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Résumé 

Les peptides bicycliques sont des molécules pouvant se lier à une cible d’intérêt avec une 

grande affinité et de manière très spécifique. Ils peuvent être obtenus par une méthode appelée 

« phage display ». Au cours d’un premier projet, nous avons tiré profit de ces qualités pour 

générer des inhibiteurs spécifiques à certain membres de la famille des métalloprotéinases 

matricielles (MMPs), une famille de protéases ayant des structures très similaires et donc 

difficiles à cibler de manière sélective. A l’aide de librairies combinatoires de peptides 

présentés à la surface de phages, nous avons isolé un peptide bicyclique inhibant de manière 

spécifique MMP-2 avec une constante d’inhibition (Ki) de 2 μM. Cet inhibiteur présente une 

activité plus faible que l’inhibiteur peptidique ciblant MMP-2 le plus puissant découvert à ce 

jour. Il s’agit d’un peptide linéaire appelé APP-IP, possédant une Ki de 13 nM et étant dérivé 

de la protéine précurseur de l’amyloïde. Cependant, en raison de sa conformation plus rigide, 

le peptide bicyclique devrait être plus stable et donc plus approprié à des applications dans 

des systèmes biologiques. Il pourrait également être utilisé comme alternative au peptide 

monocyclique nommé CTT, largement utilisé en recherche malgré une activité inhibitrice 

faible (Ki de 142 μM). En résumé, le peptide bicyclique développé durant cette thèse devrait 

trouver de vastes applications en tant qu’outil de recherche. Une amélioration de son affinité 

par « phage display » pourrait également déboucher sur le développement de molécules 

thérapeutiques anti-cancer.  

Au cours d’un deuxième projet, nous avons généré des peptides bicycliques pouvant se lier de 

manière spécifique à la protéine centriolaire SAS-6. Cette protéine remplit un rôle structurel 

important dans la formation des centrioles. Ces peptides sont actuellement testés in cellulo 

dans l’étude du processus de formation des centrioles par le laboratoire du Professeur Pierre 

Gönczy (EPFL). 

Au cours du troisième projet de cette thèse, nous avons établi une nouvelle méthode 

enzymatique pour cycliser de manière sélective des peptides n’ayant aucun groupe protecteur 

sur leur chaîne latérale, ceci à l’aide d’une enzyme appelée transglutaminase (TGase). Cette 

enzyme catalyse la formation d’une liaison amide stable entre la chaîne latérale d’une 

glutamine et une amine primaire. Elle a été largement utilisée en biotechnologie pour lier des 

peptides à des protéines ou pour attacher des étiquettes sur des protéines. Nous avons 

découvert que l’enzyme d’origine microbienne provenant de la souche Streptomyces 



mobaraensis peut cycliser intra-moléculairement de manière quantitative des peptides 

présentant une séquence comportant un acide aminé glutamine donneur en position N-

terminale et une lysine en position C-terminale. Des expériences effectuées avec un substrat 

présentant une séquence minimale et un résidu glutamine donneur ont montré que des 

peptides contenant uniquement le dipeptide Ala-Leu en position N-terminale par rapport au 

résidu glutamine et une séquence d’acides aminés aléatoire entre la glutamine et la lysine 

peuvent être cyclisés de manière efficace. En combinant cette méthode de cyclisation avec 

une cyclisation chimique basée sur des thiols, nous avons pu générer des peptides avec une 

structure tricyclique. Cette méthode est actuellement testée pour déterminer si elle peut être 

utilisée pour cycliser une librairie combinatoire de peptides présentés à la surface de phages.  

Au cours d’un quatrième et dernier projet, nous avons développé une méthode pour évaluer 

de manière qualitative et quantitative la modification chimique ou enzymatique de peptides 

présentés à la surface de phages. Pour cela, les peptides ont tout d’abord été modifiés 

chimiquement, puis séparés des phages à l’aide d’une protéase, purifiés, concentrés et 

finalement analysés par spectrométrie de masse. Cette méthode rend dès maintenant possible 

l’évaluation de nouvelles réactions à la surface des phages, telle que la cyclisation 

enzymatique établie au cours de cette thèse. 

 

Mots-clés: « phage display », peptides bicycliques, métalloprotéinases matricielles (MMPs), 

inhibiteurs, SAS-6, ligands, macrocycles, cyclisation, transglutaminase (TGase), librairies 

combinatoires de peptides modifiés chimiquement présentés à la surface de phages. 

                

 



 

Abstract 

Bicyclic peptides binding to targets of interest can be isolated from combinatorial libraries 

using a phage display-based approach. In a first project of this thesis, we aimed at generating 

bicyclic peptide inhibitors of matrix metalloproteinases (MMPs), a family of proteases that 

share high structural similarities and have been difficult to target in a specific manner. From 

phage-encoded combinatorial libraries, we isolated a bicyclic peptide that inhibits specifically 

the gelatinase MMP-2 with a Ki of 2 μM. This inhibitor was less potent than the best peptidic 

MMP-2 inhibitor, the linear APP-derived inhibitory peptide (Ki = 13 nM). However, due to its 

conformational constraint, the bicyclic peptide is expected to be significantly more stable and 

hence more suitable for applications in biological systems. It may be used as a research tool 

alternatively to the broadly applied monocyclic peptide MMP-2 inhibitor CTT which is less 

potent (Ki of 142 μM). If affinity matured, the bicyclic peptide MMP-2 inhibitor might even 

be developed into an anti-cancer therapeutic.  

In a second project, bicyclic peptide binders to the centriolar protein SAS-6 were generated. 

SAS-6 plays an important structural role in centrioles and bicyclic peptide binders are 

currently applied in cellular assays by the laboratory of Professor Pierre Gönczy (EPFL) to 

study the process of centriole formation. 

In a third project of this thesis, we established an enzymatic method to selectively cyclise 

peptides with unprotected side chains using a transglutaminase (TGase). TGases catalyse the 

formation of stable amide bonds between the side chains of glutamine and primary amines. 

They have been used extensively in biotechnological applications to cross-link peptides and 

proteins or to attach labels to proteins. We found that the microbial transglutaminase 

(MTGase) of Streptomyces mobaraensis can cyclise quantitatively peptides with an N-

terminal glutamine-donor sequence and a C-terminal lysine residue in an intramolecular 

reaction. Experiments with minimised glutamine-donor substrates revealed that peptides with 

only an Ala-Leu dipeptide N-terminal to the glutamine and a randomly chosen peptide 

between the glutamine and lysine residues are efficiently cyclised. By combining the 

MTGase-based cyclisation strategy with a chemical thiol-based cyclisation reaction, we were 

able to generate tricyclic peptide structures. It remains to be tested if this method can be 

applied to cyclise combinatorial peptide libraries on the surface of phage.   



 

 

In a fourth and last project, we developed a method to follow qualitatively and quantitatively 

chemical or enzymatic modifications applied to peptides displayed on phage. In this method, 

peptides on phage were chemically modified, cleaved off by a protease, purified, concentrated 

and analysed by mass spectrometry. The method will help to assess new reactions applied to 

phage peptides such as the MTGase-based enzymatic cyclisation reaction.   

 

Keywords: Phage display, bicyclic peptides, matrix metalloproteinases, MMP inhibitors, 

SAS-6, ligands, macrocycles, cyclisation, transglutaminase, MTGase, phage-encoded 

combinatorial chemical libraries. 
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1. General introduction 

1.1. Objectives of the thesis 

The development of molecules binding with high affinity and selectivity to protein targets is 

an important scientific aim. Such molecules are needed for the development of therapeutics or 

as research tools as for example the detection and purification of biomolecules or the study of 

biological questions1,2. Phage display, a technology developed in the 1980s, has allowed the 

generation of polypeptide binders to many targets of interest and made critical contributions 

in these directions. Recently, combination of phage display and chemical cyclisation reactions 

allowed the generation of bicyclic peptide binders to proteins of interest3.  

The primary goal of this thesis was to generate bicyclic peptide inhibitors of two matrix 

metalloproteinases (MMPs), MMP-2 and MMP-9, which play an important role in cancer 

progression and other diseases. Inhibitors of these MMPs could serve as lead compounds for 

the development of new anti-cancer therapeutics. 

A second goal was to develop bicyclic peptide binders to the centriolar protein SAS-6. This 

protein plays an important structural role in centrioles4 and specific binders to SAS-6 are 

needed as tools for mechanistic studies of centriole formation. This project is performed in 

collaboration with the laboratory of Professor Pierre Gönczya. 

A third aim of the thesis was to develop a strategy for the cyclisation of peptides with 

unprotected side chains. We intended to use this reaction for the cyclisation of peptides 

displayed on phage. In combination with a previously applied orthogonal chemical reaction, 

tricyclic peptides could be generated. 

In a fourth project, we aimed at developing a procedure to qualitatively and quantitatively 

follow chemical modifications of peptides displayed on phage. Such information is valuable 

to establish new protocols for the chemical or enzymatic modifications of phage-encoded 

peptides.  

                                                 
a Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-
1015 Lausanne, Switzerland 
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1.2. Cyclic peptides and phage display 

Peptides have proven to be suitable for the development of therapeutics as well as research 

tools. One of the great strengths of peptides lies in the powerful approaches for discovering 

and screening binders to targets of interest. For example a large number of phage-displayed 

polypeptides binding to targets can be generated with little effort and a short time. 

Most peptides used as therapeutics or research tools are based on cyclic structures. The cyclic 

configuration brings several advantages over the linear form: cyclic peptides are 

conformationally more constrained resulting in a smaller loss of entropy upon binding and 

hence higher binding affinities5. Moreover, the larger constraint limits the number of possible 

conformers leading to higher target specificity6-8. Furthermore, cyclic peptides are 

significantly more resistant to proteolytic activities5,9. In multicyclic peptides such as bicyclic 

peptides, the above described advantages are even more pronounced. 

During the last decade, phage display has become an established technology for rapid and 

efficient high-throughput screening of protein and peptide binders to different targets (such as 

proteins, peptides or DNA). G. P. Smith had developed this technology in 1985. He first 

displayed a polypeptide on the surface of filamentous phage and later isolated linear peptides 

binding to an antibody from a peptide library displayed on phage10,11. This technology takes 

advantage of a bacteriophage to link the molecules exposed on the surface of the phage 

(phenotype) with their encoding DNA (genotype). This allows rapid screening and 

identification of the isolated binders by sequencing of the phage DNA.  

Cyclic peptide ligands to targets of interest can be generated by phage display or other in vitro 

display techniques12. Typically, random peptides flanked by two cysteines are displayed on 

phage and cyclised through the formation of a disulfide bond13,14. O’Neil and co-workers 

were the first to construct such a library. They produced a library of hexapeptides flanked by 

cysteine residues capable of forming disulfide bridges13. They could identify cyclic peptides 

binding with dissociation constants in the nanomolar range to the platelet glycoprotein, 

IIb/IIIa, which mediates the aggregation of platelets through binding of fibrinogen. 
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1.3. Phage selection of bicyclic peptides 

Christian Heinis and Sir Greg Winter had developed a strategy to generate phage-encoded 

combinatorial libraries of bicyclic peptides3. They speculated that bicyclic peptides could 

mimic the complementarity determining regions of antibodies and therefore bind to targets 

with high affinity and specificity (Figure 1).  

 

Figure 1. Comparison of a bicyclic peptide with an antibody. (A) Antigen binding sites of 

antibodies (150 kDa) are restricted to a small region here highlighted in colour. (B) In contrast, in the 

100-fold smaller bicyclic peptides (1-3 kDa), the two binding loops represent the major part of the 

molecule. (C) Chemical structure of a bicyclic peptide isolated against human plasma kallikrein 

(PK15)3. Adapted from reference15. 

Large combinatorial repertoires of bicyclic peptides are generated by cyclising linear peptides 

displayed on phage using a chemical reaction. Libraries of linear peptides with three reactive 

cysteine residues, spaced apart by six random amino acids, are reacted via the cysteine side 

chains with a small molecule having three thiol-reactive groups such as 

tris(bromomethyl)benzene (TBMB)3. This reaction is quantitative and selective, and yields a 

single product. More than 10 billion different bicyclic peptides can be generated and 

subjected to iterative rounds (typically 2 or 3) of phage production, chemical cyclisation, 

affinity selection and amplification (Figure 2)15. 



General introduction 
 

4 
 

 

Figure 2. Schematic representation of the bicyclic peptide phage selection strategy. Linear 

peptides are displayed on phage particles to link them to their encoding DNA (left) and cyclised by 

reacting the three cysteine residues with the organic scaffold. The large library is then subjected to 

affinity selections (right). After 2 or 3 iterative rounds of selection, bicyclic peptide binders are 

isolated and identified by sequencing the DNA enclosed in the phage particles. From reference15.  

The binding affinities of the isolated peptides can be further improved by affinity maturation 

of one or both of the peptide loops. Bicyclic peptides were so far isolated against the serine 

proteases plasma kallikrein, cathepsin G and urokinase-type plasminogen activator (uPA) and 

bound all with affinities in the nanomolar range. The best binder is PK128, an inhibitor of 

human plasma kallikrein with a Ki of 0.3 nM7. All bicyclic peptides showed high target 

selectivity, generally not inhibiting homologous proteins.  
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2. Bicyclic peptide inhibitors of matrix metalloproteinases 2 and 9 

2.1. Introduction 

In this work we attempted to develop potent and selective inhibitors of matrix 

metalloproteinases (MMPs), a family of endopeptidases that was found to be difficult to target 

in a specific manner by small molecules16. The family of MMPs comprises more than 23 zinc-

dependent endopeptidases that have important physiological functions in tissue homeostasis 

but also play a role in pathological conditions, such as cancer and inflammation17,18. They can 

be secreted by cells or remain membrane bound and are implicated in many physiological 

processes, such as embryo implantation, bone remodelling and organogenesis. MMPs are 

proteolytic enzymes regulating various cellular behaviours such as differentiation, apoptosis, 

migration, tumour growth, tumour angiogenesis and invasion17. 

MMPs are expressed with a signal sequence (typically comprising 18-30 residues) and a 

propeptide domain (containing around 80 residues). The signal sequence is excised during 

transit out of the cell and is not present in mature enzymes. The propeptide domain contains a 

sequence PRCXXPD (where X denotes any amino acid) that is highly conserved among 

different MMPs. In this conserved domain, the thiol group of the cysteine residue interacts 

with the zinc ion of the active site stabilising the enzyme in its inactive form. This mechanism 

is called the “cysteine switch”. During activation of the zymogen, the cysteine residue is 

displaced through a variety of means (oxidation, mercurial and gold compounds) and the 

propeptide domain is cut off autocatalytically or by the action of another MMP19. The typical 

MMP catalytic domain contains around 160-170 residues, including the binding sites for the 

structural (calcium and zinc) and catalytic (zinc) metal ions. A highly conserved sequence 

HEXXHXXGXXH is present at the C-terminus of the catalytic domain (active site of 50-54 

residues). It includes a glutamic acid residue that promotes the nucleophilic attack of a water 

molecule on the carbonyl carbon of the scissile bond19,20. 

Members of the family of MMPs have been associated with many types and stages of cancer, 

and are thought to be essential for basement-membrane penetration during metastasis. MMPs 

regulate the tumour microenvironment and their expression and activation are increased in 
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almost all human cancers compared with normal tissue. While some MMPs are expressed by 

the cancer cells (e.g. MMP-7), other MMPs are produced by the tumour stromal cells, 

including fibroblasts, myofibroblasts, inflammatory cells and endothelial cells (e.g. MMP-2; 

Figure 3). 

 

Figure 3. Expression of MMPs and TIMPs in breast tumours. In addition to cancer cells, tumours 

of the breast consist of stromal cells, which include fibroblasts, myofibroblasts, endothelial cells, 

pericytes, macrophages, neutrophils and lymphocytes. Different MMPs and tissue inhibitors of 

metalloproteinases (TIMPs) are synthesised by stromal cells, cancer cells and cancer cells undergoing 

the epithelial-to-mesenchymal transition (EMT). Figure and legend taken from reference17. 

Based on the association of MMPs with cancer cell growth and metastasis, several 

pharmaceutical companies had developed in the 1980s broad-spectrum MMP inhibitors 

wherein several of them have advanced to phase III clinical trials21. Unfortunately, to date, no 

MMP inhibitor has been successfully developed as anti-tumour drug. The failure is attributed 

to mainly two factors: firstly, the compounds were tested in patients with late-stage tumours 

where effects of MMP inhibitors are limited, as later verified in animal models.  Secondly, the 

tested compounds were mostly broad-spectrum MMP inhibitors also acting on physiological 

targets, leading to toxicity and even pro-tumorigenic effects. In the last two decades, 

numerous studies with transgenic mouse models allowed to better understand the role of 

individual MMPs in tumour progression and to define targets and anti-targets among the 

MMP family of proteases21. However, the generation of MMP inhibitors with enhanced 
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selectivity has remained challenging. The most selective small molecule inhibitors were 

generated for MMP-13. They do not have, unlike most broad-spectrum MMP inhibitors, a 

zinc-binding functionality and inhibit MMP-13 in a non-substrate competitive manner22. 

Selective inhibitors of MMPs were recently developed based on antibodies. The antibody 

DX-2400 blocks MMP-14 with a Ki of 0.8 nM and reduces angiogenesis, tumour growth, and 

metastasis in MMP-14 expressing tumours in mice23. Selective and potent antibody inhibitors 

of MMP-2 and MMP-9 (also known as gelatinase A and B, respectively) as well as antibodies 

with dual specificities were also recently communicated (conference communication from 

Dyax Corp., Burlington, USA). 

In this work, we aimed at generating specific inhibitors of MMPs based on bicyclic peptides. 

In comparison to small molecules, peptides can form larger binding interfaces with the MMPs 

and hence generate more tight and specific interactions. In contrast to antibodies, bicyclic 

peptides are much smaller and promise to penetrate tumour tissue better. As MMP targets, we 

chose MMP-2 and MMP-9 which are highly expressed in many human tumours and are 

associated with tumour invasion. The two gelatinases are structurally and functionally related. 

They degrade collagen IV present in the basement-membrane and denatured type I collagen, 

which is considered as an important activity in tumour invasion. While MMP-2 is considered 

as a clear therapeutic target, MMP-9 is considered as a tumour type and stage dependent 

target21. Many potent small molecule inhibitors of MMP-2 and MMP-9 have been developed, 

however the large majority are broad spectrum inhibitors. The most specific inhibitor of 

MMP-2 is a decapeptide coming from the endogenous amyloid precursor protein (APP; 

residues 586-595)24-26. The so called APP-derived inhibitory peptide (APP-IP) blocks 

efficiently MMP-2 (Ki = 13 nM) and other MMPs only weakly (Ki’s > 2 μM). No data is 

available about the performance of APP-IP in vivo but a linear peptide is expected to be 

rapidly degraded. The most potent cyclic peptide inhibitor of MMP-2 developed to date has 

been isolated in phage panning experiments against MMP-9 and is termed CTT27. This 

disulfide-cyclised decapeptide inhibits the gelatinase MMP-2 with an IC50 of 10 μM when 

measured in a gelatin digestion assay, or an IC50 of 283 μM (Ki = 142 μM) when measured in 

a fluorogenic substrate-based activity assay28. Despite its relatively low potency, this peptidic 

inhibitor has been used extensively in biological studies including imaging applications.  
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2.2. Phage selection of bicyclic peptides binding to MMP-2 

In order to allow the reader to follow best the experiments in this project and to understand 

the strategies taken during the course of it, the results are chronologically presented and 

divided in five subchapters, describing 5 different experiments to isolate bicyclic peptide 

MMP-2 inhibitors. Phage titres of each selection are reported in Appendices subchapter 7.2. 

2.2.1. Expression and immobilisation of MMP-2 

The protein target is a critical component in phage selections. We chose to use the full-length 

MMP-2 protein comprising the catalytic domain, the hinge region and the hemopexin-like 

domain as target for the phage selections. This strategy entailed the risk that not only binders 

to the catalytic domain could be isolated but also to other domains of MMP-2. However, since 

in previously performed phage selections with other protease targets, only bicyclic peptides 

binding to the active site were isolated3,29, we reasoned that the use of full-length protease 

should not be a problem. A gene coding for the following protein sequences and domains was 

expressed (Figure 4 and Appendices subchapter 7.3)17,19,20,30: 

• Signal sequence 

ProMMP-2 is synthesised in the cell and secreted to the extracellular space. The signal 

sequence directs the protease to the endoplasmic reticulum and through the secretory 

pathway. This region is cut off during the transit out of the cell and is not observed in 

the mature enzyme.  

• Propeptide domain 

As discussed in the introduction, the propeptide is composed of a conserved zinc-

interacting thiol group that maintains the protease as inactive zymogen via a 

mechanism called the “cysteine switch”. 

• Catalytic and fibronectin-like domains 

In addition to the typical MMP catalytic domain, including a catalytic zinc ion, MMP-

2 and MMP-9 contain three tandem repeats of about 58 residues each related to 

collagen-binding type II domains of fibronectin. These domains are required to bind 

and cleave gelatin and gelatin-like substrates. 
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• Hinge region 

This region makes the connection between the catalytic domain and the hemopexin-

like domain. This flexible linker does not have a secondary structure. 

• Hemopexin-like domain: 

Four repeats of a hemopexin-like domain, each composed of approximately 48 

residues are found at the C-terminus. These domains are not essential for catalytic 

activity but they mediate interactions with proteolytic substrates (e.g. heparin), cell-

surface molecules (e.g. integrin) and tissue inhibitors of metalloproteinases (e.g. 

TIMP-2). 

 

Figure 4. Structure of MMP-2. The important features of proMMP-2 are illustrated. The structure 

contains an N-terminal signal sequence (SP), a propeptide, a catalytic domain with a zinc-binding site 

(Zn) and three repeats homologous to the collagen-binding type II domains of fibronectin (F). At the 

C-terminus, four repeats of a hemopexin-like domain (H) are connected to the catalytic domain by a 

hinge. 

The full-length proenzyme was expressed in mammalian cells, purified by size-exclusion 

chromatography and biotinylated to allow immobilisation on magnetic beads for the phage 

selection. Prior to the immobilisation, the zymogen was activated by incubation with the 

mercurial compound 4-aminophenylmercuric acetate (APMA, Appendices subchapter 7.4). 

This molecule is known to bind to the conserved cysteine residue found in the propeptide. The 

propeptide dissociates from the catalytic zinc ion and is autolytically processed by proMMP-2 

itself resulting in an active form of MMP-2 (62 kDa) as verified by SDS-PAGE (Figure 5A 

and B). The activity of the protein was measured using an internally quenched fluorescent 

substrate. The specific activity was determined to be higher than 1000 pmol/min/μg. 
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Figure 5. APMA-activation of purified proMMP-2. (A) The latent (72 kDa) and (B) the APMA-

activated forms (62 kDa) of MMP-2 were analysed by SDS-PAGE to control the efficiency of the 

activation process.  

2.2.2. Experiment 1: Standard procedure 

Linear peptides from a phage peptide library previously generated and described3 

(ACX6CX6CG-phage; diversity > 4 billion peptides, library 6x6; Figure 6A) were cyclised by 

reacting the three cysteine residues with tris(bromomethyl)benzene (TBMB). The resulting 

phage-encoded bicyclic peptide library was then subjected to three iterative rounds of affinity 

selection with activated MMP-2. In all selection rounds, the captured phage were eluted with 

low pH buffer (pH 2.2). Acidic pH alters the ionisation state of target and bicyclic peptides as 

well as denatures the target, and hence disrupts the binding interaction. This strategy is 

routinely used in phage display for the elution of binders. The isolated peptides showed two 

different but related consensus sequences (Figure 6B). In the first consensus sequence the 

peptides shared similar amino acids in at least six positions (MMP2-1 to MMP2-3), which 

suggested that they form a specific interaction with the target. In the second consensus 

sequence, amino acids in the second loop showed high similarity to the 7-amino acid stretch 

of the MMP-2 propeptide (aa 21-27 of the 80 aa propeptide: PRCGNPD, identical amino 

acids are underlined). This sequence is known to block the active site through binding of the 
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cysteine residue to the catalytic zinc ion. At this point, we speculated that peptides of this 

consensus sequence mimic the role of the propeptide and therefore were isolated in the 

selections.  

 

Figure 6. Peptides isolated in phage selections with MMP-2 (low pH elution). (A) Format of the 

phage peptide library that was cyclised prior to phage panning through reaction of the three 

highlighted cysteine residues (grey) with TBMB. (B) Amino acid sequences of clones isolated in 

phage selections using a low pH elution strategy. Sequence similarities are highlighted in colour 

(Rasmol colour code). The frequency each peptide was identified is indicated. The inhibitory activities 

(IC50s) of TBMB-cyclised as well as linear peptides are shown.   

Identified peptides were chemically synthesised on solid phase, cyclised with TBMB and the 

MMP-2 inhibition tested. The activity assay was based on an internally quenched fluorescent 

substrate. The bicyclic peptides inhibited MMP-2 at concentrations in the high micromolar 

range (Figure 6B) which is considered to be not a specific inhibition. A reason for the 

absence of potent inhibition could be that the peptides are not binding to the catalytic domain 

of MMP-2 or to surfaces of the catalytic domain that are distant from the active site 

(exosites). The similarity of the second consensus sequence with a motif of the propeptide 

(PRCG sequence) suggests that some of the peptides were isolated with the third cysteine 
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residue not modified. This observation prompted us to test the inhibitory activity of two 

clones as linear peptides (MMP2-1 and MMP2-6). Linear peptides were reduced, purified and 

their inhibitory activity tested in degassed buffer to prevent rapid oxidation. The peptides 

tested in the linear format were more potent than their bicyclic counterparts (Figure 6B). This 

finding suggested that the peptides were isolated in the linear form.  

2.2.3. Experiment 2: Specific elution of active site binders by competitive elution 

The phage selection experiment against MMP-2 was repeated wherein attention was paid to 

quantitatively cyclise the peptide library with TBMB. To enrich peptide ligands binding to the 

active site of MMP-2 and avoid the selection of exosite binders, we decided to perform three 

selection rounds in which phage were selectively eluted with a potent hydroxamate-based 

competitive inhibitor of MMP-2 (GM 6001; Ki = 0.5 nM, Appendices subchapter 7.5)31.  

Following this elution strategy, isolated peptides presented two new consensus sequences 

(Figure 7). In both consensus sequences two clones (1st consensus: MMP2-12 and MMP2-13; 

2nd consensus: MMP2-14 and MMP2-15) shared 7 identical or highly similar amino acids that 

are distributed over both peptide loops. The three clones of the first consensus sequence 

contain a fourth cysteine residue. Overall, mostly different peptide sequences were found 

compared to experiment 1 in which phage were eluted with acidic pH. Two peptides were 

isolated in both of the two experiments: peptide MMP2-1 isolated 90 times by low pH elution 

and 3 times by competitive elution and MMP2-11 isolated once by low pH elution and 92 

times by competitive elution. Peptides were synthesised and their inhibitory potential tested. 
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Figure 7. Peptides isolated in phage selections with MMP-2 (competitive elution). Amino acid 

sequences of clones isolated in phage selections using a competitive small molecule MMP inhibitor 

are presented. Sequence similarities are highlighted in colour (Rasmol colour code). The frequency 

each peptide was identified is indicated. The inhibitory activities (IC50s) of TBMB-cyclised synthetic 

peptides, reduced-linear peptides and disulfide-cyclised peptides are shown. (*) For the peptides with 

4 cysteine residues, the activity of the most potent structural isomer is indicated. 

While all bicyclic peptides with three cysteine residues did not (or weakly) inhibit MMP-2, 

two bicyclic peptides having an additional cysteine residue in the positions 7 (MMP2-12) and 

10 (MMP2-11) showed an inhibitory activity in the low micromolar range. We speculated that 

one cysteine residue remains free after reaction with TBMB and complexes the active-site 

zinc ion to foster the inhibitory activity. Since  reaction of peptides having four cysteines with 

tris(bromomethyl)benzene yields a mixture of four different bicyclic peptide isomers, we 

applied the following synthetic strategy to generate the individual four possible structures 

(Figure 8A and B). Linear peptides were synthesised wherein the side chains of three 

cysteine residues were protected with the standard trityl (Trt) protecting group and one 

cysteine with the chemically orthogonal S-tert-butyl (tBu). Release of the peptides from the 

solid phase with standard cleavage conditions (trifluoroacetic acid) left the cys(tBu) residues 

unchanged and allowed selective reaction of three thiols with TBMB. The four structural 

isomers of peptide MMP2-11 and MMP2-12 showed significantly different inhibitory 
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activities, wherein for each peptide sequence, one isomer had a single-digit IC50 (Table 1; 

Figure 8C). 

 

Figure 8. Structures and inhibitory activities of bicyclic peptides having a free cysteine residue. 

(A) The sequence of the linear peptide inhibitor corresponding to the clone MMP2-12 as well as the 

cyclisation strategy are indicated. (B) The four different structural isomers of MMP2-12 are 

schematically represented. (C) Inhibition of MMP-2 with different concentrations of four MMP2-12 

bicyclic peptide isomers having one free cysteine or of a bicyclic peptide MMP2-12 Cys7Ala mutant. 

Fractional activities of MMP-2 measured with an internally quenched fluorescent peptide substrate are 

indicated. 
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Mutation of the free cysteine residues in the most potent structural isomers, MMP2-11b and 

MMP2-12b, to an alanine residue reduced the inhibitory activity 64-fold and more than 100-

fold, respectively.  

Peptide Peptide sequence 

IC50 (μM) 

Position of free cysteine residue 

a b c d Cys b  Ala 

MMP2-11 H-ACaSPNQGPCbCcDTPGYCdG-NH2 32 4 > 75 104 256 

MMP2-12 H-ACaVGDACbVCcDSPIPWCdG-NH2 28 6 46 86 > 600 

Table 1. Inhibitory activity of bicyclic peptides having a free cysteine residue. The cysteine 

residues in the amino acid sequences of the synthetic peptides MMP2-11 and MMP2-12 that are free 

in the different structural isomers are indicated with lower case letters a-d (in bold). The IC50s are 

given for the four structural isomers with one free cysteine residue (the letter indicates the position of 

the free cysteine) as well as for a bicyclic peptide in which the free cysteine in position b was 

exchanged to alanine. If the IC50 was not reached, the highest concentration of bicyclic peptide used in 

the assay is indicated. 

The activity of linear peptides was also tested. All the tested linear peptides inhibited MMP-2 

with a better or similar activity than the corresponding bicyclic peptide (Figure 7). This result 

was unexpected and suggested that peptides were selected without being modified with 

TBMB.  

Another possibility was that the peptides were isolated as disulfide-cyclised cyclic peptides. 

To test the inhibitory activity of this format, the linear peptides were oxidised with 

dimethylsulfoxide (DMSO) wherein at least three different isomers can potentially form. The 

oxidation reactions were followed by analytical HPLC (Figure 9). The inhibitory activity of a 

mixture of the oxidised forms was tested. 
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Figure 9. Example of RP-HPLC analysis of a linear peptide before and after DMSO-oxidation. 

Peptide MMP2-18 was analysed before (top) and after (bottom) 24 hours oxidation with DMSO. 

Three new peaks corresponding to the different oxidation forms appeared. The mixture of peptides 

after oxidation was tested in inhibition assays with MMP-2. 

Peptide MMP2-11 containing four cysteines showed better inhibition (Figure 7, IC50 = 0.36 

μM) after oxidation. Only one major oxidation product was observed by HPLC (24 hours 

oxidation, Figure 10) suggesting that one of the three possible disulfide-cyclised structural 

isomers is more favoured. The results suggest that peptides with four cysteines were most 

probably selected as bicyclic structures with two disulfide-bridges (not TBMB-modified). 

 

Figure 10. Monitoring of peptide MMP2-11 oxidation by RP-HPLC. The linear peptide was 

oxidised with DMSO and the reaction products were monitored at different time points (3h, 16h and 

24h) by HPLC. After 24 hours incubation, one major peak was observed suggesting that one structural 

isomer is more stable and favoured over the others.  
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The ability of peptides MMP2-11 and MMP2-12 to inhibit the highly related gelatinase 

MMP-9 was assessed in inhibition assays. The bicyclic peptides MMP2-11b and MMP2-12b 

inhibit MMP-9 with IC50s of 0.61 μM and 15 μM, respectively (Table 2). Therefore, they do 

not show selectivity toward MMP-2. MMP2-11b inhibited MMP-9 even better than MMP-2.  

 

IC50 (μM) 

Bicyclic peptide Reduced-linear peptide Oxidised peptide 

MMP2-11b MMP2-12b MMP2-11 MMP2-12 MMP2-11 MMP2-12 

MMP-2 4 6 0.6 14 0.36 28 

MMP-9 0.61 15 2.5 4 1 ND 

Table 2. Selectivity of the best isolated peptide MMP-2 inhibitors. The inhibitory activity (IC50) 

toward MMP-2 and MMP-9, which are structurally and functionally highly related, are indicated. 

Values are given for TBMB-modified peptides MMP2-11b and MMP2-12b as well as for their linear 

and disulfide-cyclised forms. ND, not determined. 

2.2.4. Experiment 3: Selection after quenching of unpaired cysteine residues 

Given the observation in experiment 2 that peptides were most likely isolated linear or in 

oxidised form, we performed new affinity selections using a sulfhydryl-specific reagent that 

could specifically react and quench thiols remaining unreacted after TBMB modification. 

Methyl methanethiosulfonate (MMTS) is known to quantitatively and reversibly sulfenylate 

thiol-containing molecules (Figure 11). This reaction is fast and selective and therefore 

suitable for our purpose32-35. 

 

Figure 11. Reaction of unpaired cysteine residues on phage with the sulfhydryl-reactive 

compound MMTS. The large excess of MMTS over phage drives the reaction to the right side. 
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Phage of the library 6x6 described in subchapter 2.2.2 were produced3. Additionally, two 

new phage libraries cloned in our laboratory were used. These libraries contain peptides with 

two sequences of three or four random amino acids between three constant cysteines and two 

random amino acids flanking the first and last cysteine (XCX3CX3CX-phage; library 3x37 and 

XCX4CX4CX-phage; library 4x436, respectively). The different libraries were produced 

separately, modified with TBMB and reacted with 10 mM MMTS. The phage infectivity was 

assessed to ensure that this treatment did not significantly affect their viability. The large 

excess of MMTS (10 mM) used over phage (pM range) should have quenched a large fraction 

of unreacted thiols. Libraries 3x3 and 4x4 were mixed together before the panning and a 

selection with library 6x6 was performed in parallel. Additionally, a control experiment was 

performed with library 6x6 in which the phage peptides were not modified with TBMB. For 

this latter control experiment, we expected to obtain mostly peptides with two or four 

cysteines based on results of other phage selections performed in the laboratory: in phage 

panning experiments performed with streptavidin or uPA as targets, it was found that 

selections with TBMB-cyclised phage peptide libraries predominantly yielded peptides with 

three cysteines, while selections with unmodified peptides yielded mostly peptides with four 

(and two) cysteines37. 

Most of the sequences isolated in this experiment contained two or four cysteines. Selections 

performed with libraries 3x3 and 4x4 modified with TBMB yielded 63 % of sequences with 

an even number of cysteines (2 or 4) (Figure 12A). Similarly, in selections with library 6x6 

treated with TBMB, only two different sequences were found and the most abundant peptide 

(MMP2-32) contained four cysteines (Figure 12B). Finally, in the control experiment with 

library 6x6 not modified with TBMB, 78 % of the isolated sequences contained two or four 

cysteines (Figure 12C). These results were in contrast to our expectation that libraries 

modified with TBMB yield predominantly clones with three cysteines. This could indicate 

that the cyclisation of peptide libraries with TBMB was not efficient.  

Interestingly, a consensus sequence present in more than 50 % of the isolated peptides in the 

selection with non-modified library 6x6 showed high similarity with the sequence of the 

published APP-IP MMP-2 inhibitor24-26, suggesting a similar binding mode (APP-IP peptide: 

ISYGNDALMP; identical amino acids are underlined; Figure 12C and D). 
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Figure 12. Peptides isolated in phage selections with MMP-2 after quenching of unpaired 

cysteine residues. Libraries were produced, TBMB modified and reacted with the sulfhydryl-specific 

reagent MMTS. Amino acid sequences of clones isolated in phage selections with libraries: (A) 3x3 

and 4x4 produced separately and mixed together before panning, (B) 6x6 and (C) 6x6 not cyclised 

with TBMB (as control) are presented. Sequence similarities are highlighted in colour (Rasmol colour 

code). The frequency each peptide was identified is indicated. The inhibitory activities (IC50s) of two 

TBMB-cyclised synthetic peptides are shown. (D) Amino acid sequence of the known MMP-2 

inhibitor APP-IP is shown. Sequence similarities with isolated clones are highlighted. 

Two clones containing three cysteines were synthesised, cyclised and tested for their activity. 

None of them showed MMP-2 inhibition.  

The strategy used here to push the system toward the selection of TBMB-modified peptides 

over linear or disulfide-cyclised peptides was not successful. Furthermore, the TBMB-
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cyclisation seems to have only partially modified the peptide libraries as only a minority of 

clones contained three cysteines.  

2.2.5. Experiment 4: Selection with the purified active form of MMP-2 

In experiments 1-3, the purified proMMP-2 was activated with APMA and immediately used 

for phage selections. In this experiment, proMMP-2 was activated by APMA and the active 

form purified by gel filtration prior to affinity selection. As a positive control, we performed 

in parallel a selection against human plasma kallikrein (hPK), a serine protease for which 

characteristic consensus sequences were previously identified in our laboratory3,7. A control 

experiment with phage peptides not modified with TBMB was performed in parallel as in 

experiment 3.  

Panning of the TBMB-modified library against MMP-2 and hPK yielded a large number of 

peptides containing two or four cysteines, namely 71 % and 53 %, respectively (Figure 13A 

and C). In selections with library not modified with TBMB against MMP-2 and hPK, 87 % 

and 100 % of peptides contained an even number of cysteine residues (Figure 13B and D). 

As in experiment 3, these results suggest that the cyclisation of the peptide library with 

TBMB was not efficient and that a majority of peptides were not reacted with TBMB.  

Furthermore, peptides isolated against MMP-2 and hPK did not share a consensus sequence. 

In the selections with hPK a high abundance of arginine residues was observed (1 out of 10 

residues; Figure 13C and 13D). The presence of this amino acid is characteristic for peptides 

isolated against hPK since this amino acid binds to the S1 site of the trypsin-like serine 

protease3,7. However, panning of peptide libraries against hPK typically yield peptides with 

consensus sequences, indicating that the affinity selection was not optimal with this positive 

control.  
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Figure 13. Peptides isolated in phage selections with purified active form of MMP-2 and the 

positive control hPK. Amino acid sequences of clones isolated in phage selections with MMP-2 (A, 
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B) and hPK (C, D) are presented. Library 6x6 was either TBMB-modified (A, C) or not cyclised (B, 

D). High abundance of arginine residues, characteristic of sequences isolated against hPK3,7, are 

highlighted in colour (Rasmol colour code). The frequency each peptide was identified is indicated. 

2.2.6. Experiment 5: Repetition of standard procedure  

The four different experiments (1 to 4) showed that the phage selections can yield highly 

variable results even if similar conditions are applied. It appears that small variations in the 

procedure can highly influence the final outcome of phage selections. Particularly the 

negative results with the positive control (selections with plasma kallikrein, experiment 4) had 

prompted us to repeat the phage selection using the procedure described in experiment 1 

(standard procedure, library 6x6, low pH elution, subchapter 2.2.2). The selections as well as 

the inhibitory assays were performed by Dr. Khan Maola, a new postdoctoral fellow in our 

laboratory, to whom I taught the different experimental procedures. In a control experiment 

performed in parallel, the phage-displayed library 6x6 was not cyclised with TBMB and 

panned also against MMP-2. The peptides isolated after two and three rounds of panning are 

shown in Figure 14. 

In contrast to the selections in experiments 2 to 4, the selection with TBMB-modified peptide 

library yielded almost exclusively peptides with three cysteines. Selection with non-modified 

peptide library gave mostly peptides with an even number of cysteines. These results suggest 

that the peptide library was efficiently modified with TBMB in this experiment. 
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Figure 14. Peptides isolated in phage selections with MMP-2 (experiment 5). Library 6x6 was 

either TBMB-modified (A) or not modified (B) and subjected to affinity selections as in experiment 1. 
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Sequence similarities are highlighted in colour (Rasmol colour code). The frequency each peptide was 

identified is indicated. The inhibitory activities (IC50s) of TBMB-cyclised synthetic peptides as well as 

oxidised peptides are shown. Clones already isolated after experiment 1 (*) or experiment 2 (**) are 

indicated. For patenting reasons, sequences of peptides MMP2-78 and -106 are hidden. (C) Amino 

acid sequence of the published MMP-2 inhibitor APP-IP. Sequence similarities with isolated clones 

are highlighted.  

In the selection with the TBMB-modified peptide library, the isolated clones showed four 

different consensus sequences (Figure 14A). One of them (cluster 3) was already identified in 

experiment 1. In addition, three new consensus sequences (clusters 1, 2 and 4) were 

identified. Peptides of these clusters shared at least 6 (cluster 1), 4 (cluster 2) and 7 (cluster 4) 

identical or highly similar amino acids that are distributed over both peptide loops. Some of 

the peptides isolated in this experiment 5 were the same peptides as found previously 

(MMP2-1, MMP2-8, MMP2-15, MMP2-20). MMP2-20 shared sequence similarities with the 

APP-derived inhibitory peptide (Figure 14A and C). Peptides were synthesised and their 

inhibitory potential tested. One of the bicyclic peptides in cluster 2 inhibited efficiently MMP-

2 activity (MMP2-78, IC50 = 4 μM, corresponding to a Ki of 2 μM). The specificity of the 

bicyclic peptide MMP2-78 was assessed by testing the inhibition of MMP-9. MMP2-78 

inhibited MMP-9 with an IC50 higher than 100 μM. Hence, in addition to its good inhibitory 

activity against MMP-2, it also presents high specificity towards the gelatinases. Finally, 

peptides of clusters 1, 3 and 4 did not show inhibition or only at concentrations in the high 

micromolar range. Based on the strong consensus sequences, we speculated that these latter 

peptides bind to MMP-2 but do not inhibit the enzyme.  

In the selection with the unmodified peptide library (control experiment), most of the isolated 

clones contained 2 or 4 cysteine residues (only peptide MMP2-109 had three cysteines). The 

isolated peptides showed two different consensus sequences (Figure 14B). Peptides of cluster 

1 shared similarities with the APP-derived inhibitory peptide which is a potent inhibitor of 

MMP-2 (IC50 = 25 nM) (Figure 14C). The crystal structure of the APP-derived peptide 

bound to MMP-2 was recently solved and revealed that it binds to the active site into the 

substrate-binding cleft of the catalytic domain in the N to C direction opposite that of 

substrate38. The carboxylate group of the aspartic acid residue coordinates bidentately the 

catalytic zinc ion of the enzyme and the aromatic side chain of the tyrosine residue is 

accommodated by the S1’ pocket of the protease. Given the similarity of peptides of cluster 1 

with the APP-derived peptides (Figure 14B), we hoped that they also bind to the active site of 
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MMP-2 and inhibit the protease. MMP2-106 cyclised by a disulfide bridge was indeed found 

to inhibit MMP-2 with high potency (IC50 = 50 nM). Peptides of cluster 2 shared seven 

identical or highly similar amino acids that are distributed over both peptide loops. 

Noteworthy is also clone MMP2-11 which did not belong to a cluster but was isolated most 

frequently (42 times). This peptide was already found in experiment 1 and experiment 2 in 

which peptides were treated with TBMB prior to affinity selections (Figures 6B and 7). The 

finding that this clone was here isolated from a library not modified with TBMB suggested 

that, in experiments 1 and 2, the clone was isolated as peptide not modified with TBMB. 

2.2.7. Conclusions and outlook 

Bicyclic peptide inhibitors of MMP-2 could finally be generated. The best bicyclic peptide 

inhibitor, MMP2-78, has an IC50 of 4 μM which corresponds to a Ki of 2 μM. Although the 

inhibitor is weaker than the APP-derived peptide (Ki = 13 nM), it is likely to be more resistant 

to degradation by proteases in biological systems. In a recently performed alanine scan 

(performed by Dr. Khan Maola), it was found that only 4 amino acids are essential for the 

inhibition. It is tempting to speculate that the bicyclic MMP inhibitor can be improved in an 

affinity maturation approach. In fact, such an affinity maturation attempt is currently 

performed by Dr. Khan Maola. Other potent peptide inhibitors isolated were the monocyclic 

peptide MMP2-106 having an IC50 of 50 nM corresponding to a Ki of 25 nM and the bicyclic 

peptide MMP2-11 having an IC50 of 360 nM which corresponds to a Ki of 180 nM. These 

peptides are cyclised by one or two disulfide bridges and may also be affinity matured. 

However, a limitation of the monocyclic peptide is the exocyclic linear tail, which is essential 

for the inhibition but most likely easily degraded by proteases. The limitation of the disulfide-

linked bicyclic peptides (as MMP2-11) is the formation of multiple regioisomers, which 

complicates the characterisation and the synthesis of desired isomers.   
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2.3. Phage selection of bicyclic peptides binding to MMP-9 

MMP-9 plays a role in several pathological processes including tumour growth and invasion. 

It is considered as a tumour type and stage dependent target. We performed selections against 

this protease in parallel to those against MMP-2 described before (subchapter 2.2). 

2.3.1. Expression and immobilisation of MMP-9 

Selections were performed on full-length MMP-9 (Figure 15 and Appendices subchapter 

7.6). This protease is structurally and functionally highly related to MMP-2. It is composed of 

the same domains with the exception that it has an additional type V collagen-like 

domain19,30. This extra region consists of 54 residues rich in proline. Its role is not clear. 

 

Figure 15. Structure of MMP-9. The different regions of proMMP-9 are schematically illustrated. 

The regions include an N-terminal signal sequence (SP), a propeptide, a catalytic domain containing a 

zinc-binding site (Zn) and three repeats homologous to the collagen-binding type II domains of 

fibronectin (F). Four repeats of a hemopexin-like domain (H) at the C-terminal part are connected to 

the catalytic domain by a hinge. In addition to MMP-2, MMP-9 has also a unique type V collagen-like 

domain (C5) before the linker region. 

The full-length protein was expressed in mammalian cells, purified successively by affinity 

and size-exclusion chromatographies, and finally biotinylated (Figure 16A). Before the 

selections, the zymogen was activated, as MMP-2, by incubation with APMA. The activity of 

the protein was measured using the internally quenched fluorescent substrate used for MMP-2 

(Figure 16B). The specific activity was measured to be 100 pmol/min/μg. 
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Figure 16. APMA-activation of purified proMMP-9. (A) The purity of proMMP-9 (92 kDa) was 

assessed by SDS-PAGE. (B) The activity of the activated form of MMP-9 was measured by 

monitoring the fluorescence intensity after incubation with an internally quenched fluorescent 

substrate.  

2.3.2. Experiment 1: Standard procedure 

Phage selections against activated MMP-9 were performed as previously described for MMP-

2 (see experiment 1, subchapter 2.2.2). After three rounds of selection, the isolated clones 

were sequenced and aligned. Two different clusters of consensus sequences were found 

(Figure 17). 

In the first cluster, we observed the presence of clones with proximal cysteine residues 

(positions 8-9 or 9-10) whereas the third cysteine fixed in the library design (position 16) was 

not present in most peptides. More than 72 % of the isolated sequences presented three 

cysteines suggesting that most of the peptides were isolated as bicyclic peptides (see 

discussion subchapter 2.2). Aspartic acid in position 6 was highly conserved as well as the 

phenylalanine in position 4. We speculated that, as for MMP-2, the aspartic residue could 

bind to the catalytic zinc ion. However, activity assays showed only weak inhibition for all 

the peptides. MMP9-1, the most abundant clone inhibited the protease with an IC50 of 66 μM 

when cyclised with TBMB (Figure 17). Surprisingly, the clone inhibited MMP-9 more 

efficiently as linear peptide (IC50 = 3 μM). Based on this latter observation, it was not clear if 

the peptides were isolated as TBMB-modified structures or unreacted.  
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In the second cluster, high similarities between isolated peptides were observed. MMP9-9 and 

MMP9-10 shared 7 identical or highly similar amino acids, distributed over both peptide 

loops. Unfortunately, synthetic peptides did not or only weakly inhibit MMP-9. 

 

Figure 17. Peptides isolated in phage selections with MMP-9 (low pH elution). Amino acid 

sequences of clones isolated in phage selections using a low pH elution strategy are presented. 

Sequence similarities are highlighted in colour (Rasmol colour code). The frequency each peptide was 

identified is indicated. The inhibitory activities (IC50s) of TBMB-cyclised synthetic peptides as well as 

reduced-linear peptide MMP9-1 are shown. 

Despite the high structural similarities between the catalytic domains of MMP-2 and MMP-9, 

the sequences of isolated peptides were entirely different.  

2.3.3. Experiment 2: Specific elution of active site binders by competitive elution 

As for MMP-2, we decided in a second experiment to perform three rounds of affinity 

selection involving competitive elution of bound phage peptides. To specifically release 

active site binders we took advantage of a potent hydroxamate-based competitive inhibitor of 

MMP-9 (GM 6001; Ki = 0.2 nM). 

Bicyclic peptides eluted with this strategy showed the same two clusters identified using a 

low pH elution (experiment 1, subchapter 2.3.2). All the isolated clones were previously 

selected except peptide MMP9-12. However this peptide is highly similar to the others and 
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did not show any MMP-9 inhibition (IC50 > 600 μM, Figure 18). All of the selected clones 

contained three cysteines, suggesting that the peptides were isolated as bicyclic structures 

modified by TBMB.  

 

Figure 18. Peptides isolated in phage selections with MMP-9 (competitive elution). Amino acid 

sequences of clones isolated in phage selections using a competitive small molecule MMP inhibitor 

are presented. Sequence similarities are highlighted in colour (Rasmol colour code). The frequency 

each peptide was identified is indicated. The inhibitory activities (IC50s) of TBMB-cyclised synthetic 

peptides are shown. 

Both strategies (experiments 1 and 2) gave similar results and no better peptide hit was 

isolated after this second experiment. 

2.3.4. Conclusions and outlook 

Phage selections against MMP-9 yielded peptides with two strong consensus sequences that 

were reproducibly found in two entirely independent experiments. The peptides did not 

significantly inhibit MMP-9 when they were cyclised with TBMB. It remains unclear if they 

were isolated due to binding to a region not affecting the enzymatic activity or if they were 

isolated as unmodified peptides binding to the active site of MMP-9. In future experiments, 

the binding of the isolated peptides to MMP-9 may be assessed by enzyme linked 

immunosorbent assays (ELISA) or fluorescence polarisation. For the isolation of MMP-9 

inhibitors, a promising strategy may be to perform affinity selections against the catalytic 

domain of MMP-9 alone. This would maximise the chances of isolating active site binders 

and therefore inhibitors.  
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2.4. Materials and methods 

Expression and purification of the full-length of human MMP-2 and -9. Expression in 

mammalian cells of both proteases was performed by the protein expression core facility 

(PECF) at EPFL. The following protocol was used. Full-length cDNA of human MMP-2 and 

-9 cloned into pcDNA3 expression vector, a kind gift from Prof. Dr. Eric Howard39, was used 

to transfect human embryonic kidney (HEK-293) cells using linear polyethylenimine (PEI, 

Polysciences, Eppenheim, Germany). The large scale expression of proMMP-2 and -9 (1 litre 

culture) was performed in suspension-adapted HEK-293 cells growing in serum-free ExCell 

293 medium (SAFC Biosciences, St. Louis, MO, USA) in the presence of 4 mM glutamine. 

HEK-293 cells at high cell density (20 x 106 cells/ml)  in 50 ml of RPMI 1640 medium were 

transferred to a 250-ml glass bottle (Schott Glass, Mainz, Germany) and transfected by 

sequential addition of DNA (62.5 µg/million cells) and PEI (187.5 µg/million cells)40. The 

cultures were incubated  in an ISF-4-W incubator (Kühner AG, Birsfelden, Switzerland) at 37 

°C with agitation at 110 rpm in the presence of 5 % CO2
41. After 2 h, the cultures were 

transferred to a 5-L glass bottle (Schott Glass) containing 950 ml Excell 293 medium. The 

histone deacetylase inhibitor valproic acid was added to a final concentration of 3.75 mM (2-

propylypentanoic acid, sodium salt or VPA)42 and the cultures were agitated as before. After 7 

days, the cells were harvested by centrifugation at 2'500 rpm for 15 min at 4°C. Any 

additional cell debris was removed from the medium by filtration through 0.45 μm PES 

membranes (Filter-top 250 ml low protein binding TPP). The recombinant proteins were 

purified from the conditioned medium by size exclusion chromatography using a HiPrep 

26/60 Sephacryl S-200 high resolution column (GE Healthcare, Uppsala, Sweden) and eluted 

in PBS buffer (pH 7.4). ProMMP-9 was purified sequentially by gelatin-Sepharose 

chromatography as described previously43 and by gel filtration. The purity of both proteases 

was greater than 95 % as assessed by SDS-PAGE. 

Biotinylation of human proMMP-2 and -9. The recombinant proteases (3 μM) in PBS (pH 

7.4) were incubated with 50-fold excess of EZ-link Sulfo-NHS-LC-Biotin (150 μM; Pierce, 

Rockford, IL, USA) for 1 h at 25 °C. Excess of biotinylation reagent was removed by gel 

filtration with a PD-10 column (GE Healthcare) using TNC buffer (50 mM Tris-HCl (pH 7.5), 

150 mM NaCl, 10 mM CaCl2, 0.02 % (w/v) NaN3 and 0.05 % (w/v) Brij-35) and the protein 

concentrations were determined spectrophotometrically by measuring the absorbance at 280 

nm (GeneQuant 100, GE Healthcare). The ability of the biotinylated proMMPs to bind to 
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either streptavidin or neutravidin was verified by incubating the proteins with magnetic 

streptavidin and neutravidin beads respectively and analysing the bound and unbound protein 

fractions by SDS-PAGE. Similar protocol was used to biotinylate activated human plasma 

kallikrein purified from human plasma (Innovative Research, Novi, USA) as previously 

described3. 

Activation of human proMMP-2 and -9. The purified zymogens of both proteases (1 to 5 

μM) were incubated 1 h (MMP-2) and 24 h (MMP-9) at 37 °C with freshly prepared 4-

aminophenylmercuric acetate (APMA) at a final concentration of 2 mM as previously 

described44. APMA was used to activate the proenzymes to avoid inclusion of additional 

contaminating proteases in our phage selections. In experiment 4, MMP-2 was additionally 

purified after APMA-activation by size exclusion chromatography using a Superdex 200 

10/300 GL column (GE Healthcare) and eluted in TNC buffer. 

Phage selection of bicyclic peptides. Bacterial cells of the library glycerol stock were 

inoculated in 500 ml of 2YT/chloramphenicol (30 μg/ml) medium to obtain an OD600 of 0.1. 

The culture was shaken (200 rpm) for 16 h at 30 °C. After 30 min of centrifugation at 8500 

rpm and 4 °C, the phage were purified by precipitation with 0.2 volume of 20 % (w/v) 

polyethylene glycol 6000 (PEG6000), 2.5 M NaCl on ice and centrifugation at 8500 rpm for 

30 min. PEG purified phage, typically 1011-1012 t.u. (transducing units), were reduced in 20 

ml of 20 mM NH4HCO3, 5 mM EDTA, pH 8.0 with 1 mM tris(2-carboxyethyl)phosphine 

(TCEP) at 42 °C for 1 h. The concentration of TCEP was subsequently reduced by repetitive 

concentration and dilution steps with reaction buffer (20 mM NH4HCO3, 5 mM EDTA, pH 

8.0, degassed) in a Vivaspin-20 filter (MWCO of 100’000, Sartorius-Stedim Biotech GmbH, 

Goettingen, Germany) as described in Heinis et al., 20093. The volume of the phage solution 

was adjusted to 32 ml with reaction buffer and 8 ml of 50 μM tris(bromomethyl)benzene 

(TBMB) in acetonitrile (ACN) was added to obtain a final TBMB concentration of 10 μM. 

For control libraries without TBMB-modification (experiments 3-5, non-modified peptide), 8 

ml of ACN was added instead of TBMB. The reaction was incubated at 30 °C for 1 h before 

non-reacted TBMB was removed by precipitation of the phage with 0.2 volume of 20 % (w/v) 

PEG6000, 2.5 M NaCl on ice and centrifugation at 4000 rpm for 30 minutes. In experiment 3, 

10 mM of methyl methanethiosulfonate (MMTS) was added to the phage (after TBMB 

reaction) and let incubated 30 min at 30 °C. The phage pellet was then dissolved in 3 ml 

washing buffer (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 1 mM CaCl2). 
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Biotinylated active MMP-2 (40 μg), MMP-9 (20 μg) or hPKK (6 μg) were added to 50 μl 

magnetic streptavidin beads (Dynabeads M-280 from Invitrogen Dynal Biotech AS, Oslo, 

Norway) in washing buffer and incubated on a rotating wheel for 10 min at room temperature 

(RT). The magnetic beads were then washed with 0.5 ml washing buffer and incubated for 30 

min at RT with 0.5 ml washing buffer containing 1 % (w/v) BSA and 0.1 % (v/v) Tween 20. 

At the same time the chemically modified phage (typically 1010-1011 t.u. dissolved in 3 ml 

washing buffer) were blocked by addition of 1.5 ml of washing buffer containing 3 % (w/v) 

BSA and 0.3 % (v/v) Tween 20 for 30 minutes. The blocked beads/antigen mixture (0.5 ml) 

and phage (4.5 ml) were mixed together and incubated for 30 minutes on a rotating wheel at 

room temperature. The beads (and antigen/phage bound to them) were washed eight times 

with washing buffer containing 0.1 % (v/v) Tween 20 and twice with washing buffer. The 

phage were eluted either by incubation with 100 μl of 50 mM glycine, pH 2.2 for 5 minutes 

(experiments 1, 3, 4 and 5; low pH elution), and then transferred to 50 μl of 1 M Tris-Cl, pH 

8.0 for neutralisation or by incubation with 100 μl of 250 μM of the competitive hydroxamate 

inhibitor GM 6001 (Enzo Life Sciences, Inc., Farmingdale, New York, USA) in washing 

buffer (pH 7.4) for 30 minutes (experiment 2; competitive elution). The eluted phage were 

incubated with 30 ml TG1 cells at OD600 of 0.4 for 90 minutes at 37 °C and the cells were 

plated on large 2YT/chloramphenicol (30 μg/ml) plates. Second and third rounds of panning 

were performed following the same procedure but using in the second round neutravidin-

coated magnetic beads instead of streptavidin in order to prevent the enrichment of 

streptavidin-specific peptide binders. Neutravidin beads were prepared by reacting 0.8 mg 

neutravidin (Pierce) with 0.5 ml tosyl-activated magnetic beads (2 x 109 beads/ml; Dynabeads 

M-280, Invitrogen Dynal Biotech AS) according to the supplier's instructions. DNA of 

individual clones was sequenced (Macrogen, Seoul, South Korea) after rounds two and three. 

Chemical synthesis of peptides. Peptides with a free amine at the N-terminus and an amide 

at the C-terminus were synthesised either on a 25 mg scale by solid-phase chemistry (JPT 

Peptide Technologies, Berlin, Germany or GL Biochem Ltd., Shanghai, China) or at a 0.03 

mmol scale with standard Fmoc chemistry on an automated peptide synthesiser (Advanced 

ChemTech 348Ω, Louisville, USA). Peptides were first deprotected and cleaved from the 

Rink-4-(2',4'-dimethoxyphenyl-Fmoc-aminomethyl)-phenoxy resin with trifluoroacetic acid 

(TFA) (90 %, v/v), thioanisole (2.5 %, v/v), phenol (2.5 %, w/v), 1,2-ethanedithiol (2.5 %, 

v/v) and H2O (2.5 %, v/v) and then precipitated three times in chilled diethylether. The crude 

peptides (1 mM) in 1 ml 70 % (v/v) 0.1 M NH4HCO3 (pH 8) and 30 % (v/v) acetonitrile were 
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reacted with TBMB (1.2 mM) for 1 h at 30 °C. The reaction product was purified by semi-

preparative reversed-phase HPLC using a XBridge Prep BEH300 C18 (5 μm) column (10 x 

250 mm) (Waters, Milford, MA, USA) and a linear gradient elution with a mobile phase 

composed of eluent A (99.9 % (v/v) H2O and 0.1 % (v/v) TFA) and eluent B (94.9 % (v/v) 

ACN, 5 % (v/v) H2O and 0.1 % (v/v) TFA) at flow rate of 6 ml/min. The purified peptides 

were freeze-dried and dissolved in water and 10 % (v/v) DMSO for activity measurements.  

Peptides (MMP2-11 and -12) containing four cysteines were synthesised as above using 

orthogonal cysteine protecting groups (three Cys(Trt) and one Cys(tBu)) in order to perform 

selective cyclisation. Peptides were cleaved from the resin with TFA (88 %, v/v), thioanisole 

(2.5 %, v/v), phenol (2.5 %, w/v), 1,2-ethanedithiol (2.5 %, v/v), H2O (2.5 %, v/v) and 

triisopropylsilane (2 %, v/v) and precipitated three times in chilled diethylether. The crude 

peptides were TBMB-cyclised and purified as above. The remaining S-tert-butyl protected 

cysteine was deprotected with 1M HBF4-thioanisole with scavengers dissolved in TFA as 

previously described45 and precipitated again three times in cold diethylether. The bicyclic 

peptides having a free cysteine residue were purified by HPLC as above and peptide stocks 

made in 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM CaCl2 for activity measurements. 

Linear peptides were synthesised and crude extracts purified by RP-HPLC as described 

above. Freeze-dried peptides were dissolved in degassed water and immediately used for 

activity measurements. Disulfide-cyclised peptides were obtained after incubation of the 

HPLC-purified linear peptides with 4.5 % DMSO in TNC buffer for 24 h at RT. Mixtures of 

peptide oxidation forms were directly used for activity measurements. 

The purity of the modified and unmodified peptides as well as the oxidation pattern of 

disulfide-cyclised peptides were assessed by analytical RP-HPLC on an Agilent 1260 system 

(Agilent Technologies, Santa Clara, California, USA), using a C18 column and the same 

buffer system as for semi-preparative RP-HPLC. The molecular mass of peptides was 

determined by MALDI-TOF mass spectrometry (Axima-CFR plus, Kratos, Manchester, UK). 

Protease inhibition assays. The inhibitory activity of the synthetic peptides was determined 

by incubating active MMP-2 (1 nM) or MMP-9 (10 nM) with various concentrations of 

peptides (two fold dilutions) ranging from 600 μM to 0.005 μM (or from 4 nM to 0.008 nM 

for the hydroxamate inhibitor GM 6001 used as positive control). Residual activity was 

measured in TNC buffer containing 0.1 % (w/v) BSA and 1 % (v/v) DMSO (DMSO was not 
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used with linear peptides and peptides MMP2-11 and -12 after selective cyclisation) with the 

fluorogenic substrate Mca-Lys-Pro-Leu-Gly-Leu-Dap-Ala-Arg-NH2 (Bachem, Bubendorf, 

Switzerland) at a concentration of 20 μM. The fluorescence intensity was recorded during 1 h 

at 37 °C on a Spectramax Gemini fluorescence plate reader (excitation at 325 nm, emission at 

400 nm; Molecular Devices, Sunnyvale, CA, USA). IC50 values were determined using 

OriginPro 8G software (OriginLab Corporation, Northampton, USA). The inhibitory constant 

Ki was calculated according to Cheng and Prusoff equation Ki = IC50 / (1+([S]0/Km)46 wherein 

IC50 is the functional strength of the inhibitor (half-maximal inhibitory concentration), [S]0 is 

the initial substrate concentration and Km is the Michaelis-Menten constant. 
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3. Bicyclic peptide binders of SAS-6 

3.1. Introduction 

The centrosome is the primary microtubule organising centre (MTOC) in animal cells. It 

regulates a number of processes including cell motility, adhesion and polarity in interphase47. 

During mitosis, it mediates assembly and organisation of the mitotic spindle, an event 

required for correct chromosome segregation48. In the heart of the centrosome, two centrioles 

are found. In addition to their role in mitotic spindle organisation, they are fundamental for 

the assembly of cilia and flagella in eukaryotic cells. Each centriole duplicates only once 

every cell cycle, during S phase, to generate a new daughter centriole. This new centriole 

arises orthogonally and very close to the old mother centriole49,50. In most species, the 

centriole adopts a 9-fold symmetry. It is organised around a cartwheel that comprises a central 

hub (25 nm in diameter) from which nine spokes radiate outward and connect to nine 

microtubules blades4. The centrioles are composed of many proteins. The spindle assembly 

abnormal 6 protein, abbreviated SAS-6, is at the structural basis of the 9-fold symmetry of the 

cartwheel51. Two crystal structures of both the crN-dimer and the crCC-dimer of SAS-6 from 

the green alga Chlamydomonas reinhardtii (cr) were solved and a structural model of the ring 

oligomer of CrSAS-6 was built (Figure 19)4.  

Self-assembly of high-order SAS-6 oligomeric structures occurs in two steps. Firstly, SAS-6 

homodimers assemble via strong interactions between the helices of the two-stranded parallel 

coiled coil (crCC-dimer). The stability of the dimer was estimated by circular dichroism (CD) 

and revealed a dissociation constant (Kd) of 0.5 μM4. Secondly, oligomers of SAS-6 

homodimers assemble, driven by weak interactions (Kd of 60 μM, determined by isothermal 

titration calorimetry (ITC))4 between pairs of N-terminal globular domains (crN-dimer). The 

crystal structure shows that this interaction is mediated by the residue F145 (in 

Chlamydomonas) which is inserted deeply into a hydrophobic cavity of the second monomer. 

Mutation of this single amino acid disrupts this interaction. Both F145 and the residues 

shaping the hydrophobic pocket are well conserved among SAS-6 orthologs (residue F131 in 

human SAS-6). 



Bicyclic peptide binders of SAS-6 
 

36 
 

 

Figure 19. Model of CrSAS-6 oligomerisation. (A) Views of the crCC-dimer 90° apart. (B) SAS-6 

monomers initially dimerise via the coiled-coil interaction and the resulting dimers can then associate 

via the N-domain interaction to form the 9-fold symmetric ring oligomer. From reference4.  

Abnormalities in centrosome number, size and morphology were observed in almost all 

human tumour types. This has been associated with genomic instability because extra and 

often irregular centrosomes can lead to aberrant cell division. In addition to cancer, 

aberrations in centriole structure or function are implicated in a wide variety of human 

diseases, including ciliopathy, male sterility and primary microcephaly47-49,52. Therefore, 

increased understanding of centriole biology should result in important clinical implications.  

In this study, we attempted to develop bicyclic peptide binders to C. reinhardtii (CrSAS-6) 

and H. sapiens SAS-6 (HsSAS-6). Peptides binding with high affinity and specificity to SAS-

6 are needed as research tools by the laboratory of Professor Pierre Gönczy (at EPFL) that is 

studying the structure and function of centrioles4. Bicyclic peptides that inhibit the formation 

of the SAS-6 ring structure should be used to study the mechanism of centriole duplication 

during cell cycle. This should be done by using specific bicyclic peptides to block the 

formation of new SAS-6 ring with temporal resolution in vitro and in vivo. 
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3.2. Phage selection of bicyclic peptides binding to SAS-6 

We aimed at generating bicyclic peptides binding to the dimerising region of the SAS-6 CC-

dimer head-groups. Binding to this region should prevent or disrupt ring formation (Figure 

19). Toward this end, recombinantly expressed protein comprising the N-terminal domain of 

SAS-6 extended by the first six heptad repeats of the coiled coil was used as target (N-6HR; 

Figure 20 and Appendices subchapter 7.7). The resulting monomer is known to dimerise 

(CC-dimer) via coiled coil interaction and to form higher-order oligomeric species at high 

protein concentration via N-terminal domain interactions (N-dimer) (as shown by analytical 

ultracentrifugation (AUC) experiments at 150 μM SAS-6 concentration)4. We chose to 

generate bicyclic peptides binding to the SAS-6 fragments of C. reinhardtii from which the 

ring model was built, and of the H. sapiens version where no model is currently available, but 

a similar structure is expected.  

 

Figure 20. Schematic representation of SAS-6 and the fragment used for selections. N-6HR, N-

terminal domain extended by 6 heptad repeats of the adjacent coiled coil. Numbers correspond to 

CrSAS-6 amino acids. Adapted from reference4. 

3.2.1. Immobilisation of SAS-6 proteins 

Both proteins were expressed and purified by our collaborators in the laboratory of Professor 

Pierre Gönczy. We performed an additional step of purification by size exclusion 

chromatography (Figure 21). CrSAS-6 and HsSAS-6 CC-dimers were biotinylated, 

immobilised on magnetic streptavidin or neutravidin beads and subjected to three iterative 

rounds of phage selection. Phage of the libraries 4x4 and 6x6 were produced separately and 

mixed together before affinity panning. Phage titres of each selection are reported in 

Appendices subchapter 7.8. Sequences of isolated bicyclic peptides as well as their binding 
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assessed by enzyme linked immunosorbent assays (ELISA) are presented and discussed in the 

following subchapters. 

 

Figure 21. Purification of SAS-6 proteins. (A) Chromatograms from the size exclusion purification 

are shown. The collected fractions are indicated (black line). (B) The purity of HsSAS-6 (left) and 

CrSAS-6 (right) used for selections was assessed by SDS-PAGE. 

3.2.2. Bicyclic peptides isolated against human SAS-6 (HsSAS-6) 

Affinity selections yielded bicyclic peptides from both of the two libraries (Figure 22). A 

comparison of the isolated peptide sequences revealed three different consensus sequences. A 

first consensus sequence was shared by the two peptides SAS6-1 and SAS6-2 

(GL(X)4CSXGQL/V
L/V; cluster 1). Some sequence similarities were shared by the three 

peptides SAS6-4, SAS6-5 and SAS6-6 in the first (PQL/V) and the second ring (ELF) (cluster 

2). A strong consensus comprising four amino acids (Y/FRL/VY) was found in the second 

(cluster 3a) and first ring (cluster 3b) of 4x4 bicyclic peptides.  
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Figure 22. Peptides isolated in phage selections with HsSAS-6. Amino acid sequences of clones 

isolated in phage selections using a mixture of the libraries 6x6 and 4x4. Sequence similarities are 

highlighted in colour (Rasmol colour code). The frequency each peptide was identified is indicated. 

Bicyclic peptides that were further characterised by ELISA assays are indicated (*). 

3.2.3. Bicyclic peptides isolated against Chlamydomonas SAS-6 (CrSAS-6) 

Bicyclic peptides isolated in selections against the HsSAS-6 ortholog, CrSAS-6, shared fewer 

sequence similarities. Highlighted in Figure 23 are sequence similarities between peptides 

that share identical or similar amino acids in at least four amino acid positions. A total of six 

consensus sequences were identified (clusters 1 to 6) coming from both libraries. The 

different motifs of conserved amino acids were either distributed over both peptide loops 

(clusters 1, 2 and 6) or mostly localised to one of the two loops (clusters 3 to 5).   
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Figure 23. Peptides isolated in phage selections with CrSAS-6. Amino acid sequences of clones 

isolated in phage selections using mixture of libraries 6x6 and 4x4. Sequence similarities are 

highlighted in colour (Rasmol colour code). The frequency each peptide was identified is indicated. 

Bicyclic peptides that were further characterised by ELISA are indicated (*).  
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3.3. Assessment of binding by ELISA 

Twenty-two bicyclic peptides were chemically synthesised and their binding to either the 

human (8 peptides) or the green alga SAS-6 (14 peptides) assessed by ELISA. All peptides 

were synthesised with a biotin moiety at the C-terminal end for immobilisation or detection. 

A linker of three amino acids was inserted between the peptide and the biotin to omit 

interference with the binding. Three different ELISA formats were applied:  

• Format 1: SAS-6 was immobilised on an ELISA plate. Peptide was added and the 

unbound fraction washed away. Bound peptide was detected with a neutravidin-

peroxidase conjugate and a chromogenic substrate.  

• Format 2: SAS-6 was immobilised on an ELISA plate. Peptides, tetramerised by 

premixing with neutravidin-peroxidase (ratio 1:20 for neutravidin:peptide), were 

added. Bound peroxidase was detected with a chromogenic substrate. 

• Format 3: Peptides were immobilised on a neutravidin-coated plate. SAS-6 was added 

and binding detected via its histidine tag using an anti-His6 antibody-peroxidase and a 

chromogenic substrate. 

Experiments according to formats 1 and 2 were performed in parallel. Binding signals 

obtained with format 2 (Figures 24B and 25B) were more intense than those obtained with 

format 1 (Figures 24A and 25A). This can be explained by the avidity effect and the resulting 

slower dissociation of the tetrameric peptides. 

3.3.1. Bicyclic peptides isolated against human SAS-6  

Seven out of the eight tested peptides bound to human SAS-6 in a concentration dependent 

manner. In the assay format 1, three of these peptides also bound significantly to albumin 

which was used as a negative control (peptides 7, 12 and 14; Figure 24A). In these controls, 

no target was immobilised and albumin was used to block the plate and avoid unspecific 

interactions. A significantly better signal over background was observed in the assay format 

2. Similar results were found in the experiment applying assay format 3. An unrelated bicyclic 

peptide (ACGQPNFACRALYPECGB with B = Lys(biotin)) used as a negative control did 

not bind at all to human SAS-6 in all assay formats (peptide control; Figure 24).  
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Peptides 4 and 6 with similar sequences (cluster 2; Figure 22) showed the most specific 

binding to HsSAS-6 in experiments following the ELISA formats 2 and 3 (Figure 24B and 

C). Peptides 7-8 and 11-12 presenting a strong consensus sequence in either of the two rings 

(clusters 3a and 3b respectively) showed the highest signals in assay formats 2 and 3. 

However, a significant signal was also observed in the negative controls where no target was 

immobilised (control BSA; Figure 24B and C). It is known that peptides with multiple 

aromatic amino acids bind to hydrophobic surfaces of albumin53. It could be that the 

hydrophobic amino acids in these peptides might result in the unspecific interactions with 

albumin. Other proteins may be used as negative controls to assess in detail the specificity 

profile of these peptides.  
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Figure 24. ELISAs of peptides selected against HsSAS-6. Binding of peptides isolated in phage 

selections with human SAS-6 was assessed using three different ELISA formats. (A) The target was 

first immobilised on an ELISA plate (high binding capacity). The biotinylated peptides (10 nM, 100 

nM and 1 μM) and the neutravidin-peroxidase were added sequentially (format 1). (B) The target was 
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immobilised and biotinylated peptides pre-mixed with neutravidin-peroxidase were added to the plate 

(format 2). (C) Peptides were first immobilised on a neutravidin-coated plate. HsSAS-6 was added and 

detected with an anti-His6 antibody (format 3). Negative controls performed with a control peptide, 

without peptide or without target (replaced by bovine serum albumin, BSA) are indicated. ELISAs (A) 

and (B) were performed in parallel. 

3.3.2. Bicyclic peptides isolated against Chlamydomonas SAS-6 

Nine out of the fourteen tested peptides bound to CrSAS-6 in a concentration dependent 

manner. In the assay formats 1 and 3, two and six of these peptides, respectively, also bound 

significantly to albumin which was used as a negative control (Figure 25A and C). A 

significantly better signal over background was observed in the assay format 2. The unrelated 

bicyclic peptide used as negative control did not bind at all to CrSAS-6. 

Peptides 17, 22, 24, 29, 32, 46 and 48 showed specific binding to CrSAS-6 in ELISA format 2 

(Figure 25B). Peptides 27 and 34 showed the highest signals in experiments following the 

assay formats 1 and 2. However, strong signals were also observed in the negative controls 

where albumin was immobilised (control BSA; Figure 25A and B), indicating unspecific 

interactions.  
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Figure 25. ELISAs of peptides selected against CrSAS-6. Binding of peptides isolated in phage 

selections with CrSAS-6 was assessed using three different ELISA formats. (A) The target was first 

immobilised on an ELISA plate (high binding capacity). The biotinylated peptides (10 nM, 100 nM 

and 1 μM) and the neutravidin-peroxidase were added sequentially (format 1). (B) The target was 

immobilised and biotinylated peptides pre-mixed with neutravidin-peroxidase were added to the plate 

(format 2). (C) Peptides were first immobilised on a neutravidin-coated plate. CrSAS-6 was added and 

detected with an anti-His6 antibody (format 3). Negative controls performed with a control peptide, 

without peptide or without target (replaced by BSA) are indicated. ELISAs (A) and (B) were 

performed in parallel.   
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3.4. Conclusions and outlook 

Bicyclic peptide binders to the centriolar protein SAS-6 of human and green alga could be 

generated. For both targets, peptides belonging to two (HsSAS-6; clusters 2 and 3a, b) or four 

(CrSAS-6; clusters 1, 3, 4 and 6) different consensus sequences showed significant binding. It 

is likely that peptides belonging to these different consensus sequences bind with different 

orientations and possibly even to different epitopes. It remains to be seen if the peptides can 

disrupt the interaction between SAS-6 CC-dimer head-groups needed to form the circular 

oligomer structure.  

Based on the weak signals in the ELISA assays, the bicyclic peptides are expected to bind 

with a binding constant in the micromolar range. For cellular studies, it will be crucial to 

apply the bicyclic peptides at high micromolar concentrations. Alternatively, bicyclic peptides 

being able to disrupt the dimerisation of SAS-6 N-terminal domain (N-dimer) may be affinity 

matured to allow application of lower concentrations.  

In vitro and in vivo works are currently made in the laboratory of Professor Pierre Gönczy to 

assess if the affinity of the isolated binders is high enough to observe any phenotype during 

the formation of centrioles. The following experiments are currently performed or planned: 

• For HsSAS-6 binders: In a first experiment, high concentration of bicyclic peptides 

(100 μM) are incubated (8 and 24 hours) with U2OS cells and the resulting 

phenotypes followed by confocal microscopy. In a second experiment, peptides are 

microinjected into human cells and the phenotype observed by microscopy. Lead 

compounds will be further characterised by isothermal titration calorimetry (ITC). 

 

• For CrSAS-6 binders: In a first experiment, the same assay as done with HsSAS-6 is 

performed, but using a C. reinhardtii cell wall-minus strain. In a second experiment, 

an in vitro assay in which stacked SAS-6 ring can form tubules on lipid monolayer 

platform is developed. Destabilisation of the tubule formation upon incubation with 

peptides is monitored by microscopy. Lead compounds will be further characterised 

by ITC.  
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3.5. Materials and methods 

Expression and purification of HsSAS-6 and CrSAS-6 proteins. Both proteins were 

cloned, expressed and purified by our collaborators in the laboratory of Professor Pierre 

Gönczy as previously described4. The fragments HsN-6HR (residues 1-212) and CrN-6HR 

(residues 1-226) were purified by immobilised metal-affinity chromatography (IMAC) on 

HisTrap HP Ni2+-Sepharose columns (GE Healthcare) at 4 °C according to manufacturer’s 

information. We performed an additional step of purification by size exclusion 

chromatography using a Superdex 75 10/300 GL column (GE Healthcare). Proteins were 

eluted in PBS buffer. The purity was greater than 95 % for both proteins as assessed by SDS-

PAGE. 

Biotinylation of SAS-6 proteins. The recombinant proteins (10 μM) were incubated with 4-

fold excess of EZ-link Sulfo-NHS-LC-Biotin (40 μM; Pierce) in PBS (pH 7.4) for 1 h at 25 

°C. Excess of biotinylation reagent was removed by gel filtration with a PD-10 column (GE 

Healthcare) using PBS buffer. Protein concentrations were determined spectrophotometrically 

by absorbance measurements at 280 nm (GeneQuant 100, GE Healthcare). The ability of the 

biotinylated SAS-6 proteins to bind to either streptavidin or neutravidin was verified by 

incubating the proteins with magnetic streptavidin and neutravidin beads respectively and 

analysing the bound and unbound protein fractions by SDS-PAGE. 

Phage selections of bicyclic peptides. The same protocol as described in subchapter 2.4 

(standard procedure) was used. Briefly, peptide libraries 4x4 (250 ml per target) and 6x6 (1 

litre per target) were produced and cyclised separately. Libraries were mixed together before 

biopanning. 10 μg of biotinylated SAS-6 proteins were immobilised on magnetic streptavidin 

beads. Bound phage were eluted by incubation with 100 μl of 50 mM glycine, pH 2.2 for 5 

minutes and then transferred to 50 μl of 1 M Tris-Cl, pH 8.0 for neutralisation. Three iterative 

rounds of selection were performed. Second and third rounds of panning were performed 

following the same procedure but using in the second round neutravidin-coated magnetic 

beads instead of streptavidin in order to prevent the enrichment of streptavidin-specific 

peptide binders. 

Chemical synthesis of biotinylated peptides. Peptides with a free amine at the N-terminus 

and an amide at the C-terminus were synthesised and purified using the same protocol as 
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described in subchapter 2.4. Peptides were biotinylated at the C-terminal end by 

incorporating a Fmoc-Lys(biotin)-OH residue (GL Biochem Ltd.). The purity of the peptides 

was assessed by analytical RP-HPLC on an Agilent 1260 system (Agilent Technologies) 

using a C18 column and the molecular mass of peptides was determined by MALDI-TOF 

mass spectrometry (Axima-CFR plus, Kratos). 

ELISA format 1. SAS-6 proteins (or BSA in control wells without target) were immobilised 

(80 μl at 7 μg/ml) overnight at 4 °C on a NUNC-ImmunoTM 96 MicroWellTM MaxiSorp plate 

(Thermo Fisher Scientific Inc., Waltham, MA, USA). The wells were washed with buffer RT 

(buffer R (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 1 mM CaCl2) containing 

0.1 % (v/v) Tween 20), blocked for 2 h at RT with 300 μl of buffer RTB (Buffer R containing 

0.1 % (v/v) Tween 20 and 5 % (w/v) BSA) and then washed twice with buffer RT. In parallel, 

biotinylated peptides and neutravidinTM-horseradish peroxidase (HRP) conjugate (Invitrogen 

Molecular Probes, Paisley, UK) were blocked for 1 h in buffer RTB. 80 μl of peptides (1 μM, 

100 nM, 10 nM) were added to the wells and incubated with a slight shaking for 1 h at room 

temperature (buffer RTB was added in control wells without peptide). The wells were washed 

twice with buffer RT and 80 μl of neutravidin-HRP at dilution 1:2000 in buffer RTB were 

added to the wells and incubated for 15 min. The wells were washed six times with buffer RT 

and once with buffer R. 80 μl of 1-step Ultra TMB (Thermo Fisher Scientific Inc.) substrate 

were added to the wells and incubated for 5 to 30 minutes. The reaction was stopped with 80 

μl of 2 M sulphuric acid, and the absorbance measured at 450 nm on a Spectramax 340 

fluorescence plate reader (Molecular Devices). All the experiments were performed twice in 

duplicate. 

ELISA format 2. SAS-6 proteins (or BSA in control wells without target) were immobilised 

(80 μl at 7 μg/ml) overnight at 4 °C on a NUNC-ImmunoTM 96 MicroWellTM MaxiSorp plate 

(Thermo Fisher Scientific Inc.). The wells were washed with buffer RT, blocked for 2 h at RT 

with 300 μl of buffer RTB and then washed twice with buffer RT. Biotinylated peptides were 

pre-incubated for 1h with neutravidin-HRP (Invitrogen Molecular Probes) in buffer RTB with 

a ratio 1:20 (neutravidin:peptide). 80 μl of peptides (1 μM, 100 nM, 10 nM) bound to 

neutravidin were added to the wells and incubated with a slight shaking for 1 h at room 

temperature (buffer RTB was added in control wells without peptide). The wells were washed 

six times with buffer RT and once with buffer R. 80 μl of 1-step Ultra TMB (Thermo Fisher 

Scientific Inc.) substrate were added to the wells and incubated for 5 to 30 minutes. The 
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reaction was stopped with 80 μl of 2 M sulphuric acid, and the absorbance measured at 450 

nm on a Spectramax 340 fluorescence plate reader (Molecular Devices). All the experiments 

were performed twice in duplicate. 

ELISA format 3. NeutravidinTM biotin binding protein (Thermo Fisher Scientific Inc.) was 

immobilised (80 μl at 5 μg/ml) overnight at 4 °C on a NUNC-ImmunoTM 96 MicroWellTM 

MaxiSorp plate (Thermo Fisher Scientific Inc.). The wells were washed with buffer RT, 

blocked for 2 h at RT with 300 μl of buffer RTB and then washed twice with buffer RT. In 

parallel, biotinylated peptides and Anti-6X His tag antibody (HRP) (Abcam plc, Cambridge, 

UK) were blocked for 1 h at RT in buffer RTB. 80 μl of peptides (1 μM, 100 nM, 10 nM) 

were added to the wells and incubated with a slight shaking for 15 minutes at room 

temperature (buffer RTB was added in control wells without peptide). The wells were washed 

twice with buffer RT and 80 μl of SAS-6 proteins (or BSA in control wells without target) at 

4 μg/ml in buffer RTB were added to the wells and incubated for 1 h at room temperature 

with a slight shaking. The wells were washed twice with buffer RT and 80 μl of Anti-6X His 

tag antibody (HRP) (Abcam plc) at dilution 1:10’000 in buffer RTB were added to the wells 

and incubated for 1 h at RT. The wells were washed six times with buffer RT and once with 

buffer R. 80 μl of 1-step Ultra TMB (Thermo Fisher Scientific Inc.) substrate were added to 

the wells and incubated for 5 to 30 minutes. The reaction was stopped with 80 μl of 2 M 

sulphuric acid, and the absorbance measured at 450 nm on a Spectramax 340 fluorescence 

plate reader (Molecular Devices). All the experiments were performed twice in duplicate. 
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4. Enzymatic cyclisation of peptides with a transglutaminase 

4.1. Introduction 

Peptide macrocycles are ring structures that can bind with high affinity and specificity to 

biological targets, which make them an attractive class of molecules for pharmaceutical 

applications5. Synthetic cyclic peptides are typically produced by connecting the ends of side 

chain-protected peptides which allows the use of a wide range of ligation chemistries. In some 

cases, the linear peptide precursors have to be produced by recombinant expression as for 

example polypeptides with long chains (> 50 amino acids) that are difficult to synthesise 

chemically or combinatorial peptide libraries that are generated by phage display, ribosome 

display, yeast display or other display techniques12,14. The cyclisation of such unprotected 

peptides is more challenging and requires ligation strategies and reagents that are orthogonal 

to the peptide side chains.  

Peptides with unprotected side chains are predominantly cyclised by chemically linking two 

cysteine side chains that flank the peptide. Linking reactions with cysteines are particularly 

suited because of the unique chemical reactivity of thiols and the relatively low abundance of 

cysteine residues in peptides. The cysteine residues are introduced by mutagenesis at both 

ends of the peptides and connected through the formation of disulfide bridges in oxidation 

reactions54 or through treatment with thiol-specific linking reagents3,55. Cyclisation through 

disulfide-formation has, for example, been used for the generation of macrocycle peptide 

libraries on phage and has led to the affinity-selection of numerous cyclic peptide ligands14. 

While the thiol-based cyclisation reactions work well in many applications, alternative 

cyclisation strategies would be useful for a number of situations. For example, reactions that 

do not involve thiols could be used for the cyclisation of peptide sequences containing 

cysteines or for the generation of redox-insensitive cyclic peptides56. Furthermore, alternative 

cyclisation reactions could be combined with thiol-based reactions for the generation of 

multicyclic peptide structures57. In fact, a range of cyclisation strategies that are based on 

amino acids other than cysteines have been described, but most of them are rarely used due to 

their limitations. For example, lysine residues have been linked to the N-terminal α-amino 

group of peptides by using iodoacetic anhydride58 or disuccinimidyl glutarate56,59, but some of 
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the reagents were also found to react to a certain extent with other amino acid side chains (e.g. 

methionine, arginine)58. Cyclisation strategies based on enzymes are much more selective, but 

many of them show limitations such as the need for ester precursors, low cyclisation yields, 

restriction to a narrow range of peptide lengths and the need for specific amino acid sequences 

within the peptide cycle. Subtiligase60, the thioesterase (TE)61 domain of tyrocidine 

synthetase, inteins62 and sortase63 have all been used for peptide cyclisation.  

In this work, we tested whether peptides with varying lengths and amino acid sequences can 

be quantitatively cyclised with a microbial transglutaminase. In nature, transglutaminases 

(TGases) catalyse the acyl transfer reaction between the carboxyamide group of glutamines in 

peptides and a variety of primary amines64. This reaction, which is widely observed in plants, 

animals and microorganisms, leads to post-translational cross-linking of a protein with either 

another protein or a small molecule through the formation of isopeptide bonds. The ligation 

activity of TGases has been exploited in the food industry by cross-linking proteins and by 

binding low-molecular weight compounds to carrier proteins using mammalian 

transglutaminase from guinea pig or microbial TGase65. TGases have also been used for the 

labelling of proteins with small molecule tags (e.g. the attachment of biotin66 or fluorescent 

probes67 to antibodies) or for the cross-linking of proteins68. However, TGases as a class have 

so far not been used for the cyclisation of peptides. Although it has been found that in human 

saliva 1 % of the natural peptide statherin is transformed by the action of transglutaminase 2 

into a cyclic derivative69, it was initially unclear whether peptides with varying amino acid 

sequences and lengths could be cyclised efficiently by TGases. 
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4.2. Quantitative cyclisation of peptides with a microbial transglutaminase 

We used the 38 kDa microbial transglutaminase (MTGase) of Streptomyces mobaraensis to 

test the enzymatic cyclisation of peptides65. The MTGase was reported to be relatively stable 

in food processing and other applications, and, in contrast to mammalian TGases, it is active 

in the absence of Ca2+. Phage selections with random peptide libraries had revealed that 

MTGase of Streptomyces mobaraensis accepts a broad range of substrates wherein certain 

peptides are preferred as glutamine-donor substrates70. We designed a peptide with the 

MTGase substrate sequence WALQRPH (the glutamine-donor residue is underlined)70, a 

flexible 3-amino acid spacer (GGG) and a lysine-acceptor residue (peptide 1, H-

WALQRPHGGGKS-NH2; Table 3). We chose to place the glutamine-donor substrate peptide 

(WALQRPH) at the N-terminus and the lysine residue at the C-terminus of the peptide 

because a model of a peptide-MTGase complex suggested that only in this configuration, the 

peptide linker could bend back to bring the lysine and glutamine side chains into close 

proximity (M.J. Hinner, A.H. de Vries and K. Johnsson, unpublished data). Incubation of 

peptide 1 (3.8 μM) with MTGase (30 nM) and subsequent mass spectrometric analysis 

revealed a single product with a mass 17 Da smaller; this suggests that an ammonia molecule 

was eliminated and the peptide was cyclised (Figure 26). The formation of dimers was 

observed at significantly higher peptide concentrations (data not shown). 
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Figure 26. Cyclisation of linear peptides by microbial transglutaminase (MTGase). (A) 

Schematic representation of the enzyme catalysed reaction. The side chains of the glutamine and 

lysine residues of a linear peptide are ligated by the MTGase to yield a cyclic peptide with a stable 

amide bond. (B) Mass spectra of peptide 1 (H-WALQRPHGGGKS-NH2; the glutamine and lysine 

residues that participate in the reaction are underlined) before and after incubation with MTGase. 

4.2.1. Substrate specificity of MTGase in cyclisation reactions 

In order to determine the minimal amino acid sequence that is accepted by MTGase as a 

substrate in a cyclisation reaction, we synthesised a range of peptides in which the MTGase 

glutamine-donor substrate sequence WALQRPH was truncated (Table 3) and measured the 

extent of cyclisation upon incubation with MTGase. While a peptide without the three N-

terminal amino acids Trp-Ala-Leu (peptide 2; H-GQRPHGGGKS-NH2) was not cyclised at 

all, the substitution of the three amino acids Arg-Pro-His C-terminal to the reactive glutamine 

residue to Ser-Gly-Ser yielded a substrate (peptide 3, H-WALQSGSGGGKS-NH2) that was 

cyclised efficiently. This result was pleasing since it suggested that cyclic peptides with 

variable sequences in the ring can be generated in MTGase catalysed reactions. Experiments 

with peptides truncated partially at the N-terminus revealed that a peptide with Ala-Leu at the 
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N-terminal side of the glutamine residue is cyclised (peptide 4, H-ALQSGSGGGKS-NH2) but 

not a shorter peptide (peptide 5, H-LQSGSGGGKS-NH2; Table 3). In contrast to a previous 

study70 that showed that amino acids in positions -3, -1, +1, +2 and +3 are the main 

determinants of the glutamine donor substrate, these results suggest that the amino acids in 

positions -2 and -1 are the most important ones. The relatively small sequence requirement of 

MTGase determined in this set of experiments should allow the generation of cyclic peptides 

that are not much compromised in their design. 

Peptide Amino acid sequence MTGase cyclisation Mass (Da)

1 H-WALQRPHGGGKS-NH2 Yes 1291.68

2 H-GQRPHGGGKS-NH2 No 978.50

3 H-WALQSGSGGGKS-NH2 Yes 1132.55

4 H-ALQSGSGGGKS-NH2 Yes 946.47

5 H-LQSGSGGGKS-NH2 No 875.44

6 H-ALQSGSRGGGKS-NH2 Yes 1102.57

7 H-WALQSGSGGGGS-NH2 No 1061.48

8 H-ALQAYDGWLPWEIHVKS-NH2 Yes 2011.02

9 H-ALQACSDRFRNCPADEALCAKS-NH2 Yes 2481.08

10 H-WALQACSDRFRNCPADEALCAKS-NH2 Yes 2667.16

Table 3. Sequences of peptides. Peptide sequences with the amino acids used for cyclisation 

(glutamine, lysine and cysteine) underlined. Amino acids of the MTGase glutamine-donor substrate 

WALQRPH are in italics. The monoisotopic masses of the linear (1–8) and bicyclic (9, 10) peptides as 

well as whether they are cyclised by MTGase are indicated.  

4.2.2. Catalytic activity of MTGase in cyclisation reactions 

To quantify the catalytic activity of MTGase in cyclisation reactions we incubated the two 

substrate peptides 3 (H-WALQSGSGGGKS-NH2) and 4 (H-ALQSGSGGGKS-NH2) (90 μM) 

with different enzyme concentrations (1 nM to 6 μM) and quantified the extent of cyclisation 

by LC/MS and MALDI-TOF MS71 (Figure 27). After incubation at room temperature for 5 
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hours, the peptides 3 and 4 were quantitatively cyclised at MTGase concentrations of 60 nM 

and 3 μM, respectively. Peptide 4 having a shorter glutamine-donor substrate sequence was 

cyclised by MTGase around 5-times slower than peptide 3 (225 and 45 catalysed cyclisation 

reactions per enzyme per hour for peptides 3 and 4, respectively). 

 

Figure 27. Activity of MTGase. Peptides 3 (black) and 4 (white) were incubated with different 

MTGase concentrations. The cyclisation efficiency indicated as a percent of cyclic peptide was 

determined by LC/MS. 

4.2.3. Non-specific ligation of glutamine and lysine residues 

To assess the non-specific ligation of random glutamine and lysine residues by MTGase, we 

incubated 5 μg of bovine serum albumin (BSA) with enzyme concentrations ranging from 60 

nM to 6 μM and analysed the extent of protein cross-linking by SDS-PAGE. Although BSA 

has around 15 and 58 solvent accessible glutamine and lysine residues corresponding to 

concentrations of 56 μM and 215 μM respectively, no unspecific cross-linking of protein was 

observed (Figure 28). 
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Figure 28. SDS-PAGE of bovine serum albumin (BSA; 5 μg) treated with different MTGase 

concentrations. No cross-linking of BSA through linkage of surface-exposed glutamine and lysine 

residues was observed. 

4.2.4. Confirmation of cyclisation by tandem mass spectrometry 

Because the mass change of 17 Da in all the MTGase catalysed reactions suggests, but does 

not directly prove the proposed cyclisation reaction, we tested whether a peptide presumably 

cyclised by MTGase could be re-opened with a protease. Stepwise treatment of peptide 6 (H-

ALQSGSRGGGKS-NH2, expected mass: 1102.57 Da; measured mass: 1102.47 Da), which 

contains a trypsin cleavage site (Arg), with MTGase and trypsin yielded intermediate and 

final products with masses expected for cyclisation and re-linearisation reactions (expected 

masses: 1085.54 and 1103.56 Da; measured masses: 1085.43 and 1103.46 Da, respectively). 

Tandem mass spectrometry analysis of the re-linearised product confirmed the expected 

sequences at the new N and C termini (Figure 29). 
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Figure 29. Trypsin cleavage of an MTGase cyclised peptide. The tandem mass spectrum obtained 

for MTGase and trypsin treated peptide 6 and a schematic drawing of the expected product are shown. 

The fragments obtained in tandem mass spectrometry are indicated in the schematically drawn re-

linearised peptide 6. Singly charged species, [M+H]+, are shown in the spectrum. Non-assigned 

fragments are expected to have derived from internal fragmentation. 

4.2.5. MTGase catalysed deamidation of glutamine 

In a further control experiment, we incubated peptide 7 (H-WALQSGSGGGGS-NH2; Table 

3; 28 to 280 μM), which does not have a lysine-acceptor residue at the C-terminal side of the 

peptide, with MTGase (6 μM), expecting that it would not be cyclised. MALDI-TOF analysis 

showed reproducibly a product with a mass of 1062.43 Da which is 1 Dalton larger than the 

mass of the untreated peptide 7 (1061.42 Da; Figure 30). Such a mass shift is expected for a 

deamidation reaction in which the glutamine residue of peptide 7 is attacked by the active site 

thiol of MTGase and the intermediate is hydrolysed and a glutamate residue formed. The 

transformation of glutamine into glutamate was confirmed by sequencing of the reaction 

product using tandem mass spectrometry (data not shown). Deamidation of the glutamine 

residues in peptides 1-6 was not detected; this suggests that cyclisation through 

transamidation is much faster. 
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Figure 30. Deamidation of glutamine residue. (A) Schematic representation of the transformation of 

glutamine into glutamate residue in peptide 7 by MTGase. (B) Mass spectra of peptide 7 before 

(upper panel) and after (lower panel) incubation with MTGase. The gain of 1 Da in the molecular 

weight corresponds to the deamidation of the glutamine residue of peptide 7 into glutamate. Singly 

charged species, [M+H]+, are shown in each spectrum. 
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4.3. General applicability of the method 

To assess the general applicability of the MTGase-based approach to peptide cyclisation, we 

designed peptide 8 (H-ALQAYDGWLPWEIHVKS-NH2), which has a different size (12 

amino acids between the Gln and Lys residues) and a diverse amino acid content (Ala, Val, 

Leu, Ile, Gly, Asp, Glu, Tyr, Trp, His, Pro), and incubated it with MTGase. Analysis of the 

reaction products by reversed-phase HPLC showed a main product with a retention time 

different from that of peptide 8 and mass spectrometric analysis of this product showed a 

mass corresponding to the cyclised peptide 8 (fraction 4, Figure 31). Analysis of the minor 

peaks revealed that in this reaction not all peptide was cyclised (fraction 1) and that a small 

fraction of peptide appeared deamidated (fraction 2). Although the cyclisation was not as 

efficient (about 50 % of the peptide was cyclised) as with peptides 1, 3, 4 and 6, this 

experiment showed that MTGase can catalyse the cyclisation of peptides with different 

sequences and lengths. 

 

Figure 31. RP-HPLC analysis of peptide 8 before and after the reaction. Mass spectrometric 

analysis of fractions suggests the presence of the following molecules: linear peptide 8 (1), deamidated 

peptide 8 (2), MTGase (3) and cyclic peptide 8 (4). 
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4.4. Generation of tricyclic peptides 

Finally, we tested whether a thiol-based chemical cyclisation reaction that was previously 

used to generate bicyclic peptides3,55, could be combined with the enzymatic cyclisation to 

obtain a tricyclic peptide (Figure 32A). We synthesised the bicyclic peptide inhibitor of 

human plasma kallikrein PK153 with the exocyclic peptide appendices Ala-Leu-Gln-Ala at 

the N-terminus and Ala-Lys-Ser at the C-terminus by linking linear peptide 9 (H-

ALQACSDRFRNCPADEALCAKS-NH2; Table 3) via the three cysteine side chains to the 

small organic compound tris(bromomethyl)benzene. Incubation of the bicyclic peptide with 

MTGase yielded a single product with a mass of 2464.02 Dalton, which is 17 Dalton smaller 

than that of the bicyclic peptide, thus suggesting that the two ends had been linked in a 

transamidation reaction (Figure 32B and C). An identical experiment on peptide 10 (H-

WALQACSDRFRNCPADEALCAKS-NH2; Table 3) with an additional tryptophan residue 

at the N-terminus gave an equivalent result (data not shown). 
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Figure 32. Generation of tricyclic peptides. (A) Schematic representation of the transglutamination 

reaction linking the terminal appendices of a bicyclic peptide. (B) Chemical structure of a tricyclic 

peptide obtained by subsequently treating peptide 9 with TBMB and with MTGase. (C) Mass spectra 

of the peptide 9-TBMB conjugate before and after incubation with MTGase. Singly charged species, 

[M+H]+, are shown. 
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To confirm the cyclisation of the third loop, bi- and tricyclic peptides 9 were treated with the 

leucyl aminopeptidase from Aeromonas proteolytica (EC 3.4.11.10), which cleaves amino 

acids from the N-terminus of easily accessible peptide chains. Mass spectrometric analysis of 

the reaction products showed that the unconjugated glutamine residue in the bicyclic peptide 

was degraded together with the other exocyclic N-terminal amino acids at small amounts of 

exopeptidase (70 ng and 352 ng) (Figure 33A). In contrast, the lysine-linked glutamine 

residue of the tricyclic peptide resisted higher concentrations of exopeptidase (Figure 33B). 

Together with the observed mass change of 17 Dalton upon incubation of the bicyclic peptide 

with MTGase, these results supported the tricyclic peptide configuration shown in Figure 

32B. This experiment not only showed that the MTGase and thiol based cyclisation strategies 

can be combined to obtain multicyclic structures, but also that peptides with relatively 

constrained spacers between the glutamine-donor and lysine-acceptor residues (in this case a 

bicyclic peptide structure) can be cyclised with MTGase. 
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Figure 33. Susceptibility of bi- and tricyclic peptides to aminopeptidase cleavage. Mass 

spectrometric analysis of bicyclic (A) and tricyclic (B) peptides 9 treated with different amounts of 

leucyl aminopeptidase from Aeromonas Proteolytica. The mass differences correspond to the loss of 

exocyclic amino acids present at the N-terminus of the peptide. The quantity of aminopeptidase added 

to the reactions (in ng) is indicated. Singly charged species, [M+H]+, are shown in each spectrum. 
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4.5. Conclusions and outlook 

We have found that MTGase is a suitable tool for the cyclisation of unprotected peptides of 

varying lengths and amino acid sequences (except glutamine and lysine residues). The 

enzyme displays an optimal balance between selectivity and promiscuity: it ligates 

exclusively peptides that contain the two amino acids glutamine and lysine wherein the 

glutamine residue needs to be flanked N-terminally by the Ala-Leu dipeptide. At the same 

time, the enzyme has a promiscuous activity towards peptide substrates with varying amino 

acid sequences between the donor and acceptor amino acids. The microbial enzyme may be 

used as an alternative to thiol-based cyclisation reactions for the cyclisation of recombinantly 

expressed peptides such as genetically encoded peptide libraries. The MTGase cyclisation 

strategy may also be used in combination with thiol-based cyclisation reactions to generate 

constrained multicyclic peptide structures. 
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4.6. Materials and methods 

Peptide synthesis. Peptides 1-7 with free N-terminus and amidated C-terminus were 

synthesised at a 0.05 mmol scale with standard Fmoc chemistry on an automated peptide 

synthesiser (Advanced ChemTech 348 Ω). After cleavage from the Rink-4-(2',4'-

dimethoxyphenyl-Fmoc-aminomethyl)-phenoxy resin with trifluoroacetic acid (TFA) (95 %), 

triisopropylsilane (2.5 %) and H2O (2.5 %), the peptides were precipitated two times in 

chilled diethylether and the dried peptides were further purified by reversed-phase high-

performance liquid chromatography (RP-HPLC) on a Vydac 218TP1022 C18 column (22 x 

250 mm) (Hesperia, USA) with a solvent system of 99.9 % H2O/0.1 % TFA and 94.9 % 

ACN/5 % H2O/0.1 % TFA, and a flow rate of 20 ml/min. The peptides were lyophilised and 

dissolved in 100 mM Tris-HCl, pH 7.4 and 100 mM NaCl. Peptides 8-10 with free N-

terminus and amidated C-terminus were synthesised on a 25 mg scale by solid-phase 

chemistry (JPT Peptide Technologies GmbH, Berlin, Germany or GL Biochem Ltd., 

Shanghai, China). 

Peptide cyclisation. Peptides 1-7 (1 μM – 1 mM) in 10 mM Tris-HCl, pH 7.4 and 10 mM 

NaCl (reaction buffer) were tested for cyclisation by incubation with microbial 

transglutaminase of Streptomyces mobaraensis (38 kDa, 30 nM – 6 μM; Zedira, Darmstadt, 

Germany) for 5 hours at RT. Peptide 8 (25 μM) in reaction buffer was incubated with 

MTGase (1.5 μM) for 6 hours. Cyclisation was quantified by RP-HPLC on a Vydac 218TP54 

C18 column (4.6 x 250 mm; Hesperia, USA) using a linear ACN/0.1 % TFA gradient (0-50 

%) in water/0.1 % TFA over 30 minutes at a flow rate of 1 ml/min. The peaks were collected 

and analysed by MALDI-TOF mass spectrometry. Peptides 9 and 10 were reacted with 1,3,5-

tris(bromomethyl)benzene (TBMB) by incubating peptide (800 μM) with 1 mM TBMB in 5 

ml 66.5 % (v/v) NH4HCO3 (100 mM, pH 8), 28.5 % acetonitrile and 5 % DMSO for 1 hour at 

30 °C and purified by RP-HPLC. The HPLC-purified bicyclic peptides 9 and 10 (150 μM) in 

10 mM Tris-HCl, pH 7.4 and 10 mM NaCl were incubated with MTGase (1.5 μM) for 6 

hours at RT. 

Mass spectrometric analysis of peptides. The mass of peptides was determined by MALDI-

TOF mass spectrometry (Axima-CFR plus, Kratos, Manchester, UK) as follows. Peptides in 

0.1 % TFA/10-30 % acetonitrile in water or MTGase reaction buffer were mixed with the 

same volume of matrix solution (10 mg α-cyano-4-hydroxycinnamic acid (α-CHCA) in 1 ml 
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of 50 % acetonitrile/49.9 % H2O/0.1 % TFA), 1 μl of the mixture was transferred to the 

carrier plate and mass measurements were performed in the positive ionisation mode. The 

extent of conversion of the peptides 3 and 4 into the cyclic products was quantified by LC/MS 

(Micromass ZQ 4000, Waters, Milford, USA). The reactions (20 μl) were mixed with 80 μl of 

0.1 % formic acid and 0.02 % TFA in water and 50 μl was separated by RP-HPLC on a 

Vydac 218TP54 C18 column (4.6 x 250 mm) (Hesperia, USA) and subjected to mass 

analysis. The quantification was performed by extraction of the ion chromatogram (EIC) and 

by integration of the peaks. The results were confirmed by MALDI-TOF mass spectrometry71. 

The deamidation of glutamine to glutamate residue in peptide 7 was analysed by MALDI-

TOF and the results were confirmed by sequencing using tandem mass spectrometry 

(MS/MS) (Micromass Q-Tof UltimaTM, Waters, Milford, USA). 

Calculation of the velocity of MTGase catalysed cyclisation reactions. The concentrations 

of MTGase needed to cyclise 50 % of the linear peptides in a given time were determined by 

extracting the values of Figure 27. The concentration of generated cyclic peptide was divided 

by the MTGase concentration and the reaction time to express the number of reactions 

catalysed per enzyme per hour.  

Treatment of BSA with MTGase. 5 μg of bovine serum albumin (68 kDa; Applichem, 

Darmstadt, Germany) in 20 μl of MTGase reaction buffer (corresponding to a BSA 

concentration of 3.7 μM) was incubated with MTGase (concentrations ranging from 60 nM to 

6 μM) for 5 hours at RT. Samples were analysed by SDS-PAGE. 

Trypsin cleavage of MTGase cyclised peptide. Peptide 6 (100 μM) before and after 

MTGase treatment (1.5 μM) was incubated with 0.2 μM trypsin for 90 minutes at 37 °C in 

reaction buffer. The products before and after trypsin digestion were analysed by MALDI-

TOF mass spectrometry. The MTGase and trypsin treated peptide 6 was additionally analysed 

by tandem mass spectrometry. Electrospray-ionisation MS data were acquired on a Q-Tof 

Ultima mass spectrometer (Waters, Milford, USA) fitted with a standard Z-spray ion source 

and operated in the positive ionisation mode. The sample was introduced into the mass 

spectrometer by infusion at a flow rate of 10 ml/min with a solution of ACN/H2O/HCOOH 

50:49.8:0.2 (v:v:v). Single MS analysis were followed by MS/MS experiments on the selected 

precursor ions. The collision energy was manually adjusted for proper fragmentation. The 

multiply-charged spectrum was deconvoluted into a singly-charged axis using the Maxent3 
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tool. External calibration was carried out with a solution of phosphoric acid at 0.01 %. Data 

were processed using the MassLynx 4.1 software.   

Aminopeptidase treatment of peptides. Peptide 9 (TBMB-conjugate), before (300 μM) and 

after (75 μM) MTGase treatment in reaction buffer, was incubated with different amounts of 

leucyl aminopeptidase from Aeromonas proteolytica (EC 3.4.11.10, A8200, Sigma-Aldrich, 

St. Louis, USA) (3 to 352 ng, corresponding to concentrations of about 50 nM to 6 μM) in a 

final volume of 2 μl for 30 min at RT. The mass of the peptides was determined by MALDI-

TOF mass spectrometry. 
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5. Monitoring chemical reactions on phage 

5.1. Introduction 

The chemical modification of peptides or proteins on phage allows the generation of phage-

encoded libraries containing building blocks beyond the 20 natural amino acids and hence the 

generation of larger and chemically more diverse molecule libraries72. Furthermore, different 

polypeptide architectures such as bicyclic peptides can be generated. Towards the 

establishment of new modification reactions, methods are required to monitor the 

modification of phage-displayed polypeptides in a qualitative and quantitative manner.  

In this thesis, we generated bicyclic peptide ligands using a methodology in which peptide 

libraries displayed on phage were chemically cyclised prior to affinity selection (chapters 2 

and 3). The reaction conditions for the peptide cyclisation were originally elaborated and 

optimised on peptides in solution being present at micromolar concentration. It was assumed 

that exactly the same conditions could be applied to modify peptides displayed on phage 

having picomolar concentrations. The method proved to work efficiently, as demonstrated by 

the selection of several potent bicyclic peptide inhibitors against different targets (as PK15 

and UK18)3,29. However we previously noticed (chapter 2) that for some selections the extent 

of peptides cyclised with TBMB on phage appears to vary.  

To date only two characterisation methods were developed to assess reactions directly on 

phage. The first method was reported in a patent by Winter and co-workers where they used 

Western blot and fluorescent densitometry analysis of phage pIII protein, isolated from M13 

virion using SDS-PAGE73. In the second method, Derda and co-workers could distinguish 

individually modified and non-modified phage particles using a capture reagent (aminooxy-

biotin) which undergoes covalent ligation with aldehydes displayed on phage particles. Upon 

incubation with streptavidin magnetic beads, biotinylated clones were captured and the 

remaining non-biotinylated clones quantified as plaque forming units74. Both of these 

methods can only detect if the desired product is formed but they cannot detect any side 

product. Moreover, these methods are restricted to the modifications in which molecules are 

ligated to the phage peptide. 
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In this work we developed a new method to follow any type of chemical reaction applied to 

phage-displayed peptides. 

5.2. Strategy 

We proposed a strategy in which peptide displayed on phage is subjected to a chemical 

reaction of choice, cleaved off by a protease and analysed by mass spectrometry. This strategy 

is based on studies in which phage peptide libraries were used for the mapping of protease 

substrates75,76 or for detection of protease activity77. In the work of Ratnikov and co-workers, 

the substrate displayed on phage pIII protein was cleaved by the protease, identified from 

nucleotide sequencing, and the position of the scissile bond was determined by mass 

spectrometric analysis76.  
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5.3. Mass spectrometric detection of chemical reaction products on phage 

5.3.1. TBMB-modification on phage 

The approach was tested using the cyclisation reaction based on TBMB3 well-established in 

our laboratory. Phage displaying a linear peptide with three reactive cysteine residues 

(sequence: LCQLDCTWQC) were prepared. The peptide was linked to the phage protein 3 by 

an Arg-Ser-His-Ser linker containing a trypsin cleavage site (Arg). Phage were produced, 

purified and chemically modified with TBMB as described before (subchapter 2.4). An 

additional step of gel filtration was used in order to remove the residual polyethylene glycol 

used for purification as well as contaminant proteins co-purified with the phage. This step was 

essential for optimal MS analysis78. The modified peptide was then cleaved from the phage 

with trypsin and the remaining phage particle removed by filtration. The resulting peptide 

solution was concentrated and analysed by MALDI-TOF MS (Figure 34). 

 

Figure 34. Strategy for the detection of chemical modifications of phage-displayed peptides. A 

linear peptide displayed on phage particle is modified (as an example: TBMB-cyclised), cleaved from 

the phage with trypsin and filtrated to remove the remaining phage particle. The filtrate is then 

concentrated and analysed by mass spectrometry. The trypsin cleavage site (Arg) is highlighted. 



Monitoring chemical reactions on phage 
 

72 
 

5.3.2. Analysis of reaction products  

To assess the sensitivity of the mass spectrometric detection, we synthesised a peptide and 

modified it with TBMB (Table 4). The peptide was passed through a filter which was later 

used to remove phage particles. The peptide was detectable by MALDI-TOF MS. With an 

optimised filter the quantity of peptide that could be detected was as small as 0.01 pmol if the 

peptide was cyclised with TBMB and 0.1 pmol if the peptide was not modified and kept 

linear (Table 4).  

Synthetic peptide MS detection limits 

Amino acid sequence Linear TBMB-conjugate 

H-LCQLDCTWQCR-NH2 0.1 pmol 0.01 pmol 

Table 4. Mass spectrometry limits of peptide detection. The corresponding phage-encoded peptide 

was chemically synthesised and TBMB-modified. The detection limits of the linear and TBMB-

conjugate peptides were determined on a MALDI-TOF mass spectrometer. The peptide sequence as 

well as the minimum amount of detectable peptide are indicated.   

0.1 pmol of peptide corresponds to 6 x 1010 peptides. In phage cultures, typically 1011 phage 

are produced per milliliter and at least 1010 phage can be purified from one milliliter. We 

therefore estimated that the mass spectrometric detection is sufficiently sensitive for our 

purpose. Phage were produced in 500 ml, modified with TBMB, purified and peptides 

cleaved off with an excess of trypsin. After filtration, the filtrate was lyophilised and 

resuspended in a smaller volume of ultrapure water. The solution was finally analysed by 

MALDI-TOF MS. 

Displayed peptide Monoisotopic masses (Da), [M+H]+ 

Amino acid sequence Linear peptide TBMB-conjugate 

H-LCQLDCTWQCR-OH 1368.6 1482.6 

Table 5. Masses of the expected phage-encoded peptides after trypsin cleavage. Amino acid 

sequence of the resulting peptide as well as the expected monoisotopic masses, [M+H]+, of the linear 

and TBMB-conjugate are indicated.  
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The MS spectrum of the reaction product showed a single peak with the mass of the expected 

TBMB-modified peptide (Table 5; Figure 35). Remarkably, we did not observe the presence 

of the unmodified peptide. This result showed the applicability of the method to monitor 

peptide modification on phage. At the same time it confirmed the efficiency of the TBMB-

modification on phage routinely used in our laboratory. 

 

Figure 35. Mass spectrometric analysis of the TBMB-reaction product cleaved from the phage. 

The modified phage were treated with trypsin, filtrated and reaction product analysed by MALDI-TOF 

MS. Mass spectrum of the product after reaction with TBMB is shown. The schematic structure of the 

expected bicyclic peptide is represented. Singly charged species, [M+H]+, are shown. 

5.3.3. Application of the detection method to new chemical reactions on phage 

The methodology was applied by Shiyu Chen, a PhD student who developed two new 

reagents for the cyclisation of cysteine-rich peptides. Both molecules contain three thiol-

reactive groups with the following functional groups (Figure 36)6: 

• 1,3,5-triacryloyl-1,3,5-triazinane (TATA):  

This molecule is composed of three acrylamide functional groups linked to a 

triazinane core. Its α,β-unsaturated carbonyl groups can react with thiols through an 

ionic thiolene reaction mechanism. 
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• N,N’,N’’-(benzene-1,3,5,-triyl)tris(2-bromoacetamide) (TBAB): 

This molecule contains three bromoacetamide functional groups, linked to a benzene 

ring, which are known to react specifically with thiols in aqueous buffer at moderate 

temperature. 

As for the reaction with TBMB, these reactions were previously optimised and tested only on 

synthetic peptides and on peptide-fusion proteins. These molecules were applied to modify 

peptide libraries on phage, which were further used for selections. However, so far it was 

never proved that these reaction conditions result in a quantitative modification of peptides 

displayed on phage. 

 

Figure 36. Characterisation of two different chemical modifications on phage. A phage-encoded 

peptide was cyclised via its three cysteine residues using the two scaffolds: TATA and TBAB. The 

resulting peptide products were characterised by mass spectrometry. 

Phage were produced, modified, purified and the peptide products cleaved off by trypsin and 

analysed by mass spectrometry as described above. The two MS spectra showed a major peak 

with the mass of the expected modified peptide products (Table 6). Remarkably we did not 

observe the presence of the linear peptide (Figure 37).   
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Displayed peptide Monoisotopic masses (Da), [M+H]+ 

Amino acid sequence Linear peptide TATA-conjugate TBAB-conjugate 

H-LCQLDCTWQCR-OH 1368.6 1617.6 1611.6 

Table 6. Masses of the expected phage-encoded peptides after trypsin cleavage. Amino acid 

sequence of the resulting peptide as well as the expected monoisotopic masses, [M+H]+, of the linear, 

TATA- and TBAB-conjugates are indicated. 

However, several identical minor peaks were observed (Figure 37A and B) in the spectra. 

They probably correspond to fragments of phage capsid proteins generated by trypsin 

digestion or contaminants of bacteria that were co-purified with the phage.  

 

Figure 37. Mass spectrometric analysis of the reaction products cleaved from the phage. The 

modified phage were treated with trypsin, filtrated and reaction products analysed by MALDI-TOF 

MS. Mass spectra of the products, obtained after reactions with TATA (A) and TBAB (B), are shown. 

The schematic structures of the expected bicyclic peptides are represented. Singly charged species, 

[M+H]+, are shown in each spectrum. 
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These results showed the general applicability of the method with different peptide 

modifications on phage. At the same time they confirmed the efficiency of the different 

chemical reactions applied on phage.  

5.4. Conclusions and outlook 

We developed a successful approach to characterise chemical reactions applied on phage 

surface. For the first time, the efficiency of the reactions can be validated in the context of 

intact M13 virion. We could in this way confirm the quantitative yield of the chemical 

reactions developed and routinely used in our laboratory to create diverse peptide libraries.  

The method is simple and does not require sophisticated protocols and materials. The only 

requirement is the presence of a trypsin cleavage site in the linker between the phage and the 

displayed peptide. However, once such a clone is designed, it can be used to characterise 

similar chemical reactions. 

This method may be applied to any kind of modifications on phage including enzymatic 

reactions. We are currently applying the enzymatic peptide cyclisation, developed in chapter 

4, on phage surface.  

In order to precisely quantify the efficiency of the reactions (modified versus unmodified 

products), this method could be combined with nano-LC/MS analysis, a technique where 

quantification of the product ions can be performed by extraction of the ion chromatograms 

and by integration of the peaks. This technique is more quantitative than MALDI-TOF MS. 

Finally, we believe that the methodology described herein will find broad applications in the 

elaboration of new chemical reactions on phage which would certainly facilitate the 

development of new chemically modified phage libraries for the discovery of functional 

ligands. 
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5.5. Materials and methods 

Phage production and modification. Bacterial cells of a monoclonal phage (clone isolated 

in phage selection against plasma kallikrein with library 3x3 and having the following peptide 

sequence: LCQLDCTWQCR) were inoculated in 500 ml of 2YT/chloramphenicol (30 μg/ml) 

medium to obtain an OD600 of 0.1. The culture was shaken (200 rpm) for 16 h at 30 °C. After 

30 min of centrifugation at 8500 rpm and 4 °C, the phage were purified by precipitation with 

0.2 volume of 20 % (w/v) polyethylene glycol 6000 (PEG6000), 2.5 M NaCl on ice and 

centrifugation at 8500 rpm for 30 min. PEG purified phage, typically 1011-1012 t.u., were 

reduced in 20 ml of 20 mM NH4HCO3, 5 mM EDTA, pH 8.0 with 1 mM TCEP at 42 °C for 1 

h. The concentration of TCEP was subsequently reduced by repetitive concentration and 

dilution steps with reaction buffer (20 mM NH4HCO3, 5 mM EDTA, pH 8.0, degassed) in a 

Vivaspin-20 filter (MWCO of 100’000, Sartorius-Stedim Biotech GmbH) as described in 

Heinis et al., 20093. The volume of the phage solution was adjusted to 32 ml with reaction 

buffer. 8 ml of either 50 μM TBMB, 750 μM TATA or 200 μM TBAB in acetonitrile were 

added to obtain a final concentration of 10 μM for TBMB, 150 μM for TATA and 40 μM for 

TBAB. The reactions were incubated at 30 °C for 1 h before non-reacted TBMB, TATA or 

TBAB were removed by precipitation of the phage with 0.2 volume of 20 % (w/v) PEG6000, 

2.5 M NaCl on ice and centrifugation at 4000 rpm for 30 minutes. The phage pellets were 

then dissolved in 1 ml of 10 mM NH4HCO3 at pH 8.0 and additionally purified by size 

exclusion chromatography using a HiPrep 16/60 Sephacryl S-500 high resolution column (GE 

Healthcare) and eluted in 10 mM NH4HCO3 (pH 8.0). After the purification, the phage were 

concentrated in a Vivaspin-20 filter (MWCO of 100’000, Sartorius-Stedim Biotech GmbH) to 

0.5 ml and stored at -20 °C. 

Trypsin digestion. The phage solution (500 μl in 10 mM NH4HCO3, pH 8.0), typically 1010-

1011 t.u. per ml, were incubated for 24 hours at 37 °C with 5 μl of trypsin endoproteinase at 1 

mg/ml in water (modified, TPCK treated, MS Grade, Thermo Fisher Scientific Inc.) to obtain 

a final concentration of 10 μg/ml (430 nM). 

Filtration. The phage solution (500 μl) was filtered using a Nanosep OMEGA filter (MWCO 

of 10’000, Pall Corporation, Port Washington, NY, USA). The filter was previously washed 

successively three times with 0.1 M NaOH and three times with ultrapure water. These 

washing steps are important in order to remove the trace amounts of preservative on the 
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membrane filter that could interfere with the following mass spectrometric analysis. The 

filtrate was then freeze-dried and dissolved in 10 μl of ultrapure water for mass spectrometric 

analysis. 

Mass spectrometric analysis. The filtrated solution was analysed by MALDI-TOF mass 

spectrometry (Axima-CFR plus, Kratos) as follows. The solution was mixed with the same 

volume of matrix solution (10 mg α-cyano-4-hydroxycinnamic acid (α-CHCA) in 1 ml of 

ACN/H2O/TFA 50:49.9:0.1 % v/v/v). An aliquot (2 μl) of the mixture was transferred to the 

carrier plate and mass measurements were performed in the positive-ionisation mode. 

Chemical synthesis of peptide H-LCQLDCTWQCR-NH2. The linear and the TBMB-

modified peptides having a free amine at the N-terminus and an amide at the C-terminus were 

synthesised and purified using the same protocol as described in subchapter 2.4. 
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7. Appendices 

7.1. Abbreviations 

aa   Amino acid 

ACN   Acetonitrile 

Ala or A  Alanine 

APMA   4-aminophenylmercuric acetate 

APP   Amyloid precursor protein  

APP-IP  APP-derived inhibitory peptide 

Arg or R  Arginine 

Asn or N  Asparagine 

Asp or D  Aspartic acid 

AU   Arbitrary unit 

BSA   Bovine serum albumin 

CD   Circular dichroism 

cDNA   Complementary DNA 

Cys or C  Cysteine 

Da   Dalton 

DMSO   Dimethylsulfoxide 

DNA   Deoxyribonucleic acid 

EDTA   Ethylenediaminetetraacetic acid 

ELISA   Enzyme linked immunosorbent assay 

Gln or Q  Glutamine 

Glu or E  Glutamic acid 

Gly or G  Glycine 

h   Hour 

His or H  Histidine 

hPK   Human plasma kallikrein 

HRP   Horseradish peroxidase 

IC50   Half-maximal inhibitory concentration 

Ile or I   Isoleucine 

ITC   Isothermal titration calorimetry 
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kDa   Kilodalton 

LC   Liquid chromatography 

Leu or L  Leucine 

Lys or K  Lysine 

MALDI-TOF  Matrix-assisted laser desorption/ionisation-time of flight 

Met or M  Methionine 

mg   Milligram 

min   Minute 

ml   Millilitre 

mm   Millimeter 

mM   Millimolar 

MMP   Matrix metalloproteinase 

MMTS  Methyl methanethiosulfonate 

MS   Mass spectrometry 

ng   Nanogram 

nm   Nanometer 

nM   Nanomolar 

O/N   Overnight 

PBS   Phosphate buffered saline 

PEG   Polyethylene glycol 

Phe or F  Phenylalanine 

PK   Plasma kallikrein 

pM   Picomolar 

pmol   Picomole 

Pro or P  Proline 

RP-HPLC  Reversed phase high-performance liquid chromatography 

rpm   Rotation per minute 

RT   Room temperature 

SAS-6   Spindle assembly abnormal 6 protein 

SDS-PAGE  Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

Ser or S  Serine 

TATA   1,3,5-triacryloyl-1,3,5-triazinane 

TBAB   N,N’,N’’-(benzene-1,3,5-triyl)tris(2-bromoacetamide) 

TBMB   1,3,5-tris(bromomethyl)benzene 

TCEP   Tris(2-carboxyethyl)phosphine 
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TFA   Trifluoroacetic acid 

Thr or T  Threonine 

TIMP   Tissue inhibitor of metalloproteinases 

Trp or W  Tryptophan 

t.u.   Transducing unit 

Tyr or Y  Tyrosine 

U2OS   Human osteosarcoma cells 

μg   Microgram 

μm   Micrometer 

μM   Micromolar 

uPA   Urokinase-type plasminogen activator 

Val or V  Valine 

v/v   Percentage by volume 

w/v   Percentage by weight  
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7.2. Phage titres: MMP-2 and MMP-9 selections 

The “input phage” used for every selection was always between 1010 and 1011 phage.  

The number of phage isolated after every round of selection was determined (output phage). 

Negative controls (affinity selections performed without immobilised target on magnetic 

beads) were performed only for the first two experiments. Results are summarised in the 

following tables: 

 

EXPERIMENT 1 Round 1 Round 2 Round 3 

Control (No target) 2.40·105 4.20·104 1.70·105 

MMP-2 4.50·105 4.30·105 8.00·107 

MMP-9 1.50·106 6.00·105 2.20·107 

    

EXPERIMENT 2 Round 1 Round 2 Round 3 

Control (No target) 1.95·104 1.20·104 1.05·104 

MMP-2 3.15·104 1.95·106 2.85·108 

MMP-9 5.25·104 4.50·107 5.40·108 

 

EXPERIMENT 3 Round 1 Round 2 Round 3 

MMP-2 

Library 6x6  

TBMB-modified 

1.05·104 1.50·105 2.70·108 

MMP-2 

Library 6x6  

Unmodified 

2.40·104 2.10·106 4.50·108 

MMP-2 

Libraries 3x3 and 4x4 mixed

TBMB-modified 

< 1500 2.85·104 1.80·106 
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EXPERIMENT 4 Round 1 Round 2 Round 3 

MMP-2 

Library 6x6  

TBMB-modified 

6.00·104 6.00·104 2.40·105 

MMP-2 

Library 6x6  

Unmodified 

2.10·105 1.65·105 2.85·105 

hPK 

Library 6x6  

TBMB-modified 

1.05·104 1.35·107 1.35·108 

hPK 

Library 6x6  

Unmodified 

4.50·103 2.40·106 2.55·108 

 

EXPERIMENT 5 Round 1 Round 2 Round 3 

MMP-2 

Library 6x6  

TBMB-modified 

1.10·104 1.60·105 2.60·108 
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7.3. Amino acid and DNA sequences of proMMP-2 used for selections 

• Amino acid sequence of the protein. The colours correspond to the ones used in 

Figure 4. 

MEALMARGALTGPLRALCLLGCLLSHAVAAPSPIIKFPGDVAPKTDKELAVQYLNTF

YGCPKESCNLFVLKDTLKKMQKFFGLPQTGDLDQNTIETMRKPRCGNPDVANYNFFP

RKPKWDKNQITYRIIGYTPDLDPETVDDAFARAFQVWSDVTPLRFSRIHDGEADIMIN

FGRWEHGDGYPFDGKDGLLAHAFAPGTGVGGDSHFDDDELWTLGEGQVVRVKYG

NADGEYCKFPFLFNGKEYNSCTDTGRSDGFLWCSTTYNFEKDGKYGFCPHEALFTM

GGNAEGQPCKFPFRFQGTSYDSCTTEGRTDGYRWCGTTEDYDRDKKYGFCPETAMS

TVGGNSEGAPCVFPFTFLGNKYESCTSAGRSDGKMWCATTANYDDDRKWGFCPDQ

GYSLFLVAAHEFGHAMGLEHSQDPGALMAPIYTYTKNFRLSQDDIKGIQELYGASPDI

DLGTGPTPTLGPVTPEICKQDIVFDGIAQIRGEIFFFKDRFIWRTVTPRDKPMGPLLVAT

FWPELPEKIDAVYEAPQEEKAVFFAGNEYWIYSASTLERGYPKPLTSLGLPPDVQRVD

AAFNWSKNKKTYIFAGDKFWRYNEVKKKMDPGFPKLIADAWNAIPDNLDAVVDLQ

GGGHSYFFKGAYYLKLENQSLKSVKFGSIKSDWLGC 

• DNA sequence of the gene used to express proMMP-2. 

ATGGAGGCGCTAATGGCCCGGGGCGCGCTCACGGGTCCCCTGAGGGCGCTCTGTCTCCTGGGCTGCCTGCTGAGC

CACGCCGTCGCCGCGCCGTCGCCCATCATCAAGTTCCCCGGCGATGTCGCCCCCAAAACGGACAAAGAGTTGGCA

GTGCAATACCTGAACACCTTCTATGGCTGCCCCAAGGAGAGCTGCAACCTGTTTGTGCTGAAGGACACACTAAAG

AAGATGCAGAAGTTCTTTGGACTGCCCCAGACAGGTGATCTTGACCAGAATACCATCGAGACCATGCGGAAGCCA

CGCTGCGGCAACCCAGATGTGGCCAACTACAACTTCTTCCCTCGCAAGCCCAAGTGGGACAAGAACCAGATCACA

TACAGGATCATTGGCTACACACCTGATCTGGACCCAGAGACAGTGGATGATGCCTTTGCTCGTGCCTTCCAAGTC

TGGAGCGATGTGACCCCACTGCGGTTTTCTCGAATCCATGATGGAGAGGCAGACATCATGATCAACTTTGGCCGC

TGGGAGCATGGCGATGGATACCCCTTTGACGGTAAGGACGGACTCCTGGCTCATGCCTTCGCCCCAGGCACTGGT

GTTGGGGGAGACTCCCATTTTGATGACGATGAGCTATGGACCTTGGGAGAAGGCCAAGTGGTCCGTGTGAAGTAT

GGGAACGCCGATGGGGAGTACTGCAAGTTCCCCTTCTTGTTCAATGGCAAGGAGTACAACAGCTGCACTGATACT

GGCCGCAGCGATGGCTTCCTCTGGTGCTCCACCACCTACAACTTTGAGAAGGATGGCAAGTACGGCTTCTGTCCC

CATGAAGCCCTGTTCACCATGGGCGGCAACGCTGAAGGACAGCCCTGCAAGTTTCCATTCCGCTTCCAGGGCACA

TCCTATGACAGCTGCACCACTGAGGGCCGCACGGATGGCTACCGCTGGTGCGGCACCACTGAGGACTACGACCGC

GACAAGAAGTATGGCTTCTGCCCTGAGACCGCCATGTCCACTGTTGGTGGGAACTCAGAAGGTGCCCCCTGTGTC

TTCCCCTTCACTTTCCTGGGCAACAAATATGAGAGCTGCACCAGCGCCGGCCGCAGTGACGGAAAGATGTGGTGT

GCGACCACAGCCAACTACGATGACGACCGCAAGTGGGGCTTCTGCCCTGACCAAGGGTACAGCCTGTTCCTCGTG

GCAGCCCACGAGTTTGGCCACGCCATGGGGCTGGAGCACTCCCAAGACCCTGGGGCCCTGATGGCACCCATTTAC
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ACCTACACCAAGAACTTCCGTCTGTCCCAGGATGACATCAAGGGCATTCAGGAGCTCTATGGGGCCTCTCCTGAC

ATTGACCTTGGCACCGGCCCCACCCCCACACTGGGCCCTGTCACTCCTGAGATCTGCAAACAGGACATTGTATTT

GATGGCATCGCTCAGATCCGTGGTGAGATCTTCTTCTTCAAGGACCGGTTCATTTGGCGGACTGTGACGCCACGT

GACAAGCCCATGGGGCCCCTGCTGGTGGCCACATTCTGGCCTGAGCTCCCGGAAAAGATTGATGCGGTATACGAG

GCCCCACAGGAGGAGAAGGCTGTGTTCTTTGCAGGGAATGAATACTGGATCTACTCAGCCAGCACCCTGGAGCGA

GGGTACCCCAAGCCACTGACCAGCCTGGGACTGCCCCCTGATGTCCAGCGAGTGGATGCCGCCTTTAACTGGAGC

AAAAACAAGAAGACATACATCTTTGCTGGAGACAAATTCTGGAGATACAATGAGGTGAAGAAGAAAATGGATCCT

GGCTTCCCCAAGCTCATCGCAGATGCCTGGAATGCCATCCCCGATAACCTGGATGCCGTCGTGGACCTGCAGGGC

GGCGGTCACAGCTACTTCTTCAAGGGTGCCTATTACCTGAAGCTGGAGAACCAAAGTCTGAAGAGCGTGAAGTTT

GGAAGCATCAAATCCGACTGGCTAGGCTGCTGA 
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7.4. APMA  

 

Figure A.1. Chemical structure of the mercurial compound 4-aminophenylmercuric acetate 

(APMA). 
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7.5. GM 6001 

 

Figure A.2. Chemical structure of the potent broad-spectrum hydroxamate-based inhibitor of 

matrix metalloproteinases. 
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7.6. Amino acid and DNA sequences of proMMP-9 used for selections 

• Amino acid sequence of the protein. The colours correspond to the ones used in 

Figure 15. 

MSLWQPLVLVLLVLGCCFAAPRQRQSTLVLFPGDLRTNLTDRQLAEEYLYRYGYTR

VAEMRGESKSLGPALLLLQKQLSLPETGELDSATLKAMRTPRCGVPDLGRFQTFEGD

LKWHHHNITYWIQNYSEDLPRAVIDDAFARAFALWSAVTPLTFTRVYSRDADIVIQF

GVAEHGDGYPFDGKDGLLAHAFPPGPGIQGDAHFDDDELWSLGKGVVVPTRFGNAD

GAACHFPFIFEGRSYSACTTDGRSDGLPWCSTTANYDTDDRFGFCPSERLYTRDGNA

DGKPCQFPFIFQGQSYSACTTDGRSDGYRWCATTANYDRDKLFGFCPTRADSTVMG

GNSAGELCVFPFTFLGKEYSTCTSEGRGDGRLWCATTSNFDSDKKWGFCPDQGYSLF

LVAAHEFGHALGLDHSSVPEALMYPMYRFTEGPPLHKDDVNGIRHLYGPRPEPEPRP

PTTTTPQPTAPPTVCPTGPPTVHPSERPTAGPTGPPSAGPTGPPTAGPSTATTVPLSPVD

DACNVNIFDAIAEIGNQLYLFKDGKYWRFSEGRGSRPQGPFLIADKWPALPRKLDSVF

EEPLSKKLFFFSGRQVWVYTGASVLGPRRLDKLGLGADVAQVTGALRSGRGKMLLF

SGRRLWRFDVKAQMVDPRSASEVDRMFPGVPLDTHDVFQYREKAYFCQDRFYWRV

SSRSELNQVDQVGYVTYDILQCPED 

• DNA sequence of the gene used to express proMMP-9. 

ATGAGCCTCTGGCAGCCCCTGGTCCTGGTGCTCCTGGTGCTGGGCTGCTGCTTTGCTGCCCCCAGACAGCGCCAG

TCCACCCTTGTGCTCTTCCCTGGAGACCTGAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAATACCTGTAC

CGCTATGGTTACACTCGGGTGGCAGAGATGCGTGGAGAGTCGAAATCTCTGGGGCCTGCGCTGCTGCTTCTCCAG

AAGCAACTGTCCCTGCCCGAGACCGGTGAGCTGGATAGCGCCACGCTGAAGGCCATGCGAACCCCACGGTGCGGG

GTCCCAGACCTGGGCAGATTCCAAACCTTTGAGGGCGACCTCAAGTGGCACCACCACAACATCACCTATTGGATC

CAAAACTACTCGGAAGACTTGCCGCGGGCGGTGATTGACGACGCCTTTGCCCGCGCCTTCGCACTGTGGAGCGCG

GTGACGCCGCTCACCTTCACTCGCGTGTACAGCCGGGACGCAGACATCGTCATCCAGTTTGGTGTCGCGGAGCAC

GGAGACGGGTATCCCTTCGACGGGAAGGACGGGCTCCTGGCACACGCCTTTCCTCCTGGCCCCGGCATTCAGGGA

GACGCCCATTTCGACGATGACGAGTTGTGGTCCCTGGGCAAGGGCGTCGTGGTTCCAACTCGGTTTGGAAACGCA

GATGGCGCGGCCTGCCACTTCCCCTTCATCTTCGAGGGCCGCTCCTACTCTGCCTGCACCACCGACGGTCGCTCC

GACGGCTTGCCCTGGTGCAGTACCACGGCCAACTACGACACCGACGACCGGTTTGGCTTCTGCCCCAGCGAGAGA

CTCTACACCCGGGACGGCAATGCTGATGGGAAACCCTGCCAGTTTCCATTCATCTTCCAAGGCCAATCCTACTCC

GCCTGCACCACGGACGGTCGCTCCGACGGCTACCGCTGGTGCGCCACCACCGCCAACTACGACCGGGACAAGCTC

TTCGGCTTCTGCCCGACCCGAGCTGACTCGACGGTGATGGGGGGCAACTCGGCGGGGGAGCTGTGCGTCTTCCCC

TTCACTTTCCTGGGTAAGGAGTACTCGACCTGTACCAGCGAGGGCCGCGGAGATGGGCGCCTCTGGTGCGCTACC

ACCTCGAACTTTGACAGCGACAAGAAGTGGGGCTTCTGCCCGGACCAAGGATACAGTTTGTTCCTCGTGGCGGCG
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CATGAGTTCGGCCACGCGCTGGGCTTAGATCATTCCTCAGTGCCGGAGGCGCTCATGTACCCTATGTACCGCTTC

ACTGAGGGGCCCCCCTTGCATAAGGACGACGTGAATGGCATCCGGCACCTCTATGGTCCTCGCCCTGAACCTGAG

CCACGGCCTCCAACCACCACCACACCGCAGCCCACGGCTCCCCCGACGGTCTGCCCCACCGGACCCCCCACTGTC

CACCCCTCAGAGCGCCCCACAGCTGGCCCCACAGGTCCCCCCTCAGCTGGCCCCACAGGTCCCCCCACTGCTGGC

CCTTCTACGGCCACTACTGTGCCTTTGAGTCCGGTGGACGATGCCTGCAACGTGAACATCTTCGACGCCATCGCG

GAGATTGGGAACCAGCTGTATTTGTTCAAGGATGGGAAGTACTGGCGATTCTCTGAGGGCAGGGGGAGCCGGCCG

CAGGGCCCCTTCCTTATCGCCGACAAGTGGCCCGCGCTGCCCCGCAAGCTGGACTCGGTCTTTGAGGAGCCGCTC

TCCAAGAAGCTTTTCTTCTTCTCTGGGCGCCAGGTGTGGGTGTACACAGGCGCGTCGGTGCTGGGCCCGAGGCGT

CTGGACAAGCTGGGCCTGGGAGCCGACGTGGCCCAGGTGACCGGGGCCCTCCGGAGTGGCAGGGGGAAGATGCTG

CTGTTCAGCGGGCGGCGCCTCTGGAGGTTCGACGTGAAGGCGCAGATGGTGGATCCCCGGAGCGCCAGCGAGGTG

GACCGGATGTTCCCCGGGGTGCCTTTGGACACGCACGACGTCTTCCAGTACCGAGAGAAAGCCTATTTCTGCCAG

GACCGCTTCTACTGGCGCGTGAGTTCCCGGAGTGAGTTGAACCAGGTGGACCAAGTGGGCTACGTGACCTATGAC

ATCCTGCAGTGCCCTGAGGACTAG 

  



Appendices 
 

92 
 

7.7. Amino acid sequences of SAS-6 proteins used for selections 

The sequences of both proteins are shown below. An additional His6 tag is attached at the N-

terminus of the proteins. 

• HsSAS-6 (HsN-6HR, residues 1-212) 

MSQVLFHQLVPLQVKCKDCEERRVSIRMSIELQSVSNPVHRKDLVIRLTDDTDPFFLY

NLVISEEDFQSLKFQQGLLVDFLAFPQKFIDLLQQCTQEHAKEIPRFLLQLVSPAAILD

NSPAFLNVVETNPFKHLTHLSLKLLPGNDVEIKKFLAGCLKCSKEEKLSLMQSLDDAT

KQLDFTRKTLAEKKQELDKLRNEWASHTAALTNKHSQ 

• CrSAS-6 (CrN-6HR, residues 1-226) 

MPLLLDDGDPKAQTGFDLSTATTLFWRPVPVHVKQQDREDVLEELTFRILTGVAKQN

HNLRILRIHISSDSDLFFLHTLEVSEEDFQSLKNDQGILVDFASFPGKIISLLEKCILAQP

GDSPRFQAVLTIRGGESVFKIVEINDFKQLPHITLAFRPGNDSVVKQFLAFRLSEVKGT

CHDLSDDLSRTRDDRDSMVAQLAQCRQQLAQLREQYDKHLLEVQAQAKT 
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7.8. Phage titres: SAS-6 selections 

The “input phage” used for every selection was always between 1010 and 1011 phage.  

The number of phage isolated after every round of selection was determined (output phage). 

Titres are summarised in the following table: 

 

 Round 1 Round 2 Round 3 

HsSAS-6 

Libraries 4x4 and 6x6 mixed
7.80·104 6.75·106 5.55·107 

CrSAS-6 

Libraries 4x4 and 6x6 mixed
1.00·103 2.55·105 4.50·104 
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