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Abstract— Since the 1960sconsensus problems have puzzled
the minds of many researchers in fields ranging from computer
science to information aggregation. In this work, although
specifically addressing therendezvous problem for a team of
mobile robots, we develop a methodology that can also be
applied to other consensus problems, where optimality is imor-
tant and where non-holonomicity characterizes the systemta
hand. In particular, we consider a group of differential-wheeled |
robots endowed with noisy relative positioning capabilites. We L
develop a distributed, real-time optimization method basd on
a receding horizon controller that minimizes a user-defined @) (b)
cost V.Vh'lSt guaranteeing the rendezvpus. Flnally., we perfon Fig. 1. (a) A Khepera Il robot with a range and bearing modhitached.
experiments on real robots to confirm the validity of our  This range and bearing platform features sixteen infraigtit lemitting

approach. diodes and eight infrared light sensors. (b) The kinematindeh of a
differential-wheeled roboR,;.

I. INTRODUCTION . .
wheeled robots achieve the rendezvous under noisy measure-

The distributed convergence of mobile robots to a commoments. This approach and all previous approaches to solve
location in space is a line of research that started witthe rendezvous problem on nonholonomic mobile robots
the flock centeringrule of Reynolds [35] in 1987. Indeed, rely heavily on strict time-invariant controllers that le
this ability to meet or to rendezvous has many practicglotentially poor trajectories without consideration ofther
applications such as the docking of spacecrafts [15] qictuation constraints nor the energy spent. In this work, we
cooperative aerial surveillance [2]. It is worth noting tthaaddress this issue by allowing a user to specify a local
the rendezvous problem itself is part of a wider range afost function which has to be minimized whilst additional
problems better known as consensus problems. Althoughnstraints guarantee that the rendezvous happens even und
this paper specifically treats the rendezvous of diffeegnti noisy perception.
wheeled robots, its general concept may be applied to otherOn another front, a great body of literature starting
fields including, but not restricted to, formation contrb#],  with Meschler [27] in 1963 focuses on the optimization
flocking [10] or attitude alignment [33]. of the rendezvous maneuver, and although efforts to de-

To the best of our knowledge, it is only in 1999 thatcentralize the optimization approach using communication
the convergence of mobile robots to a common locatiobetween agents have been made [26], many works remain
in space was studied [1]. It was later extended for botbentralized [6, 28] and thus need global knowledge of the
synchronous and asynchronous cases by Lin et al. [22, 28}stem. We can also observe that most work, including [26],
Their robots, however, were holonomic and, as such, yieldege a predefined cost function (e.g., time optimality [27] or
simpler control laws and tractable convergence propertiefiel optimality [5]), and leave no design choices to the user
Solving the rendezvous with nonholonomic agents is moreinally, we note that, to date, no contribution has addisse
complex, and proving the convergence property can ktbe generation of real-time, optimal (or even sub-optimal)
difficult. Many contributions employeedback linearization rendezvous maneuvers on real mobile robots performing
to design relaxed control laws that recreate the holonomimisy positioning observations — neither from a theorética
properties [21, 34]; others create algorithms that are vemrpor from an experimental point of view. In this work, we
specific to their application needs [8, 9]; but all of thenyrel address this gap.
on deterministic assumptions both in terms of control ang p .

. Problem Formulation

input. o _ _

Recently, our previous work [18] incorporated insights We have a team ofV point-sized, differential-wheeled
gathered by research on tipeobabilistic consensugrob- FObotsRy, ..., Ry driven by the kinematic equations:
lem [3, 4, 12] to extract rules guaranteeing that diffetanti & = wu;cosb;

J; = u;sin; 1
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Planned trajectories
tational speed, and the vectat; = [z;,y;,6;]7 de-
fines the absolute pose or state of the rol®f as \
shown in Figure 1(b). The state of the all robots is Actual trajectory
stored in the vectox = [z1,y1,601,...,2N,yn,0n]T and t
the control inputs applied to the system are denoted by |F"St gfc'in 5 cy‘cle |
u = [uy,wi,...,un,wn]| . ' Third cycle
Each robotR; has a set of neighbot¥/; containing all 5! T |
robotsR; such that it can measure the relative rargg

and bearingy;;. Note that unless stated otherwise means Fig. 2. Receding horizon trajectorieR; plans an initial trajectory for the
i 5 nextI" seconds and executes that trajectblindly for the firsté seconds;

u;i(t), wi mean&’i_(t)* e;j means;; (t) anda;; meansu; (t). at that pointR1 plans a new trajectory (and so on).
Range and bearing measurements may be affected by noise

such that each observatiaf;(t) of R; at timet is defined

II. CENTRALIZED RECEDING HORIZON CONTROL

by the vector To solve our optimization problem (i.e., minimizing(-)
whilst guaranteeing the rendezvous, as seen in Section |-
2(t) = [%ij(t):| _ [eij(t) } +e, ) A), we will rely on what is known as receding horizon
’ ai; (1) o (t) control (RHC) [16]. RHC carries many names such as model

wheree, is a random noise vector. Hence at tigea robot predictive control (MPC) or real-time optimization (RTQY).
N ' is an advanced method, widely used in industry, that has

R; gathers an observation ligh(f) = {z;(1)|[R; € Ni}. o ability to use the available information on the system at
Our goal is to drive all robots to the same meeting pomai

) . jand to control it sub-optimally under a user-defined cost.
This rendezvous maneuver should be performed in re P y

. . . ) Ithough its requirements in terms of computing power are
time, and optimally given a user-defined cobfu). A user high [30], it has found many successful applications, in

may design the functional” as he/she wishes as long aSparticular when the underlying system to control has slow
it can be written as a sur[:fV J:(-) where 7;(-) should

. / cn/namics (i.e., in the order of minutes or seconds). The
only depend on values directly measurable (either througr . . . .
?cent advances in computing power have in part alleviated

sensors or communication) or calculable by each individu?hIS issue, but RHC reaches its limits when the underlying
robot R,;. Without loss of generality, throughout this paper ] . .
system is nonlinear and fast-changing.

we will use thz Bolza forrEs7(-) = [L()dt +V() 3.nd To ease our discussion, we first introduce a centralized
O i) MSTE L ) Bt et R pocy it soes ur prae (., ssuming lobl

N knowledge) without noisy measurements (i.e., we have ac-
(also calledsalvage terms cess to all measurable ranggs and bearingsy;;). Subse-
quently, Section Il will introduce an equivalent decefized
control that reduces the computing requirements linked to

Our network of robots can be seen as a graph containifgHC and generates real-time maneuvers that guarantee the

N elements and can be described by the tuple {V,£}, rendezvous even with noisy measurements.

where A. Standard Policy

>V ={Ry,...,Ry} is the vertex set and RHC is an optimization-based control that uses online,
> € = {erer = (Ri,Rj) = R; € Ni} is the edge set.  oiima) trajectory generation. The general idea is to plan a
A graph is said to beonnectedf for every vertex pair there feasible and sub-optimal trajectory over a finite time hamiz
exists a path from one vertex to the other. On a gr@ph T and to control the system (i.e., the robots) to follow this
one can define an adjacency matAxsuch that each of its trajectory over a period (0 < § < T). After § seconds, a
elementss;; is defined as new trajectory is recomputed from the current positionlunti
i time § + T and this trajectory is followed until tim2o. This
ai; = { 1 if e, = (RZ,RJ) e&

B. Graph Theory

_ ) cycle is repeated until the goal is reached. We denote such a
0 otherwise RHC with the symboR# (T, §). This process is schematized
in Figure 2, where robaR; plans during three cycles three
ajectories that are tracked sequentially.

In other words, at time, we need to solve the following
thimization problem:

A graph issymmetricif a;; = aj;.
In this work, we will consider a symmetric and connected"
graph defined byA. First, the notion of symmetric connec-
tion in a group of homogeneous robots does make sense
reality where, often, if a robdR,; can observe another robot L T+T
R, thenR, can observeR,. Second, there must exist a | M€ J(u) = /T L(t,x, u) ot + V(r+T, %) (3)
{oa';]h from e?cbh |r|0br(1)t to atr;]y otherhrobott{;)r the ren:jedZ\:;)tJhs where L(t,x,u) and ()
o happen globally, hence the graph must be connected. e ,
graph is composed of several independent units such thsat it i . Vit x).are defined by the user ®)
not connected, then each unit (or subgraph) can only achieve |Subject to  Equation 1 (6)
the rendezvous locally. uweld,xe X @)




wherel/ and X represent user-defined admissible sets foA. Standard Policy

the control inputs and state variables, respectively. Definition 1 [Prediction function] At any time-, each robot
This optimization should generate an optimal policyin - R, is capable of predicting the future local coordinates
the time intervallr, 7 + T7: y;; of each of its neighboring robd®; using aprediction
function f;;
u* = argminJ (u) (8) .
“ fij(T,t,U.i,Z?“T) = |:i;” ] (10)
Yij

that achieves the rendezvous as time reaches inﬁni\%’/h is the fi ; hich th dicti q
(t — o0) given a sampling timé@. According to Jadbabaie ere f Is the time for which the prediction needs to

et al. [19], the convergence of the robots to a commoh% made, u; is the cqntrol pollcy Of. robotR, and
rendezvous point is guaranteed for anyand T’ such that Zi = {Zi(t)]t € [0, 7]} is the list of all its past observa-
0 < & < T if and only if there exists a controf with 1ONS- The values;;, ;; are estimates of;;, y;; at timet
V(t,x) + L(t,x,1) < 0 and V() is a control Lyapunov with

function. Hence, a good choice of bof-) and V(-) is [%‘g} _ [Cosei —Sinei] {%‘ —xi] _ [Cosaij] €.

important and, thus, leaves the user with a difficult and [ Yij sinf; cosb; Yj —Yi sin o
constrained choice of the cost to minimize. Note that the prediction functiorf;; can be implemented

through Bayesian filtering. An example will be given in
B. Remarks Section IV using an extended Kalman filter (EKF).

Definition 2 [Unbiased prediction function] An unbiased

Apart from the difficulty mentioned above, this optimiza-prediction function f;; is defined such that, over all
tion strategy presents three cavedipit has a single point possible realizations of the observation ligt-™ and control
of failure, as its computation takes place on a single nodgaputs u;, its expected value at any timeis equal to the
(or robot), (ii) it assumes that communication is availablexctual local coordinates of robd; with respect toR;,
(to transmit the observations) and synchronized, @ijdthe Ey, z0-[fij (T, t, i, Z97)] = [245,:;]"- Additionally, we
dimensionality of the problem increases linearly with thgyi|l denote by the symbolF7 the set of all prediction
number of robots. Indeed, to solve this problem numericallynctions f,; such thatf;; is unbiased in the time set
one needs to parametrize the input space givenubyn 7 - - ' '
terms of a finite number of coefficients, which have to
be optimized. This can be achieved usi\ B-splines F7 = {fith € T, Ey, go.r[fij (T, t,wi, Z{-7)] = {x”]}
composed ofV, coefficients: ' Yij

c i l,k
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Theorem 1: Given a symmetric and connected group/of
By (1) T<t<ty differential-wheeled robotR 4, ..., Ry defined by the con-
nectivity matrix A, the receding horizon contr@® # (73, 6;),
u; = {“1] — : with T; > 0 and0 < ¢; < T;, that solves the following
optimization problem on each rob&;

>
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Brp(t)  tn—1 St <tn, o
' «%(ui):/
.

minimize L;(t,x;,u;) dt+V; (74T, x;) (11)
9)

whereB,, ,(t) is the B-spline basis function as defined in [7] where J;(u;) is a user-defined functional  (12)
with orderp, and all¢; are a priori fixed constants (other X; = {[@ij,giijj € N;} (13)
parametrization such as piecewise-constant or piecewise 0y fa o~ T

H 1] 7ta iaZi - 179 Yij 14
linear can also be used). Hence, there2a¥g NN parame- , fis(T .u ) = 245, 9] (14)
ters to optimize and, as such, the computation time to solveSuPject to  Equation 1 (15)
the minimization problem increases exponentially with the u; € Uy, x; € &; (16)
number of robots. fii € Flrr+d] (17)

N
I1l. DECENTRALIZED RECEDING HORIZON CONTROL such that 3k;;=k;; >Osatisfyingui:Zaijkij:Eij (18)
j=1
The main result of this paper ig contained in this section 3t > 7 satisfyingw;(t) # 0 (19)
where we address the aforementioned caveats, by proposing
a decentralized RHC. We initially prove the stability anc?r V€S the groupaimost surelyto a common rendezvous

convergence of this decentralized RHC that achieves tiRQInt ) : . .
rendezvous under any user-defined cost function. We thenPr(_)Of' Let us consider the stochastic Lyapunov candidate
propose a computationally efficient approach to solve eacHnction: N N

optimization cycle using the differential flatness propest V(e) = Z Zaijkije?j () (20)

our system of robots. i=1 j=1




wheree = [el,...,em]T with e, = e;; for each edge
e, = (Ri,R;) € £ and k;; a positive weight. It is clear
that V(0) = 0 when all inter-neighbor distances, are
0, for all R;,R,; € N; and V(e) > 0 otherwise. Hence,
according to [20], the system wiklmost surelyconverge

in Equation 9), we now need to optimize onBN,N,
coefficients locally on every robot, rather thaw, N.N on
a single robot. Still, a direct implementation of this RHC
requires the numerical integration of the kinematic differ
ential Equation 1. This extra computation can slow down

to a common rendezvous point if and only if the expectethe optimization by several orders of magnitude, which can
sequence of Lyapunov values decreases everywhere but atitiduce both delays as well as the violation of the optimality
rendezvous point (i.e., the expected value of the derigativof the prediction function (as the time range over which it

of V with respect to time is negativ&V] < 0 whene # 0
andE[V] = 0 whene = 0), and the network of robots is
connected.

By realizing thate;; = /(z; — 2:)® + (y; — v:)?, we

haveé;; = —u, cos a;; —u; cos aj; (using Equation 1). Thus,
) N N
V() =2 Z Z aijkijeijéij (21)
i=1 j=1
N N
= -2 Z Z aijuikij €45 COS Q5
i=1 j=1
N N
-2 Z Z ajiuikjieji COS (45 (22)
i=1 j=1

and sinceA is symmetric §;; = aj; and k;; = kj;) and
eij = ej;, we obtain

N N
V() = —4 E (173 E aijkijeij COS (45
i=1 Jj=1

N N
=—4> u; ¥ agkijzi; (23)
=1 j=1
which yields
. N N
E[V()] = —4ZE[Ui]Zaijkij$ij
i=1 =1

Ea 18 N N N

q. N

= —4 Z Z Qi kijE[,Tij] Z Qi kijxi]‘
i=1 \j=1 j=1

2

needs to be optimal gets larger). Hence, like in the NTG
software [29], one should map these dynamic constraints to
algebraic ones if the system is flat to ensure that the samplin
time ¢ is as small as possible (see [31] for a comparison of
the efficiency of this approach). This approach relaxes the
requirements on the prediction function and guarantees, in
practice, the convergence of the group of robots.

B. Differential Flatness

In this section, we show that the differential-wheeled tobo
with three inputs is aifferentially flatsystem [17] withx;
and y; as flat outputs. Indeed, from Equation 1, assuming
that robotR; moves forward, we can see that

Ty cos 0;
g ‘ :>9i:atan /iy L5 25
and that

4
b = u; costy = u; = — 26
i = i eos U= os@andgngy) 20
b= wi = wy = DY T (27)

i +y;

Equation 26 can also be solved with when cosf; = 0.
Hence, all the state variables, y; and 6; and the control
inputs u; andw; can be expressed by the trajectory of the
robot R, (given by z; and y;) and its derivatives if the
direction of motion is known. Note that if the robot moves
backward, we havé; = atan2y;, @;) + = instead.

C. Efficient Policy

Finally, to avoid the numerical integration of Equation 1,
and since the system is flat, it is preferable that each robot
R, directly optimizes its own trajectory:

N N
Eqiss—llz aijkija:ij L. . . T+T R N
=1 \j=1 minimize J; (X, X;, Xi):/Li(t, X;, - )dt+Vi(T+T, X;) (28)
<0 (24) where 7;(-) is a user-defined functional (29)
_ . . %; = {24, 955] Ry € N3} (30)
We notice thatE[V](0) = 0, but also thatZ[V](e) may be Fur(mtws, 297 = [, G0,]T (31)
zero whene # 0. However, the se§ = {e|E[V](e) = 0} . G\ & Wiy 2 ) = i Yig
does not contain any trajectories of the system, except theSUbject tou; € Ui, x; € &; (32)
trivial trajectory e(t) = 0, since Equation 19 guarantees fij € Flrr+dl (33)

that w;(t) # 0. Hence, according to the Krasovskii-LaSalle

N
principle, the continuous-time sequence of Lyapunov \&lue | such that3k;;=k;; >Osati5fyinguizzaijkiji'ij (34)

is a supermatingale and, thus, the systalmost surely

j=1

converges to a common rendezvous point. Note that the fii € Flrr+d] (35)
)

same proof hold wherk;;(t) is a positive scalar function
(kij (t) > 0,Vt € R). |

3t > 7 satisfyingw; (t) # 0 (36)

At the cost of adding a constraint, and if we parametrizevhereu; is given by Equations 26 and 27 and depends only

u; and w; using N, splines of N, coefficients (as shown

onx; = [z;,y]" and its derivatives.



& \ ‘?‘?c,(.h, @ Remark 5: The last condition given by Equation 19 is a
R~ "8e Uy . L. X
o%;a\ o o mild condition expressing that.a robot should eventually
%t 7 o, have a non-zero rotational motion. It ensures .that the ren-
oy @ y dezvous can happen by avoiding the degenerative case where
. : robots are simply moving forward and backward. In practice,
however, due to the observation noise, any control law that
may take non-zero rotational motion for a given set of local
\ . coordinates will eventually achieve the rendezvous ang, th

this condition can be safely ignored.

Fig. 3. This is a geometrical interpretation of the constraf Equation 18. Remark 6: Theorem 1 implicitly states that both the time
Robot R needs to move forward if it is below the projection Bfs on  horizon 7. and the sampling times; may be different
its current x-axis, that is:1; is positive for all robotsR; € N1, it needs t ! bots. H th ? d'z t dt fgoni
to move backward if the scalar product is negative and is toesove as amongst rono S ence, tnere is nc_) Irect need to syn_c oniz
it likes otherwise. the robots. This control strategy is fundamentally differe
Using B-spli ; - q bl from any distributed RHC approach where the original

SINg b-Splines 1o represent; and y; enables €asy puc computation would be distributed across robots and
computation of the derivatives and ensures the contindity Qould require a tight synchronization [11]. Our decentrai
the trajectory. The direction of motion &, is then selected approach, although less optimal than its centralized oBrsi

be}sed on Equation 34 for gach B-spline. Finally, we n.ote thg lows for a robust and totally asynchronous control, asd, a
this flatness parametrization reduces the computation tmg(;

S e will see in Section V, achieves good performance and
needed to solve our minimization problem by a factor o

. uarantees the rendezvous.
about a hundred (as hinted by [31]). Remark 7: Finally, it is worth mentioning thai) if the

prediction is perfect f;(-) = [zi;,v:5]7), this minimiza-

tion problem is equivalent to its centralized counterpart a
For completeness, we make a few remarks on TheoremjL: ZN J:(-), and (ii) if the time horizonT approaches

that highlight its usage and limitations. zer0 QJ_> 0,0 < § < T), Theorem 1 degenerates into

Remark 1: The condition given by Equation 35 requireSy,q hirg theorem of [18] which does not allow trajectory
that the prediction filter is optimal in the sense that th%ptimization.

estimation of the neighboring robot positions is unbiased
with respect to the observation and motion noise. V. | MPLEMENTATION ON REAL ROBOTS

Remark 2: Equation 18 might be hard to interpret as the |, s section, we address the implementation of our RHC
weight k;; may vary in time. In practice and although notg rea| robots. In particular, we will detail our strategy to

strictly equivalent, we can transform it into the geomettic ,ccqunt for delays induced by our real-time optimizatiod an
constraints shown in Figure 3. Given a fixed orientation for g, implementation of our prediction function.

robotR,;, one can separate the state space in three regions: a
forward motion region, a free region, and a backward motioA. Computational Delays

region._ The poundaries t_)etv_veen these. regions are given. bYin RHC, the optimized trajectory is followed during a
the neighboring robots yielding the projection on the xsaxitime § during which no feedback from the environment is
of robotR; that are the farthest away from each other. Thigpseryed. Afters seconds, feedback from the environment

D. Remarks

condition is equivalent to is incorporated to re-optimize the trajectory. In pragctice
u; >0 if ming,en; (&) > 0 Fhe amount of times dedicated to follow the trgjgctory
u; <0 if maxg,en; (&55) <0 (37) Is not fixed. Indeed, one often prefers to optimize the
u; € R otherwise trajectory as fast as possible and use the result as early as

possible. The sampling timé then directly relates to the

Remark 3: The choice ofif; and &; should not violate computation time needed to optimize the new trajectory. It
Equation 18. In other words, there should always be i clear that while the optimization takes place, the robot
solution to the minimization problem. continues to move according to the old trajectory which
Remark 4: Both Equations 35 and 18 may be replaced bynay result in a mismatch between the optimized position
a more general and less restrictive condition which onlnd the current position at the time when the optimization
requires the expected value of the forward motignio be 1S completed. Hence, the rob®; needs to reacquire (and

of the same sign as its equivalent noise-free control law: track) the optimized trajectory. To do so, it needs to know
its current position with respect to the desired new pasijtio

. . hereafter denoted by the coordinateg, y4). This can easily
kij > 0 s.t. SigHEy, 70~ [ui]) = SIgI‘(Z aijkijij ). be achieved by integrating the a(gpen-k))op controls or, for
=1 more precision, by using odometry measurements (in our
However, this condition is not practical and cannot bease given by wheel encoders which are deployed on most
directly used, as the true positions; of the neighboring differential-wheeled robots). Figure 4 shows a robot wigh i
robots are unknown. desired trajectory. According to the desired trajectoofat

N



e i . . .
Ll Old trajectory tions from time to time, thus
4 ~-|eL Desired trajectory

% ........ - Additionally, neighboring robots may share their observa-

hl(.Q)(xij) = {eﬂ ] = m T €
Qi atan2y;;, xi;) — 0i; + 7
(40)
i with eo ~ N(0, R2), and their forward and rotational control
:, inputs,
W (xi) = {uj ] + €3 (41)
wj

Fig. 4. Schema of the quantities used by the control law inaiqn 38
that enableR,; to reach a trajectory given by the virtual rod8t; (desired — with €3 ~ ./\/(()7 RB), using a wireless communication chan-
trajectory) after having followed the old trajectory fmo long nel

R,; should be located at the position indicated by the virtual 5) Kalmdar; F'lt_(;:'?r?: we tg:an (;omslrg thedaft;ove_obser—
robot referencdR,. R; is able to calculate the rangeand \éa 'En mo ei"Y' € ESF'OZO roboks, an” j» 9ven b
the bearingy to R,. Using the equations in Section I1I-B, the y qgat;ozrz)“; |nt(_)| an ' debncg_, given a Erewo_us (i i
robot can identify the orientationeg (with respect to itself), gervaﬂo_n i u'nt_l time T and by |scr.et|.zmg qganon
the forward motion:, and rotational motions, of Ry. Note (i.e., using Euler’s mtegratl.on), the pred|ct|on functiof the
that 3 is the bearing to the point located at a distatgu, local state ofR; made at timer for time ¢t + At becomes

in front of R;. We propose the following control law when fii (Tt 4 Atywg, Z0°7) = @ (t+ AL), §ij (t + AD)]T

R, moves forward:

with
{ZZ ; guzzg)sgi%ﬂ—pwd (38) Z;(t+ At) = Az cosdf + Aysin Af
! v y;(t + At) = Aycosdf — Axsin A
with K., K., K, and K all positive constants. An equiva- fij(t—kAt,qu) = éj (t+At) = éj(t) +w;(t)At — A
lent control law can be found wheR,; moves backward. a;(t+ At) = a;(t)
Although omitted here for conciseness, it can be shown 0i(t+ At) = @ (t)
that this control law is stable and converges to the desired R (42)
trajectory. where Az = T;(t) + G;(t) At cos(0;(t)) — ui(t) At,

This strategy bears resemblance to the third strategyy:;gj(t)+ﬁj(t)Atsin(éj(t)), Af = w;(t)At  and
proposed by Milam et al. [30] to account for computationAt is a constant time-step duration. For completeness, we
delays, with the exception that, instead of blindly appdyin state thepredicted estimate covariance
the optimized control inputs, we compute corrected control o . . T A
inputs based on the optimized trajectory using a trackingPij(HAt’xij) = Fij(t, %ij) Pij (¢, %) Fij (8, %) +Q (43)

layer. where P;;(t,%;;) is the covariance of the state estimate,
- , F;;(t,%;;) is the Jacobian matrix of;; (¢, %x;;) andQ is the
B. Prediction Function covariance of the process noise. We can now compose in

In this section, we detail our prediction function whichsuccession Equations 42 and 43 for several time-steps @nd ge
takes the form of an EKF. It takes the measurements a@dprediction of the future positions of neighboring robats a
control actions as input and yields an estimate of the musiti well as their associated uncertainties. For simplicity hage
of neighboring robots during the finite time horiz@h purposefully omitted theipdateequations of the EKF (that

1) Measurements:A robot R, will track its neigh- correct the estimat&; when a new measurement is made)
bors’ positions and speeds in its local coordinate fram@nd redirect the reader towards [25] for more information.
The local state of roboR; with respect toR; is then
Xij = [,Tij, Yij Oij, Uj, wj]T Whereéij = 9j —0;. In our case
study, three possible types of measurements are consideredn this section, we validate our approach by comparing

As stated in Section I-A, we have range and bearinﬁ with a reactive control law capable of achieving the
measurements given by: rendezvous. Simultaneously, we discuss the performance of

our system by analyzing the minimization of a specific user-
h(-l)(xij) - |:eij ] _ . /xgj 4 ygj defined cost function.
! ’ Qi atanZyij, !Tij) A. Setup

where ¢; = ¢, is distributed according to a multivari- Experiments were performed using Khepera Il
ate zero-mean normal distribution with covarianég: robots [32]. This robot has a diameter of 12 cm, making it
€1 ~ N (0, Ry). A measurement campaign performed in [18lappropriate for multi-robot indoor experiments. As shown i
confirms that the noise; is normally distributed with Figure 1(a), we equip each robot with a range and bearing
Ry ~[0.0221 —0.0011; —0.0011 0.0196]. module allowing for inter-robot positioning. The robots

V. EXPERIMENTS
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Fig. 5. Two runs performed on real robots using the predictiontroller 06| =
and tracked using SwisTrack. (a) The robots achieve theemodis —
Scenario (a). (b) The robots cross each other and rendezviistheir 0.4
desired goal positions — Scenario (c). (c) The two robotshi vertical 02
axis rendezvous whilst the other two cross the arena — Sce(@r ’ g
0
a b d

Scenario ©
are placed in a 83m? arena and we perform four sets of
experiments: Fig. 6. Boxplot of the absolute rotational motion of all redbdor all

. . cenarios. The scenario complexity increases from leftight.r The red
Scenario (a) Four robots are randomly placed n the areNdosses represent outliers. We can clearly see that the Ritfferforms the
and form a complete graph (all robots are neighbors)eactive controller both in terms of performance (minimigithe rotational
Their task is to perform the rendezvous. An example gfPeed) and robustness (lower variability).
trajectories obtained by the real robots on this scenario is

shown in Figure 5(a). , . . .
Scenario (b) Two robotsR, and R, are placed 2 meters the underlying graph defined kY). For brevity, we consider
apart, facing each other. Each robot has to reach tftat a roboR; is also able to observe and predict the position
initial location of the other robot. These locations carPf non-connected roboR; in its vicinity and denote the set

be formalized by 2 additional motion-less robdts and ©f @ll such robotsR; by O;. Referring to Equation 28, we
R4 (whose relative positions are artificially fed to theSet
robots). More formally, we have;(0) ~ [0.5,1.53,0]", L) =LV + @y 44
x2(0) =~ [2.5,1.47, 7T, x3(0) = [2.5,1.53,0]T, x4(0) = ) =L70) R% i () #9
[0.5, 1.47,0]T, U3 = Ug = wg =wyg =0 and/\/l = {R3}, (1) 9 12
N2 = {Ry}. This scenario not only tests how a user-defined Ly () = kg + kaw; (45)
cost (explained Iater)_can cope with obstacle_avmd_ande, buLZ(?)(,) — ks // P ([xvy]ij(t’ ), Py (t, .)) dxdy (46)
also how each robot is able to rendezvous with a fixed goal

[

position (given here by roboR3; andR,). zy]T€D
Scenario (c) Like the previous scenario but with four robots.  V;(-) = k4 Z ei; (T)? (47)
This is a complex crossing and is an effective test-bed for R;EN;

analyzing the ability to optimize the trajectories quickiy where (-, %)) is the multivariate Gaussian probability

examp!e pf trajectories _obtalned by the real robots on th'&ensity function with meam: and covariance, D is the
scenario is shown on Figure 5(b).

: . e : Euclidean disk of radiu@ R centered at zero ang is the
Scenario (d) This scenario involves two robots having to _ .
: . ) radius of a robot. We sét; = 0.1, ky = 3, k3 = 1/]0;| and
rendezvous and two other robots disturbing this rendezvous 91
maneuver by crossing the arena. An example of trajectoried

obtained by the real robots on this scenario is shown in Additionally, we add a constraint on the maximal wheel

Figure 5(c). speed @, = 3 rad/s):
The ground truth position and orientation of each robot f; = {u;|u; € [l|wi|/2 — rwmax, —l|wi|/2 + rwmax] },
is monitored with SwisTrack [24], an open-source tracking _ i
software. For each set of experiments, we do ten runs withnerel is the axle length. We pose no constraints on the
both thereactive controller proposed in [18] (on top of which Staté space (i,ed; = 0) and set the time horizoff’ to 3
we add an obstacle avoidance control as explained in [1ﬁ)300”d§'
and theRHC controller of Section 11I-C. Constants of both -~ Rrasults
controllers are tuned such that the average forward motion
is about 12 cm/s (about one robot size per second).

The absolute rotational speed of all robots observed every

tenth of a second is reported in Figure 6 for all scenarios
B. User-defined Cost and Constraints ) ) ]
1A poor choice of the cost function may result apparent deadlock
For the purpose of our experimental setup and as aituations (i.e., robots make very slow progress towards¢ndezvous). In

; ; such an eventuality, one can detect the deadlock by obsgethian forward
example, we deS|gn a local cost function for each rdRet motion and solve it by relaxing the user-defined constraistst or hard).

that_ 6.lCCOU_ntS for the energy spentin actuatlon and the fisk OZSinceui may take both positive and negative values and there are no
collision with robots that are not connected (in the sense @fate space constraints, this choicelff X; respects Remark 3.



and controllers in the form of boxplots. In our case, thei2]
rotational speed is a valid performance indicator, sinee th
forward speed was the same across controllers and scengg;
ios (i.e., u; is constant), all runs were collision-free (i.e.,
Lg)(-) < Lgl)(~)) and all rendezvous maneuvers succeeded
(i.e., ‘/z() — O) [14]

We can observe that, compared to the traditional reactive
controller, the rotational motion of the RHC is generally
smaller, hence the cost function is minimized. This resu[’ilS]
demonstrates the feasibility and the validity of our apploa [16]
under a wide range of test scenarios given a specific user-
defined cost. Additionally, the lower variability of the &t ;7
tional speed confirms the robustness of the RHC.

Finally, our approach allows to generate trajectories th&tel
are meaningful with respect to a user-defined cost function.
It can account for the motion of other robots (or elementg9]
detectable with any on-board sensors) in the environmeht an
plan accordingly whilst respecting mathematical guaresite [20]
on the achievement of the rendezvous.

21
VI. CONCLUSION 2

We presented a decentralized receding horizon contrgh;
capable of generating, in real-time, optimal rendezvous
trajectories for differential-wheeled robots under attwra 23]
constraints and noisy sensing. In particular, we guarantée
that robots will meet at a common location, independently of
the user-defined optimality criterion. All properties wete- [24]
cessfully demonstrated on a real hardware platform, namer
the Khepera Il robot.
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