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Abstract— The prospect of controlling devices merely by the
power of one’s thoughts is compelling, especially for assistive
technology applications. In the accompanying video, we show
how we have strived to push brain–computer interface (BCI)
technology out of the lab and into the real world, while
simultaneously moving away from testing solely with healthy
subjects to undertaking trials with patients and potential end–
users. We describe the evolution of the motor imagery based
BCI, which has resulted in a major milestone: the first patient
trial of a motor imagery based BCI controlled wheelchair.

I. INTRODUCTION

The Defitech Foundation Chair in Non-Invasive Brain-
Machine Interface (CNBI) performs research on the use of
human brain signals to control devices and software in order
to interact with the world. In this multidisciplinary area
of research, we draw upon our expertise in the the fields
of brain-computer interfaces (BCI) and adaptive intelligent
robotics. Our goal is to develop intelligent brain–actuated
devices that people can efficiently operate in a natural and
intuitive manner, over extended periods of time. Our brain–
actuated wheelchair is a flagship example of our efforts to
date and in the accompanying short film, we document its
brief history.

We begin by explaining the basic operating principles
of our motor-imagery based BCI. Then we reflect on the
milestones reached over the past 14 years. Throughout this
period we have been steadily pushing BCI technology in
two directions. Firstly, we have been striving to move it out
of the lab and into the real world. Secondly, we have been
committed to transferring the testing of the technology from
scientists and able–bodied subjects to patients, therapists and
potential end–users.

II. THE BRAIN COMPUTER INTERFACE

Our BCI, which is based on the imagination of move-
ments, is best conceptualised as a loop. We begin by record-
ing the electrical activity of the brain using scalp electrodes,
which is known as electroencephalography (EEG). Since the
brain signals are very weak and spread out as they pass
through the skull, we need to apply some spatial and spectral
filters to the EEG to extract characteristic features. Using
machine learning techniques, we are then able to discriminate
between different mental tasks, such as the imagination of
left or right hand movements. A number of these mental tasks
can then be associated with control commands. For example,
the imagination of left hand movement could indicate “turn
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left”, and similarly, right hand motor imagery could be
mapped to a “turn right” command. Once a command has
been executed, the user receives feedback and thus the loop
begins again.

III. BRAIN–CONTROLLED DEVICES

Although EEG–based BCIs are improving in terms of
accuracy, reliability and speed, they can pose a challenge
if one wishes to directly control a device for a prolonged
period of time. In the following few sections we describe
the milestones we have reached (in terms of moving the
BCI out of the lab and into the real world, away from
healthy test subjects and to patients and potential end–users)
and the evolution of techniques, such as shared control [1],
which have enabled us to overcome such challenges. Ethical
approval was granted by the relevant local committees for
each of the reported studies.

A. Simple Games

Once we were able to successfully discriminate between
different patterns of brain activity, we wanted to see if people
could learn to modulate their brain signals and use them as a
new interaction modality. Initially we tested our hypothesis
by associating different mental tasks with commands that
would move a cursor on a screen. However, this is not a par-
ticularly engaging experience, so we soon started exploring
the possibility of playing simple games. In the accompanying
video, we show clips of the game “Sisyphus”, where the user
had to perform motor imagery tasks in order to roll a cartoon
boulder up a hill [2]. The game was a useful training tool
that provided motivating feedback. Later, we were also able
to play the well–know game Pacman, by using our BCI to
issue discrete turning commands to the left and right [2].

B. Miniaturised Robots and Mazes

As already mentioned, our goal was to move BCIs from
the laboratory environment into the real world, so we began
to investigate more complex types of interaction. We showed
that we can use our BCI to directly control a tiny behaviour–
based robot and consequently navigate around a physical
maze [3]. To drive the robot, the user only needed to
issue high–level commands to change the behaviour of the
robot (e.g. turn left, move forward). The behaviour–based
controller guaranteed obstacle avoidance and smooth turns,
based upon its sensor readings. In particular, if the robot
deemed a specific mental command to be unsafe, based upon
its sensor data, the command would not be executed. This
asynchronous approach to BCI control proved to be sufficient
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to continuously manoeuvre the mobile robot along non–
trivial trajectories, which required fast and frequent switches
between the mental tasks. Two able–bodied subjects were
able to mentally drive the robot in a house–like environment,
moving between rooms as instructed [4]. At the same time,
we began to investigate, whether we could transfer these BCI
skills to the real–time control of a wheelchair, by performing
experiments in a simulated virtual reality environment [5].

C. Brain Controlled Wheelchairs

Driving a real wheelchair safely in more complex environ-
ments would be a highly demanding task for a BCI subject,
due for example, to the necessity of delivering commands
with precise timing. However, shared control techniques—
where the intelligent controller relieves the human from low
level tasks, without sacrificing the cognitive superiority and
adaptability of human beings—have been shown to signif-
icantly reduce workload, whilst simultaneously improving
task performance [1]. Therefore, shared control principles
were incorporated into the first motor–imagery brain con-
trolled wheelchair [6]. In other words, the shared control
paradigm includes two intelligent agents: the human user
and the robot, such that the user need only convey intentions,
which the robot interprets in the current context.

D. Into the Real World and with Patients

To tackle navigation in the real–world, we moved
away from artificially constructed environments to test our
wheelchair, but at the same time we faced new challenges.
An expensive laser scanner was no longer sufficient to
perceive the environment. For example the planar laser
scanner might see the legs of a table, but not the surface
and consequently, the wheelchair might try to drive straight
through it. Therefore, we developed sophisticated computer
vision algorithms that worked with off–the–shelf webcams
and combined this sensory information with an array of
sonars that we fed to our shared control algorithm [7].

Until this point, most of the BCI experiments described
above have been performed with healthy subjects. Also, there
is a large gap in the learning curve between controlling a
cursor on the screen and driving a BCI wheelchair. Therefore,
we have further developed our BCI robot in a telepresence
framework, such that users can practice driving safely and
get used to the notion of shared control, without having
to even leave their bed. We have found that on average,
six motor disabled patients were able to navigate using
our brain–controlled telepresence robot, at least as well as
our healthy control subjects and that we could reduce the
required cognitive workload [8], [9]

Finally, we have found that a motor–disabled patient in a
rehabilitation centre was able to drive our brain–controlled
wheelchair at least as well as four healthy subjects [9].
Furthermore, each driving task last between 5 and 10 min-
utes, which is a considerably long time to be continuously
controlling a BCI system.

IV. CONCLUSION
Our research is based on three core principles for brain-

computer interaction. First, we use asynchronous protocols,
where subjects decide voluntarily when to switch between
mental tasks, which they perform at their own pace, or rest.
Second, we employ mutual learning, where machine learn-
ing techniques are used to discriminate between different
patterns of brain signals and the appropriate feedback is
given to the user to help them to form mental models of
the system behaviour. Third, we use shared control, where
the user conveys high level mental commands to the robot,
which interprets and executes them in the most appropriate
way to achieve the goal. Through these principles, we have
shown that we can successfully push BCI technology out of
the lab and into the real world, where we can test not only
with healthy subjects, but also with patients and potential end
users. Finally we have demonstrated that our BCI wheelchair
can be driven successfully by a motor–disabled patient.
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