Jet: An Embedded DSL for High Performance Big Data
Processing

Stefan Ackermann
ETH Zarich
stefaack@student.ethz.ch

Vojin Jovanovi¢
.. EPFL, Switzerland
vojin.jovanovic@epfl.ch

Tiark Rompf
EPFL, Switzerland
tiark.rompf@epfl.ch

Martin Odersky
EPFL, Switzerland
martin.odersky@epfl.ch

ABSTRACT

Cluster computing systems today impose a trade-off be-
tween generality, performance and productivity. Hadoop
and Dryad force programmers to write low level programs
that are tedious to compose but easy to optimize. Systems
like Dryad/LINQ and Spark allow concise modeling of user
programs but do not apply relational optimizations. Pig and
Hive restrict the language to achieve relational optimiza-
tions, making complex programs hard to express without
user extensions. However, these extensions are cumbersome
to write and disallow program optimizations.

We present a distributed batch data processing framework
called Jet. Jet uses deep language embedding in Scala,
multi-stage programming and explicit side effect tracking
to analyze the structure of user programs. The analysis is
used to apply projection insertion, which eliminates unused
data, as well as code motion and operation fusion to highly
optimize the performance critical path of the program. The
language embedding and a high-level interface allow Jet pro-
grams to be both expressive, resembling regular Scala code,
and optimized. Its modular design allows users to extend Jet
with modules that produce good performing code. Through
a modular code generation scheme, Jet can generate pro-
grams for both Spark and Hadoop. Compared with naive
implementations we achieve 143% speedups on Spark and
126% on Hadoop.

Categories and Subject Descriptors
H.2.3 [Database Management|: Languages

General Terms
Languages, Performance

Keywords

Domain-specific Languages, Multi-stage Programming, MapRe-

duce, Operation Fusion, Projection Insertion

BigData ’12, August 31. 2012, Istanbul, Turkey

1. INTRODUCTION

Over the course of the past decade, numerous systems for
cluster computing on big data have been presented [10, 25,
20, 24, 12]. These systems’ programming model impose a
trade-off between generality, performance and productivity.
Systems like Hadoop MapReduce [3], and Dryad [14] provide
a low level general purpose programming model that allows
one to write fine grained and optimized code. However,
these low level optimizations greatly sacrifice productivity
[8]. Models like Spark [12], FlumeJava [8] and Dryad/LINQ
[25] provide high level operations and general purpose pro-
gramming models, but their performance is limited by glue
code between high level operations. Also, many relational
optimizations are impossible, due to a lack of knowledge
about the program structure.

Domain-specific approaches, like Pig [20] and Hive [24], have
a narrow, side-effect free and domain-specific interface that
allows one to be both productive and to benefit from rela-
tional optimizations with them. However, they come with
their own set of limitations. Their programming model is of-
ten too specific for a wide range of problems. This requires
one to write their own functions for general problems, which
is cumbersome to do and again hard to optimize, and is oth-
erwise a departure from the original programming model.
Moreover, there is the high overhead of learning a new lan-
guage. It is also hard to extend these frameworks with op-
timizations for a new domain.

Recently there have been several efforts aimed at making
programming distributed batch processing efficient, produc-
tive and general at the same time. Steno [19] implements
an innovative runtime code generation scheme that elimi-
nates iterators in Dryad/LINQ queries. It operates over flat
and nested queries and produces a minimal number of loops
without any iterator calls. Manimal [16] and HadoopToSQL
[15] apply byte code analysis, to extract information about
unused data columns and selection conditions. The reason
for doing this is to gain enough knowledge to apply common
relational database optimizations for projection and selec-
tion. However, since these solutions use static byte code
analysis they must be safely conservative which can lead to
missed optimization opportunities.

This paper presents Jet, a new domain-specific framework
for distributed batch processing that provides a high level
declarative interface similar to Dryad/LINQ and Spark. Jet

is built upon language virtualization [18] and lightweight
modular staging [21] (LMS), and has the same syntax and se-
mantics as the standard Scala programming language, with
only a few restrictions. Because Jet includes common com-
piler optimizations and relational optimizations, as well as
domain-specific optimizations, it produces efficient code which
closely resembles hand optimized implementations. Further-
more, it is designed in a composable and modular way - the
code generation is completely independent of the parsing
and optimizations - and allows extensions for supported op-
erations, optimizations and back-ends.

This paper makes following contributions to the state of the
art:

e We implement the Jet framework for distributed batch
data processing, which provides a general high level
programming model with carefully chosen restrictions.
These restrictions allow relational, domain-specific as
well as compiler optimizations, but do not sacrifice pro-
gram generality.

e We introduce a novel projection insertion algorithm
that operates across general program constructs like
classes, conditionals, loops and user defined functions.
It takes the whole program into account, and can safely
apply optimizations without being overly conservative
due to the available effect information.

e We show that Jet allows easy language extension and
code portability for distributed batch processing frame-
works.

In Section 2 we provide background on language virtual-
ization, LMS and distributed batch processing frameworks.
Then, in Section 3 we explain the programming model and
present simple program examples. In Section 4 we explain
the novel projection insertion optimization algorithm in Sec-
tion 4.1 and Section 4.2 explains the fusion optimization. We
evaluate Jet in 5 and discuss our approach in Section 6. Jet
is compared to state of the art in Section 7, future work is
in Section 8 and we conclude in Section 9.

2. BACKGROUND

In this section we explain language virtualization in Scala,
Lightweight Modular Staging (LMS) library [21, 22], opti-
mizations in LMS and distributed batch processing frame-
works relevant for this paper.

2.1 Virtualized Scala

Jet is written in an experimental version of Scala called Vir-
tualized Scala [18] which provides facilities for deep em-
bedding of domain-specific languages (DSLs). Deep em-
bedding is achieved by translating regular language con-
structs like conditionals, loops, variable declarations and
pattern matching to regular method calls. For example,
for the code if (c) a else b, the conditional is not ex-
ecuted but instead a method call is issued to the method
__ifThenElse(c, a, b). In case of deeply embedded DSLs
this method is overridden to create an intermediate repre-
sentation (IR) node that represents the if statement.

In Virtualized Scala, all embedded DSLs are written within
DSL scopes. These special scopes look like method invo-
cations that take one by name parameter (block of Scala
code). They get translated to the complete specification of
DSL modules that are used in a form of a Scala trait mix-in
composition!. For example: jetDSL{ \\ dsl code } gets
translated into: new JetDSL { def main(){...}} This
makes all the DSL functionality defined in JetDSL visible in
the body of the by name parameter passed to the jetDSL
method. Although modified, Virtualized Scala is fully bi-
nary compatible with Scala and can use all existing libraries.

2.2 Lightweight Modular Staging

Jet is built upon the Lightweight Modular Staging (LMS)
library. LMS utilizes facilities provided by Virtualized Scala
to build a modular compiler infrastructure for developing
staged DSLs. It represents types in a DSL with the poly-
morphic abstract data type Rep[T]. A term inside a DSL
scope that has a type Rep[T] declares that once the code
is staged, optimized, and generated, the actual result of the
term will have type T. Since Rep [T] is an abstract type, each
DSL module can specify concrete operations on it, which are
used for building the DSL’s intermediate representation.

Since Scala’s type system supports type inference and im-
plicit conversions, most of the Rep [T] types are hidden from
the DSL user. This makes the DSL code free of type in-
formation and makes the user almost unaware of the Rep
types. The only situation where Rep types are visible is in
parameters of methods and fields of defined classes. In our
experience with writing DSLs, Rep types do not present a
problem but gathering precise and unbiased information on
this topic is difficult.

The modular design of LMS allows the DSL developer to
arbitrarily compose the interface, optimizations and code
generation of the DSL. Module inclusion is simply done by
mixing Scala traits together. The correctness of the com-
position and missing dependencies are checked by the type
system. Code generation for a DSL is also modular, so the
effort is almost completely spent on domain-specific aspects.
LMS provides implementations for most of the Scala con-
structs and the most common libraries. This allows to make
DSLs that are fairly general — comparable to standard Scala.

Unlike Scala, which does not have an effect tracking mech-
anism, LMS provides precise information about the effect
for each available operation. The DSL developer needs to
explicitly specify the effects for each DSL operation he intro-
duces. The LMS effect tracking system then calculates the
effect summary for each basic block in the DSL code. This
allows the optimizer to apply code motion on the pure (side
effect free) parts of the code. All implementations for stan-
dard library constructs that LMS provides such as strings,
arrays, loops and conditionals, already include effect track-
ing.

LMS builds a complete intermediate representation of the
code, optimizes it, and then generates optimized code for
the chosen target language. The generated code has then to
be compiled itself, so it can be invoked. If the compilation

1Scala’s support for multiple inheritance

def parse(st: Rep[String]) = {

val sp = st.split("\\s")

Complex (Float(sp(0)), Float(sp(1)))
}
val x = new Array[Complex] (input.size)
for (i <- O to input.size) {

x(i) = parse(input(i))
}
for (i <- 0 to x.size) {

if (x(i).im == 0) println(x(i).re)
}

(a) Original program

val size = input.size
val re = new Array[Float](size)
val im = new Array([Float](size)
for (i <- 0 to size) {

val pattern = new Pattern("\\s")

val sp = pattern.split(input(i))

re(i) = Float(sp(0))

im(i) = Float(sp(1))
}
for (i <- 0 to size) {

if (x(i).im == 0) println(x(i).re)
}

(c) AoS — SoA

val size = input.size
val x = new Array[Complex](size)
for (i <- 0 to size) {

val pattern = new Pattern("\\s")
val sp = pattern.split(input(i))
x(i) = Complex(Float(sp(0)), Float(sp(1)))

for (i <- 0 to x.size) {

if (x(i).im == 0) println(x(i).re)

(b) CSE and inlining

val size = input.size
val pattern = new Pattern("\\s")

for (i <- 0 to size) {

val sp = pattern.split(input(i))
val im = Float(sp(1))
if (im == 0) A
val re = Float(sp(2))
println(re)

}

(d) Loop fusion and code motion

Figure 1: Step by step optimizations in LMS.

// creates the println statement in the IR
trait PrintlnExp extends BaseExp {
def println[T](st: Rep[String]) =
reflectEffect (PrintlnNode (st))
}
}

// code generator for println IR
trait PrintlnGen extends ScalaGen {
def emit(node: Rep[Any]) = node match {
case PrintlnNode(str) =>
println("println("+str+")")
}
}

Listing 1: Example of the DSL module used for
printing strings.

delay is deemed inappropriate for a certain use case, it is
possible to execute the code directly in Scala. A shallow DSL
embedding can be achieved this way, instead of building the
1R.

In Listing 1, we show a simplified version of a DSL module
for printing strings. In trait PrintlnExp we define how the
println operation builds the IR node. The reflectEffect
method defines that the println method has global side
effects which signals the compiler that it can not be re-
ordered with respect to other globally effectful statements
or be moved across control structures. In the PrintlnGen
trait, we define how the code for println is generated for
Scala.

Until now, LMS has been successfully used by Brown et al.
for heterogeneous parallel computing in project Delite [6,
23] and by Kossakowski et al. for a JavaScript DSL [13].

2.3 LMS Optimizations

When writing DSLs, the DSL authors can exploit their do-
main knowledge to apply high level optimizations and pro-
gram transformations. Afterwards, the program is usually
lowered to a representation closer to the actual generated
code. LMS provides a set of common optimizations for the
lowered code, which are: common subexpression elimination
(CSE), dead code elimination (DCE), constant folding (CF)
and function inlining. LMS also applies code motion, which
can either: i) move independent and side effect free state-
ments out of hot loops ii) move statements that are used
inside conditionals but defined outside closer to their use
site.

Another interesting optimization is the transformation of
an array of structural types to a structure of arrays (AoS
— SoA), each containing only primitive fields. This trans-
formation removes unnecessary constructor invocations and
enables DCE to collect unused fields of an structure. It
can be applied to built-in data structures like tuples as well
as immutable user-defined types. It is similar in effect to
column-oriented storage in databases and it gives great per-
formance and memory footprint improvements.

LMS also provides a very general mechanism for loop fu-
sion that uses standard loops as the basic abstraction. It is
better than existing deforestation approaches since it gener-
alizes to loops and can apply both vertical and horizontal fu-
sion. In vertical fusion, the algorithm searches for producer
consumer dependencies among loops, and then fuses their
bodies together. In horizontal fusion, independent loops of
the same shapes are fused together and index variables are
relinked to the fused loop’s index variable. Fusion greatly
improves performance as it removes intermediate data struc-
tures and uncovers new opportunities for other optimiza-
tions.

In Listing 1, we present these optimizations on a single ex-
ample which parses an array of complex numbers and prints
only the real parts of them. Step la) shows the original pro-
gram, step 1b) shows how CSE extracts size and inlining
replaces parse and split invocations with their bodies. In
step 1c) the array x of complex numbers is split into two
arrays of floating points. In step 1d) the loops are fused to-
gether, which then allows code motion to move the constant
pattern out of the loop and move the parsing of the real
component into the conditional. The intermediate arrays
are then removed by DCE.

2.4 Distributed Batch Processing Frameworks

Jet generates Scala code for Crunch [2] and Spark [12]. Crunch

uses Hadoop as the execution engine and provides a collection-
like interface, backed by a MSCR implementation as pre-
sented by Dean et. al. [8]. Crunch is implemented in Java
and provides a rather low level interface, the user must for
example specify the serialization for user classes.

Spark is a recent execution engine which makes better use
of the cluster’s memory, explicitly allowing the user to cache
data. This allows huge speedups on iterative jobs which can
reuse the same data multiple times compared to Hadoop.
Like Crunch it provides a collection-like interface, but it is
more high-level. Spark has support for multiple serializa-
tion frameworks and it also features a REPL for low latency
interactive data querying.

3. PROGRAMMING MODEL

The basic abstraction in our programming model is the in-
terface DCol1[T]. DColl[T] represents a distributed col-
lection of elements that have type S which is a subtype of
T. The elements of a DColl[T] collection are immutable,
so each operation on the list can only: i) produce a new
DColl, %) save it to persistent storage, 444) materialize it on
the master node or iv) return an aggregate value.

DColl operations are presented in Table 1. In the left col-
umn, we show which frameworks support which method.
The middle column shows the method name. Finally, the
right column contains the type of DColl that the operation
is called on, and return type of the operation.

Operations DColl() and save are used for loading and
storing data to the persistent storage. map, filter and
flatMap are standard methods for transforming the data
by applying the argument function. These can also be used
with Scala for comprehensions. Operations groupByKey,
join, cogroup, cross and reduce are applicable only if the
elements of DColl form a key/value pair. reduce is used for
general aggregation after the groupByKey, join, cogroup
and cross are different types of relational joins. sort sorts
the data set, partitionBy defines partitioning among ma-
chines, and cache signals that the data should be kept in
cluster memory for faster future accesses. Two DColls can
be concatenated by the ++ operation. A DColl can be ma-
terialized on the master node by calling materialize.

Some methods accept functions as their parameters. Code
within these functions can be either written in the Jet DSL,
or by using existing functions from an external library or

val read = DColl("hdfs://..." + input)
val parsed = read.map(WikiArticle.parse(_))
parsed.flatMap(_.plaintext.split("\\s"))
.map(x => (x, 1))
.groupByKey ()
.reduce(_ + _)
.save("hdfs://..." + output)

Listing 2: An example of a simple word count pro-
gram.

common JVM libraries. Using JVM libraries requires just
one extra line of code per method.

In Listing 2, we show an implementation of a simple word
count example. We notice that the code does not show any
Rep types. Since a large subset of the Scala library is imple-
mented as a DSL module, functions like split and string
concatenation are used the same way as they are in Scala.
In the second line, the regular (with arguments wrapped in
Rep) method parse is passed to the map method. Pig and
Hive do not have functions in their own language, but al-
low writing user defined functions in other languages which
requires a considerable amount of boilerplate code.

All methods except for cache and sort can be mapped to
methods in Spark and Crunch. Other back-ends (including
Dryad) provide these primitives as well. The cache method
currently works with Spark only but it can be added to the
interface of other back-ends, in which it would have no effect,
such that the code stays portable. From existing frameworks
today only HaLoop [7] and Twister [11] can benefit from it,
however we did not implement code generation for them.
Method sort is inconsistent in most of the frameworks so
we have not mapped uniformly to all of them. However,
with slight modifications to the framework implementations
it could be supported as well. sort can also be implemented
in Jet itself by using takeSample and partitionBy.

4. OPTIMIZATIONS

In this section we present the projection insertion and the
operation fusion optimizations implemented in Jet.

4.1 Projection Insertion

A common optimization in data processing is to remove in-
termediate values early that are not needed in later phases
of the computation. It has been implemented in relational
databases for a long time, and has recently been added to
the Pig framework. This optimization requires all field ac-
cesses in the program to be explicit. A library can provide
this, but its usage is more intrusive than if the framework
can use compiler support.

In Jet, we support this optimization for algebraic data types,
more specifically, final immutable Scala classes with a finite
level of nesting. Our approach does not require special syn-
tax or access operators and supports method declarations on
data types just like methods of regular Scala classes. While
implementing our benchmarks we found this to be a rea-
sonably expressive model for big data programming. The
DSL user needs to supply class declarations, from which we
generate all the necessary code for its use in Jet.

A projection insertion optimization needs to know about the

Framework | Operation

Transformation

DColl(uri: Rep[String]l)

save(uri: Rep[String])

map(f: Rep[T] => ReplU])

filter(f: Rep[T] => Rep[Boolean])
flatMap(f: Rep[T] => Repl[Iter[U]])
All groupByKey ()

cogroup (right: Rep[DColl[(K, W)II)
join(right: Rep[DColl[(K, W)11)
++(other: Rep[DColl[T]])
partitionBy(p: Rep[Partitioner[T]])
takeSample (p: Rep[Doublel)
materialize ()

reduce(f: (Rep[V], Rep[V]) => Repl[V])

String => DColl[T]

DColl[T] => Unit

DCol1[T] => DCollI[U]

DCol1[T] => DCollI[T]

DCol1[T] => DCollI[U]

DColl[(K, V)] => DColl[(K, Iter[V])]
DColl[(K, Iter[V])] => DColl[(K, V)]
DColl[(K, V)] => DColl[(K, (Iter([K], Iter[W]))]
DCol1l[(K, V)] => DColl[(K, (V, W))]
DCol1[T] => DColl1I[T]]

DCol1l[T] => DCollI[T]

DColl[T] => Iter[T]

DColl[T] => Iter[T]

Spark cache () DColl[T] => DColl[T]
P sortByKey(asc: Rep[Boolean]) DColl[(K <: Ordered, V)] => DColl[(K, V)]
Crunch sort(asc: Rep[Boolean]) DCol1l[T] => DColl[T]

Table 1: DColl operations and their framework support. For clarity reasons, Iter represents the Scala
Iterable and Rep[_] types in the rightmost column are omitted.

liveness of all fields it can possibly remove. We define such
a liveness analysis for each operation in our programming
model, we identify rules on how one operation influences
the liveness of fields. For operations that have a closure
parameter, all optimizations for structs present in LMS are
applied, and we can analyze the code after DCE has elimi-
nated unused fields.

By performing this analysis on each node in reverse topo-
logical order and propagating the liveness information to its
predecessors, we are able to perform removal of unused fields
in all operations. In a distributed program, the removal of
dead fields is especially important before an operation that
requires network transport of an object or stores it in mem-
ory. We call such an operation a barrier, and insert a pro-
jection which only contains the live fields before it.

Since we support nested classes of a finite level, the nested
fields of a class form a tree, and if a field in such a tree is
alive, it requires liveness of all its ancestors. We call the
path of a nested field to the root of the tree an access path,
and represent it using a string. The Figure 2 shows the
tree of nested fields for the class Tuple2[String, A]. The
nodes describe the class of a parents field, while the edges
represent the field name. The access path to each nested
field is formed by concatenating the edges with a separating
dot. In the Figure, the access path for the field id in class
B would be _2.b.id. For each edge in the data-flow graph
that our operations form, we need to compute the set of
access paths.

case class A(id: String, b: B)

case class B(id: String)

val t = ("tuple" s A("a" s B("b")))

t: scala.Tuple2[String, Al

1 String
Tuple2[String, A] 2 id _ String
-2, A /bv
T i

B —d> String

Figure 2: Visualization of the tree of fields for class
Tuple2[String, A].

For each operation, we need to define how the access paths
used by it are translated into the access paths it uses. For
this analysis we used following primitives:

e Access paths for a type: Given a type, this primitive
creates access paths for all the nested fields within it.
This primitive can for example be used to create the
set of access paths needed for a save operation. For
the class A, it returns the access paths id, b, b.id.

e Closure analysis: This primitive analyzes a closure and
returns a set of all access paths relative to that clo-
sure’s input type.

e Rewrite access paths: Several operations have seman-
tics which influence the type and therefore the access
paths. For example, the cache operation will always
have the same input and output type and is known
not to change any fields, so all access paths from its
successors must be propagated to its predecessors. The
groupByKey operation on the other hand always reads
all nested fields of the key, and has to rewrite all access
paths of the value.

e Narrow closure: Given a closure, this primitive re-
places the closure’s original output with a narrowed
one based on the access paths of its successors.

To analyze a map operation, we need to combine the narrow
closure and the closure analysis primitive. The optimiza-
tions in LMS ensure that the output symbol of a closure
is always a constructor invocation. We apply the narrow
closure primitive to create a new closure, in which the new
output reads from the old output only the live fields. LMS
recognizes when a field is read from a constructor invocation
in the same scope, and instead of generating an access for
a field, it returns that value directly. This happens for all
the fields, therefore the old constructor invocation will not
be read anymore, and DCE will remove it. This means that
the field values, which only it was reading, will also not be
read anymore, and they too will be eliminated. When the
closure has been cleaned of dead values, we can analyze this
new closure to get the access paths from it.

Operation Access path computation and propagation Barrier
filter P =S+ analyze(f)

map P = analyze(narrow(f))

groupByKey P = all(l,_1) + rewrite(S, _2.iterable.x = _2.x) v
join Pr, = all(1,-1) + rewrite(S, 2._1.x = _2.x), Pr = all(I,-1) 4+ rewrite(S, 2. 2.0 = 2.x) v
reduce P = rewrite(analyze(f),x = _2.iterable.x) + rewrite(S, 2.x = _2.iterable.x)

cache pP==S v
save P =all(1)

Table 2: Access path computation and propagation for selected operations.

Table 2 shows how relevant operations in Jet are analyzed
and how access paths are propagated. The first column is
the operation name, and the last column shows whether we
treat this operation as a barrier. In the middle column we
describe the rules for propagation of access paths. P and
S are the access path sets of the predecessor and successor.
analyze(f) analyzes the given closure f, narrow(f) narrows
it. rewrite(S, z.y = x.z) rewrites the access paths in S with
prefix x.y to have prefix z.z instead. I is the input element
type of the operation, and all(I) can be used to generate the
access paths.

4.2 Operation Fusion

In Section 3 we have shown that the DColl class provides
declarative higher-order operations. Closures passed to these
operations do not share the same scope of variables. This
reduces the number of opportunities for the optimizations
described in Section 2.3. Moreover, each data record needs
to be read, passed to and returned from the closure. In both
the push and the pull data flow model this enforces expen-
sive virtual method calls [19] for each data record processed.
To reduce this overhead and to provide more opportunities
for compiler optimizations we have implemented fusion of
the monadic operations map, flatMap and filter through
the underlying loop fusion algorithm described in Section
2.3.

The loop fusion optimization described in Section 2.3 sup-
ports horizontal and vertical fusion of loops as well as fusion
of nested loops. Also, it provides a very simple interface
to the DSL developer for specifying loop dependencies and
for writing fusible loops. We decided to extend the exist-
ing mechanism to the DColl operations although they are
not strictly loops. Alternatively, we could have taken the
path of Murray et al. in project Steno [19] by generating an
intermediate language which can be used for simple fusion
and code generation. Also, we could use the Coutts et al. [9]
approach of converting DCol1 to streams and applying equa-
tional transformation to remove intermediate results. After
implementing the algorithm by reusing the LMS loop fusion
we are confident that it required significantly less effort than
other alternatives.

Before the fusion optimization, the program IR represents
an almost one to one mapping to the operations in the pro-
gramming model. Each monadic operation is represented by
the corresponding IR node which carries its data and con-
trol flow dependencies and has one predecessor and one or
more successors. On these IR nodes we first apply a low-
ering transformation, which translates monadic operations
to their equivalent loop based representations. We show
the program translation for this transformation in Listing 3.
These rules introduce two new IR nodes: i) shape_dep(n,m)
that carries the explicit information about its vertical prede-

We define the set of program DColl nodes as D.
For n € D:
pred(n) gives the predecessor of the node in D
succ(n) returns a set of node successors in D
prevent_ fusion(n) = |succ(pred(n))| > 1
Lowering Transformations:
out = map(in, op) —
loop(shape_dep(in, prevent_fusion(in)), indez, {
yield(out, op(iterator_value(in)))
1)

out = filter(map, op) —
loop(shape_dep(in, prevent_fusion(in)), indez, {
if (op(iterator_value(in)))
yield(out, iterator_value(in))
)
out = flatMap(in,op) —
loop(shape_dep(in, prevent_fusion(in)), indez, {
w = op(iterator_value(in))
loop(w.size, index, {yield(out, w(indez))})

)

Figure 3: Operation lowering transformations.

cessor n and a prevent_fusion bit m, and) iterator_value
that represents reading from an iterator of the preceding
DColl. shape_dep replaces the shape variable (e.g. in.size)
of the loop IR node. The yield operation represents storing
to the successor collection and is used in the LMS fusion
algorithm for correct fusion of two loops.

For the back-end frameworks that Jet supports, the fusion
operation is not possible for all operations in the data-flow
graph. If one node has multiple successors, after fusion, it
would form a loop that yields values to multiple DCol1ls.
This would be possible for Hadoop, as it supports multiple
outputs in the map phase but is not currently supported
in Spark and Crunch. To prevent fusion of such loops we
added the prevent_fusion bit to the shape_dep node. We
also prevent horizontal fusion by making shape_dep nodes
always different in comparison.

After the lowering transformation, we apply the loop fusion
optimization from LMS. It iteratively fuses pairs of loops
for which the consumer does not have the prevent_fusion
bit set until a fixed point is reached. In each fusion itera-
tion all other LMS optimizations are applied as well. Af-
terwards, in the code generation layer for each back-end,
we specify how to compile loops with shape_dep nodes to
the most general operation (e.g. the Hadoop Mapper class)
that the framework provides. With this approach we could
also generate code directly for Hadoop MapReduce which
would result in a single highly optimized loop per Mapper.
However, after evaluation, we concluded that the gain is not
significant compared to using back-end with a higher-level
programming model. Therefore, as an alternative, we used
the Crunch framework.

3 4
g25
i n d
‘E 2 Hand Opt.
5 Naive
g
x 1.5 ® 1) Fusion + Projection
T | p8rs 187 2) 1+ Code Mation
E W 3) 2 + Opt. Split
g 0.5 4) 3 + Opt. Automaton
0 .

Crunch Spark
Figure 4: The Word count benchmark.

Unlike MapReduce based back-ends, Spark’s design uses the
pull data-flow model, implemented through iterators. When
generating code for the pull data-flow model from the loop
based model (push data-flow) we had to insert a buffer from
which data can be pulled by an iterator.

The overall effect of the fusion optimization is that it re-
moves all superfluous method calls and data structures from
the program. Additionally, fused operations provide more
opportunities for other compiler optimizations. This results
in generated programs which are very close to the hand op-
timized versions, although they were written in a high-level
declarative way. To our knowledge there are no distributed
batch processing frameworks that achieve this today.

5. EVALUATION

We evaluate the optimizations by comparing the perfor-
mance of three programs executed with different optimiza-
tions enabled: i) a word count with prior text processing, iz)
TPCH [5] query 12 and #4) a k-means application. To eval-
uate the extensibility of the framework we introduce a new
Jet module that represents vectors in the k-means bench-
mark.

All experiments were performed on the Amazon EC2 Cloud,
using 20 "ml.large” nodes as slaves and one as a master.
They each have 7.5 GB of memory, 2 virtual cores with 2
EC2 compute units each, 850 GB of instance storage dis-
tributed over 2 physical hard drives and they have a 1 Gb/s
network interface. Prior to the experiments we have mea-
sured up to 50 MB/s between two nodes. For the Hadoop
experiments we used the cdh3u4 Cloudera Hadoop distribu-
tion. On top of it we used Crunch version 0.2.4. We used
Whirr 0.7.1 [1] to set up the cluster, ensured that both hard
drives were used for the distributed file system and set the
setting to reuse the JVM for multiple map tasks. For bench-
marking Spark we used Spark version 0.5.0 for the tests, and
started the cluster using Spark’s EC2 script. For Spark we
had to tweak settings to ensure that the programs run cor-
rectly, including increasing the amount of available memory
to 6 GB and setting the parallelism to a value found after
experimentation.

While doing preliminary benchmarking we found some sim-
ple optimizations focused on regular expressions that we
needed to include in Jet in order to have a fair compari-
son against Pig, which contains them. We implemented a
fast splitter, which uses an efficient character comparison
whenever the regular expression allows this. Additionally,

based on the regular expression pattern we select between
Java’s implementation and the dk.brics.automaton library
[17].

For serialization of data we used Jet to generate specialized
code to achieve minimal overhead for Crunch. For Spark
we used the standard serialization mode which uses Kryo.
All benchmarks were run three times and in the figures we
present the average value. We also computed the standard
deviations, but we omitted them since they are smaller than
3% in all the experiments.

We made the Jet code, as well as the generated code, avail-
able on https://github.com/jet-framework/jet.

5.1 Parsing and Word Count

In this benchmark we evaluate the performance of Jet’s com-
piler optimizations without focusing on projection insertion.
We chose a word count application that, prior to the inex-
pensive network shuffle, parses the input with 5 regular ex-
pressions making this job CPU bound. For this evaluation
we start with a naive version of the program and add opti-
mizations one by one. We first add the operation fusion and
projection insertion optimizations. We then include code
motion that removes regular expression compilation out of
hot loops. Next we add the fast splitter and for the fully op-
timized version we also use the optimized automaton regular
expression library.

Our input is a 124 GB set of plain text version of Free-
base Wikipedia articles. The program uses five regular ex-
pressions to remove words of the input that were not parts
of the plain text in the article. This benchmark does not
benefit from projection insertion but we include it for the
comparison with the Pig framework in Section 5.3.

In Figure 4 we show the job times for these versions normal-
ized to the hand-optimized program version. Compared to
the naive version, the performance improvements of all op-
timizations combined range from 40% for Crunch to 143%
for Spark. The base performance of the frameworks differ
by a large margin for this benchmark. In Spark, we notice
larger benefits from our optimizations. We argue that it has
significantly smaller IO overhead so that the optimizations
have a bigger impact.

5.2 TPCH Query 12

This benchmark evaluates all optimizations combined but
emphasizes the projection insertion. We chose the TPCH
query 12 which includes an expensive join operation after
which only two columns of the original data are used, thus
giving projection insertion opportunity to eliminate unused
columns. We evaluate all optimizations separately and all
of them together and compare it to the naive version. As
the data set we use 200 GB plain text input generated by
the DbGen tool [5].

In Figure 5 we show job times for different optimizations
normalized to the naive program version on different frame-
works. We notice that projection insertion gives 30% per-
cent better performance on Crunch while on Spark the pro-
jection insertion improves the performance by 35%. Overall
our optimizations show speedups of 126% on Crunch and

2.5 -

E 2 W Hand Opt.
% Naive
‘g 15 m Opt. Split
E 3545 533s Projection
o 1
= B Fusion
g)
505 | Combined
=

O -

Crunch Spark
Figure 5: TPCH query 12 benchmark.

3 .
225 |
=
,g 2 W Hand Opt.
3
o Pi
£15 8
3 487 3545 = Crunch
= 1 W Spark
E
205

0 -

Word Count TPCH Q12

Figure 6: Comparison between the hand-optimized
Hadoop versions, Pig, Crunch and Spark.

75% on Spark over the naive version, and in this benchmark
our fastest version is almost as fast as the hand-optimized
Hadoop version (5% slower).

5.3 Comparison with Pig

In Figure 6 we compare the hand-optimized Hadoop and Pig
programs with our most optimized program versions tar-
geting Crunch and Spark. The y-axis is normalized to the
hand-optimized Hadoop and the overall job time is stated
above the bar.

We notice that our generated Crunch programs are faster
than Pig by 53% on TPCH query 12 and 65% on Wordcount.
For the word count benchmark even the naive version is
faster than Pig by 18%, we believe this to be due to the
high overhead of Pig’s String operators. We further see that
for TPCH query 12, the performance of our program version
is almost as fast as the hand-optimized Hadoop version.

For the sake of showing a comparison between the Hadoop
based frameworks and the Spark framework we include the
Spark results in the graph. Spark performs better for the
word count example, and performs worse than Crunch in the
TPCH benchmark. We are uncertain about the exact causes
of this behaviour. However, code portability of Jet can be
used to select the appropriate execution engine for each pro-
gram yielding even better performance improvements for a
specific program.

5.4 Extensibility

To evaluate the extensibility of Jet we decided to extend it
in two ways: with a high-performance abstraction for the k-

= =]

o w o

o o o
L 1 1

Job Time (Seconds)

%)
o
I

W Spark
I Jet

1000

o

10 100

Dimension
Figure 7: k-means benchmark.

means benchmark (Vector) and with a new code generator
that targets the Crunch framework.

The Vector module for k-means. We took a version of
Spark’s k-means [12] application and ported it to Jet. This
application can neither benefit from projection insertion nor
from operation fusion. The Spark code makes use of an ab-
straction for multi-dimensional points called Vector, which
uses iterators. We added a Vector module to Jet which
uses compiler support to generate efficient loops instead of
iterators. The implementation of the Vector module is 100
lines long and took one man day.

We evaluate the performance of our version against the orig-
inal Spark version. Because Spark is faster than Hadoop
for iterative programs, we only evaluate this benchmark on
Spark. As input we used synthetic data with 10 to 1000 di-
mensions, 100 centers and we keep the dimensions x points
factor constant so that each input file is around 20 GB.

Our results are similar to those described by Murray et al.
in [19]. In lower dimensions, our optimization shows sig-
nificant speedups, while for 1000 dimensions, performance
is slightly worse. We believe that the iterator overhead is
considerable when there are 10 dimensions, because after it-
erators are removed, performance is much better. At higher
dimensions it is possible that the JVM can do a better job
of optimizing if the code is smaller, since we observe that
our pre-optimized and larger code becomes slightly slower.
Regardless, our implementation still performs more consis-
tently for different dimensions.

The Crunch module. Initially we planned to support Hadoop
by generating code for the Scoobi [4] framework. We were
unsatisfied by its performance however, which lead us to
implement code generation for the Crunch framework. The
code for this module is only 300 lines long and the imple-
mentation took four man days.

6. DISCUSSION

The language we provide is the same as Scala in its basic
constructs, however it does not support all of the function-
alities. The following functionalities are not available:

e Subtype polymorphism (for user defined classes) is cur-
rently not supported.

e Jet can only apply optimizations on functions provided
as a DSL module for LMS.

One of the caveats of the staged DSL approach is that the
program staging, compilation, generation and compilation
of the generated code increases the startup time of the task.
For the benchmarks we tested this process takes between 4
and 14 seconds. Although this can be significant, it needs
to be done only once on a single machine so we believe it is
not a limiting factor for batch jobs.

The only case where compile time becomes relevant is with
back-ends that support interactive data analytics, like the
Spark framework. Spending more than a couple of seconds
for compilation would affect the interactivity.

In cases where the data processing time is comparable to
the user reaction time, the optimizations we perform are
not needed. We could implement a version of Jet that does
not perform staging but instead executes the original code
straight away. This feature is not implemented in Jet, but
Kossakowski et al. [13] have done this for a Javascript DSL.

Each job requires a framework-specific configuration for its
optimal execution (e.g. the number of mappers, reducers,
buffer sizes etc.). Our current API does not include tun-
ing of such parameters, but in the future work we want to
introduce a configuration part of the DSL to unify the con-
figuration of different back-ends.

7. RELATED WORK

Pig [20] is a framework for writing jobs for the Hadoop plat-
form using an imperative domain-specific language called
Pig Latin. Pig Latin’s restricted interface allows the Pig sys-
tem to apply relational optimizations that include operator
rewrites, early projection and early filtering to achieve good
performance. It has extensive support for relational oper-
ations and allows the user to choose between different join
implementations with varying performance characteristics.
Pig Latin users need to learn a new language which is not
the case with frameworks such as Hadoop, Hive and Crunch.
It does not include user defined functions, the user needs to
define them externally in another language, which will of-
ten prevent optimizations as Pig can not analyze those. Pig
Latin is not Turing complete as it does not include control
structures itself. The language is not statically type checked
so runtime failures are common and time consuming. Also,
Pig can not profit from the rich ecosystem of productivity
tools for Java.

Even though Jet also adopts a domain-specific approach, it
is deeply embedded in Scala, Turing complete and allows the
user to easily define functions which do not disable the op-
timizations. Currently Jet does not have support for many
relational optimizations. However, it includes compiler op-
timizations and it is extensible.

Steno [19] is a .NET library that, through runtime code
generation, effectively removes abstraction overhead of the
LINQ programming model. It removes all iterator calls
inside LINQ queries and provides significant performance
gains in CPU intensive jobs on Dryad/LINQ. Queries that

use Steno do not limit the generality of the programming
model but optimizations like code motion and early projec-
tion are not possible. Jet also removes excess iterator calls
from the code but during operation fusion it enables other
optimizations, especially when combined with projection in-
sertion. The drawback of Jet is that it is slightly limited in
generality.

Manimal [16] and HadoopToSQL [15] perform static byte
code analysis on Hadoop jobs to infer different program
properties that can be mapped to relational optimizations.
They both use the inferred program properties to build in-
dexes and achieve much more efficient data access patterns.
Manimal can additionally organize the data into columnar
storage. However, these approaches are limited by the in-
complete program knowledge which is lost by compilation
and runtime determined functions. They both do not re-
strict the programming model at all. Jet shares the idea
of providing code generality to these approaches. However,
it currently does not include data indexing schemes which
could enable big performance improvements. We believe
that the full type and program information available in Jet
will enable us to build better data indexing schemes for a
larger set of user programs.

8. FUTURE WORK

From the wide range of relational optimizations, Jet cur-
rently supports only projection insertion. In future work we
plan to introduce early filtering which will push filter oper-
ations in front of expensive operators that require a barrier.
Also, we plan to include a program analysis phase which will
allow building of indexes.

Text and XML processing are common in cluster computing
and optimizations for it can greatly reduce cost and energy
consumption. With that in mind we plan to integrate Jet
with other text parsing DSLs that exist in the Scala standard
library. If prototyping shows that performance gains are
significant, we will add DSL modules for regular expressions,
Scala parser combinators and the XML library.

Jet currently only operates on distributed data sets so pro-
grams written in it can not be used for in-memory data.
We plan to integrate Jet with the Delite [6] collections DSL
which supports very efficient execution of batch operations.
Delite also allows running queries on heterogeneous hard-
ware architectures where jobs are scheduled for execution
on both multi-core systems and GPUs.

9. CONCLUSION

We have presented the distributed batch data processing
framework Jet that provides an expressive high-level pro-
gramming model. Jet uses language virtualization, lightweight
modular staging and side effect tracking to analyze user pro-
grams at runtime. This allows Jet to apply projection in-
sertion, code motion as well as operation fusion optimiza-
tions to achieve high performance for declarative programs.
Through modular code generation Jet allows execution on
Spark and Crunch. Presented optimizations result in speedups
of up to 143% in Spark and up to 126% in Crunch.

Unlike existing domain-specific approaches Jet provides high-

performance, a general and expressive programming model
which is integrated into the Scala language. It allows high
performance user extensions and provides code portability
between different distributed batch data processing frame-
works.

10.

1]
2]

REFERENCES
Apache Whirr, http://whirr.apache.org/.
The Crunch framework,
https://github.com/cloudera/crunch.
The Hadoop framework, http://hadoop.apache.org)/.
The Scoobi framework,
https://github.com/nicta/scoobi.
TPC Benchmark™ of the Transaction Performance
Council, http://www.tpc.org/tpch/.
K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf,
H. Chafi, M. Odersky, and K. Olukotun. A
heterogeneous parallel framework for domain-specific
languages. In Parallel Architectures and Compilation
Techniques (PACT), 2011 International Conference
on, page 89-100, 2011.
Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.
HaLoop: efficient iterative data processing on large
clusters. Proceedings of the VLDB Endowment,
3(1-2):285-296, 2010.
C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R.
Henry, R. Bradshaw, and N. Weizenbaum. FlumelJava:
easy, efficient data-parallel pipelines. ACM SIGPLAN
Notices, 45(6):363-375, 2010.
D. Coutts, R. Leshchinskiy, and D. Stewart. Stream
fusion: From lists to streams to nothing at all. In ACM
SIGPLAN Notices, volume 42, page 315-326, 2007.
J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107-113, 2008.
J. Ekanayake, H. Li, B. Zhang, T. Gunarathne,
S. Bae, J. Qiu, and G. Fox. Twister: a runtime for
iterative MapReduce. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, HPDC ’10, page 810-818, New
York, NY, USA, 2010. ACM.
M. Z. et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of NSDI, 2012.
T. R. Grzegorz Kossakowski, Nada Amin and
M. Odersky. Javascript as an embedded DSL. In
ECOOP, pages 409-434, 2012.
M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, page 59-72, 2007.
M. Tu and W. Zwaenepoel. HadoopToSQL: a
mapReduce query optimizer. In Proceedings of the 5th
European conference on Computer systems, EuroSys
’10, page 251-264, New York, NY, USA, 2010. ACM.
E. Jahani, M. J. Cafarella, and C. Ré. Automatic
optimization for MapReduce programs. Proc. VLDB
Endow., 4(6):385-396, Mar. 2011.
A. Mgller. dk. brics. automaton—finite-state automata
and regular expressions for java, 2005.

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

A. Moors, T. Rompf, P. Haller, and M. Odersky.
Scala-virtualized. In Proceedings of the ACM
SIGPLAN 2012 workshop on Partial evaluation and
program manipulation, page 117-120, 2012.

D. G. Murray, M. Isard, and Y. Yu. Steno: automatic
optimization of declarative queries. In Proceedings of
the 82nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI 11, page
121-131, New York, NY, USA, 2011. ACM.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data, page 1099-1110, 2008.

T. Rompf and M. Odersky. Lightweight modular
staging: a pragmatic approach to runtime code
generation and compiled DSLs. In Proceedings of the
ninth international conference on Generative
programming and component engineering, page
127-136, 2010.

T. Rompf and M. Odersky. Lightweight modular
staging: a pragmatic approach to runtime code
generation and compiled DSLs. Communications of
the ACM, 55(6):121-130, 2012.

T. Rompf, A. Sujeeth, H. Lee, K. Brown, H. Chafi,
M. Odersky, and K. Olukotun. Building-blocks for
performance oriented dsls. Arziv preprint
arXiv:1109.0778, 2011.

A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,

N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using hadoop. In Data
Engineering (ICDE), 2010 IEEE 26th International
Conference on, pages 996 —1005, Mar. 2010.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson,
P. Gunda, and J. Currey. DryadLINQ: a system for
general-purpose distributed data-parallel computing
using a high-level language. In Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, page 1-14, 2008.

