
1

Is Non-Unique Decoding Necessary?
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Abstract

In multi-terminal communication systems, signals carrying messages meant for different destinations are often

observed together at any given destination receiver. Han and Kobayashi (1981) proposed a receiving strategy which

performs a joint unique decoding of messages of interest along with a subset of messages which are not of interest.

It is now well-known that this provides an achievable region which is, in general, larger than if the receiver treats

all messages not of interest as noise. Nair and El Gamal (2009) and Chong, Motani, Garg, and El Gamal (2008)

independently proposed a generalization called indirect or non-unique decoding where the receiver uses the codebook

structure of the messages to only uniquely decode its messages of interest. Non-unique (indirect) decoding has since

been used in various scenarios.

The main result in this paper is to provide an interpretation and a systematic proof technique for why indirect

decoding, in all known cases where it has been employed, can be replaced by a particularly designed joint unique

decoding strategy, without any penalty from a rate region viewpoint.

Index Terms

broadcast channel, joint decoding, non-unique decoding, indirect decoding.

I. INTRODUCTION

Coding schemes for multi-terminal systems with many information sources and many destinations try to exploit

the broadcast and interference nature of the communication media. A consequence of this is that in many schemes

the signals received at a destination carry information, not only about messages that are expected to be decoded at

the destination (messages of interest), but also about messages that are not of interest to that destination.

Standard methods in (random) code design (at the encoder) are rate splitting, superposition coding and Marton’s

coding [1], [2]. On the other hand, standard decoding techniques are successive decoding and joint unique decoding

schemes [1], [3]. In [3], Han and Kobayashi proposed a receiving strategy which performs a joint unique decoding

of messages of interest along with a subset of messages which are not of interest. We refer to a decoder with such

a decoding strategy, as a joint unique decoder. It is now well-known that employing such a joint unique decoder in
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the code design provides an achievable region which is, in general, larger than if the receiver decodes the messages

of interest while treating all messages not of interest as noise. Recently, Nair and El Gamal [4] and Chong, Motani,

Garg, and El Gamal [5] independently proposed a generalization called indirect or non-unique decoding where the

decoder looks for the unique messages of interest while using the codebook structure of all the messages (including

the ones not of interest). Such a decoder does not uniquely decode messages not of interest, though it might narrow

it to a smaller list. We refer to such a decoder, as an indirect decoder. Coding schemes which employ indirect

decoders have since played a role in achievability schemes in different multi-terminal problems such as [6], [7],

[8], [9], [10]. It is of interest, therefore, to see if they can achieve higher reliable transmission rates compared to

codes that employ joint unique decoders. In this paper, we develop our intuition and ideas within the framework of

[4]. While much of the discussion in this paper is confined to this framework, the technique applies more generally

to problems studied in [8], [9], [10], as we show in Section III.

In [4], the idea of indirect decoding is studied in the context of broadcast channels with degraded message

sets. Nair and El Gamal consider a 3-receiver general broadcast channel where a source communicates a common

message M0 to three receivers Y1, Y2, and Y3 and a private message M1 only to one of the receivers, Y1 (Fig. 1).

They characterize an inner-bound to the capacity region of this problem using indirect decoding and show its
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Fig. 1. The 3-receiver broadcast channel with two degraded message sets: message M0 is destined to all receivers and message M1 is destined

to receiver Y1

tightness for some special cases. It turns out that the same inner-bound of [4] can be achieved using a joint unique

decoding strategy at all receivers. The equivalence of the rate region achievable by indirect decoding and that of

joint unique decoding was observed in [4], but it was arrived at by comparing single letter expressions for the two

rate regions1. This led the authors to express the hope that in general such an equivalence may not exist.

In this paper we will provide an interpretation together with a proof technique which, we believe, systematically,

shows an equivalence between the rate region achievable through indirect decoders and joint unique decoders in

several examples. Our technique is based on designing a special auxiliary joint unique decoder which replaces

the indirect decoder and sheds some light on why this equivalence holds. This line of argument is applicable to

all known instances where non-unique (indirect) decoding has been employed in the literature, as we discuss in

1A similar equivalence was also noticed in [5], again by comparing single-letter expressions. Similarly, for noisy network coding [7], such

an equivalence is implied by the work of [11], [12], [13], [14].
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Section III. However, we would like to note that analysis using non-unique decoding can often give a more compact

representation of the rate-region – a fact observed in [4], [5] – which still makes it a valuable tool for analysis.

II. WHY JOINT UNIQUE DECODING SUFFICES IN THE INNER-BOUNDS OF NAIR AND EL GAMAL IN [4]

We start this section by briefly reviewing the work of [4] where inner and outer bounds are derived for the

capacity region of a 3-receiver broadcast channel with degraded message sets. In particular, we consider the case

where a source communicates a common message (of rate R0) to all receivers, and a private message (of rate R1)

only to one of the receivers. A coding scheme is a sequence of ((2nR0 , 2nR1), n) codes consisting of an encoder

and a decoder and is said to achieve a rate-tuple (R0, R1) if the probability of error at the decoders decays to zero

as n grows large.

Joint unique decoder vs. indirect decoder: We consider joint typical set decoding. A decoder at a certain

destination may, in general, examine a subset of messages which includes, but is not necessarily limited to, the

messages of interest to that destination. By the term examine, we mean that the decoder will try to make use of

the structure (of the codebook) associated with the messages it examines. We say a coding scheme employs a joint

unique decoder if the decoders tries to uniquely decode all the messages it considers (and declare an error if there

is ambiguity in any of the messages, irrespective of whether such messages are of interest to the destination or

not). In contrast, we say that a coding scheme employs an indirect decoder if the decoder tries to decode uniquely

only the messages of interest to the destination and tolerates ambiguity in messages which are not of interest.

Within this framework, Proposition 5 of [4] establishes an achievable rate region for the problem of 3-receiver

broadcast channel with degraded message sets. The achievability is through a coding scheme that employs an

indirect decoder. It turns out that employing a joint unique decoder, one can still achieve the same inner-bound of

[4]. In this section, we develop a new proof technique to show this equivalence systematically. The same technique

allows us to show the equivalence in all the examples considered in Section III.

A. Indirect decoding in the achievable scheme of Nair and El Gamal

The main problem studied in [4] is that of sending two messages over a 3-receiver discrete memoryless broadcast

channel p(y1, y2, y3|x). The source intends to communicate messages M0 and M1 to receiver 1 and message M0

to receivers 2 and 3. Rates of messages M0 and M1 are denoted by R0 and R1, respectively. In [4] an inner-bound

to the capacity region is proved using a standard encoding scheme based on superposition coding and Marton’s

coding, and an indirect (or non-unique) decoding scheme. We briefly review this scheme.

1) Random codebook generation and encoding: To design the codebook, split the private message M1 into

four independent parts, M10, M11, M12, and M13 of non-negative rates S0, S1, S2, S3, respectively. Let R1 =

S0 + S1 + S2 + S3, T2 ≥ S2 and T3 ≥ S3. Fix a joint probability distribution p(u, v2, v3, x).

Randomly and independently generate 2n(R0+S0) sequences Un(m0, s0), m0 ∈ [1 : 2nR0 ] and s0 ∈ [1 : 2nS0 ],

each distributed uniformly over the set of typical sequences Un. For each sequence Un(m0, s0), generate randomly

and conditionally independently (i) 2nT2 sequences V n2 (m0, s0, t2), t2 ∈ [1 : 2nT2 ], each distributed uniformly over
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the set of conditionally typical sequences V n2 , and (ii) 2nT3 sequences V n3 (m0, s0, t3), t3 ∈ [1 : 2nT3 ], each dis-

tributed uniformly over the set of conditionally typical sequences V n3 . Randomly partition sequences V n2 (m0, s0, t2)

into 2nS2 bins B2(m0, s0, s2) and sequences V n3 (m0, s0, t3) into 2nS3 bins B3(m0, s0, s3). In each product bin

B2(m0, s0, s2)×B3(m0, s0, s3), choose one (random) jointly typical sequence pair (V n2 (m0, s0, t2), V n3 (m0, s0, t3)).

If there is no such pair, declare an error whenever the message (m0, s0, s2, s3) is to be transmitted. Finally for each

chosen jointly typical pair (V n2 (m0, s0, t2), V n3 (m0, s0, t3)) in each product bin (s2, s3), randomly and conditionally

independently generate 2nS1 sequences Xn(m0, s0, s2, s3, s1), s1 ∈ [1 : 2nS1 ], each distributed uniformly over

the set of conditionally typical Xn sequences. To send the message pair (m0,m1), where m1 is expressed as

(s0, s1, s2, s3), the encoder sends the codeword Xn(m0, s0, s2, s3, s1).

2) Indirect decoding: Receiver Y1 jointly uniquely decodes all messages M0, M10, M11, M12, and M13.

Receivers Y2 and Y3, however, decode M0 indirectly. More precisely,

• Receiver Y1 declares that the message tuple (m0, s0, s2, s3, s1) was sent if it is the unique quintuple such that the

received signal Y n1 is jointly typical with (Un(m0, s0), V n2 (m0, s0, t2), V n3 (m0, s0, t3), Xn(m0, s0, s2, s3, s1)),

where index s2 is the product bin number of V n2 (m0, s0, t2) and index s3 is the product bin number of

V n3 (m0, s0, t3).

• Receiver Y2 declares that the message pair (M0,M10) = (m0, s0) was sent if it finds a unique pair of indices

(m0, s0) for which the received signal Y n2 is jointly typical with (Un(m0, s0), V n2 (m0, s0, t2)) for some index

t2 ∈ [1 : 2nT2 ]. Here, index s2 is the product bin number of V n2 (m0, s0, t2).

• Receiver Y3 is similar to receiver Y2 with V3, t3, and s3, respectively, instead of V2, t2 and s2.

The above encoding/decoding scheme achieves rate pairs (R0, R1) for which inequalities (1) to (12) below are

satisfied for a joint distribution p(u, v2, v3, x). The reader is referred to [4] for the analysis of the error probabilities.

Rate splitting constraints:

R1 = S0 + S1 + S2 + S3 (1)

T2 ≥ S2 (2)

T3 ≥ S3 (3)

S0, S1, S2, S3 ≥ 0 (4)

Encoding constraints:

T2 + T3 ≥ S2 + S3 + I(V2;V3|U) (5)

Joint unique decoding constraints at receiver Y1:

S1 ≤ I(X;Y1|U, V2, V3) (6)

S1 + S2 ≤ I(X;Y1|U, V3) (7)

S1 + S3 ≤ I(X;Y1|U, V2) (8)



5

S1 + S2 + S3 ≤ I(X;Y1|U) (9)

R0 + S0 + S1 + S2 + S3 ≤ I(X;Y1) (10)

Indirect decoding constraint at receiver Y2:

R0 + S0 + T2 ≤ I(U, V2;Y2) (11)

Indirect decoding constraint at receiver Y3:

R0 + S0 + T3 ≤ I(U, V3;Y3). (12)

B. Joint unique decoding suffices in the achievable scheme of Nair and El Gamal in [4]

Fix the codebook generation and encoding scheme to be that of Section II-A. We will demonstrate how a joint

unique decoding scheme suffices by following these steps:

(1) We first analyze the indirect decoder to characterize regimes where it uniquely decodes all the messages it

considers and regimes where it decodes some of the messages non-uniquely.

(2) For each of the regimes, we deduce that the indirect decoder may be replaced by a joint unique decoder.

For the rest of this section, we only consider decoding schemes at receiver Y2. Similar arguments are valid for

receiver Y3 due to the symmetry of the problem. We refer to inequality (11), which is shown in [4] to ensure

reliability of the indirect decoder at receiver Y2, as the indirect decoding constraint (11).

Let the rate pair (R0, R1) be such that the indirect decoder of receiver Y2 decodes message M0 with high

probability; i.e., the indirect decoding constraint (11) is satisfied. Consider the following two regimes:

(a) R0 + S0 < I(U ;Y2),

(b) R0 + S0 > I(U ;Y2).

In regime (a), it is clear from the defining condition that a joint unique decoder which decodes (M0,M10) =

(m0, s0) by finding the unique sequence Un(m0, s0) such that (Un(m0, s0), Y n2 ) is jointly typical will succeed

with high probability. This is the joint unique decoder we may use in place of the indirect decoder for this regime.

Notice that in this regime, while the indirect decoder obtains (m0, s0) uniquely with high probability, it may not

necessarily succeed in uniquely decoding t2. Indeed, in this regime insisting on joint unique decoding of Un(m0, s0),

V n2 (m0, s0, t2) could, in some cases, result in a strictly smaller achievable region.

Regime (b) is the more interesting regime. Here it is clear that simply decoding for (M0,M10) and treating all

other messages as noise will not work. Indirect decoding must indeed be taking advantage of the codeword V n2 as

well. The indirect decoder looks for a unique pair of messages (m0, s0) such that there exists some t2 for which

(Un(m0, S0), V n(m0, s0, t2), Y n2 ) is jointly typical. One may, in general, expect that there could be several choices

of t2 even in this regime. An important observation is that, in this regime, there is (with high probability) only one

choice for t2. In other words, in this regime, receiver 2 decodes t2 uniquely along with m0 and s0. To see this,

notice that using inequality (11) and (b) above, we have

T2 ≤ I(V2;Y2|U). (13)
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Inequalities (11) and (13) together guarantee that a joint unique decoder can decode messages M0,M10, and M12

with high probability; In other words, in regime (b) the indirect decoder ends up with a unique decoding of the

satellite codeword V n2 (m0, s0, t2) with high probability. i.e., we may replace the indirect decoder with a joint

unique decoder for messages M0, M10, M12. To summarize loosely, whenever the indirect decoder is forced to

derive information from the codeword V n2 (i.e., when treating V n2 as noise will not result in correct decoding),

the indirect decoder will recover this codeword also uniquely. We make this loose intuition more concrete in

Section II-C.

The same argument goes through for receiver Y3 and this shows that insisting on jointly uniquely decoding at

all receivers is not restrictive in this problem. Thus, we arrive at the following:

Theorem 1: For every rate pair (R0, R1) satisfying the inner-bound of (1)-(12), there exists a coding scheme

employing joint unique decoders which achieves the same rate pair.

The idea behind the proof of Theorem 1 was simple and general. Consider an indirect decoder which is decoding

some messages of interest. The message of interest in our problem is M0. Along with this message of interest, the

decoder might also decode certain other messages, M10 and M12 for example. The two main steps of the proof is

then as follows.

(1) Analyze the indirect decoder to determine what messages it decodes uniquely. Depending on the regime of

operation, the indirect decoder ends up uniquely decoding a subset of its intended messages, and non-uniquely

the rest of its intended messages. For example in regime (a) above, the indirect decoder uniquely decodes only

M0 and M10 and it might not be able to settle on M12. While in regime (b), the indirect decoder ends up

decoding all of its three messages M0, M10, and M12 uniquely.

(2) In each regime of operation characterized in step (1), use a joint unique decoder to only decode the messages

that the indirect decoder uniquely decodes. In the above proof, this would be a joint unique decoder that

decodes M0 and M10 in regime (a) and a joint unique decoder that decodes messages M0, M10, and M12

in regime (b). Verify that the resulting joint unique decoder does support the corresponding part of the rate

region achieved by the indirect decoding scheme.

Though the idea is generalizable, analyzing the indirect decoder in step (1) is a tedious task. Even for this very

specific problem, it may not be entirely clear how the condition dividing cases (a) and (b) can be derived. Next,

we try to resolve this using an approach which generalizes more easily.

C. An alternative proof to Theorem 1: an auxiliary decoder

We take an alternative approach in this section to prove Theorem 1. The proof technique we present here has the

same spirit as the proof in Section II-B, but the task of determining which subset of messages should be decoded in

what regimes will be implicit rather than explicit as before. To this end, we introduce an auxiliary decoder which

serves as a tool to help us develop the proof ideas. We do not propose this more complicated auxiliary decoder

as a new decoding technique, but only as a proof technique to show sufficiency of joint unique decoding in the

problem of [4]. We analyze the error probability of the auxiliary decoder at receiver Y2 and show that under the
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random coding experiment, it decodes correctly with high probability if the indirect decoding constraint (11) holds.

From this auxiliary decoder and its performance, we will then be able to conclude that there exists a joint unique

decoding scheme that succeeds with high probability.

We now define the auxiliary decoder. The auxiliary decoder at receiver Y2 is a more involved decoder which has

access to two component (joint unique) decoders:

• Decoder 1 is a joint unique decoder which decodes messages M0 and M10. It finds M0, and M10 by looking

for the unique sequence Un(m0, s0) for which the pair (Un(m0, s0), Y n2 ) is jointly typical, and declares an

error if there exists no such unique sequence.

• Decoder 2 is a joint unique decoder which decodes messages M0, M10, M12. It finds M0, M10, M12 by looking

for the unique sequences Un(m0, s0) and V n2 (m0, s0, t2) such that triple (Un(m0, s0), V n2 (m0, s0, t2), Y n2 ) is

jointly typical, and declares an error when such sequences do not exist.

The auxiliary decoder declares an error if either (a) both component decoders declare errors, or (b) if both of them

decode but their decoded (M0,M10) messages do not match. In all other cases it declares the (M0,M10) output

of a component decoder which did not declare an error as the decoded message.

We analyze the error probability under the random coding experiment of such an auxiliary decoder at receiver

Y2 and prove that for any ε > 0, there is a large enough n such that

Pr(error at the auxiliary decoder) ≤ ε+ 21+n(R0+S0+T2−I(U,V2;Y2)+6ε). (14)

Inequality (14) shows that for large enough n and under the indirect decoding constraint (11), the auxiliary decoder

has an arbitrary small probability of failure.

We start by stating the following lemma and the reader is referred to Appendix A for the proof.

Lemma 1: Fix the probability distribution pU,V,Y (u, v, y) and the typical set Anε (U, V, Y ) corresponding to it.

Consider a quadruple of sequences (Un, Ũn, V̂ n, Y n), such that

• Ũn is independent of (Un, V̂ n, Y n) and has the distribution
∏
i pU (ũi),

• Un has the distribution
∏
i pU (ui),

• Y n and V̂ n are independent conditioned on Un,

• (Un, Y n) has the joint distribution
∏
i pU,Y (ui, yi),

• (Un, V̂ n) has the joint distribution
∏
i pU,V (ui, v̂i).

Then, probability Pr((Ũn, Y n) ∈ Anε (U, Y ), (Un, V̂ n, Y n) ∈ Anε (U, V, Y )) is upper-bounded by 2−n(I(U,V ;Y )−6ε).

Assume now that (m0, s0, s1, s2, s3) = (1, 1, 1, 1, 1) is sent and indices t1 and t2 in the encoding procedure are

(t2, t3) = (1, 1). We analyze, in the rest of this section, the probability that receiver Y2 declares M0 6= 1. By the

symmetry of the random code construction, the conditional probability of error does not depend on which tuple of

indices is sent. Thus, the conditional probability of error is the same as the unconditional probability of error and

there is no loss of generality in our assumption.

Conditioned on (m0, s0, s1, s2, s3, t2, t3) = (1, 1, 1, 1, 1, 1, 1), receiver Y2 makes an error in decoding M0 only

if at least one of the following events occur:
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E1: The channel and/or the encoder is atypical: the triple (Un(1, 1), V n2 (1, 1, 1), Y n2 ) is not jointly typical.

E2: The first or the second decoder (uniquely) decodes, but incorrectly: there is a unique pair (m̃0, s̃0) 6= (1, 1)

such that the triple (Un(m̃0, s̃0), Y n2 ) is jointly typical, or there is a unique triple (m̂0, ŝ0, t̂2) 6= (1, 1, 1) such

that (Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) is jointly typical.

E3: Both decoders fail to decode uniquely and declare errors: there are at least two distinct pairs (m̃0, s̃0) and

(m̆0, s̆0) such that both pairs (Un(m̃0, s̃0), Y n2 ) and (Un(m̆0, s̆0), Y n2 ) are jointly typical; and similarly there

are at least two distinct triples (m̂0, ŝ0, t̂2) and (m̌0, š0, ť2) such that both triples (Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2),

Y n2 ) and (Un(m̌0, š0), V n2 (m̌0, š0, ť2), Y n2 ) are jointly typical.

Therefore, the probability that receiver Y2 makes an error is upper-bounded in terms of the above events:

Pr(error at the auxiliary decoder) ≤ Pr(E1) + Pr(E2|E1) + Pr(E3)

≤ ε+ 0 + Pr(E3). (15)

where (15) follows because Pr(E1) = Pr((Un(1, 1), V n2 (1, 1, 1), Y n2 ) /∈ Anε ) ≤ ε (ensured by the encoding and the

Asymptotic Equipartition Property), and Pr(E2|E1) = 0. To upper-bound Pr(E3), we write

Pr(E3)
(a)

≤ Pr

(Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1), and

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 )∈Anε for some (m̂0, ŝ0, t̂2) 6= (1, 1, 1)

 (16)

≤ Pr

(Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1), and

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 )∈Anε for some (m̂0, ŝ0) 6= (1, 1) and t̂2


+ Pr

(Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1), and all the

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 )∈Anε are s.t. (m̂0, ŝ0)=(1, 1) with at least one s.t. t̂2 6=1

(17)

In the above chain of inequalities, (a) holds because event E3 is a subset of the event in the right hand side.

It is worthwhile to interpret inequality (17). The error event of interest, roughly speaking, is partitioned into the

following two events:

(1) The auxiliary decoder makes an error and the indirect decoder of Section II-A also makes an error.

(2) The auxiliary decoder makes an error but the indirect decoder of Section II-A decodes correctly. We will show

that the probability of this event is small. Note that under this error event, (a) component decoder 1 fails (i.e.,

it is not possible to decode (M0,M10) by treating V n2 as noise), but still (b) indirect decoder succeeds (i.e.,

the indirect decoder must be deriving useful information by considering V n2 ). By showing that this error event

has a small probability, we in effect show that whenever (a) and (b) hold, it is possible to jointly uniquely

decode the V n2 codeword as well. This makes the rough intuition from Section II-B more concrete.

To bound the error probability we bound the two terms of inequality (17) separately. First term of (17) is bounded

by the probability of the indirect decoder making an error:

Pr

 (Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1) and,

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε for some (m̂0, ŝ0) 6= (1, 1) and t̂2


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≤ Pr
(

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε for some (m̂0, ŝ0) 6= (1, 1) and t̂2
)

≤
∑

t̂2, (m̂0,ŝ0) 6=(1,1)

Pr
(

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε
)

≤ 2nT22n(R0+S0)2−n(I(U,V2;Y2)−3ε). (18)

The second term of (17) is upper-bounded as follows.

Pr

 (Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1), and all the

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε are s.t. (m̂0, ŝ0) = (1, 1) with at least one s.t. t̂2 6= 1


≤ Pr

 (Un(m̃0, s̃0), Y n2 ) ∈ Anε for some (m̃0, s̃0) 6= (1, 1) and,

(Un(m̂0, ŝ0), V n2 (m̂0, ŝ0, t̂2), Y n2 ) ∈ Anε for some (m̂0, ŝ0) = (1, 1), t̂2 6= 1

 (19)

≤
∑

t̂2 6=1, (m̃0,s̃0)6=(1,1)

Pr

(Un(m̃0, s̃0), Y n2 ) ∈ Anε and

(Un(1, 1), V n2 (1, 1, t̂2), Y n2 ) ∈ Anε


≤ 2n(R0+S0+T2) Pr

(Un(m̃0, s̃0), Y n2 ) ∈ Anε and

(Un(1, 1), V n2 (1, 1, t̂2), Y n2 ) ∈ Anε

 (20)

(a)

≤ 2n(R0+S0+T2)2−n(I(U,V2;Y2)−6ε), (21)

where we have (m̃0, s̃0) 6= 1 and t̂2 6= 1 in the event in inequality (20) and (a) follows from Lemma 1.

We conclude the error probability analysis by putting together inequalities (15), (17), (18), and (21) to obtain that

the error probability at the auxiliary decoder is bounded as in inequality (14). So for large enough n, the auxiliary

decoder succeeds with high probability if the indirect decoding constraint (11) is satisfied; i.e., when the indirect

decoder succeeds with high probability.

One can now argue that if the auxiliary decoder succeeds with high probability for an operating point, then there

also exists a joint unique decoding scheme that succeeds with high probability. The idea is that for all operating

points (except in a subset of the rate region of measure zero), each of the two component (joint unique) decoders 1

and 2 have either a high or a low probability of success. So, if the operating point is such that the auxiliary decoder

decodes correctly with high probability, then at least one of the component decoders should also decode correctly

with high probability, giving us the joint unique decoding scheme we were looking for. This is summarized in

Lemma 2, and the reader is referred to Appendix B for the proof.

Lemma 2: Given any operating point (except in a subset of the rate region of measure zero), if the auxiliary

decoder succeeds with high probability under the random coding experiment, then there exists a joint unique

decoding scheme that also succeeds with high probability.

A similar argument goes through for receiver Y3. The random coding argument for the joint unique decoding

scheme can now be completed as usual.
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D. Discussion

Remark 1: In Sections II-B and II-C, we did not consider cases where R0+S0 = I(U ;Y2) or R0+S0 = I(U ;Y3)

(i.e., a subset of measure zero). This is enough since we may get arbitrarily close to such points.

Remark 2: In Sections II-B and II-C, we fixed the encoding scheme to be that of [4]. The message splitting and

the structure of the codebook is therefore a priori assumed to be that of [4], even when R0 + S0 < I(U ;Y2) and

message M12 is not jointly decoded at Y2. However, in such cases this extra message structure is not required and

one can consider message M12 as a part of message M11.

III. MORE EXAMPLES

We saw that joint unique decoding was sufficient to achieve the inner-bound of [4]. This is not coincidental

and the same phenomenon can be observed for example in the work of Chong, Motani, Garg and El Gamal [5]

where the region obtained by non-unique decoding turned out to be equivalent to that of Han and Kobayashi in

[3]. Non-unique decoding schemes have appeared also in [8], [9], [10]. We consider these three problems briefly

next and show that employing joint unique decoders, one can achieve the same proposed inner-bounds.

A. Three-receiver broadcast channel with common and confidential messages

In [8] a general 3-receiver broadcast channel with one common and one confidential message set is studied.

Inner-bounds and outer-bounds are derived for the capacity regions under two setups of this problem: when the

confidential message is intended for one of the receivers and when the confidential message is intended for two of

the receivers. We only address the first setup here, and in particular Theorem 2 of [8]. The other inner-bounds can be

similarly dealt with. In Theorem 2, the authors establish an inner-bound to the secrecy capacity region using the ideas

of superposition coding, Wyner wiretap channel coding and non-unique decoding. More specifically, both ligitimate

receivers Y1 and Y2 decode their messages of interest, M0 and M1, by non-unique decoding schemes. Receiver Y1

looks for the unique triple (m0,m1,mr) such that (Un(m0), V n0 (m0.m1,mr), V n1 (m0,m1,mr, t1), Y n1 ) is jointly

typical for some t1 ∈ [1 : 2nT1 ]. Receiver Y2 follows a similar scheme. We use the proof technique of Subsection

II-C to show that a code design that employs joint unique decoders achieves the same inner-bound. To do so, we

first present an auxiliary decoder which succeeds with high probability under the decoding constraints of [8], and

then conclude that there exists a joint unique decoding scheme that succeeds with high probability.

Define the auxiliary decoder (at receiver Y1) to have access to two component (joint unique) decoders, one jointly

uniquely decoding indices m0,m1,mr and the other jointly uniquely decoding indices m0,m1,mr, t1. The auxiliary

decoder declares an error if either (a) both component decoders declare errors, or (b) if both of them decode and

their declared (m0,m1,mr) indices do not match. In all other cases it declares the index triple (m0,m1,mr)

according to the output of the component decoder which did not declare an error. Proceeding as in Section II-C,

the error probability of the auxiliary decoder can be bounded by (22) as follows.

Pr(error)



11

≤ ε+Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1)

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for some (m̂0, m̂1, m̂r, t̂1) 6=(1, 1, 1, 1)


≤ ε+Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1)

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for some (m̂0, m̂1, m̂r) 6=(1, 1, 1), t̂1


+Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1)

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for (m̂0, m̂1, m̂r) = (1, 1, 1), t̂1 6=1


(a)

≤ ε+ 2n(R0+R1+T1+Rr−I(U,V0,V1;Y1))+δ(ε) + 2n(R1+T1+Rr−I(V0,V1;Y1|U)+δ(ε)) (22)

+ 2n(R0+R1+T1+Rr−I(U,V0,V1;Y1)+δ(ε)) + 2n(R1+T1+Rr−I(V0,V1;Y1|U)+δ(ε))

Here δ(ε)→ 0 as ε→ 0. To prove inequality step (a), we bound each probability term separately. The first term is

upper-bounded by the probability of an indirect decoder making an error. This indirect decoder is analyzed in [8]

and shown to be reliable under some constraints to which we refer as the indirect decoding constraints of [8]. The

second term is upper-bounded by splitting the event and following steps similar to that of Subsection II-C. This is

summarized in the following.

Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1)

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for some (m̂0, m̂1, m̂r)=(1, 1, 1), t̂1 6=1


≤ Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1) m̂0 6=1

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for some (m̂0, m̂1, m̂r)=(1, 1, 1), t̂1 6=1


+Pr

(Un(m̃0), V n0 (m̃0, m̃1, m̃r), Y n1 )∈Anε for some (m̃0, m̃1, m̃r) 6=(1, 1, 1), m̂0 =1

(Un(m̂0), V n0 (m̂0, m̂1, m̂r), V n1 (m̂0, m̂1, m̂r, t̂1), Y n1 )∈Anε for some (m̂0, m̂1, m̂r)=(1, 1, 1), t̂1 6=1


≤ 2n(R0+R1+T1+Rr−I(U,V0,V1;Y1)+δ(ε)) + 2n(R1+T1+Rr−I(V0,V1;Y1|U)+δ(ε)) (23)

where the last step follows from an application of Lemma 1 to the first probability term and a conditional version

of Lemma 1 to the second probability term.

It becomes clear from (22), that the auxiliary decoder also succeeds with high probability under the indirect

decoding constraints of [8]. Similar to Subsection II-C, one can conclude that if for an operating point the indirect

decoder succeeds with high probability, then there also exists a joint unique decoding scheme that succeeds with

high probability.

One can also use the auxiliary decoder to (explicitly) devise the joint unique decoding scheme. Analogous to

Subsection II-C, the decoding scheme could be joint unique decoding of m0,m1,mr in the regime where it succeeds

(with high probability) and joint unique decoding of m0,m1,mr, t1 otherwise. To express the two regimes, we

analyze the error probability of the component (joint unique) decoder that decodes m0, m1 and mr.

Pr(error) ≤ ε+ 2n(R0+R1+Rr−I(U,V0;Y1)+δ(ε)) + 2n(R1+Rr−I(V0;Y1|U)+δ(ε)), (24)

where δ(ε) → 0 if ε → 0. Therefore, joint unique decoding of m0, m1 and mr succeeds with high probability if
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the following two inequalities hold in addition to the indirect decoding constraints of [8].

R0 +R1 +Rr < I(U, V0;Y1) (25)

R1 +Rr < I(V0;Y1|U) (26)

If either of the above inequalities does not hold, then joint unique decoding of m0, m1, mr fails with high probability

(see Appendix C). Nonetheless, while indirect decoding constraint of [8] is satisfied, since the auxiliary decoder

succeeds with high probability, we conclude that joint unique decoding of m0 ,m1 , mr, t1 succeeds with high

probability. So the following joint unique decoding scheme achieves the inner-bound of [8]: If inequalities (25) and

(26) hold, jointly uniquely decode indices m0, m1, and mr, and otherwise, jointly uniquely decode all four indices

m0, m1, mr, t1.

B. Three-user deterministic interference channel

In [9], an inner-bound to the capacity region of a class of deterministic interference channels with three user pairs

is derived. The key idea is to simultaneously decode the combined interference signal and the intended message

at each receiver and this is done by an indirect decoding scheme. More precisely, decoder 1 declares that m1 is

sent if it is the unique message such that (Qn, Xn
1 (m1), Sn1 (m2,m3), Xn

21(m2), Xn
31(m3), Y n1 ) is jointly typical

for some m2 ∈ [1 : 2nR2 ] and m3 ∈ [1 : 2nR3 ]. This inner-bound is established in Theorem 1 of [9]. Here, we use

the proof technique of Section II-C to prove that a code design that employs joint unique decoders achieves the

same inner-bound.

Define the auxiliary decoder (at receiver Y1) to have access to four component (joint unique) decoders: one jointly

uniquely decoding Xn(m1), one jointly uniquely decoding Xn
1 (m1) and Xn

21(m2), one jointly uniquely decoding

Xn
1 (m1) and Xn

31(m3) and finally one jointly uniquely decoding all sequences Xn(m1), Xn
21(m2), Xn

31(m3), and

Sn1 (m2,m3). The auxiliary decoder declares an error if either (a) all component decoders declare error, or (b)

not all of the decoders that decode without declaring an error agree on the decoded index m0 (i.e., among those

component decoders that do not declare an error, there is not a common agreement on the decoded index m0).

The error probability of the auxiliary decoder is then bounded by inequality (27) as follows.

Pr(error)

≤ ε+ Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̆1), Xn

21(m̆2), Y n1 ) ∈ Anε for some (m̆1, m̆2) 6= (1, 1)

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some (m̂1, m̂2, m̂3) 6= (1, 1, 1)



≤ ε+ Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̆1), Xn

21(m̆2), Y n1 ) ∈ Anε for some (m̆1, m̆2) 6= (1, 1)

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some (m̂2, m̂3), m̂1 6= 1


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+ Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̆1), Xn

21(m̆2), Y n1 ) ∈ Anε for some (m̆1, m̆2) 6= (1, 1)

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some (m̂2, m̂3) 6= (1, 1), m̂1 = 1


(27)

As before, the first probability term of inequality (27) is upperbounded by the probability of an indirect decoder

making an error; i.e., by the expression below.

Pr
(

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some (m̂2, m̂3) and m̂1 6= 1

)
In [9], constraints on rates have been derived under which this error probability approaches 0 as n grows large and

an achievable rate region has been characterized. We refer to these constraints as the indirect decoding constraints

of [9]. One can show that under these decoding constraints, the second probability term can also be made arbitrarily

small by choosing a sufficiently large n (see Appendix D). It then becomes clear that the auxiliary decoder succeeds

with high probability if the indirect decoding constraints of [9] are satisfied. So, analogous to Section II-C, we

conclude that there exists a joint unique decoding scheme that achieves the same inner-bound of Theorem 1 in [9].

C. Two-receiver compound channel with state noncausally available at the encoder

An inner-bound to the common message capacity region of a 2-receiver compound channel with discrete memory-

less state noncausally available at the encoder is derived in [10]. The inner-bound is established using superposition

coding, Marton coding, joint typicality encoding, and non-unique decoding schemes. More precisely, in the decoding

scheme of [10], receiver Y1 declares message M to be the unique index m for which (Wn(m, l0), Un(m, l0, l1), Y n1 )

is jointly typical for some l0 ∈ [1 : 2nT0 ] and l1 ∈ [1 : 2nT1 ]. Receiver Y2 follows a similar scheme. In this problem

also, we show that employing joint unique decoders lets us achieve the same inner-bound of Theorem 1 of [10].

We outline the proof which is built on the proof technique of Subsection II-C.

Define the auxiliary decoder (at receiver Y1) to have access to two component (joint unique) decoders: one

jointly uniquely decoding indices m0, l0, and one jointly uniquely decoding indices m0, l0, l1. The auxiliary decoder

declares an error if either (a) both component decoders declare an error or (b) neither of them declare an error

but they do not agree on their decoded m0 and l0 indices. The error probability of the auxiliary decoder is then

bounded by

Pr(error) ≤ ε+ Pr

 (Wn(m̃, l̃0), Y n1 ) ∈ Anε for some (m̃, l̃0) 6= (1, 1)

(Wn(m̂, l̂0), Un(m̂, l̂0, l̂1), Y n1 ) ∈ Anε for some (m̂, l̂0, l̂1) 6= (1, 1, 1)

 . (28)

The probability term of the right hand side of inequality (28) is similar to what we obtained in inequality (16),

and following similar steps, one concludes that the auxiliary decoder performs reliably under the indirect decoding

constraints of [10]. Therefore, there exists a joint unique decoding scheme that performs reliably under those

decoding constraints. More explicitely, the proposed joint unique decoding scheme would be joint unique decoding

of m and l0, if R0 + T0 < I(W ;Y1); and joint unique decoding of m, l0 and l1, otherwise.
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IV. CONCLUSION

We examined the indirect decoding strategy of [4] where messages of interest are decoded jointly with other

messages even when the decoder is unable to disambiguate uniquely some of the messages which are not of interest

to it. Using an operational interpretation of indirect decoding, we argued why indirect decoding is superfluous from

a rate region point-of-view. We also developed a proof technique which applies more generally and adapted this

technique to several instances of indirect decoding in the literature.
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APPENDIX A

PROOF OF LEMMA 1

Fix the probability distribution pU,V,Y (u, v, y) and the typical set Anε (U, V, Y ) corresponding to it. Consider a

quadruple of sequences (Un, Ũn, V̂ n, Y n), such that

• Ũn is independent of (Un, V̂ n, Y n) and has the distribution
∏
i pU (ũi),

• Un has the distribution
∏
i pU (ui),

• Y n and V̂ n are independent conditioned on Un,

• (Un, Y n) has the joint distribution
∏
i pU,Y (ui, yi),

• (Un, V̂ n) has the joint distribution
∏
i pU,V (ui, v̂i).

We now bound probability Pr((Ũn, Y n) ∈ Anε and (Un, V̂ n, Y n) ∈ Anε ) as follows, using the random codebook’s

structure.

Pr
(

(Ũn, Y n) ∈ Anε and (Un, V̂ n, Y n) ∈ Anε
)

≤
∑

yn∈Anε

∑
ũn

(ũn,yn)∈Anε

∑
(un,v̂n)

(un,v̂n,yn)∈Anε

p(un, ũn, v̂n, yn)

≤
∑

yn∈Anε

∑
ũn

(ũn,yn)∈Anε

∑
(un,v̂n)

(un,v̂n,yn)∈Anε

p(un, v̂n)p(ũn)p(yn|un)

≤
∑

yn: yn∈Anε
ũn: (ũn,yn)∈Anε

(un,v̂n): (un,v̂n,yn)∈Anε

2−n(H(U,V )−ε)2−n(H(U)−ε)2−n(H(Y |U)−ε)

≤
(

2n(H(Y )+ε)2n(H(U |Y )+ε)2n(H(U,V |Y )+ε)
)(

2−n(H(U,V )−ε)2−n(H(U)−ε)2−n(H(Y |U)−ε)
)

≤ 2−n(I(U,V ;Y )−6ε).

APPENDIX B

PROOF TO LEMMA 2

We start by proving the following claim.

Claim 1: Component decoder 1 succeeds with high probability (averaged over codebooks) if R0+S0 < I(U ;Y2),

and fails with high probability, if R0 + S0 > I(U ;Y2).

Proof of Claim 1: Component decoder 1 makes an error only if one of the following events occur:

(i) (Un(1, 1), Y n2 ) is not jointly typical. This error event has an arbitrarily small probability of ε.

(ii) There exists a pair of indices (m̂0, ŝ0) 6= (1, 1) such that (Un(m̂0, ŝ0), Y n2 ) is jointly typical.

The error probability is thus upper-bounded by

Pr(error probability of component decoder 1)

≤ ε+ Pr
(

(Un(m̂0, ŝ0), Y n2 ) ∈ Anε for some (m̂0, ŝ0) 6= (1, 1)
)

≤ ε+ 2n(R0+S0−I(U ;Y2)+δ(ε)), (29)
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where δ(ε)→ 0 if ε→ 0. This proves that for large enough n, the error probability of component decoder 1 could

be made arbitrary small if R0 + S0 < I(U ;Y2).

On the other hand, decoder 1 fails if there exists an index pair (m̂0, ŝ0) 6= (1, 1) such that (Un(m̂0, ŝ0), Y n2 ) is

jointly typical. The probability of failure is, therefore, lower-bounded by

Pr((Un(m̂0, ŝ0), Y n2 ) ∈ Anε for some (m̂0, ŝ0) 6= (1, 1)),

and we want to show that it is arbitrarily close to 1 if R0 + S0 > I(U ;Y2). We instead look at the complementary

event and show that Pr((Un(m̂0, ŝ0), Y n2 ) /∈ Anε for all (m̂0, ŝ0) 6= (1, 1)) is arbitrarily close to 0:

Pr((Un(m̂0, ŝ0), Y n2 ) /∈ Anε for all (m̂0, ŝ0) 6= (1, 1))

=
∑
yn2

Pr(Y n2 = yn2 ) Pr
(

(Un(m̂0, ŝ0), yn2 ) /∈ Anε for all (m̂0, ŝ0) 6= (1, 1) Y n2 = yn2

)
≤ ε+

∑
yn2 ∈Anε

Pr(Y n2 = yn2 ) Pr
(

(Un(m̂0, ŝ0), yn2 ) /∈ Anε for all (m̂0, ŝ0) 6= (1, 1) Y n2 = yn2

)
≤ ε+

∑
yn2 ∈Anε

Pr(Y n2 = yn2 )
∏

(m̂0,ŝ0)

Pr
(

(Un(m̂0, ŝ0), yn2 ) /∈ Anε Y n2 = yn2

)
≤ ε+

∑
yn2 ∈Anε

(
Pr(Y n2 = yn2 )×

(
1− Pr

(
(Un(m̂0, ŝ0), yn2 ) ∈ Anε Y n2 = yn2

))2n(R0+S0)
)

≤ ε+
∑

yn2 ∈Anε

Pr(Y n2 = yn2 )
(

1− (1− ε)2−n(I(U ;Y2)+2ε)
)2n(R0+S0)

≤
(

1− (1− ε)2−n(I(U ;Y2)+2ε)
)2n(R0+S0)

.

In the limit of n→∞, we have

lim
n→∞

(
1− (1− ε)2−n(I(U ;Y2)+2ε)

)2n(R0+S0)

= lim
n→∞

exp
{
−
(

2n(R0+S0)(1− ε)2−n(I(U ;Y2)+2ε)
)}

,

which goes to 0 if R0 + S0 > I(U ;Y2) + 2ε.

From Claim 1, it becomes clear that for each operating point, averaged over codebooks, component decoder 1

either succeeds with high probability if R0 + S0 < I(U ;Y2) or fails with high probability if R0 + S0 > I(U ;Y2).

In the former case, we let the joint unique decoding scheme be that of decoder 1, and in the latter, we let the joint

unique decoding scheme be that of decoder 2. We prove in the following that this joint unique decoding scheme is

reliable (averaged over the codebooks) since the auxiliary decoder is reliable.

Consider an operating point for which decoder 1 fails with high probability. In such cases, we assumed the

decoding scheme to be joint unique decoding of messages M0, M10, and M12. For this operating point, the

probability of error of our joint unique decoder is

Pr(error at component decoder 2)

≤ Pr

 error at component decoder 2

AND component decoder 1 succeeds

+ Pr

 error at component decoder 2

AND component decoder 1 fails


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(a)

≤ δ + Pr

 error at component decoder 2

AND component decoder 1 fails


≤ δ + ε+ Pr (error at the auxiliary decoder) .

In the above chain of inequalities, (a) follows from the assumption on the operating point. Also, δ and ε can both

be taken arbitrarily close to 0 for large enough n. It is now easy to see that given an operating point for which

component decoder 1 fails, component decoder 2 succeeds with high probability if the auxiliary decoder succeeds

with high probability.

APPENDIX C

PROBABILITY THAT THE JOINT DECODER OF m0, m1 AND mr IN SUBSECTION III-A FAILS

We analyze the probability that a joint unique decoder fails to uniquely decode indices m0, m1, mr and show

that it fails with high probability if either (25) or (26) is violated. Note that

Pr

 (Un(m̂0), V n0 (m̂0, m̂1, m̂r), Y n1 ) ∈ Anε
for some (m̂0, m̂1, m̂r) 6= (1, 1, 1)

 ≥ Pr

 (Un(m̂0), V n0 (m̂0, m̂1, m̂r), Y n1 ) ∈ Anε
for some (m̂0, m̂1, m̂r) 6= (1, 1, 1), m̂0 = 1

 ,

(30)

and

Pr

 (Un(m̂0), V n0 (m̂0, m̂1, m̂r), Y n1 ) ∈ Anε
for some (m̂0, m̂1, m̂r) 6= (1, 1, 1)

 ≥ Pr

 (Un(m̂0), V n0 (m̂0, m̂1, m̂r), Y n1 ) ∈ Anε
for some (m̂0, m̂1, m̂r) 6= (1, 1, 1), m̂0 6= 1

 .

(31)

It is now not hard to see that the probability term of expression (30) is arbitrarily close to 1 if R1+Rr > I(V0;Y1|U)

and that the probability term of expression (31) is arbitrarily close to 1 if R1 +Rr > I(U, V0;Y1).

APPENDIX D

THE SECOND PROBABILITY TERM OF INEQUALITY (27) CAN BE MADE ARBITRARILY SMALL BY CHOOSING

SUFFICIENTLY LARGE n UNDER THE INDIRECT DECODING CONSTRAINTS OF [9]

To upper-bound the second probability term of inequality (27), we use union bound and inclusion of events to

obtain the following expression.

Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̆1), Xn

21(m̆2), Y n1 ) ∈ Anε for some (m̆1, m̆2) 6= (1, 1)

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some (m̂2, m̂3) 6= (1, 1), m̂1 = 1



≤ Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̆1), Xn

21(m̆2), Y n1 ) ∈ Anε for some (m̆1, m̆2) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some m̂2 = 1, m̂3 6= 1, m̂1 = 1

 (32)
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+ Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some m̂2 6= 1, m̂3 = 1, m̂1 = 1


+ Pr

(Qn, Xn
1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some m̂2 6= 1, m̂3 6= 1, m̂1 = 1


We then show that each probability term of inequality (32) can be made arbitrarily small by choosing a sufficiently

large n, if the indirect decoding constraints of [9] hold. The first two probability terms of inequality (32) are analyzed

in (33)-(39) as follows.

Pr


(Qn, Xn

1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 ) ∈ Anε for some (ṁ1, ṁ3) 6= (1, 1)

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 )∈Anε for some m̂2 6= 1, m̂3 = 1, m̂1 = 1

 (33)

≤ Pr

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 )∈Anε for some ṁ1 6= 1, ṁ3 = 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 )∈Anε for some m̂2 6= 1, m̂3 = 1, m̂1 = 1

(34)

+ Pr

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 )∈Anε for some ṁ1 6= 1, ṁ3 6= 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 )∈Anε for some m̂2 6= 1, m̂3 = 1, m̂1 = 1

(35)

+ Pr


(Qn, Xn

1 (m̃1), Y n1 )∈Anε for some m̃1 6= 1

(Qn, Xn
1 (ṁ1), Xn

31(ṁ3), Y n1 )∈Anε for some ṁ1 = 1, ṁ3 6= 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 )∈Anε for some m̂2 6= 1, m̂3 = 1, m̂1 = 1

(36)

≤ 2nR12nmin{R2,H(X21|Q)}2−nI(X1,X21;Y1|Q,X31)+δ(ε) (37)

+2nR1+nmin{R3,H(X31|Q)}2nmin{R2,H(X21|Q)}2−nI(X1,X21,X31;Y1|Q)+δ(ε) (38)

+2nR12nmin{R3,H(X31|Q)}2nmin{R2,H(X21|Q),H(S1|X31,Q)}2−nI(X1,X21,X31;Y1|Q)+δ(ε) (39)

where δ(ε) → 0 when ε → 0. The last step above follows from an analysis very similar to the derivation of

inequalities (19)-(21) and a generalization of Lemma 1.

Finally, the third probability term of inequality (32) is derived as follows.

Pr

(Qn, Xn
1 (m̃1), Y n1 ) ∈ Anε for some m̃1 6= 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Xn

21(m̂2), Xn
31(m̂3), Y n1 ) ∈ Anε for some m̂2 6= 1, m̂3 6= 1, m̂1 = 1

(40)

≤ Pr

(Qn, Xn
1 (m̃1), Y n1 ) ∈ Anε for some m̃ 6= 1

(Qn, Xn
1 (m̂1), Sn1 (m̂2, m̂3), Y n1 ) ∈ Anε for some m̂2 6= 1, m̂3 6= 1, m̂1 = 1

 (41)

≤ 2nR12nmin{R2+R3,R2+H(X31|Q),H(X21|Q)+R3,H(S1|Q)}2−I(X1,S1;Y1|Q)+δ(ε), (42)

where δ(ε)→ 0 when ε→ 0. The last step of the above chain of inequalities follows from the conditional version

of Lemma 1.


