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Abstract— Since the 1960s,consensus problems have puzzled
the minds of many researchers in fields ranging from computer
science to information aggregation. In this work, although
specifically addressing therendezvous problem for a team of
mobile robots, we develop a methodology that can also be
applied to other consensus problems, where optimality is impor-
tant and where non-holonomicity characterizes the system at
hand. In particular, we consider a group of differential-wheeled
robots endowed with noisy relative positioning capabilities. We
develop a distributed, real-time optimization method based on
a receding horizon controller that minimizes a user-defined
cost whilst guaranteeing the rendezvous. Finally, we perform
experiments on real robots to confirm the validity of our
approach.

I. I NTRODUCTION

The distributed convergence of mobile robots to a common
location in space is a line of research that started with
the flock centeringrule of Reynolds [35] in 1987. Indeed,
this ability to meet or to rendezvous has many practical
applications such as the docking of spacecrafts [15] or
cooperative aerial surveillance [2]. It is worth noting that
the rendezvous problem itself is part of a wider range of
problems better known as consensus problems. Although
this paper specifically treats the rendezvous of differential-
wheeled robots, its general concept may be applied to other
fields including, but not restricted to, formation control [14],
flocking [10] or attitude alignment [33].

To the best of our knowledge, it is only in 1999 that
the convergence of mobile robots to a common location
in space was studied [1]. It was later extended for both
synchronous and asynchronous cases by Lin et al. [22, 23].
Their robots, however, were holonomic and, as such, yielded
simpler control laws and tractable convergence properties.
Solving the rendezvous with nonholonomic agents is more
complex, and proving the convergence property can be
difficult. Many contributions employfeedback linearization
to design relaxed control laws that recreate the holonomic
properties [21, 34]; others create algorithms that are very
specific to their application needs [8, 9]; but all of them rely
on deterministic assumptions both in terms of control and
input.

Recently, our previous work [18] incorporated insights
gathered by research on theprobabilistic consensusprob-
lem [3, 4, 12] to extract rules guaranteeing that differential-
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Fig. 1. (a) A Khepera III robot with a range and bearing moduleattached.
This range and bearing platform features sixteen infrared light emitting
diodes and eight infrared light sensors. (b) The kinematic model of a
differential-wheeled robotRi.

wheeled robots achieve the rendezvous under noisy measure-
ments. This approach and all previous approaches to solve
the rendezvous problem on nonholonomic mobile robots
rely heavily on strict time-invariant controllers that yield
potentially poor trajectories without consideration of neither
actuation constraints nor the energy spent. In this work, we
address this issue by allowing a user to specify a local
cost function which has to be minimized whilst additional
constraints guarantee that the rendezvous happens even under
noisy perception.

On another front, a great body of literature starting
with Meschler [27] in 1963 focuses on the optimization
of the rendezvous maneuver, and although efforts to de-
centralize the optimization approach using communication
between agents have been made [26], many works remain
centralized [6, 28] and thus need global knowledge of the
system. We can also observe that most work, including [26],
use a predefined cost function (e.g., time optimality [27] or
fuel optimality [5]), and leave no design choices to the user.
Finally, we note that, to date, no contribution has addressed
the generation of real-time, optimal (or even sub-optimal)
rendezvous maneuvers on real mobile robots performing
noisy positioning observations — neither from a theoretical
nor from an experimental point of view. In this work, we
address this gap.

A. Problem Formulation

We have a team ofN point-sized, differential-wheeled
robotsR1, . . . , RN driven by the kinematic equations:







ẋi = ui cos θi
ẏi = ui sin θi
θ̇i = ωi

(1)

where ui = [ui, ωi]
T is the vector of control inputs,

with ui the linear translational speed andωi the ro-



tational speed, and the vectorxi = [xi, yi, θi]
T de-

fines the absolute pose or state of the robotRi, as
shown in Figure 1(b). The state of the all robots is
stored in the vectorx = [x1, y1, θ1, . . . , xN , yN , θN ]T and
the control inputs applied to the system are denoted by
u = [u1, ω1, . . . , uN , ωN ]T.

Each robotRi has a set of neighborsNi containing all
robotsRj such that it can measure the relative rangeeij
and bearingαij . Note that unless stated otherwise,ui means
ui(t), ωi meansωi(t), eij meanseij(t) andαij meansαij(t).
Range and bearing measurements may be affected by noise
such that each observationzij(t) of Rj at time t is defined
by the vector

zij(t) =

[

ẽij(t)
α̃ij(t)

]

=

[

eij(t)
αij(t)

]

+ ǫz (2)

whereǫz is a random noise vector. Hence at timet, a robot
Ri gathers an observation listZi(t) = {zij(t)|Rj ∈ Ni}.

Our goal is to drive all robots to the same meeting point.
This rendezvous maneuver should be performed in real-
time, and optimally given a user-defined costJ (u). A user
may design the functionalJ as he/she wishes as long as
it can be written as a sum

∑N
i Ji(·) whereJi(·) should

only depend on values directly measurable (either through
sensors or communication) or calculable by each individual
robotRi. Without loss of generality, throughout this paper,
we will use the Bolza formsJ (·) =

∫

L(·)dt + V (·) and
Ji(·) =

∫

Li(·)dt + Vi(·) whereL(·), Li(·) are immediate
cost functions andV (·), Vi(·) are terminal cost functions
(also calledsalvage terms).

B. Graph Theory

Our network of robots can be seen as a graph containing
N elements and can be described by the tupleG = {V , E},
where

⊲ V = {R1, . . . ,RN} is the vertex set and
⊲ E = {ek|ek = (Ri,Rj) =⇒ Rj ∈ Ni} is the edge set.

A graph is said to beconnectedif for every vertex pair there
exists a path from one vertex to the other. On a graphG,
one can define an adjacency matrixA such that each of its
elementsaij is defined as

aij =

{

1 if ek = (Ri,Rj) ∈ E
0 otherwise

.

A graph issymmetricif aij = aji.
In this work, we will consider a symmetric and connected

graph defined byA. First, the notion of symmetric connec-
tion in a group of homogeneous robots does make sense in
reality where, often, if a robotRi can observe another robot
Rj , then Rj can observeRi. Second, there must exist a
path from each robot to any other robot for the rendezvous
to happen globally, hence the graph must be connected. If the
graph is composed of several independent units such that it is
not connected, then each unit (or subgraph) can only achieve
the rendezvous locally.

R1
Actual trajectory

Planned trajectories

t

δ T

First cycle
Second cycle

Third cycle

Fig. 2. Receding horizon trajectories:R1 plans an initial trajectory for the
next T seconds and executes that trajectoryblindly for the firstδ seconds;
at that point,R1 plans a new trajectory (and so on).

II. CENTRALIZED RECEDING HORIZON CONTROL

To solve our optimization problem (i.e., minimizingJ (·)
whilst guaranteeing the rendezvous, as seen in Section I-
A), we will rely on what is known as receding horizon
control (RHC) [16]. RHC carries many names such as model
predictive control (MPC) or real-time optimization (RTO).It
is an advanced method, widely used in industry, that has
the ability to use the available information on the system at
hand to control it sub-optimally under a user-defined cost.
Although its requirements in terms of computing power are
high [30], it has found many successful applications, in
particular when the underlying system to control has slow
dynamics (i.e., in the order of minutes or seconds). The
recent advances in computing power have in part alleviated
this issue, but RHC reaches its limits when the underlying
system is nonlinear and fast-changing.

To ease our discussion, we first introduce a centralized
RHC policy that solves our problem (i.e., assuming global
knowledge) without noisy measurements (i.e., we have ac-
cess to all measurable rangeseij and bearingsαij ). Subse-
quently, Section III will introduce an equivalent decentralized
control that reduces the computing requirements linked to
RHC and generates real-time maneuvers that guarantee the
rendezvous even with noisy measurements.

A. Standard Policy

RHC is an optimization-based control that uses online,
optimal trajectory generation. The general idea is to plan a
feasible and sub-optimal trajectory over a finite time horizon
T and to control the system (i.e., the robots) to follow this
trajectory over a periodδ (0 < δ ≤ T ). After δ seconds, a
new trajectory is recomputed from the current position until
time δ+T and this trajectory is followed until time2δ. This
cycle is repeated until the goal is reached. We denote such a
RHC with the symbolRH(T, δ). This process is schematized
in Figure 2, where robotR1 plans during three cycles three
trajectories that are tracked sequentially.

In other words, at timeτ , we need to solve the following
optimization problem:
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∣

minimize J (u) =

∫ τ+T

τ

L(t,x,u) dt+ V (τ+T,x)

where L(t,x,u) and

V (t,x) are defined by the user

subject to Equation 1

u ∈ U ,x ∈ X

(3)

(4)

(5)

(6)

(7)



whereU and X represent user-defined admissible sets for
the control inputs and state variables, respectively.

This optimization should generate an optimal policyu
⋆ in

the time interval[τ, τ + T ]:

u
⋆ = argmin

u

J (u) (8)

that achieves the rendezvous as time reaches infinity
(τ → ∞) given a sampling timeδ. According to Jadbabaie
et al. [19], the convergence of the robots to a common
rendezvous point is guaranteed for anyδ and T such that
0 < δ ≤ T if and only if there exists a control̄u with
V̇ (t,x) + L(t,x, ū) ≤ 0 and V (·) is a control Lyapunov
function. Hence, a good choice of bothL(·) and V (·) is
important and, thus, leaves the user with a difficult and
constrained choice of the cost to minimize.

B. Remarks

Apart from the difficulty mentioned above, this optimiza-
tion strategy presents three caveats:(i) it has a single point
of failure, as its computation takes place on a single node
(or robot), (ii) it assumes that communication is available
(to transmit the observations) and synchronized, and(iii) the
dimensionality of the problem increases linearly with the
number of robots. Indeed, to solve this problem numerically,
one needs to parametrize the input space given byu in
terms of a finite number of coefficients, which have to
be optimized. This can be achieved usingNb B-splines
composed ofNc coefficients:

ui =

[

ui

ωi

]

=



































Nc
∑

k=1

[

C1,k
u,i

C1,k
ω,i

]

Bk,p(t) τ ≤ t < t1

...
Nc
∑

k=1

[

CNb,k
u,i

CNb,k
ω,i

]

Bk,p(t) tNb−1 ≤ t ≤ tNb

(9)
whereBk,p(t) is the B-spline basis function as defined in [7]
with order p, and all ti are a priori fixed constants (other
parametrization such as piecewise-constant or piecewise-
linear can also be used). Hence, there are2NbNcN parame-
ters to optimize and, as such, the computation time to solve
the minimization problem increases exponentially with the
number of robots.

III. D ECENTRALIZED RECEDING HORIZON CONTROL

The main result of this paper is contained in this section
where we address the aforementioned caveats, by proposing
a decentralized RHC. We initially prove the stability and
convergence of this decentralized RHC that achieves the
rendezvous under any user-defined cost function. We then
propose a computationally efficient approach to solve each
optimization cycle using the differential flatness property of
our system of robots.

A. Standard Policy

Definition 1 [Prediction function] At any timeτ , each robot
Ri is capable of predicting the future local coordinatesxij ,
yij of each of its neighboring robotRj using aprediction
functionfij

fij(τ, t,ui, Z
0..τ
i ) =

[

x̂ij

ŷij

]

(10)

where t is the time for which the prediction needs to
be made, ui is the control policy of robotRi and
Z0..τ
i = {Zi(t)|t ∈ [0, τ ]} is the list of all its past observa-

tions. The valueŝxij , ŷij are estimates ofxij , yij at time t
with
[

xij

yij

]

=

[

cos θi − sin θi
sin θi cos θi

] [

xj − xi

yj − yi

]

=

[

cosαij

sinαij

]

eij .

Note that the prediction functionfij can be implemented
through Bayesian filtering. An example will be given in
Section IV using an extended Kalman filter (EKF).
Definition 2 [Unbiased prediction function] An unbiased
prediction function fij is defined such that, over all
possible realizations of the observation listZ0..τ

i and control
inputs ui, its expected value at any timet is equal to the
actual local coordinates of robotRj with respect toRi,
Eui,Z

0..τ
i

[fij(τ, t,ui, Z
0..τ
i )] = [xij , yij ]

T. Additionally, we
will denote by the symbolFT the set of all prediction
functions fij such that fij is unbiased in the time set
T ⊆ R:

FT =

{

fij |∀t ∈ T ,Eui,Z
0..τ
i

[fij(τ, t,ui, Z
0..τ
i )] =

[

xij

yij

]}

Theorem 1: Given a symmetric and connected group ofN
differential-wheeled robotsR1, . . . ,RN defined by the con-
nectivity matrixA, the receding horizon controlRH(Ti, δi),
with Ti > 0 and 0 < δi ≤ Ti, that solves the following
optimization problem on each robotRi
∣
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minimize Ji(ui)=

∫ τ+T

τ

Li(t, x̂i,ui) dt+Vi(τ+T, x̂i)

where Ji(ui) is a user-defined functional

x̂i = {[x̂ij , ŷij ]
T|Rj ∈ Ni}

fij(τ, t,ui, Z
0..τ
i ) = [x̂ij , ŷij ]

T

subject to Equation 1

ui ∈ Ui,xi ∈ Xi

fij ∈ F [τ,τ+δ]

such that ∃kij=kji>0 satisfyingui=

N
∑

j=1

aijkij x̂ij

∃t ≥ τ satisfyingωi(t) 6= 0

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

drives the groupalmost surelyto a common rendezvous
point.

Proof: Let us consider the stochastic Lyapunov candidate
function:

V(e) =
N
∑

i=1

N
∑

j=1

aijkije
2
ij(t) (20)



where e = [e1, . . . , e|E|]
T with ek = eij for each edge

ek = (Ri,Rj) ∈ E and kij a positive weight. It is clear
that V(0) = 0 when all inter-neighbor distanceseij are
0, for all Ri,Rj ∈ Ni and V(e) > 0 otherwise. Hence,
according to [20], the system willalmost surelyconverge
to a common rendezvous point if and only if the expected
sequence of Lyapunov values decreases everywhere but at the
rendezvous point (i.e., the expected value of the derivative
of V with respect to time is negative,E[V̇] < 0 whene 6= 0
andE[V̇] = 0 when e = 0), and the network of robots is
connected.

By realizing thateij =
√

(xj − xi)2 + (yj − yi)2, we
haveėij = −ui cosαij−uj cosαji (using Equation 1). Thus,

V̇(·) = 2

N
∑

i=1

N
∑

j=1

aijkijeij ėij (21)

= −2

N
∑

i=1

N
∑

j=1

aijuikijeij cosαij

− 2

N
∑

i=1

N
∑

j=1

ajiuikjieji cosαij (22)

and sinceA is symmetric (aij = aji and kij = kji) and
eij = eji, we obtain

V̇(·) = −4

N
∑

i=1

ui

N
∑

j=1

aijkijeij cosαij

= −4

N
∑

i=1

ui

N
∑

j=1

aijkijxij (23)

which yields

E[V̇(·)] = −4

N
∑

i=1

E[ui]

N
∑

j=1

aijkijxij

Eq. 18
= −4

N
∑

i=1





N
∑

j=1

aijkijE[x̂ij ]









N
∑

j=1

aijkijxij





Eq. 35
= −4

N
∑

i=1





N
∑

j=1

aijkijxij





2

≤ 0. (24)

We notice thatE[V̇](0) = 0, but also thatE[V̇](e) may be
zero whene 6= 0. However, the setS = {e|E[V̇](e) = 0}
does not contain any trajectories of the system, except the
trivial trajectory e(t) = 0, since Equation 19 guarantees
that ωi(t) 6= 0. Hence, according to the Krasovskii-LaSalle
principle, the continuous-time sequence of Lyapunov values
is a supermatingale and, thus, the systemalmost surely
converges to a common rendezvous point. Note that the
same proof hold whenkij(t) is a positive scalar function
(kij(t) > 0, ∀t ∈ R).

At the cost of adding a constraint, and if we parametrize
ui and ωi using Nb splines ofNc coefficients (as shown

in Equation 9), we now need to optimize only2NbNc

coefficients locally on every robot, rather than2NbNcN on
a single robot. Still, a direct implementation of this RHC
requires the numerical integration of the kinematic differ-
ential Equation 1. This extra computation can slow down
the optimization by several orders of magnitude, which can
induce both delays as well as the violation of the optimality
of the prediction function (as the time range over which it
needs to be optimal gets larger). Hence, like in the NTG
software [29], one should map these dynamic constraints to
algebraic ones if the system is flat to ensure that the sampling
time δ is as small as possible (see [31] for a comparison of
the efficiency of this approach). This approach relaxes the
requirements on the prediction function and guarantees, in
practice, the convergence of the group of robots.

B. Differential Flatness

In this section, we show that the differential-wheeled robot
with three inputs is adifferentially flat system [17] withxi

and yi as flat outputs. Indeed, from Equation 1, assuming
that robotRi moves forward, we can see that

ẋi

ẏi
=

cos θi
sin θi

⇒ θi = atan2(ẏi, ẋi) (25)

and that

ẋi = ui cos θi ⇒ ui =
ẋi

cos(atan2(ẏi, ẋi))
(26)

θ̇i = ωi ⇒ ωi =
ẋiÿi + ẍiẏi
ẋ2
i + ẏ2i

. (27)

Equation 26 can also be solved witḣyi when cos θi = 0.
Hence, all the state variablesxi, yi and θi and the control
inputsui andωi can be expressed by the trajectory of the
robot Ri (given by xi and yi) and its derivatives if the
direction of motion is known. Note that if the robot moves
backward, we haveθi = atan2(ẏi, ẋi) + π instead.

C. Efficient Policy

Finally, to avoid the numerical integration of Equation 1,
and since the system is flat, it is preferable that each robot
Ri directly optimizes its own trajectory:
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minimizeJi(x̄i, ˙̄xi, ¨̄xi)=

∫ τ+T

τ

Li(t, x̂i, ·)dt+Vi(τ+T, x̂i)

whereJi(·) is a user-defined functional

x̂i = {[x̂ij , ŷij ]
T|Rj ∈ Ni}

fij(τ, t,ui, Z
0..τ
i ) = [x̂ij , ŷij ]

T

subject toui ∈ Ui,xi ∈ Xi

fij ∈ F [τ,τ+δ]

such that∃kij=kji>0 satisfyingui=

N
∑

j=1

aijkij x̂ij

fij ∈ F [τ,τ+δ]

∃t ≥ τ satisfyingωi(t) 6= 0

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

whereui is given by Equations 26 and 27 and depends only
on x̄i = [xi, yi]

T and its derivatives.
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Fig. 3. This is a geometrical interpretation of the constraint of Equation 18.
RobotR1 needs to move forward if it is below the projection ofR3 on
its current x-axis, that isx1j is positive for all robotsRj ∈ N1, it needs
to move backward if the scalar product is negative and is freeto move as
it likes otherwise.

Using B-splines to representxi and yi enables easy
computation of the derivatives and ensures the continuity of
the trajectory. The direction of motion ofRi is then selected
based on Equation 34 for each B-spline. Finally, we note that
this flatness parametrization reduces the computation time
needed to solve our minimization problem by a factor of
about a hundred (as hinted by [31]).

D. Remarks

For completeness, we make a few remarks on Theorem 1
that highlight its usage and limitations.
Remark 1: The condition given by Equation 35 requires
that the prediction filter is optimal in the sense that the
estimation of the neighboring robot positions is unbiased
with respect to the observation and motion noise.
Remark 2: Equation 18 might be hard to interpret as the
weight kij may vary in time. In practice and although not
strictly equivalent, we can transform it into the geometrical
constraints shown in Figure 3. Given a fixed orientation for a
robotRi, one can separate the state space in three regions: a
forward motion region, a free region, and a backward motion
region. The boundaries between these regions are given by
the neighboring robots yielding the projection on the x-axis
of robotRi that are the farthest away from each other. This
condition is equivalent to







ui > 0 if minRj∈Ni
(x̂ij) > 0

ui < 0 if maxRj∈Ni
(x̂ij) < 0

ui ∈ R otherwise
(37)

Remark 3: The choice ofUi and Xi should not violate
Equation 18. In other words, there should always be a
solution to the minimization problem.
Remark 4: Both Equations 35 and 18 may be replaced by
a more general and less restrictive condition which only
requires the expected value of the forward motionui to be
of the same sign as its equivalent noise-free control law:

∃kij > 0 s.t. sign(Eui,Z
0..τ
i

[ui]) = sign(
N
∑

j=1

aijkijxij).

However, this condition is not practical and cannot be
directly used, as the true positionsxij of the neighboring
robots are unknown.

Remark 5: The last condition given by Equation 19 is a
mild condition expressing that a robot should eventually
have a non-zero rotational motion. It ensures that the ren-
dezvous can happen by avoiding the degenerative case where
robots are simply moving forward and backward. In practice,
however, due to the observation noise, any control law that
may take non-zero rotational motion for a given set of local
coordinates will eventually achieve the rendezvous and, thus,
this condition can be safely ignored.
Remark 6: Theorem 1 implicitly states that both the time
horizon Ti and the sampling timeδi may be different
amongst robots. Hence, there is no direct need to synchronize
the robots. This control strategy is fundamentally different
from any distributed RHC approach where the original
RHC computation would be distributed across robots and
would require a tight synchronization [11]. Our decentralized
approach, although less optimal than its centralized version,
allows for a robust and totally asynchronous control, and, as
we will see in Section V, achieves good performance and
guarantees the rendezvous.
Remark 7: Finally, it is worth mentioning that(i) if the
prediction is perfect (fij(·) = [xij , yij ]

T), this minimiza-
tion problem is equivalent to its centralized counterpart as
J =

∑N
i Ji(·), and (ii) if the time horizonT approaches

zero (T → 0, 0 < δ ≤ T ), Theorem 1 degenerates into
the third theorem of [18] which does not allow trajectory
optimization.

IV. I MPLEMENTATION ON REAL ROBOTS

In this section, we address the implementation of our RHC
on real robots. In particular, we will detail our strategy to
account for delays induced by our real-time optimization and
the implementation of our prediction function.

A. Computational Delays

In RHC, the optimized trajectory is followed during a
time δ during which no feedback from the environment is
observed. Afterδ seconds, feedback from the environment
is incorporated to re-optimize the trajectory. In practice,
the amount of timeδ dedicated to follow the trajectory
is not fixed. Indeed, one often prefers to optimize the
trajectory as fast as possible and use the result as early as
possible. The sampling timeδ then directly relates to the
computation time needed to optimize the new trajectory. It
is clear that while the optimization takes place, the robot
continues to move according to the old trajectory which
may result in a mismatch between the optimized position
and the current position at the time when the optimization
is completed. Hence, the robotRi needs to reacquire (and
track) the optimized trajectory. To do so, it needs to know
its current position with respect to the desired new position,
hereafter denoted by the coordinates(xd, yd). This can easily
be achieved by integrating the open-loop controls or, for
more precision, by using odometry measurements (in our
case given by wheel encoders which are deployed on most
differential-wheeled robots). Figure 4 shows a robot with its
desired trajectory. According to the desired trajectory, robot



Ri

RdRd

Desired trajectory
Old trajectory

e⊥

e‖

eθ

e

β
α

Kfudωd

Fig. 4. Schema of the quantities used by the control law in Equation 38
that enableRi to reach a trajectory given by the virtual robotRd (desired
trajectory) after having followed the old trajectory fortoo long.

Ri should be located at the position indicated by the virtual
robot referenceRd. Ri is able to calculate the rangee and
the bearingα toRd. Using the equations in Section III-B, the
robot can identify the orientation−eθ (with respect to itself),
the forward motionud and rotational motionωd of Rd. Note
thatβ is the bearing to the point located at a distanceKfud

in front of Rd. We propose the following control law when
Rd moves forward:

{

ui = Kue cosα+ ud

ωi = Kωe sinα+Kbβ + ωd
(38)

with Ku, Kω, Kb andKf all positive constants. An equiva-
lent control law can be found whenRd moves backward.
Although omitted here for conciseness, it can be shown
that this control law is stable and converges to the desired
trajectory.

This strategy bears resemblance to the third strategy
proposed by Milam et al. [30] to account for computation
delays, with the exception that, instead of blindly applying
the optimized control inputs, we compute corrected control
inputs based on the optimized trajectory using a tracking
layer.

B. Prediction Function

In this section, we detail our prediction function which
takes the form of an EKF. It takes the measurements and
control actions as input and yields an estimate of the position
of neighboring robots during the finite time horizonT .

1) Measurements:A robot Ri will track its neigh-
bors’ positions and speeds in its local coordinate frame.
The local state of robotRj with respect toRi is then
xij = [xij , yij , θij , uj, ωj ]

T whereθij = θj −θi. In our case
study, three possible types of measurements are considered.

As stated in Section I-A, we have range and bearing
measurements given by:

h
(1)
i (xij) = zij =

[

eij
αij

]

=

[ √

x2
ij + y2ij

atan2(yij , xij)

]

+ ǫ1 (39)

where ǫ1 = ǫz is distributed according to a multivari-
ate zero-mean normal distribution with covarianceR1:
ǫ1 ∼ N (0, R1). A measurement campaign performed in [18]
confirms that the noiseǫ1 is normally distributed with
R1 ≈ [0.0221 − 0.0011; − 0.0011 0.0196].

Additionally, neighboring robots may share their observa-
tions from time to time, thus

h
(2)
i (xij) =

[

eji
αji

]

=

[ √

x2
ij + y2ij

atan2(yij , xij)− θij + π

]

+ ǫ2

(40)
with ǫ2 ∼ N (0, R2), and their forward and rotational control
inputs,

h
(3)
i (xij) =

[

uj

ωj

]

+ ǫ3 (41)

with ǫ3 ∼ N (0, R3), using a wireless communication chan-
nel.

2) Kalman Filtering: We can combine the above obser-
vation models with the motion of robotsRi andRj, given
by Equation 1, into an EKF. Hence, given all previous ob-
servationsZ0..τ

i until time τ and by discretizing Equation 1
(i.e., using Euler’s integration), the prediction function of the
local state ofRj made at timeτ for time t+∆t becomes

fij(τ, t+∆t,ui, Z
0..τ
i ) = [x̂ij(t+∆t), ŷij(t+∆t)]T

with

f̂ij(t+∆t, x̂ij) =























x̂j(t+∆t) = ∆x cos dθ +∆y sin∆θ
ŷj(t+∆t) = ∆y cos dθ −∆x sin∆θ

θ̂j(t+∆t) = θ̂j(t) + ω̂j(t)∆t−∆θ
ûj(t+∆t) = ûj(t)
ω̂j(t+∆t) = ω̂j(t)

(42)
where ∆x = x̂j(t) + ûj(t)∆t cos(θ̂j(t))− ui(t)∆t,
∆y = ŷj(t) + ûj(t)∆t sin(θ̂j(t)), ∆θ = ωi(t)∆t and
∆t is a constant time-step duration. For completeness, we
state thepredicted estimate covariance:

Pij(t+∆t, x̂ij) = Fij(t, x̂ij)Pij(t, x̂ij)F
T

ij(t, x̂ij)+Q (43)

where Pij(t, x̂ij) is the covariance of the state estimate,
Fij(t, x̂ij) is the Jacobian matrix of̂fij(t, x̂ij) andQ is the
covariance of the process noise. We can now compose in
succession Equations 42 and 43 for several time-steps and get
a prediction of the future positions of neighboring robots as
well as their associated uncertainties. For simplicity, wehave
purposefully omitted theupdateequations of the EKF (that
correct the estimatêxj when a new measurement is made)
and redirect the reader towards [25] for more information.

V. EXPERIMENTS

In this section, we validate our approach by comparing
it with a reactive control law capable of achieving the
rendezvous. Simultaneously, we discuss the performance of
our system by analyzing the minimization of a specific user-
defined cost function.

A. Setup

Experiments were performed using Khepera III
robots [32]. This robot has a diameter of 12 cm, making it
appropriate for multi-robot indoor experiments. As shown in
Figure 1(a), we equip each robot with a range and bearing
module allowing for inter-robot positioning. The robots
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Fig. 5. Two runs performed on real robots using the predictive controller
and tracked using SwisTrack. (a) The robots achieve the rendezvous —
Scenario (a). (b) The robots cross each other and rendezvouswith their
desired goal positions — Scenario (c). (c) The two robots in the vertical
axis rendezvous whilst the other two cross the arena — Scenario (d).

are placed in a 3×3m2 arena and we perform four sets of
experiments:
Scenario (a) Four robots are randomly placed in the arena
and form a complete graph (all robots are neighbors).
Their task is to perform the rendezvous. An example of
trajectories obtained by the real robots on this scenario is
shown in Figure 5(a).

Scenario (b) Two robotsR1 andR2 are placed 2 meters
apart, facing each other. Each robot has to reach the
initial location of the other robot. These locations can
be formalized by 2 additional motion-less robotsR3 and
R4 (whose relative positions are artificially fed to the
robots). More formally, we havex1(0) ≈ [0.5, 1.53, 0]T,
x2(0) ≈ [2.5, 1.47, π]T, x3(0) = [2.5, 1.53, 0]T, x4(0) =
[0.5, 1.47, 0]T, u3 = u4 = ω3 = ω4 = 0 andN1 = {R3},
N2 = {R4}. This scenario not only tests how a user-defined
cost (explained later) can cope with obstacle avoidance, but
also how each robot is able to rendezvous with a fixed goal
position (given here by robotsR3 andR4).

Scenario (c) Like the previous scenario but with four robots.
This is a complex crossing and is an effective test-bed for
analyzing the ability to optimize the trajectories quickly. An
example of trajectories obtained by the real robots on this
scenario is shown on Figure 5(b).

Scenario (d) This scenario involves two robots having to
rendezvous and two other robots disturbing this rendezvous
maneuver by crossing the arena. An example of trajectories
obtained by the real robots on this scenario is shown in
Figure 5(c).

The ground truth position and orientation of each robot
is monitored with SwisTrack [24], an open-source tracking
software. For each set of experiments, we do ten runs with
both thereactivecontroller proposed in [18] (on top of which
we add an obstacle avoidance control as explained in [13])
and theRHC controller of Section III-C. Constants of both
controllers are tuned such that the average forward motion
is about 12 cm/s (about one robot size per second).

B. User-defined Cost and Constraints

For the purpose of our experimental setup and as an
example, we design a local cost function for each robotRi

that accounts for the energy spent in actuation and the risk of
collision with robots that are not connected (in the sense of
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Fig. 6. Boxplot of the absolute rotational motion of all robots for all
scenarios. The scenario complexity increases from left to right. The red
crosses represent outliers. We can clearly see that the RHC outperforms the
reactive controller both in terms of performance (minimizing the rotational
speed) and robustness (lower variability).

the underlying graph defined byA). For brevity, we consider
that a robotRi is also able to observe and predict the position
of non-connected robotsRj in its vicinity and denote the set
of all such robotsRj by Oi. Referring to Equation 28, we
set

Li(·) = L
(1)
i (·) +

∑

Rj∈Oi

L
(2)
ij (·) (44)

L
(1)
i (·) = k1u

2
i + k2ω

2
i (45)

L
(2)
ij (·) = k3

∫∫

[x,y]T∈D

Φ
(

[x, y]T|fij(t, ·), Pij(t, ·)
)

dxdy (46)

Vi(·) = k4
∑

Rj∈Ni

eij(T )
2 (47)

where Φ(·|µ,Σ) is the multivariate Gaussian probability
density function with meanµ and covarianceΣ, D is the
Euclidean disk of radius2R centered at zero andR is the
radius of a robot. We setk1 = 0.1, k2 = 3, k3 = 1/|Oi| and
k4 = 2.1

Additionally, we add a constraint on the maximal wheel
speed (ωmax = 3 rad/s):

Ui = {ui|ui ∈ [l|ωi|/2− rωmax,−l|ωi|/2 + rωmax]},

where l is the axle length. We pose no constraints on the
state space (i.e.,Xi = ∅) and set the time horizonT to 3
seconds.2

C. Results

The absolute rotational speed of all robots observed every
tenth of a second is reported in Figure 6 for all scenarios

1A poor choice of the cost function may result inapparent deadlock
situations (i.e., robots make very slow progress towards the rendezvous). In
such an eventuality, one can detect the deadlock by observing the forward
motion and solve it by relaxing the user-defined constraints(soft or hard).

2Sinceui may take both positive and negative values and there are no
state space constraints, this choice ofUi, Xi respects Remark 3.



and controllers in the form of boxplots. In our case, the
rotational speed is a valid performance indicator, since the
forward speed was the same across controllers and scenar-
ios (i.e., ui is constant), all runs were collision-free (i.e.,
L
(2)
ij (·) ≪ L

(1)
i (·)) and all rendezvous maneuvers succeeded

(i.e., Vi(·) → 0).
We can observe that, compared to the traditional reactive

controller, the rotational motion of the RHC is generally
smaller, hence the cost function is minimized. This result
demonstrates the feasibility and the validity of our approach
under a wide range of test scenarios given a specific user-
defined cost. Additionally, the lower variability of the rota-
tional speed confirms the robustness of the RHC.

Finally, our approach allows to generate trajectories that
are meaningful with respect to a user-defined cost function.
It can account for the motion of other robots (or elements
detectable with any on-board sensors) in the environment and
plan accordingly whilst respecting mathematical guarantees
on the achievement of the rendezvous.

VI. CONCLUSION

We presented a decentralized receding horizon control
capable of generating, in real-time, optimal rendezvous
trajectories for differential-wheeled robots under actuation
constraints and noisy sensing. In particular, we guarantee
that robots will meet at a common location, independently of
the user-defined optimality criterion. All properties weresuc-
cessfully demonstrated on a real hardware platform, namely
the Khepera III robot.
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