‖vN ‖X
, 1 ≤ j ≤ J, (3.38)

where rN is the residual of the RB approximation, that is:

rN (vN ; tj ;µ; g) = g(tj)f(vN )− 1

∆t
m(uN j

N (µ)− uN j−1
N (µ), vN ;µ)− a(uN j

N (µ), vN ;µ)

∀vN ∈ XN , 1 ≤ j ≤ J.
(3.39)

Exploiting the affine assumptions, (1.9), (1.10) and (3.2), it can be shown [17] that

εN (tj ;µ; g)2 =

QF∑
q,q′=1

Θq
F (µ)Θq′

F (µ)g(tj)2ΛFFqq′

+

QF∑
q=1

N∑
n=1

Θq
F (µ)g(tj)

( Qa∑
q′=1

Θq′
a (µ)ujN n(µ)ΛaFqq′ n

+

Qm∑
q′=1

Θq′
m(µ)

(
ujN n(µ)− uj−1

N n(µ)
)

ΛmFqq′ n

)

+
N∑

n,n′=1

{ Qa∑
q,q′=1

Θq
a(µ)Θq′

a (µ)ujN n(µ)ujN n′(µ)Λaaqnq′n′

+

Qm∑
q,q′=1

(
ujN n(µ)− uj−1

N n(µ)
)(

ujN n′(µ)− uj−1
N n′(µ)

)
Λmmqnq′n′

+

Qa∑
q=1

Qm∑
q′=1

Θq
a(µ)Θq′

m(µ)ujN n(µ)
(
ujN n′(µ)− uj−1

N n′(µ)
)

Λamqnq′n′

}

(3.40)
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where the µ-independent quantities Λ·· are defined as:

ΛFFqq′ = (Bq,Bq′)X , 1 ≤ q, q′ ≤ QF ;

ΛaFqq′n = −2(Bq,Aq′,n)X , 1 ≤ q ≤ QF , 1 ≤ q′ ≤ Qa, 1 ≤ n ≤ N ;

ΛmFqq′n = − 2
∆t(Bq,Mq′,n)X , 1 ≤ q ≤ QF , 1 ≤ q′ ≤ Qm, 1 ≤ n ≤ N ;

Λaaqnq′n′ = (Aq,n,Aq′,n′)X , 1 ≤ q, q′ ≤ Qa, 1 ≤ n, n′ ≤ N ;

ΛmFqnq′n = 2
∆t(Aq,n,Mq′,n)X , 1 ≤ q ≤ Qa, 1 ≤ q′ ≤ Qm, 1 ≤ n, n′ ≤ N ;

Λmmqnq′n′ = (Mq,n,Mq′,n′)X , 1 ≤ q, q′ ≤ Qm, 1 ≤ n, n′ ≤ N ;

(3.41)

in which Bq ∈ XN , Aq,n ∈ XN and Mq,n ∈ XN are the solutions of the following µ-
independent problems:

(Bq, vN )X = F q(vN ), ∀vN ∈ XN for 1 ≤ q ≤ QF ,
(Aq,n, vN )X = aq(ζNn , v

N ), ∀vN ∈ XN for 1 ≤ q ≤ Qa, 1 ≤ n ≤ N,
(Mq,n, v

N )X = mq(ζNn , v
N ), ∀vN ∈ XN for 1 ≤ q ≤ Qm, 1 ≤ n ≤ N,

(3.42)

We then need again a lower bound µ 7→ αNLB(µ) for the coercivity constant of the
(discretized) bilinear form a, as in (1.51). To do so we can resort to the SCM [25] introduced
in section 1.2.4 and used in the steady case.

After these preliminaries, we are finally able to define the a posteriori error estimator,
which satisfies (3.32):

∆t
N (µ; g) =

 ∆t

αNLB(µ)

J∑
j=1

εN (tj ;µ; g)2

 1
2

. (3.43)

The a posteriori error estimator used during the greedy is actually

∆t
N (µ) := ∆t

N (µ; g̃), (3.44)

where g̃ is the impulse control defined in (3.35).

3.2 SUPG stabilization method for time dependent problems

In this section we briefly introduce the SUPG method for time-dependent problems [3, 4, 31].
The idea is the same of the steady case: we have to add terms like s(0) and φ(0), defined in
(2.18) to the left-hand side and to the right-hand one of (3.9), respectively. More precisely,
the right-hand side term is the very same, whereas we have to slightly redefine the term s(0) in
order to consider the time dependence and to guarantee the strong consistency. We thus set

s(0)(vN (t), wN ) =
∑
K∈Th

δK

(
∂tv
N (t) + LvN (t),

hK
|β| (LSS + ρLS)wN

)
K

(3.45)

where vN (t) ∈ XN for each t ∈ I and wN ∈ XN .
We note that if either the coefficients of the equation or its domain are µ-dependent, then

the stabilization terms will depend on µ too, as we have actually shown in section 2.2.
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Assuming the parametric dependence, we can write the Backward Euler-SUPG formulation
as follows:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.
1

∆t
mstab(u

N j(µ)− uN j−1(µ), vN ;µ) + astab(u
N j(µ), vN ;µ) = g(tj)Fstab(v

N )

∀vN ∈ XN ,
given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN .

(3.46)

in which mstab, astab and Fstab are

mstab(v
N , wN ;µ) = m(vN , wN ;µ) +

∑
Ko(µ)∈Th,o(µ)

δKo(µ)

(
vN ,

hKo(µ)

|β(µ)|LSS w
N
)
Ko(µ)

astab(v
N , wN ;µ) = a(vN , wN ;µ) +

∑
Ko(µ)∈Th,o(µ)

δKo(µ)

(
LvN ,

hKo(µ)

|β(µ)|LSS w
N
)
Ko(µ)

Fstab(v
N ;µ) = F (vN ;µ) +

∑
Ko(µ)∈Th,o(µ)

δKo(µ)

(
f,
hKo(µ)

|β(µ)|LSS w
N
)
Ko(µ)

(3.47)
where Ko(µ) are the elements which form the mesh Th,o defined on the original domain Ωo

(see sections 1.1.1 and 2.2.2).
For the analysis of stability and convergence of this method, we refer to [3, 5, 29].

3.3 Numerical results

We are showing now some numerical tests of the stabilized RB method for parabolic PDEs.
The first one, discussed in section 3.3.1 is the time dependent version of the problem studied
in section 2.3, while the second test case, section 3.3.2, is a time-dependent Poiseuille-Graetz
problem.

3.3.1 A first time dependent test case

Let us denote with Ω the unit square in R2, and let us subdivide its boundary into five parts
Γi, i = 1, . . . , 5, as sketched in figure 3.1. Moreover, let us denote with I the time interval
[0, T ].

(0, 0) (1, 0)

(1, 1)(0, 1) Γ4

Γ1

Γ2

Ω Γ3

Γ5

Figure 3.1: Domain of the problem (3.48). On the blue sides we impose u = 0, while on the black ones u = g.
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Finally, let us define µ = (µ1, µ2), with µ1, µ2 ∈ R. The problem we are dealing with is
the following:

∂tu−
1

µ1
∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω× I

u(·, t;µ) = g(t) on Γ1 ∪ Γ2, ∀t ∈ I
u(·, t;µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5, ∀t ∈ I,
u(·, 0;µ) = 0 on Ω,

(3.48)

where g is a control function.
To build our approximation procedure, we first define a triangulation Th, with which we

can define the polynomial approximation space P1(Th) (see (2.17)). More precisely, we define
XN = P1(Th) ∩H1

0 (Ω). We can thus obtain the stabilized FE formulation (3.46) in which,
for all vN , wN ∈ XN , we have:

mstab(v
N , wN ;µ) =

∫
Ω
vNwN +

∑
K∈Th

hK
(
vN , (cosµ2, sinµ2) · ∇wN

)
K

astab(v
N , wN ;µ) =

∫
Ω

1

µ1
∇vN · ∇wN + (cosµ2, sinµ2) · ∇vN wN

+
∑
K∈Th

hK
(
(cosµ2, sinµ2) · ∇vN , (cosµ2, sinµ2) · ∇wN

)
K

Fstab(v
N ;µ) =

∑
K∈Th

hK
(
fh, (cosµ2, sinµ2) · ∇wN

)
K

(3.49)

where fh is a lifting function corresponding to the boundary condition u = 1 on ∂Ω. We recall
that, as we are using piecewise linear polynomials, we are allowed to omit the term containing
the laplacian into the stabilization term. It is evident from the previous definitions that we
have used a constant weighting

δK = 1 ∀K ∈ Th. (3.50)

The computations were performed using T = 2.5 and subdividing the time interval into
J = 50 time-steps. As regards the spatial discretization, we used a mesh with size h ≈ 0.03.
The dimension of the polynomial approximation space is N = 2605. The “tuning” parameter
M1 in the POD-greedy has been set using (3.29), assuming a tolerance εPODtol = 0.1. The
other “tuning” parameter, M2, has been chosen equal to 1. In table 3.1 we report informations
about the computational time. As in the steady case, we note that the variations of the
parameter µ2, that is the direction of the advection field, has stronger effect on the number
of reduced basis N than the variations of the Péclet number µ1. In figures 3.2 and 3.3 we
report some pictures of the RB solutions obtained for µ = (105, π6 ), using the parameter space
D = [104, 105]× [π6 ,

π
3 ]. More precisely, in figure 3.2, we show the RB solution (computed at

some time-steps) of (3.48) obtained using a constant control function g ≡ 1. In figure 3.3 we
show the solution corresponding to the control function g(t) = sin(4

5πt), for all t ∈ [0, T ].

3.3.2 Time dependent Poiseuille-Graetz problem

In this section we want to test the stabilized RB method for a time dependent Poiseuille-Graetz
problem [15,27, 45, 51]. We have already dealt with the steady case of this problem in section
2.2.2.
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t = 0.50

t = 1.00

t = 1.50

t = 2.00

t = 2.50

Figure 3.2: RB solution of (3.48), with
g(t) = 1 for all t ∈ [0, T ], for a parameter
value µ = (105, π

6
).

t = 0.50

t = 1.00s

t = 1.50

t = 2.00

t = 2.50

Figure 3.3: RB solution of (3.48), with
g(t) = sin( 4

5
πt) for all t ∈ [0, T ], for a pa-

rameter value µ = (105, π
6

).
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µ1 ∈ µ2 ∈ Offline time (s) N Online time (s)

{105} [π6 ,
π
3 ] 2346 28 0.100

[104, 105] [π6 ,
π
3 ] 2857 69 0.191

[104, 105] {π4 } 339 15 0.067

Table 3.1: First time dependent test case. Numerical tests

Let µ = (µ1, µ2) ∈ R2 such that µ1, µ2 > 0. For each value of the parameter µ, let Ωo(µ)
be the rectangle in R2 sketched in figure 3.4. We first subdivide Ωo(µ) into two subdomains,
Ωo 1(µ) and Ωo 2(µ), and then we subdivide the boundary ∂Ω into 6 parts Γo i, i = 1, . . . , 6.
We then define I the time interval [0, T ].

(0, 0) (1, 0) (1 + µ2, 0)

(1 + µ2, 1)(1, 1)(0, 1) Γo 6

Γo 1

Γo 2 Γo 3

Γo 5

Γo 4Ωo 1 Ωo 2

Figure 3.4: Domain of the problem (3.48). On the black sides we impose u = g1, whereas on the red ones
u = g2.

The problem is to find the temperature distribution u(µ) such that:

∂tu(µ)− 1

µ1
∆u(µ) + 4 y(1− y)∂xu(µ) = 0 in Ωo(µ)

u(·, t;µ) = g1(t) on Γo 1(µ) ∪ Γo 2(µ) ∪ Γo 6(µ), ∀ t ∈ I,
u(·, t;µ) = g2(t) on Γo 3(µ) ∪ Γo 5(µ), ∀ t ∈ I,
∂u

∂ν
(·, t;µ) = 0 on Γo 4(µ), ∀ t ∈ I,

u(·, 0;µ) = 1 on Ωo(µ).

(3.51)

where g1 and g2 are control functions.
Before introducing the FE formulation, we have to set some notation. First of all, we

chose a particular µ̄ ∈ D and we define the reference domain Ω = Ωo(µ̄). We coherently
define the reference subdomains Ωi = Ωo i, i = 1, 2, and the boundary regions Γi = Γo i(µ),
i = 1, . . . , 6. The reference domain can be mapped onto the original domain Ωo(µ), for each
µ ∈ D, using the transformation T (µ), introduced in section 2.2.2 by defining its restrictions
on the subdomains Ωi, i = 1, 2 (see (2.60) and (2.61)). Now, we build a triangulation T 1

h on
Ω1 and a triangulation T 2

h on Ω2 such that their union Th is a proper triangulation on Ω. We
can then define the approximation space XN = P1(Th) ∩H1

0 (Ω).
We define now the lifting of the boundary data, f1

h and f2
h , as functions in P1(Th) such

that:
f1
h |Γ1∩Γ2∩Γ6 ≡ 1 f2

h |Γ3∩Γ5 ≡ 1 (3.52)

Like in section 2.2.2, we can write the weak formulation of the problem (3.51) and then track
it back on the reference domain. We can thus obtain the following Backward-Euler/stabilized
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FE problem:

for each 1 ≤ j ≤ J , find uN j(µ) ∈ XN s.t.
1

∆t
mstab(u

N j(µ)− uN j−1(µ), vN ;µ) + astab(u
N j(µ), vN ;µ)

= g1(tj)F 1
stab(v

N ) + g2(tj)F 2
stab(v

N )

∀vN ∈ XN ,
given the initial condition uN 0 s.t.

(uN 0, vN )L2(Ω) = (u0, v
N )L2(Ω) ∀vN ∈ XN

(3.53)

where, in the left-hand side:

mstab(v
N , wN ;µ) =

∫
Ω1

vNwN +
∑
K∈T 1

h

hK

∫
K
vN∂xw

N

+

∫
Ω2

µ2

µ1
vNwN +

∑
K∈T 1

h

hK√
µ2

∫
K
vN∂xw

N

astab(v
N , wN ;µ) =

∫
Ω1

1

µ1
∇vN · ∇wN + 4 y(1− y)∂xv

N wN

+
∑
K∈T 1

h

hK

∫
K

(
4 y(1− y)∂xv

N ) ∂xwN
+

∫
Ω2

1

µ1µ2
∂xv
N∂yw

N +
µ2

µ1
∂xv
N∂yw

N + 4µ2 y(1− y)∂xv
N wN

+
∑
K∈T 2

h

hK√
µ

2

∫
K

(
4 y(1− y)∂xw

N ) ∂xvN .
(3.54)

and, concerning the right-hand side, we have:

F 1
stab(v

N ;µ) =− astab(f1
h , v
N ;µ)

F 2
stab(v

N ;µ) =− astab(f2
h , v
N ;µ),

(3.55)

for all vN , wN ∈ XN . The weighting has been chosen as in section 2.2.2.
In order to apply the RB method exposed in section 3.1, we exploit the linearity of the

problem and we consider the two problems:

for each 1 ≤ j ≤ J , find ϕN j(µ) ∈ XN s.t.
1

∆t
mstab(ϕ

N j(µ)− ϕN j−1(µ), vN ;µ) + astab(ϕ
N j(µ), vN ;µ) = g1(tj)F 1

stab(v
N )

∀vN ∈ XN ,
given the initial condition θuN 0

(3.56)

and

for each 1 ≤ j ≤ J , find ψN j(µ) ∈ XN s.t.
1

∆t
mstab(ψ

N j(µ)− ψN j−1(µ), vN ;µ) + astab(ψ
N j(µ), vN ;µ) = g1(tj)F 1

stab(v
N )

∀vN ∈ XN ,
given the initial condition (1− θ)uN 0,

(3.57)
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with θ ∈ [0, 1] to be set.
Obviously, if ϕN (µ) and ψN (µ) are solution of (3.56) and (3.57), respectively, then

ϕN (µ) +ψN (µ) is a solution of (3.53).
Once we have this “separation” of the problem, we can apply the RB method to (3.56)

and (3.57) separately. We then define the RB solution of (3.53) uNN (µ) := ϕNN (µ) + ψNN (µ).
Concerning the RB approximation error, the triangular inequality implies that:

|||uN (µ)− uNN (µ)|||t−dep ≤ |||ϕN (µ)− ϕNN (µ)|||t−dep + |||ψN (µ)− ψNN (µ)|||t−dep. (3.58)

In our numerical tests we have used D = [10000, 20000] × [0.5, 4], T = 5, J = 100 and
θ = 0. The dimension of the FE space is N = 1309 (h ≈ 0.06). The RB method yields
N1 = 98 basis for the problem (3.56) (Offline computational time: 5773 s) and N2 = 50 basis
for the problem (3.57) (Offline computational time: 1658 s). The tolerance on the greedy
algorithm is ε∗tol = 10−2.

In figure 3.5, we show the RB solution of (3.53) for µ = (15000, 2), computed at some
time steps. Here we used the following control functions:

g1(t) = e−t ∀t ∈ I,
g2(t) = 1 ∀t ∈ I. (3.59)

The a posteriori error estimator give the following result:

|||ϕN (µ)− ϕNN (µ)|||t−dep ≤ 0.058, |||ψN (µ)− ψNN (µ)|||t−dep ≤ 0.047, (3.60)

then for the total RB approximation error holds

|||uN (µ)− uNN (µ)|||t−dep ≤ 0.105. (3.61)

This error has the same order of magnitude as the time dependent SUPG approximation
error, which is bounded by C(h3 + ∆t2)

1
2 [29]. The computational time of the Online stage

is 0.255 s.
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t = 0.50

t = 1.00

t = 1.50

t = 2.00

t = 2.50

t = 3.00

t = 3.50

t = 4.00

t = 4.50

t = 5.00

Figure 3.5: Time dependent Poiseuille-Graetz problem. RB solution computed at some time steps.



Conclusions

In this thesis we have dealt with stabilization techniques for the approximation of the solution
of advection dominated problems using the reduced basis approach, in both steady and
unsteady case.

Concerning the steady case, we have carried out a comparison between two possible
stabilization techniques, an Offline-Online stabilization strategy and an Offline-only option.
In the former, we have used the same SUPG [48] stabilized bilinear form in both Offline and
Online stages, whereas in the latter we have performed the Offline stage using the SUPG
stabilized form and the Offline stage with the original (unstabilized) form. The underlying
idea was to obtain stable RB solution combining the stable reduced basis produced in the
Offline stage.

The Offline-Online strategy has turned out to be the best choice because it produces stable
RB solutions and also the a posteriori error estimators introduced in section 1.2.3 are still
effective. As regards the Offline-only method, we have observed strong instability phenomena
in the RB solution and we have showed that this is because of “inconsistency” problems arising
from the use of different bilinear forms in the two stages of the RB method. To carry out this
analysis, we have tested both method using test cases whose FE approximated solutions show
significant instability effects.

Having determined which stabilization strategy is the best one, we have tested it also using
the piecewise quadratic FE space as truth approximation space, instead of the usual piecewise
linear one, obtaining satisfactory results. We performed in particular some numerical test
on a problem with steep boundary layers and an internal layer that strongly depend on the
direction of the parametric advection field.

In the last part of our work, we have developed a stabilization strategy for the RB
approximation of time dependent advection dominated problems. The FE stabilization method
- on which our strategy has been based upon - is a time-dependent SUPG method [3, 4].
Considering what we have showed in the steady case, we have proposed to use the same
stabilized form in both Offline and Online stage. The method have been successfully tested
on some test problem, in particular on an unsteady Poiseuille-Graetz problem with time
dependent boundary conditions.

A natural continuation of this work can be the application of these stabilization strategies
to problems with more complex affine geometries, in order to understand if strong variations in
the shape of the domain can affect negatively the stabilized RB solution. Then, the next step
could be to use non-affinely parametrized geometries, which requires an empirical interpolation
pre-processing [1, 34], in order to obtain a suitable RB formulation.

The proposed tests and methodology could be also used as the first step to study non-linear
transport problems, i.e. Burgers’ equation.
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