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All intelligent thoughts have already been thought;
what is necessary is only to try to think them again.

...Johann Wolfgang von Goethe

Life is like riding a bicycle,
to keep balance you need to keep going.

...Albert Einstein
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ridere insieme ancora oggi a distanza di 15 anni.

Infine un grazie infinito alla mia famiglia per il supporto che mi hanno sempre offerto,
per la meravigliosa educazione che ho ricevuto e per i valori che sono riusciti a trasmettermi,
valori che ancora mi accompagnano e mi accompagneranno sempre.



Abstract

Digital photography exists since 1975, when Steven Sasson attempted to build the first digital
camera. Since then the concept of digital camera did not evolve much: an optical lens
concentrates light rays onto a focal plane where a planar photosensitive array transforms the
light intensity into an electric signal.

During the last decade a new way of conceiving digital photography emerged: a photog-
raphy is the acquisition of the entire light ray field in a confined region of space. The main
implication of this new concept is that a digital camera does not acquire a 2-D signal any-
more, but a 5-D signal in general. Acquiring an image becomes more demanding in terms of
memory and processing power; at the same time, it offers the users a new set of possibilities,
like choosing dynamically the focal plane and the depth of field of the final digital photo.

In this thesis we develop a complete mathematical framework to acquire and then recon-
struct the omnidirectional light field around an observer. We also propose the design of a
digital light field camera system, which is composed by several pinhole cameras distributed
around a sphere. The choice is not casual, as we take inspiration from something already seen
in nature: the compound eyes of common terrestrial and flying insects like the house fly.

In the first part of the thesis we analyze the optimal sampling conditions that permit an
efficient discrete representation of the continuous light field. In other words, we will give an
answer to the question: how many cameras and what resolution are needed to have a good
representation of the 4-D light field? Since we are dealing with an omnidirectional light field
we use a spherical parametrization. The results of our analysis is that we need an irregular
(i.e., not rectangular) sampling scheme to represent efficiently the light field. Then, to store
the samples we use a graph structure, where each node represents a light ray and the edges
encode the topology of the light field. When compared to other existing approaches our
scheme has the favorable property of having a number of samples that scales smoothly for a
given output resolution.

The next step after the acquisition of the light field is to reconstruct a digital picture, which
can be seen as a 2-D slice of the 4-D acquired light field. We interpret the reconstruction as
a regularized inverse problem defined on the light field graph and obtain a solution based on
a diffusion process. The proposed scheme has three main advantages when compared to the
classic linear interpolation: it is robust to noise, it is computationally efficient and can be
implemented in a distributed fashion.

In the second part of the thesis we investigate the problem of extracting geometric infor-
mation about the scene in the form of a depth map. We show that the depth information is
encoded inside the light field derivatives and set up a TV-regularized inverse problem, which
efficiently calculates a dense depth map of the scene while respecting the discontinuities at
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the boundaries of objects. The extracted depth map is used to remove visual and geometrical
artifacts from the reconstruction when the light field is under-sampled. In other words, it can
be used to help the reconstruction process in challenging situations. Furthermore, when the
light field camera is moving temporally, we show how the depth map can be used to estimate
the motion parameters between two consecutive acquisitions with a simple and effective al-
gorithm, which does not require the computation nor the matching of features and performs
only simple arithmetic operations directly in the pixel space.

In the last part of the thesis, we introduce a novel omnidirectional light field camera that
we call Panoptic. We obtain it by layering miniature CMOS imagers onto an hemispherical
surface, which are then connected to a network of FPGAs. We show that the proposed math-
ematical framework is well suited to be embedded in hardware by demonstrating a real time
reconstruction of an omnidirectional video stream at 25 frames per second.

Keywords: Computational Photography, Spherical Light Field Camera, Panoptic, Omni-
directional, Manifold, Sphere, Spectral Graph Photography, Structure-From-Motion, Depth
Estimation, Variational, Distributed Processing, Plenoptic Sampling, Graph Diffusion



Riassunto

Da quando il padre della fotografia digitale, Steven Sasson, invento la prima fotocamera
numerica nel 1975, il concetto di macchina fotografica non è evoluto: un’ottica focalizza la
luce su una superficie fotosensibile che la trasforma in un segnale elettrico. Nell’ ultimo
decennio sta emergendo un nuovo modo di concepire la fotografia digitale, grazie all’ausilio
di computer sempre più potenti: non ci si limita più a catturare una semplice foto, bens̀ı
un intero volume di luce. Il segnale catturato diventa cos̀ı 5-dimensionale. Catturare una
immagine diventa cos̀ı molto più oneroso in termini di memoria e potenza di calcolo, ma
permette all’ utente finale di beneficiare di possibilità finora impensabili, come la possibilità
di mettere a fuoco la foto dopo la sua acquisizione o cambiare la profondità di campo.

In questa tesi abbiamo sviluppato una intera teoria matematica per rappresentare in modo
efficiente l’ intero campo luminoso intorno ad un osservatore. Mostriamo quale sia il design
di una fotocamera che permette di conseguire questo scopo in modo ottimo: una superficie
sferica ricoperta di microsensori ottici. La scelta è anche inspirata a qualcosa di già visto in
natura: gli occhi di alcuni insetti come la comune mosca sono infatti composti di migliaia di
piccole superfici fotosensibile distribuite su una superficie sferica.

Nella prima parte della tesi ci occupiamo di analizzare un problema di grande importanza
nel design della telecamera: di quante telecamere abbiamo bisogno per avere una adeguata
rappresentazione del campo luminoso? Il risultato della nostra analisi è che un modo efficiente
di disporre le fotocamere intorno alla sfera è di rispettare una distribuzione uniforme. Questo
si traduce in un campionamento dello spazio che non è regolare, non è definito, cioè, su una
classica griglia rettangolare. Noi proponiamo di rappresentare questa struttura irregolare
usando dei grafi, dove ogni nodo rappresenta un raggio di luce, mentre gli archi ne definiscono
la topologia.

Il passo successivo è quello di utilizzare il campo luminoso per formare una fotografia, che
in effetti non è altro se non una sezione del volume di luce catturato. La ricostruzione dell’
immagine è interpretata come un processo di diffusione sul grafo che rappresenta il campo
luminoso. Questa soluzione ha dei vantaggi rispetto a soluzione più classiche di interpolazione:
è insensibile al rumore e molto efficiente da implementare in modo distribuito.

Nella seconda parte della tesi investighiamo il problema di estrarre una mappa di pro-
fondità direttamente dal campo luminoso. In effetti nascoste dentro le variazioni del campo
luminoso, ci sono utilissime informazioni sulla struttura della scena. Noi proponiamo di es-
trarle mediante la formulazione di un problema inverso con un termine di regolarizzazione
che tende a minimizzare la variazione totale della mappa di profondità. L’informazione cos̀ı
estratta permette di migliorare la formazione di fotografie dal campo luminoso, soprattutto
quando il segnale è sotto-campionato. Se la telecamera è in movimento, parametri come la
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velocità e la rotazione dell’apparecchio possono anche essere estratti dalle immagini acquisite.
Noi proponiamo un semplice ed efficace algoritmo che non richiede l’estrazione di punti di
interesse, operazione di solita lenta e soggetta ad errori.

Nell’ ultima parte della tesi documentiamo la costruzione di una vera fotocamera omnidi-
rezionale: Panoptic. La fotocamera è realizzata posizionando dei sensori CMOS miniaturizzati
su una superficie emisferica in alluminio. I sensori sono poi connessi ad una rete di FPGA, che
realizzano, in tempo reale, l’elaborazione numerica necessaria per ricostruire una fotografia
omnidirezionale.

Keywords: Fotografia Computazionale, Fotocamera, Campo lumisoso, Panoptic, Omni-
direzionale, Varieta, Sfera, Fotografia Spettrale, Grafi, Structure-From-Motion, Mappa di
Profondita, Ottimizzazione Variazionale, Elaborazione Distribuita, Campionamento, Diffu-
sione
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Chapter 1

Introduction

The space around us is filled with light rays. This concept was clear already to Leonardo da
Vinci who wrote: The body of the air is full of an infinite number of radiant pyramids caused
by the objects located in it. [49]. Much later, in a 1936 paper by Gershun [50], the concept
of light field was formalized as the amount of light traveling in every direction through every
point in space.

Why are we interested in light fields? Because much of the information about the appear-
ance and the structure of the scene is encoded in the complex structure of light fields.

This thesis is dedicated to the study of a camera model that captures what we call the
omnidirectional light field, i.e., the full set of light rays traveling in every direction through
every point in a sphere of finite radius. We also study the algorithms that can extract infor-
mation from the captured omnidirectional light field. How can we form an omnidirectional
image from the acquired light field? How can we extract the geometrical structure of the scene
directly from the light measurements? We will give an answer to these fundamental questions,
addressing at the same time the problem of finding efficient computational solutions.

A Quick Tour of Light Field Imaging Despite that light fields are been known for a long
time, the theory of light field imaging is quite recent. In fact, what enabled the acquisition of
light fields was the availability of inexpensive digital imagers in recents years and the rapid
growth of the processing power of digital computers. Adelson in his pioneering paper [1]
represents the light field with a five-dimensional function that he calls the plenoptic function.
What we usually capture with a conventional camera is only a limited portion of the light
field, i.e., a two-dimensional slice of the plenoptic function. Therefore, a lot of information
is lost during the acquisition of a conventional photograph. This simple observation is the
motivation behind the recent research efforts to find solutions to measure and process the light
field. Adelson is the first to understand [2] that the light field could be captured by a planar
array of micro lenses placed in front of the light sensor. Few years later, Levoy [51] and Gortler
[36] introduces the concept of light field camera within the computer graphics community.
Levoy, using a planar array of conventional cameras, shows how virtual perspective views
of the scene could be created from the captured light field by a simple rearrangement of a
proper selection of pixels from the original views. Gortler uses a series of images coming from
a handheld camera to achieve the same goal. Light field cameras have also been investigated
in the computational photography community. An interesting result emerging from these

1
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studies is the observation that a planar array of cameras behaves as an optical lens. This idea
is behind the Fourier slice photography theory developed by Ng [62], who suggests the use
of light field cameras to perform digital refocusing of photographs in post-processing. The
theory has been recently transferred into a commercial product called Lytro camera [55]. The
same idea is being used by another emerging company, Pelican Imaging [43], to reduce the
dimension of standard camera modules inside mobile phones, using a planar array of micro
imagers.

Light field cameras based on planar arrays of sensors have, however, a severe limitation:
they capture only light rays in a limited portion of the directional space, i.e., they have a
limited field of view. Surprisingly, only limited efforts have been made to address the problem
of acquiring the omnidirectional light field. The concentric mosaics model [72] proposed by
Shum uses a camera mounted on a rotating level beam. The acquired light field is not
omnidirectional but contains all the directions around the equator. More recently Taguchi
[79] proposes a catadioptric system composed by an array of several mirrors in front of a
camera. The system offers an increased field of view but the resulting light field is not fully
omnidirectional.

A trend with the development of omnidirectional cameras has been running in parallel
to the study of light field cameras. Omnidirectional imagers begun to spark a tremendous
interest in the image processing and computer vision communities due to their large field-
of-view. A large field of view is a property that is advantageous in many applications like
autonomous navigation, surveillance, and 3D modeling of environments. The construction of
omnidirectional imagers has been of interest to the scientific community for over a decade,
since the obvious solution of systematic placement of photodiodes over a spherical structure
is not currently possible with available silicon fabrication technologies. Most of the research
efforts have been devoted to single effective viewpoint omnidirectional cameras [8], i.e., cam-
eras that capture the omnidirectional light field in a single point in space. Cameras designed
with such a principle have the advantage of preserving linear perspective geometry, which is
one of the fundamental assumptions in most of the algorithms in computer vision. Omnidi-
rectional catadioptric devices were first introduced by Nayar [59]. They are composed by a
combination of curved mirrors that reflect light onto a classic planar sensor. Catadioptic cam-
eras became popular because they have a one-to-one mapping with the sphere, as shown in
[33], hence they have a single effective viewpoint, i.e., the optical rays reflected by the mirror
surface intersect into a unique point. The images produced by catadrioptric lenses suffer from
severe distortions that result in a trade-off between spatial and angular resolution. To achieve
higher spatial resolution, Swarninathan [78] proposes to build a cluster of wide-angle cameras
arranged in circle. This is one of the few works that uses a spatial arrangement of cameras to
provide an omnidirectional vision. In more recent years, Foote presented the FlyCam [32], a
system of 8 miniature cameras arranged on a ring to produce panoramas, which is one of the
first attempt to build a cheap integrated system with off-the-shelf components. The field of
view of the system remains confined, though, around a limited portion around the equator.

While most of the research on omnidirectional vision was devoted to single effective view-
point cameras, Neumann has been the first to suggest in [60] that all the information about
the 3D camera motion and the structure of the scene is encoded into the differential informa-
tion of the time varying plenoptic function. Furthermore, he suggests that the ideal device to
estimate structure and motion is what he calls a ”full field of view polydioptric camera”, i.e.,
a closed surface where each point represents a pinhole imager. In fact, this can be considered
as the first attempt to model the capture of an omnidirectional light field. Neumann does not
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develop further the idea of full field of view polydioptric camera, which remains a theoretical
tool to analyze the performance of structure-from-motion algorithms.

1.1 Thesis Contributions

Inspired by Neumann’s intuition, we propose a camera model that captures the omnidirec-
tional light field on a spherical surface layered with hundreds of pinhole imagers. Our design
assumptions are supported by the existence of a similar model in nature: the compound eyes
of common terrestrial and flying insects, like the house fly, are composed by thousands of
sensors, called ommatidia, placed on a spherical surface.

If the imagers are placed closed enough on the spherical surface, then the full system can
be interpreted as a spherical optical lens, which suggests that such a camera model could be
used to design miniature omnidirectional cameras.

The idea has a concrete technological foundation. Current silicon technology makes possi-
ble the fabrication of small and low cost imagers that behave like pinhole cameras: the camera
modules conceived for modern smart phones measure only few millimeters in size and have
a very short focal. However, the tremendous amount of data generated by hundreds of these
camera modules would be too high to be transferred to a central unit for processing. For
example, 100 imagers with resolution of 1 Mpixels and 8bits of color depth, would produce a
data rate of 20Gbits/sec at a frame rate of 25 fps. These numbers are too high for the cur-
rently available transfer protocols. To overcome this limitation we consider that every imager
is equipped with some computing power and, following a recent trend in signal processing
[14], we interpret the light field processing as a distributed operation over a network. This
imposes a radically different thinking in the design of imaging algorithms.

To validate our design, the proposed model has been used in the construction of an omni-
directional light field camera prototype that we call the Panoptic Camera. It consists of 100
miniature Complementary metal–oxide–semiconductor (CMOS) imagers layered around an
hemispherical support. The cameras are connected through a network of field-programmable
gate arrays (FPGAs), which collect the video streams from the cameras and process them in
real time.

The list of contributions in this thesis can be summarized as follows:

1. Spherical Light Field Camera. We design a novel camera model to capture the
omnidirectional light field.

2. Fourier Analysis on S2×S2 through a small angle approximation. We develop
a new approximate Fourier analysis to determine the optimal sampling conditions for
the captured omnidirectional light field.

3. Linear omnidirectional light field interpolation. We define the concept of an
Omnidirectional Photography Operator as an extension of the photography operator
defined in [62] and propose to form an omnidirectional photo as a kernel interpolation
process for the omnidirectional light field with radial basis functions.

4. Graph-based omnidirectional light field interpolation. We give the definition
of light field graph as the mathematical structure that approximates the continuous
4D-plenoptic function and then interpret the formation of omnidirectional photos as a
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regularized diffusion process on the light field graph. We also make a formal connection
between the kernel-based interpolation and a certain class of diffusion processes.

5. Light Field Depth Estimation. We propose a novel algorithm to compute the depth
map of the scene, using all the information contained in one light field acquisition.

6. Omnidirectional structure-from-motion. We propose a variational framework on
graphs to jointly extract the structure of the scene and the motion parameters from two
omnidirectional images.

7. The Panoptic Camera. We develop a real camera prototype called The Panoptic
Camera where we test our novel imaging algorithms.

We envisage that the contributions of this thesis will have a strong impact on the following
applications in robotics and computer vision:

Autonomous Navigation The ability of our camera to calculate the motion parameters
leads to a direct application in visual odometry.

3D Environment Modeling Our camera can acquire at the same time the appearance and
the structure of the scene. This can be used to model complex environment with applications
in architecture, art, virtual tourism, augmented reality in gaming or assisted driving.

Omnidirectional Vision Our camera can acquire omnidirectional images and videos,
which makes it suitable for video-surveillance or video-conferencing. It is a light field camera
that can be used in panoramic photography, immersive videos, cinematography and stereo
cinematography.

1.2 Thesis Roadmap

In a nutshell, the thesis is oriented along three main axes:

1. Sampling theory and light field reconstruction methods in Chapter 2 and Chapter 3.

2. Scene structure and camera motion estimation in Chapter 4 and Chapter 5.

3. Practical implementation of a real spherical light field camera in Chapter 6.

In more details, the thesis is organized as follows.

Chapter 2 We formalize the concept of Spherical Light Field Camera. Using a Fourier
Analysis based on a small angle approximation, we find the optimal sampling conditions that
prevent the aliasing of the capture light field. We also introduce the concept of Omnidirec-
tional Photography Operator and present the Kernel Interpolation algorithm.

Chapter 3 We describe the graph-based interpolation algorithms. First, we formalize the
concept of Light Field Graph. Then we interpret the interpolation process as the opera-
tion of an inpainting operator on the nodes of the light field graph. The solution of the
inpainting problem is found through a diffusion process on the light field graph, which can
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be implemented in a completely distributed fashion through the local exchange of informa-
tion among neighbor nodes. Two different diffusion processes are described, one based on
Tikhonov regularization and the other one based on Total-Variation regularization. We make
a formal connection between the diffusion process based on Tikhonov regularization and the
kernel interpolation algorithm, showing how classic linear filtering can be implemented in a
distributed fashion.

Chapter 4 We describe a novel algorithm to calculate a dense depth map from a single
light field measurement. The algorithm is based on the minimization of the squared pairwise
light field intensity errors, with a total-variation regularization term to promote piecewise
smooth depth maps.

Chapter 5 We describe a novel structure-from-motion framework on graphs, which uses
two omnidirectional images to extract the camera ego motion and a dense depth map.

Chapter 6 We finally present a light field camera prototype called the Panoptic Camera.
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Chapter 2

Omnidirectional Light Field
Sampling and Representation

Massive changes in the way we acquire and consume video content has recently led to the raise
of a new paradigm for the representation of 3D scenes, called Image Based Rendering (IBR).
In applications such as 3DTV or free-viewpoint TV the user is able to choose the viewpoint
and the orientation of the camera. While reconstructing the full 3D model of a scene is still
a technological challenge under realtime constraints, image based rendering solutions appear
promising as long as the light field is finely sampled. The problem is in fact to determine the
number of samples necessary to represent the content of interest. This chapter addresses this
fundamental question for the omnidirectional light field around an observer.

The concept of light fields was first devised by Leonardo da Vinci [49]. Further studies
conducted by Adelson and Bergen [1] resulted in the definition of the plenoptic function as the
most complete representation of a scene over time. The plenoptic function L(x, ω, t, λc), is
the function that represents the intensity (or radiance) that a perfect observer inside a given
3-D scene records at any position x ∈ R3, in any direction ω ∈ S2, at time t and wavelength
λc

In the last decade several parametrizations have been proposed for the plenoptic function:
the light field [51] and the lumigraph [36] are among the most popular ones. In these works a
4-D parametrization of the plenoptic function is proposed under the assumption that the scene
is confined to a cubic bounding box, or, in other words, that each light ray is represented by the
intersection with two parallel planes. One of the biggest advantages of such a parametrization
lies in its simple analytic description and efficient implementation. The authors in [18] propose
an approximate spectral analysis of the light field showing that the bounds of the spectrum of
the light field for a two-plane parametrization are determined by the minimum and maximum
depth of the scene. However, as pointed out in [17], the use of the representation based on
two planes has a major drawback: the limited visual angle of the representation. Several
couples of planes could be used to cover the convex hull of an object, but artifacts are
unfortunately visible in the reconstruction at the boundaries. The authors in [17] refer to
this problem as the disparity problem. In order to solve it, they propose to use a spherical
surface for the parametrization of the light field and choose a sampling scheme based on a
polyedra approximation of the spherical surface. While their approach offers a way to sample
uniformly the light field, their scheme is difficult to apply in practical situations and no clear
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indication is provided on the number of samples necessary for a good rendering. Furthermore,
a good knowledge of the scene geometry is required. A rather different approach, called
concentric mosaics [72], consists in capturing the scene with a camera mounted at the end
of a horizontal rotating level beam. As the beam rotates, regular images are acquired. This
is a 3D representation of the light field, since the camera motion during the acquisition is
constrained to lie on a plane. The lack of vertical sampling causes a distortion in the rendered
image when the vertical field of view tends to get farther from the image acquisition plane.

The main contribution in this chapter is a novel sampling scheme that overcomes the
limitations of the approaches described earlier. We also propose an efficient algorithm to
reconstruct the light field with predictable performance. Inspired by the efficient visual system
of flying insects we propose a new 4-D sampling scheme of the light field. The common fly
has two faceted eyes (see Figure 2.1) composed of several thousands simple sensors called
ommatidias [88] that provide plenty of planar overlapping views of the world. Mimicking
the faceted eye concept, a spherical light field camera can be realized by layering perspective
imagers over a spherical surface.

Figure 2.1: Compound eyes of insects.

The sphere is a closed convex surface with constant curvature, which enables a complete
angular coverage while keeping a simple topology. One direct consequence is that it can be
efficiently parametrized in spherical coordinates, using only the zenithal and azimuthal angles.
Assuming that the air is transparent and that there is no radial fall-off of the light intensity,
we propose a 4D representation of the light field based on a two-sphere parametrization of
the plenoptic function. We also develop a spectral analysis of the captured light field at a
constant depth from the center of the sphere and propose a constructive sampling strategy
that guarantees the absence of aliasing during the reconstruction of the visual scene. We
finally validate our model with experiments in a synthetic environment.

The rest of the chapter is organized as follows: In Section 2.1 we describe the proposed
light field parametrization and the scene modeling. In Section 2.3 we introduce the Spherical
Light Field Camera model whose design is based on the spectral analysis of the plenoptic
function. In Section 2.4 we describe an algorithm to render omnidirectional images. Finally
we show in Section 2.5 some experimental results in a synthetic environment.

2.1 Omnidirectional Light Field Parametrization

The light field can be represented mathematically through the plenoptic function L(x, ω, t, λc).
In the rest of the Chapter, for the sake of simplicity of notation and without loss of generality,
we will drop the temporal variable t and the variable λc. Let us consider a convex surface
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layered with a discrete set of pinhole cameras. Assuming an ideal behavior of the cameras,
i.e., the cameras can be modeled as pure perspective imagers with a single focal point, the
system is an ideal plenoptic sampler if the convex surface contains a sufficient number of
pinhole cameras. It means that we can reconstruct the plenoptic function anywhere on the
surface and also inside the space delimitated by the surface under certain assumptions. In the
rest of the chapter we assume that the convex surface is a sphere. To start formalizing the
problem and introduce the notation, we assume that we have Nc pinhole cameras distributed
around a spherical surface of radius R, in positions q = Rq̂ ∈ R3, where with the notation
q̂ we indicates a unit vector. A camera c is positioned at qc and can capture light in all
the directions ω up to a maximum angle of αc with the surface normal in qc. The angle
αc is called the field-of-view (FOV) of the pinhole imager. If we keep the FOV in the range
αc ∈ [0, π/2] and we assume to have a convex positional surface, we automatically exclude the
possibility of self-visual-occlusions, i.e., cameras are not able to look at each other. The full
set of directions that each pinhole camera is able to acquire are thus contained in the positive
half space defined by the tangent plane of the surface at the point qc. Since we are dealing
with a spherical geometry, we choose to work with spherical coordinates. A point on the
positional sphere is then parametrized as q = (φx, θx,R), while a direction is parametrized
by ω = (φω, θω) as shown in Figure 2.2. In the following we assume that the coordinates are
specified with respect to a common reference system.

θω
θx

φx

φω

Object
P

R

q

Figure 2.2: Schematic representation of the chosen parametrization of the plenoptic function.

The plenoptic function L is continuous so what we acquire in practice is a sampled version:

LT (x, ω) =
∑
qi

δ(x− qi)L(qi, ω), (2.1)

If we sample finely enough we can reconstruct the original light field L from the sampled
version LT through a convolution in R3 with an interpolation function g(x):

L(x, ω) = g(x) ∗ LT (x, ω) =
∑
qi

g(x− qi)L(qi, ω). (2.2)

The problem of finding an optimal sampling scheme can be then formulated as finding the
minimum number of samples necessary for the perfect reconstruction of the continuous func-
tion L from its sampled version LT . Fourier analysis has been proven as a useful tool to
study the plenoptic function [27, 61, 89]. In the next section we apply it to the study of the
omnidirectional light field.
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Figure 2.3: Geometrical relationship between angular disparities.

2.2 Spectral Analysis

The spectrum of the captured light field is given in principle by the spherical harmonics
expansion of L with coefficients h:

h(mx, lx,mω, lω) =

∫
S2

dΩ(φx, θx)Ylxmx(φx, θx)

∫
S2

dΩ(φω, θω)L(φx, θx, φω, θω)Ylωmω(φω, θω),

(2.3)

for natural lx, lω ∈ N and integer mx,mω ∈ Z, mx � lx and mω � lω. The functions
Ylωmω and Ylxmx are the spherical harmonic function of degree respectively lω and lx, and
order respectively mω and mx. The spectrum on the sphere is discrete because it is defined
on a closed domain. If we discretize the sphere using an equiangular grid, we can use the
theorem from Driscoll and Healy [28] or the more recent one from McEwan and Wiaux [58]:
if the function is bandlimited at (Lω, Lx), we can calculate exactly the spherical harmonic
coefficients using the available light field as long as we collect at least ((Lω − 1)× (Lω − 1))×
((Lx − 1)× (Lx − 1)) samples.

Although spherical harmonics would be in principle an appropriate instrument for ana-
lyzing the spectrum of the omnidirectional light field we choose to follow a rather different
approach, using a Fourier analysis on the tangent bundle of the manifold where the light field
lives. Our choice is motivated by two reasons:

1. By construction, the imagers have a FOV limited to one hemisphere.

2. The sampling theorems that use spherical harmonics induce the use of equiangular grids,
which in turn determine a non-uniform sampling on the sphere.

If we assume that the light from objects in the scene is scattered almost uniformly in all
directions, then there is some geometrical redundancy in the captured light field that we can
use to estimate bounds for the support of the spectrum. With reference to Figure 2.3, given
a point p = (θγ , φγ , r) in the scene and a reference point (θ̄x, φ̄x) on the sphere, we can derive
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the following geometric relationship among angles on a vertical plane when φx = φ̄x:

θγ − θ̄ω = sin−1
(

R

d(θ̄x, θ̄ω)
sin (θ̄x − θγ)

)
(2.4)

θω − θγ = sin−1
(

R

d(θx, θω)
sin (θγ − θx)

)
(2.5)

Δθω = θω − θ̄ω = sin−1
(

R

d(θx, θω)
sin (θγ − θx)

)
+ sin−1

(
R

d(θ̄x, θ̄ω)
sin (θ̄x − θγ)

)
. (2.6)

Similarly, if we consider the orthogonal projection onto an horizontal plane where θx = θ̄x,
as shown in Figure 2.3, we will have:

Δφω = sin−1
(

R sin θx
d(φx, φω) sin θω

sin (φγ − φx)

)
+ sin−1

(
R sin θx

d(φ̄x, φ̄ω) sin θω
sin (θ̄x − θγ)

)
.

(2.7)

Eq. (2.7) includes some dependencies in θx and θω, which are due to the specific parametriza-
tion of the sphere.

The equations (2.4) to (2.7) describe a non-linear relationship between the angular dis-
parities, the radius of the spherical surface that contains the cameras and the distance to
the scene. The use of these geometrical relationships in the analysis of the optimal plenoptic
sampling is not straightforward, since they do not simplify the expression of the integral in
Eq. (2.3).

We decide to linearize Eq. (2.7) assuming that d(φx, φω) � d(φγ , φγ) and d(φ̄x, φ̄ω) �
d(φγ , φγ). It can be shown that the approximation holds when the depth is much larger than
the radius of the sphere. For example, the approximation error is about 2% if d > 3R or,
equivalently, if the field of view of each camera is small. Eq. (2.7) then simplify to:

Δφω =
R sin θx

d(φγ , φγ) sin θω
Δφx, (2.8)

where Δφx = φx − φ̄x. Similarly, for Eq. (2.4) we will have:

Δθω =
R

d(θγ , θγ)
Δθx, (2.9)

with Δθx = θx−φ̄x. We now derive the spectrum support for a simple scene at constant depth
from the camera surface, i.e., we take d = d0 = constant. Although on a spherical domain
a compact representation of the light field would be obtained using spherical harmonics with
the coefficient expressed in Eq. (2.3), under the assumption we made of small field of view
(FOV) we can use the classic Fourier analysis where the complex exponentials will be a fairly
good basis for the light field. In other words, since we do not integrate over all the sphere,
due to the small FOV assumption, we can locally approximate the sphere with its tangent
plane. We can further notice that, if we perform the following bijective mapping:

sω(φω, θω) = φω sin θω (2.10)

sx(φx, θx) = φx sin θx (2.11)

which describe the arc lengths sω(φω, θω) and sω(φx, θx) on the sphere, then Eq. (2.8) simplify
as Δsω = R

d(φγ ,φγ)
Δsx. In practice the previous mapping introduces the elements of the metric
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tensor on the sphere, sin θω and sin θx inside the parametrization such that, e.g., for small
variations of θx and φx, Δsx and Δθx represent the coordinates of an orthonormal basis on
the tangent plane in (θx, φx). Let us assume that the scene is lambertian, i.e., it reflects light
isotropically. If, without loss of generality, we take as reference the camera in (θ̄x = 0, φ̄x = 0)
and use the lambertian property of the scene, we can write Ls(sx, θx, sω, θω) = Ls(0, 0, sω +
R
d0
sx, θω − R

d0
θx), where Ls(sx, θx, sω, θω) = L(φx, θx, φω, θω). The local Fourier transform of

the light field around the position (θ̄x, φ̄x) generated by a scene at constant depth d0 is:

L(Ωsx ,Ωθx ,Ωsω ,Ωθω) =∫
dθωe

−jΩθω θω

∫
dsωe

−jΩsω sω

∫
dsx

∫
dθxLs(sx, θx, sω, θω)e

−jΩsxsxe−jΩθxθx =∫
dθωe

−jΩθω θω

∫
dsωe

−jΩsω sωLs(0, 0, sω, θω)

∫
dsxe

−j(Ωsx+
R
d0

Ωsω )sx
∫

dθxe
−j(Ωθx+

R
d0

Ωθω )θx =

= F{Ls(0, 0, θω, φω)}δ(Ωθx +
R

d0
Ωθω)δ(Ωsx +

R

d0
Ωsω)

(2.12)

The analysis in Eq.(2.12) neglects the windowing effect due to a finite domain of integration
under the assumption that it is negligible (this assumption is common in the literature [18,
89]). What emerges is that, if we consider a slice of the spectrum on the plane (Ωsx ,Ωsω), we
observe that the spectrum is constrained to a family of lines given by Ωsx + R

d0
Ωsω = 0 (and

similarly Ωθx + R
d0
Ωθω = 0), whose slope depends on the ratio R/d0. A similar results was

obtained with a different procedure in [89] but only applied to concentric mosaics. Let us now
consider a uniform sampling lattice made of samples spaced by quantities Δsω, Δsx, Δθω,
Δθx, the sampled light field spectrum will consist in equally spaced replicas of the original
spectrum L:

Ls(Ωsx ,Ωθx ,Ωsω ,Ωθω) =
∑

mx,lx,mω ,lω

L(Ωsx −
2πmx

Δsx
,Ωθx −

2πlx
Δθx

,Ωsω −
2πmω

Δsω
,Ωθω −

2πlω
Δθω

),

(2.13)
where mx, lx,mω, lω ∈ d are integer indexes. Let us also assume that the scene is confined
between two spheres with radius rmin = R + dmin and rmin = R + dmax, then the spectrum
will be confined between two lines Ωsx + R

dmin
Ωsω = 0 and Ωsx + R

dmax
Ωsω = 0 (for the sake

of simplicity we only consider the plane (Ωsx ,Ωsω)). If we assume that the input angular
images for each camera are sampled at their Nyqvist rate, i.e. they are bandlimited in the
range [− 1

2Δθω
, 1
2Δθω

] and [− 1
2Δsω

, 1
2Δsω

], we find, using geometric reasoning, that the following
sampling condition must be respected for θx:

Δθx ≤ 2Δθω

R( 1
dmin

− 1
dmax

)
(2.14)

and similarly for sx:

Δsx ≤ 2Δsω

R( 1
dmin

− 1
dmax

)
. (2.15)

The above conditions permit to avoid aliasing of the spectral replicas, user the assumptions
that depth is much larger than the radius of the sphere and that cameras have a small FOV.
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2.3 The Spherical Light Field Camera Model

In Section 2.2 we derive a criterion to sample an omnidirectional 4-D light field using perspec-
tive imagers positioned around a sphere. The intuition behind the derivation is to approximate
the positional sphere (θx, φx) with its tangent bundle, using the assumption that the imagers
have a small FOV, such that we can assume that locally on the sphere the Fourier integral
is well defined. Using a first order Taylor approximation of the geometric relationships that
govern the light field in spherical coordinates, we show that the light field is bounded in
the transformed Fourier domain and the bounds are determined by the depth distribution in
the scene. We also show that we can avoid the aliasing of the spectral replicas if the sam-
pling conditions given in Eq. (2.14) and Eq. (2.15) are respected. The use of the mapping in
Eq. (2.10) dictates the use of non-rectangular sampling lattice in spherical coordinates. Let
us consider the directional sphere (θω, φω), from Eq. (2.10) we have that φω ∈ [0, 2π] and
sω ∈ [0, 2π sin θω], which means that the number of samples in the sω direction depends on
the actual position of the sphere, i.e., Nsω(θω) = �2π sin θω

Δsω
� and similarly Nsx(θx) = �2π sin θx

Δsx
�.

We propose here a sampling scheme that determines an approximately uniform distribution
of samples over the sphere, which is an advantage of the chosen lattice when compared to the
equiangular grid. The algorithm is summarized in Algorithm 2.1. We provide in Figure 2.4
an example of sampling pattern generated by the proposed scheme on a sphere, showing with
small circles the samples on a geographic projection of an equiangular grid and on the sphere
itself.

Input: Nθ,Δθ, s.t. Nθ =
π
Δθ

Output: The positions {θk, k = 1, 2, · · · , Nθ} and {φj(θk), k = 1, 2, · · · , Nφ(θ
k)}

Divide the sphere in Nθ layers: θk = π
(Nθ+1)k, k = 1, 2, · · · , Nθ

for k = 1, 2, · · ·Nθ do
Nφ(θ

k) = � 2πΔθ sin θ
k�

φj(θk) = 2π
Nφ(θk)

j, j = 0, 1, · · · , Nφ − 1

end for

Algorithm 2.1: Generation of the spherical sampling pattern

On the basis of these considerations we define the Spherical Light Field Camera:

Definition 2.3.1. Spherical Light Field Camera The Spherical Light Field Camera is
a spherical surface parametrized by q = (θx, φx, R) which is covered by pinhole imagers ci
positioned in qi. Each pinhole imager has the optical axis oriented as the surface normal in
qi, and sample uniformly the light field in the cone identified by its field of view αi. The
positions of the pinhole imagers are determined according to Algorithm 2.1.

We simulate the spherical light field camera inside the 3D modeling environment Blender.
In the simulated model, each perspective camera in the model has a planar sensor with
a resolution of 288x216 pixels and an horizontal field of view of 54◦, which corresponds
to an equivalent directional angular resolution Δθω = π/960 rad and a subdivision of the
directional sphere in 960 layers. We use a spatial angular sampling with Δθx = π/10 rad,
which determines a subdivision of the positional sphere into 10 layers for a total number of
126 imagers as shown in Figure 2.5.

The reason behind our choices is that such an arrangement of cameras can be implemented
using the current technology, as we will show in Chapter 6.
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Figure 2.4: Sampling pattern of Algorithm 2.1 shown on a equiangular grid (left) and on
the sphere (right). Samples are represented with small circles. We observe that on the sphere
the samples are approximately uniform distributed.

Figure 2.5: The simulated Spherical Light Field Camera obtained with Algorithm 2.1. This
model can be realized using current technology as we show in Chapter 6.



2.4. Kernel-Based Light Field Reconstruction 15

2.4 Kernel-Based Light Field Reconstruction

Similarly to [44] and [62] we can interpret the interpolation of an omnidirectional image as the
formation of a photograph through lenses. We can construct an omnidirectional image with
a unique focal point o inside the positional sphere by observing that L(o, ω) = L(R o+ω

‖o+ω‖ , ω).
In other words, along a given direction ω we always observe the same value for L, so the value
of the plenoptic function in o can be interpolated on some point of the positional surface.
This is true because we assume the absence of attenuation of light inside the positional sphere.
If o = 0 the expression simplify into L(o, ω) = L(Rω, ω). In the following we assume that
o = 0, without loss of generality, in order to keep a light notation.

Before defining the omnidirectional photography operator we define the focus operator
Mr as:

Mr[L](x, ω) = L(x,M(x, ω, r)), (2.16)

where the mapping M is defined as:

M(q, ω, r) =
rω̂ − q

‖rω̂ − q‖ (2.17)

Intuitively the action of the operatorMr is to perform a change of coordinates such that, for
a given direction ω observed from the focal point o, Mr[L](x, ω) gives the value of the light
ray that originates from the point in space x = Rω̂ and passes through the point x. In other
words, the operator M re-projects the light field on the focal surface defined by o and r.

Definition 2.4.1. Omnidirectional Photography Operator
The omnidirectional photography operator for a scene at distance r from the focal point o is
is defined by:

Po[L](ω) = L(Rω̂, ω) = (g(x) ∗Mr[LT ])(Rω̂, ω), (2.18)

for some interpolation kernel g(x).

In the definition of the omnidirectional photography operator, the function g(x) can be
interpreted as the response function of an optical lens. In the simple case where g(x) = 1
then Eq. (2.18) reads

Po[L](ω) =
∑
qi

L(qi,M(qi, r, ω)) (2.19)

and the effect of g(x) is the same of a wide aperture lens. In the general case, the convolution
reads

Po[L](ω) =
∑
qi

g(Rω̂ − qi)L(qi,M(qi, r, ω)) (2.20)

The combined use of the focus operator M and the filter g(x) leads to the definition of the
synthetic aperture for an omnidirectional system.

If we use a Gaussian interpolant

g(x) = exp

(
−‖x‖

2

2σ2

)
, (2.21)
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and if we notate with ωj the direction in which we want to interpolate, then the value
L(0, ωj) is readily found as:

L(0, ωj) = Po[L](ωj) =

∑
i

g(‖qi −Rω̂j‖)L(qi,M(qi, r, ωj))

∑
i

g(‖qi −Rω̂j‖)
(2.22)

The interpolation kernel implements the reconstruction filter for the sampled light field.
As suggested in [44] the linear interpolation described in Eq. (2.22) can be interpreted as
the filtering operated by an optical lens. By varying the parameter σ we are able to change
the aperture of the system: a small σ corresponds to a narrow aperture and consequently
a large depth-of-field, while a big σ corresponds to a large aperture and a narrow depth-of-
field. Differently from an optical system, changing the synthetic aperture does not affect the
exposure of the reconstructed image, since we normalize the weights in the reconstruction
formula in Eq. (2.22). While other choices of the interpolating kernel are possible, the choice
of a Gaussian interpolant permits an easy control over the bandwidth of the reconstruction
filter in the frequency domain: the Fourier transform of a Gaussian function with standard
deviation σ is again a Gaussian with standard deviation 1/2σ

F{g(d)}(Ωd) ∝ exp
(−2σ2Ω2

d

)
.

This is a practical advantage in the design of the reconstruction filter. For example, let
us suppose that the light field has been sampled finely enough to guarantee the absence of
aliasing. Then, in order to perfectly reconstruct the light field, we can focus at optimal
distance dopt, defined by:

1

dopt
= (

1

dmin
+

1

dmax
)/2 (2.23)

and then use a Gaussian reconstruction filter with σ ≤ Δθx/2.
From Eq. (2.14) and Eq. (2.15) we can also derive the concept of hyperfocal distance of

the Spherical Light Field Camera. In optics and photography, the hyperfocal distance is a
distance beyond which all objects can be brought into an acceptable focus. In our model the
hyperfocal distance can be computed from Eq. (2.23) and Eq. (2.14). From Eq. (2.14) we
have:

Δθx =
2Δθω

R( 1
dmin

− 1
dmax

)

then for dmax →∞ we obtain:
1

dmin
=

2Δθω
RΔθx

We can define the hyperfocal distance dh as:

1

dh
=

1

2dmin
=

Δθω
RΔθx

(2.24)

2.5 Experimental Results

In this last section we present some experimental results to validate the proposed sampling
scheme. The Spherical Light Field Camera is positioned approximatively in the middle of
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Figure 2.6: The 3D Blender model for the room scene . On the bottom raw we show three
renderings from different cameras on the sphere.

a living room of size 20x20x3 as shown in Figure 2.6. In Figure 2.7, we show the ground
truth for the reconstructed light field at the center of the positional sphere when the rendered
image has a vertical angular resolution of π/480. In the same figure we show four different
representations of the spherical image on the plane, that we will use in the thesis. One of
the most common representations of the sphere on the plane is obtained by the equirect-
angular mapping, shown in the top row of Figure 2.7, where we show the image generated
with the proposed irregular grid on the left and the image represented onto a equiangular
grid of size 960x480 on the right. The equiangular grid offers a more comfortable visual
representation, so we will prefer this representation whenever the equirectangular mapping is
used. On the bottom row, we show a perspective view of the image mapped on a 2-sphere
and a pseudocylindrical sinusoidal projection. We use the sinusoidal projection to show the
reconstruction results, because it has the nice property of being an equal-area projection and
to nicely fit our irregular sampling scheme. We now test the proposed sampling scheme by
comparing the ground truth with the rendered images in the center of the positional sphere
x = 0 for different values of the radius of the positional sphere R and the distance d. The
images are rendered with an angular resolution of π/480, i.e., Δθω = Δsω = π/480, which
is a bit lower than the one of the planar cameras. We use the PSNR to measure the quality
of the reconstruction and the results are shown in Figure 2.9. In the experiments we used a
fixed standard deviation for the gaussian kernel of σ = Δx/2. As expected the best results
are obtained when the sampling conditions are respected, which happens for R = 0.1, and
when the system is focused close to the optimal focus plane. When we get far from these
two conditions the performances degrade and artifacts in the form of blur and double edges
become visible in the rendered images as shown in Figure 2.10. The images are produced by
interpolating the light field in about 138240 directions, which is a saving of 30% with respect
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Figure 2.7: Different representations for the spherical image. Top: equirectangular projec-
tion on the proposed irregular grid (left) and on a regular equiangular grid (right). Bottom:
a perspective rendering of the image mapped on a 2-Sphere (left), a pseudocylindrical map
(right).

to the equiangular grid of 960x480 for an equivalent quality of the output image. Finally in

Figure 2.8: Ground truth spherical image and depth map rendered in the middle of the
positional sphere.

Figure 2.11 we show how we can use the camera as a photographic lens by focusing at two
different depths in the scene.
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Figure 2.9: Reconstruction PSNR as function of the inverse distance to the scene radius
(1/r) and of the radius R of the positional sphere.

Figure 2.10: Reconstruction results with focus plane at the optimal distance dopt. Left:
R = 0.1, the sampling conditions are respected. Right: R = 0.6, the sampling conditions are
not respected and artifacts are visible. On the bottom a zoom on a detail of the respective
reconstructed images.
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Figure 2.11: Example of rendering with camera focused at two different depths. On the left
the focus is close; on the right the focus is further away. On the bottom a zoom on a close
object in the scene is given for each respective image.



Chapter 3

Spherical Light Field
Reconstruction

In Chapter 2 we derive a criterion to sample the omnidirectional 4-D light field using per-
spective imagers positioned around a sphere. The proposed scheme has the advantage of
inducing a uniform sampling of the 2-sphere. The samples do not fall on the regular grid,
while the design of digital filters and the Fast Fourier Transform algorithm assume that sig-
nals have been sampled on a regular lattice. Existing state-of-the-art techniques to process
the light field, like the Fourier Slice Photography theory developed in [62], strongly rely on
efficient computation of the Fourier transform. Unfortunately, our samples are non-uniformly
distributed and a classical matrix does not efficiently represent the data. In this Chapter
we propose an alternative approach to process the light field, which relies on variational
techniques defined on undirected graphs. Graphs are very flexible structures that perfectly
adapt to the irregular nature of our signal. In recents years transductive graph algorithms
[11, 90] have gained much attention as a general way to perform manifold learning, with in-
teresting applications in image processing [29, 67]. The advantage of graph-based methods is
that they do not rely on the specific surface parametrization, while the specific geometry can
be modeled by an appropriate choice of the graph connectivity. In [47] it is observed that,
under certain discretized structures, such as triangle meshes, surfaces can be interpreted as
weighted graphs and therefore discrete graph methods can be used instead of intrinsic geome-
try method. While some works (e.g., [76, 11, 29, 10]) address the study of the convergence of
the graph to the approximated manifold, still it is not straightforward to develop theoretical
analysis by viewing surfaces as graphs.

The main contributions of this chapter are the definition of an embedding of the light field
into what we call a Light Field Graph and a formal connection between the linear filtering
scheme proposed in Chapter 2 and a class of diffusion processes on graphs.

After giving the definition of the light field graph, we propose two methods to perform a
regularized transductive interpolation of the light field on a graph. The interpolation of new
values of the plenoptic function is interpreted as an inpainting problem defined on the nodes
of the light field graph and the solution is found through a diffusion process. The chosen
regularization makes the interpolation robust to noise, as shown in the experimental results,
while the algorithms can be implemented in a distributed fashion.

21
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3.1 Graph Representation of the Light Field

Formally, a weighted undirected graph Γ = (V,E,w) consists of a set of vertices V , a set of
vertices pairs E ⊆ V × V , and a weight function w : E → R+ satisfying w(u, v) > 0 and
w(u, v) = w(v, u), ∀(u, v) ∈ E. In the following, we assume that the graph is connected (for
every vertex there exists a path to any other vertex of the graph), and that the graph Γ has
no self-loops.

We can define a light field graph by representing every light ray with a node in the graph.
We define two disjoint set of vertices, VD with cardinality ND and VI with cardinality NI ,
such that the total set of vertices is given by V = VD

⋃
VI with cardinality NT = NI +ND.

The vertices in VD represent the light rays acquired by the pinhole sensors, while the vertices
in VI represent the light rays that we want to interpolate.

Before giving a formal definition of light field graph let us define a light ray as the vector
l ∈ R3 which generates from the scene at point p ∈ R3 and hits an observer at point x ∈ R3.
It can be written as : l = p− x. It is immediate to see that the intensity of the light ray l is
given by L(x, l̂), where the notation l̂ stands for the unit vector associated to l, i.e., l = ‖l‖̂l.
Definition 3.1.1. The Light Field Graph The light field graph is defined on the set of
nodes V, where each node represent a light ray l.

Two light rays l1 and l2 are connected in the light field graph if one of these two conditions
are satisfied:

1. They share the same positional coordinates x. The distance between the two light rays
in R3 is given by definition with ‖l1 − l2‖ = ‖p1 − x− p2 + x‖ = ‖p1 − p2‖.

2. They originate from the same position p. Then ‖l1−l2‖ = ‖p−x1−p+x2‖ = ‖x2−x1‖.
We associate a weight to the edge (u, v) representing the connection between l1 and l2,

using a thresholded Gaussian kernel weighting function as follows:

w(u, v) =

{
e−‖l1−l2‖2/σ2

if ‖l1 − l2‖ < τ
0 otherwise

(3.1)

for some parameter σ and τ .

It has been shown in [76] that the chosen definition of the weights w(u, v) has interesting
properties in terms of convergence of the embedded graph to the Riemaniann manifold. More
specifically, the graph Laplacian asymptotically converges to the continuous manifold Lapla-
cian when the number of samples increases. In practice, however, the choice of an optimal
value for σ is not easy and in the following we will consider σ as a parameter.

In a typical construction of the light field graph for interpolation in the origin of the
reference system, the set of vertices VD represents all light rays lD = p − q, while the set of
vertices VI will represent all light rays lI = p− p

‖p‖ .

3.2 Differential Operators on Graphs

In this section we provide the definition of all necessary discrete graph differential operator
used in our work. We denote the Hilbert space of a real function on vertices with H(V ) ,
where f : V → R+ assigns a real number to each vertex of the graph. A function on the
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graph edges is denoted by F ∈ H(E), where F : E → R assigns a real value to each edge.
Following Elmoataz et al [29] we define the gradient ∇w : H(V )→ H(E) and the divergence
divw : H(E)→ H(V ) over Γ, ∀(u, v) ∈ E as:

(∇wf)(u, v) =
√

w(u, v)f(u)−
√

w(u, v)f(v) (3.2)

and
(divwF )(u) =

∑
v∼u

√
w(u, v) (F (v, u)− F (u, v)) , (3.3)

where v ∼ u denotes all vertices v connected to u. From the definition of the gradient and the
divergence operator we also extrapolate the graph Laplacian operator Δw : H(V ) → H(V ),
defined by:

Δwf = −1

2
divw(∇wf), (3.4)

that we can write explicitly, using the definitions in Eq. (3.2) and Eq. (3.3), as

Δwf(u) =
∑
v∼u

w(u, v) (f(u)− f(v)) . (3.5)

In the literature, other definitions for the graph operators are found, like the normalized
version of Zhou et al [90], [91]:

(∇wf)(u, v) =

√
w(u, v)

d(u)
f(u)−

√
w(u, v)

d(v)
f(v) (3.6)

and

(divwF )(u) =
∑
v∼u

√
w(u, v)

d(v)
(F (v, u)− F (u, v)) , (3.7)

where d : V → R+ is the degree function defined as d(v) =
∑
u∼v

w(u, v). As remarked in [29],

this definition of the gradient operator is not null when the function f is locally constant,
which is not a desirable property in image processing applications, since natural images have
typically many flat areas and a sparse gradient. Hence, we prefer the definitions given in
Eq. (3.2) and Eq. (3.3). We can also define the local isotropic variation of f at vertex v as a
measure of roughness of a function around the vertex:

‖∇w
v f‖ =

√∑
u∼v

[(
∇wf

)
(u, v)

]2
. (3.8)

3.3 Interpolation as a Diffusion Process on Graphs

The interpolation problem can be interpreted as finding the function f : V → R from an
incomplete (noisy) measurement y ∈ RND of the plenoptic function L on the nodes in VD.
We also use the following notation: f = f(V ) ∈ RNT . We formulate the variational inverse
problem where we look for a regularized solution f∗ s.t.

f∗ = argmin
f

‖y −Af‖2 + J(f) (3.9)
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where A is a matrix defined as:

A = IVD
∈ RND×NT . (3.10)

In other words, it is obtained from the identity matrix I ∈ RNT×NT by keeping only the rows
corresponding to the vertices in VD, which restricts f to the available data. If the functional
J is convex, we can use proximal iterations to solve it. In recent years many algorithms
have been proposed to find a solution to the proposed problem. We refer to the paper of
Combettes et al. [25], which contains a review of the most popular ones. Here we restate the
forward-backward splitting scheme proposed in [25] as we use it later in this chapter. First
we recall the definition of the proximity operator of a convex functional J :

ProxJ(y) = argmin
f

‖y − f‖2 + J(f). (3.11)

An estimate of the function f∗ can be obtained by the proximal iteration steps:

fk+1 = ProxJ/μ(f
k +

1

μ
AT (y −Afk)), (3.12)

where μ is a step size that must be chosen in order to have ‖ATA‖ < μ. Since the matrix
A has only ones on the main diagonal, we consider μ = 1 in our application. The idea of
adopting a similar functional for non-local image processing has been recently proposed by
Peyre in [67], but, to the best of our knowledge, this is the first time that a similar framework
is proposed to interpolate the light rays of a 4D light field. The choice of the regularizer
Jdetermines the performance of the algorithm. In the following, we discuss two different
regularizers which have the form:

J(f) = λ
∑
v

‖∇w
v F‖p, (3.13)

where λ is a parameter that controls the amount of smoothness in the solution, while for
different values of p we control the roughness of the function over the graph. We discuss and
show results for p = 1, 2. While the proposed algorithms have different performance, they
have a common behavior: the solution is obtained through a diffusion process, i.e., the values
of the function over the graph evolve through time by local exchange of information between
neighbor nodes.

3.3.1 Tikhonov Regularization

We first analyze the case of the regularized problem with p = 2. The full minimization
problem reads

f∗ = argmin
f

‖y −Af‖2 + λ
∑
v

‖∇w
v f‖2. (3.14)

Such a regularization encourages the reconstruction of smooth signals; in fact if we write the
full regularization term we have

J(f) =
∑
v

‖∇w
v f‖2 =

∑
v

∑
u∼v

w(u, v)(f(u)− f(v))2, (3.15)
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it is easy to see that the energy is small only when f has similar values over close neighbors.
The functional defined in Eq. (3.14) is smooth and convex, so a solution f∗ can be obtained
by the Euler-Lagrange equation

AT (Af − y) + λLf = 0 (3.16)

where L is the graph laplacian in matrix form, i.e.,

Liu,iv =

⎧⎨
⎩

∑
u∼v w(u, v) if iu = iv
−w(u, v) if u ∼ v

0 otherwise
(3.17)

The Eq. (3.16) defines a linear system of equations, given by:

(λL + ATA)f = AT y. (3.18)

Since the matrix (λL+ATA) is positive-definite and symmetric, a solution to Eq. (3.18) can
be obtained by the conjugate gradient method [69]. Furthermore, since the Laplacian matrix
L is sparse, the solution is computed in linear time O(NT ).

Alternatively the functional can be solved by the forward-backward splitting scheme de-
scribed in Eq. (3.12). To implement one iteration of the algorithm we need to solve the
proximal operator:

ProxJ(y) = argmin
f

‖y − f‖2 + λfTLf. (3.19)

As earlier, if we differentiate with respect to f , the estimate f∗ of the proximal operator must
be the solution of:

(λL + I)f = y. (3.20)

Again, Eq. (3.20) describes a linear system of equations that can be solved with known
algorithms, like the conjugate gradient method. An interesting property of Eq. (3.20) is that
it can be solved by filtering in the spectral domain as shown in [73, 74]. The authors in
[73] propose a solution based on Fourier multiplier operators. Using notions from spectral
graph theory [22] the authors develop a way to implement the analogous of linear filters
on regular domains. As described in [37], Fourier multiplier operators can be implemented
very efficiently using an iterative distributed algorithm based on a truncated series of shifted
Chebyshev polynomials. We refer to [73] and references therein for more details.

Spectral Graph Photography We now prove a result that makes an important connec-
tion between the diffusion process defined by Eq. (3.14) and the omnidirectional photography
operator defined in Section 2.4.

Lemma 3.3.1. If nodes in the set VI are only connected to nodes in the set VD, i.e., �(u, v) ∈
E, s.t. u ∈ VI and v ∈ VI , ∀u, v ∈ VI , the solution of the minimization problem in Eq. (3.14)
for λ→ 0, is given by

f(u) =

⎧⎨
⎩

∑
v∈VD

w(u, v)y(v)∑
v∈VD

w(u, v)
if u ∈ VI

y(u) if u ∈ VD

(3.21)
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Proof. When λ → 0, λ fTLf → 0 and the minimum of Eq. (3.14) is reached for Af = y,
which proves that

f(u) = y(u), ∀u ∈ VD. (3.22)

We observe that the equation Af = y can be written as:

f = AT y + (I −ATA)f. (3.23)

Taking the derivative of the functional Eq. (3.14) with respect to f gives

AT (Af − y) + λLf = 0,

which using Eq. (3.23) transforms into

λL(AT y + (I −ATA)f) = 0 (3.24)

The Lemma is proved once we observe that if we consider the ith row of the matrix in Eq. (3.24)
corresponding to the node ui ∈ VI :

LiA
T y = −

∑
v∈VD

w(ui, v)y(v) (3.25)

Li(I −ATA)f =
∑
v∈VD

w(ui, v)f(vi) (3.26)

Proposition 3.3.1. Spectral Graph Photography.
The Omnidirectional Photography Operator defined in Eq. (2.18) can be implemented as the
solution of the diffusion process defined in Eq. (3.14) on the Light Field Graph Γ, when the
nodes in the set VI are only connected to nodes in the set VD, and when λ→ 0.

Proof. The proof comes directly from Lemma 3.3.1 and the observation that Eq. (2.20) is
equivalent to Eq. (3.21) when

g(x) =
w(u, v)∑

v∈VD
w(u, v)

(3.27)

Remark 3.3.1. The proposed graph interpolation method based on Tikhonov regularization
can be interpreted as linear filtering of the 4-D light field. If the graph is sparse the algorithm
runs in linear time O(NT ). Furthermore the algorithm is fully distributed, since each node
of the graph needs only to communicate with its neighbors and to perform simple arithmetic
computations.

3.3.2 Total Variation Regularization

For p = 1 in the regularized inverse problem of Eq. (3.9) the functional J becomes:

J(f) = λ
∑
v

‖∇w
v f‖. (3.28)

It can be interpreted as the total variation of the light field, since a small energy of the
regularizer imply sparse gradients along edges with high weights. The same definition of
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Total Variation for graphs is found in [91] and [29], where it is used to perform denoising
of signals defined on graphs. Total variation denoising has been extensively used in image
processing over the last twenty years after the pioneer work of Rudin and Osher [70] as one
of the most effective tools to remove noise. The global functional is given by:

f∗ = argmin
f

‖y −Af‖2 + λ
∑
v

‖∇w
v f‖, (3.29)

and the scheme boils down to a total variation inpainting scheme [21] on graph. Differently
from the typical applications of inpainting in imaging, we are not seeking for missing in-
formation, but rather looking for a non-linear regularized way to integrate light rays. An
interesting interpretation of the bounded variation model applied to the light field is obtained
by considering the operation of rendering a spherical perspective image in the center of the
sphere: the integration of light rays can be thought of as the filtering by an optical lens. The
kernel interpolation simulates the effect of a linear system, since it takes a weighted sum of
the collected light rays. This is in fact the behavior of most photographic lenses. Imposing a
model of bounded variations for the light ray corresponds then to simulating a non-linear lens
that chooses a light ray based on the closest strongest edge. When we get far from the ideal
sampling conditions described in Chapter 2, we expect that the total variation model might
help to suppress artifacts like double edges or ghosts. We also expect some robustness to
noise. These assumptions are confirmed in the experimental results reported in Section 3.4.

To find a solution f∗ we have to specify the proximal operator for the total variation norm:

ProxJ(y) = argmin
f

‖y − f‖2 + λ
∑
v

‖∇w
v f‖. (3.30)

The minimization in Eq. (3.30) corresponds to the total variation image denoising model.
An efficient solution, proposed by Chambolle in [19], consists in an iterative fixed point
algorithm. The advantage of the algorithm is that it only requires localized operations on the
graph, namely divergence and gradient. As most TV denoising algorithms, it is iterative and
both gradient and divergence will be computed at each iteration. Chambolle’s iterations are
defined on a regular rectangular domain; we adapt them to our graph representation:

pn+1(u, v) =
pn(u, v) + τ∇w(divwpn(u)− y(u)/λ)(u, v)

1 + τ‖∇w
u (div

wpn(u)− y(u)/λ)‖ , (3.31)

where p is a dual variable which is defined on the edges of the graph, i.e., p ∈ H(E). It has
been shown in [19] that for τ small enough and n→∞ the solution of the proximal operator
is obtained by:

f(u) = y(u)− λdivwpn(u), (3.32)

The solution is typically achieved with a linear convergence rate O(1/k); it is further shown in
[20] how it is possible to integrate Nesterov accelerations [86] to reach quadratic convergence
O(1/k2).

3.4 Experimental Results

We test the proposed algorithms on the room scene using the camera model defined in Sec-
tion 2.3. During the experiments we choose a rendering angular resolution of Δω = π/480
rad.
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Figure 3.1: Tuning of λ for the Tikhonov scheme.

The first experiment in Figure 3.1 shows the influence of the parameter λ on the con-
vergence of the Tikhonov interpolation scheme to the Kernel Interpolation as shown in Sec-
tion 3.3. In the experiment we used R = 0.1. We observe that, if λ < 0.01 the two schemes
produce the same result for a small variation of the parameter σ. In Figure 3.2 we show
the influence of the parameter σ on the three different schemes. In the experiments we used
R = 0.2, λTV = 0.005 and λT ik = 0.1. We observe that the performance of the TV interpo-
lation scheme is relatively independent of the choice of σ. This is something that we could
expect, since the TV interpolation behave as a non-linear lens, which depends much on the
intensity values of the closest neighbors, rather than on their absolute distance. The other
interesting outcome is that, although the Tikhonov scheme does not perform exactly as the
Kernel Interpolation, it reaches the maximum in the PSNR curve for the same value of σ.
In Figure 3.4, we show a different scenario: the algorithms are tested for increasing values of

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
28

29

30

31

32

33

34

35

36

σ

P
S

N
R

 

 

Kernel Interpolation

Tikhonov

TV

Figure 3.2: Influence of the choice of σ on the reconstruction methods.
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R while the system has a focus at the hyperfocal distance. For values of the radius R > 0.3
double edges begin to appear in the images due to aliasing. As visible in Figure 3.3 the TV
scheme renders sharper edges compared to the other methods.

The last test is to verify the robustness to white Gaussian noise. As expected, the regular-
ized solutions ( TV and Tikhonov ), are more resilient and provide a better PSNR as shown
in Figure 3.6 and Figure 3.7. Better results could be obtained by tuning the parameters λ
and λT ik, that we fix instead to a constant value λTV = 0.005 and λT ik = 0.1.

Kernel Interpolation Tikhonov TV

Figure 3.3: A zoom on a detail when R = 0.4. Visually the TV reconstruction achieves
pleasant results, removing some aliasing artifacts
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Kernel Interpolation - R=0.02 Kernel Interpolation - R=0.04

Tikhonov - R=0.02 Tikhonov - R=0.04

TV - R=0.02 TV - R=0.04

Figure 3.4: Behavior of the algorithms for increasing values of R.
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Figure 3.5: PSNR curve showing the performance of the interpolation algorithms for in-
creasing values of R.
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Figure 3.6: PSNR curve showing the performances of the interpolation schemes when the
input image are corrupted with additive white Gaussian noise.
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Kernel: AWGN variance: 0.002 - PSNR 30.28 Kernel: AWGN variance: 0.006 - PSNR 26.5

Tik: AWGN variance: 0.002 - PSNR 31.51 Tik: AWGN variance: 0.006 - PSNR 28.17

TV: AWGN variance: 0.002 - PSNR 33.18 TV: AWGN variance: 0.006 - PSNR 30.96

Figure 3.7: Comparison of interpolation schemes in the presence of additive white Gaussian
noise.



Chapter 4

Depth Extraction from the Light
Field

All practical multi-aperture systems need to calculate some structure of the scene in order
to operate correctly. For example, if we know the minimum and maximum depths of the
scene, we can calculate the optimal focal distance that permits to have all the part of the
omnidirectional image in focus, or we could use a depth map to extend the Depth-Of-Field
(DOF) limits of the system.

In one of the first works on plenoptic cameras, [2] Adelson has already observed that the
displacement of the micro-lenses generates aliasing and blurring. The authors use a least
square estimator to calculate and compensate the disparity field among the sub-images. In
the lumigraph [36], a rough knowledge of the structure of the scene is used to improve the
reconstruction from a sparse set of images. Chai et al. [18] analyze the problem of the
minimum sampling rate in the joint image and geometry space: using a truncated Fourier
analysis they show that the number of image samples needed decreases with the number
of depth levels used, providing a quantitative analysis on the number of depth levels to
be used to achieve a good rendering quality. For the Stanford multi-camera array [84] the
parallax estimation is part of the system calibration process: using calibration planes placed
at different depth in the scene and parallel to the image plane the authors are able to find
the camera positions up to an affine transformation. The drawback of their elegant solution
is that the calibration is not metric and depends on the 2-plane parametrization of the light
field. In a very recent work [12] Bishop shows that an improvement on classic multiview
stereo methods [52] can be applied to planar light field cameras leading to substantial gain
in the reconstruction of a super-resolved image.

None of the existing references tackles the problem of multiview depth estimation for
more complex geometries. In [79] the authors propose a new model for catadioptric sensors,
called axial-cone, which permits an efficient rendering of wide FOV images. The model is
used to compute a dense depth map by a plane sweeping algorithm [24], which is regularized
using graph-cuts [15]. However, the lack of an efficient forward projection in the model makes
applications such as structure-from-motion quite complicated.

In this chapter we introduce a novel perspective in the process of extraction of depth
information from the sampled omnidirectional light field. We discuss the estimation of dense
depth maps from a position inside the sphere. The computation of a dense depth map is a
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convenient solution for all image-based rendering applications, since it can be directly used
to model the focal surface and render novel views from different perspectives [31][77]. The
main contribution of the chapter is the formulation of a novel algorithm for dense multi-view
depth estimation which innovates with respect to the state-of-the-art in the following points:

1. We use a spherical camera model to represent the imagers. In the pinhole camera model
[39] the projection of a 3D point in space to the image plane depends on the distance
of the point from the focal plane. In a typical stereo matching problem the distance to
the scene is linearly proportional to the image disparities only if the baseline is parallel
to the image plane. This is why in all stereo matching algorithms a pre-processing
step is needed to align the image planes. The pinhole camera model then fits well in
algorithms that extract depth maps when a two-planes parametrization of the light field
is used. But it is not suitable for our spherical light field camera model. It turns out
that the proposed spherical camera model is completely general and can be applied to
all multiview depth estimation problems, regardless of the geometry of the surface that
contains the cameras.

2. We use variational techniques. In the work on light field processing, all the algorithms
are based on modified versions of plane sweeping [24] or graph-cuts [15] algorithms.
While these methods are proven to be very stable, they require massive amounts of
memory, which augment proportionally with the number of depth levels. On the other
hand, variational techniques have proven in recent years to be an efficient solution to
solve stereo problems [68, 10]. The memory requirement is low since the optimization
is based on the diffusion process described in Chapter 2; they can be parallelized and
distributed since they only require the exchange of local information among neighbor
pixels. These properties make variational techniques hardware-friendly.

3. Our scheme handles gracefully irregular domains, since we use graph-based data struc-
tures. It is the first time that variational techniques on graphs are proposed to solve
multiview depth estimation problems.

The Chapter is organized as follows: in Section 4.1 we describe the proposed model for
estimating a dense depth map from one full sample of the plenoptic function L. In Section 4.2
we show experimental results for the proposed scheme. In the last section we show how the
same framework can be used to optimize the calibration parameters of the system.

4.1 Light Field Depth Estimation Algorithm

In this section we address the problem of the estimation of a dense omnidirectional depth
map d(o, ω) in a given position o ∈ R3 and a set of directions {ωi ∈ S2}. We sample the
plenoptic function with the scheme presented in Chapter 2 so we assume to have, at a given
instant of time, the set of light rays {L(qc, ωi), c = 1, 2, · · · , Nc, i = 1, 2, · · · , NI}. We do not
consider temporal dynamics in this chapter, but we show in Chapter 5 how to extract motion
information using samples of the plenoptic function through time. We assume that the scene
is Lambertian and free of occlusions. We model the air as a transparent medium, such that
there is no attenuation of light intensity along a light ray. The observed light intensity coming
from a point in the scene must be the same in o as in the point qc on the surface of the sphere:

L(o, ωi) = L(qc − o,M(qc − o, d(o, ωi), ωi)), ∀c = 1, 2, · · · , Nc. (4.1)
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Let us assume o = 0 so that we can drop o from the equations. In fact, Eq. (4.1) is invariant
to a translation of the reference system to o. The idea behind almost all stereo matching
algorithms is to find a depth map d(ω) such that the conditions in Eq. (4.1) is respected for
all directions ωi. In practice, due to the presence of noise or outliers we seek for a depth map
that minimizes a energy functional of the form:

J(d) = JD(d)) + JS(d), (4.2)

where JD enforces the constraint on data, while JS is an energy term that quantifies the
smoothness of the solution. We choose to minimize an energy function JD(d) that is the sum
of the squared pairwise intensity differences of the acquired plenoptic function mapped on the
surface defined by d(ω), i.e.,

JD(d) =

NI∑
ωi

Nc∑
cj=1

Nc∑
ck �=cj

(L(qcj ,M(qcj , d(ωi), (ωi)))− L(qck ,M(qck , d(ωi), (ωi))))
2. (4.3)

While the choice of squared intensity differences is quite common in the literature [71], usually
it is only applied to a stereo pair and not on a full acquisition of the plenoptic function at
a given instant in time. While other norms, like the sum of absolute values, are considered
more robust to outliers, the use of this functional is justified because we are averaging several
light rays and we can safely assume that the influence of outliers is reduced.

The number of constraints is very high in Eq. (4.3). If we do not include a smoothness term
in the energy functional J , the problem of finding a minimum to the functional is however
an ill-posed problem since there are large untextured areas in real scenes. The depth map
of a typical scene is very smooth with sudden discontinuities, so it is usually modeled with
a low total-variation (TV) norm. We have already defined the TV norm in Chapter 3 for
the plenoptic graph. In fact we can apply the same definition here once we observe that the
function d is defined on the set of vertices VI and consequently inherits the same underlying
connectivity structure. We therefore choose the smoothness term JS as:

JS(d) = λ
∑
i

‖∇w
i d(ωi)‖. (4.4)

This definition of TV norm is independent of the discretization scheme, and it adapts well to
our irregular sampling. An alternative definition of TV norm for perspective depth map, could
be derived by the discretization of the spherical differential operator. We show in Chapter 5
that this is however a source of numerical instabilities in practical situations.

The complete minimization problem for depth estimation now reads:

d∗ = argmin
d

JD(d) + JS(d). (4.5)

The minimization of the functional in Eq. (4.5) poses severe challenges. Since it is non convex,
a common solution is to linearize the data term constrain JD and to compensate for the model
simplification with the so-called warping technique [64].

Let us now write Eq. (4.1) explicitly:

L(ωi) = L(qc,
d(ωi)ω̂i − qc

‖d(ωi)ω̂i − qc‖), ∀c = 1, 2, · · · , Nc. (4.6)
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where ω̂i is the unit vector in the 3-D space associated to ωi. The mapping defined inside
the above equation is not linear because ωi ∈ S2. The actual form of the mapping makes the
linearization of the functional J a non trivial problem.

We propose the following solution. Let us extend the domain of definition of L from
R3 × S2 to R3 × R3. Since we supposed the absence of occluders, we can safely write:

L(qc,
d(ωi)ω̂i − qc

‖d(ωi)ω̂i − qc‖) = L(qc, d(ωi)ω̂i − qc) = L(qc, ω̂i − z(ωi)qc), (4.7)

where z(ωi) =
1

d(ωi)
. We linearize Eq. (4.7) using a first order Taylor expansion around z− z0,

where z0 represents a previous estimation of the depth map:

L(qc, ω̂i−z(ωi)qc) � L(qc,
ω̂i − qcz0(ω̂i)

‖ω̂i − qcz0(ω̂i)‖)−qc·∇ωL(qc, ω̂i−qcz0(ω̂i))(z(ω̂i)−z0(ω̂i)). (4.8)

where qc · ∇ωL(qc, ω̂i) is the usual scalar product in R3. We immediately observe that, by
applying successive warpings, the term z(ω̂i)− z0(ω̂i) tends to zero and the linearized term is
constrained back to the original domain R3×S2, which intuitively explains why our problem
is correctly posed. Using the linearized constraint JD now reads:

JD(z) =

NI∑
ωi

Nc∑
cj=1

Nc∑
ck �=cj

(L(qcj , ωi)−L(qck , ωi)+qj ·∇ωL(qcj , ωi)zi−qk·∇ωL(qck , ωi)zi)
2, (4.9)

where, for the sake of clarity in notation we use zi to indicate z(ωi), and we drop the variable
z0. We also use the following notation:

yjk(ωi) = L(qcj , ωi)− L(qck , ωi) (4.10)

ajk(ωi) = qj · ∇ωL(qcj , ωi)− qk · ∇ωL(qck , ωi) (4.11)

The full linearized functional can be now written as:

J(z) =

NI∑
ωi

Nc∑
cj=1

Nc∑
ck �=cj

(ajk(ωi)z(ωi) + yjk(ωi))
2 + λ

∑
i

‖∇w
i z(ωi)‖. (4.12)

The problem defined in Eq. (4.5) can be solved by minimizing Eq. (4.12) by looking for the
optimal value of z. It must be observed that both d and its multiplicative inverse z have a
small total variation so the functional defined in Eq. (4.12) is well defined. The linearized
energy data term JD is now convex and differentiable so we can use the forward-backward
splitting method, similarly to Section 3.3. The proximal operator ProxJS needed for the
backward step of the method is the same TV prox used in Section 3.3.2. The full algorithm
is summarized below in Algorithm 4.1.
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Choose γ � 1/β, where β is the Lipschitz constant of JD
for nw = 1, .., Nw do
z0 = z
yjk(ωi) = L(qcj , ωi − z0(ω̂i)qcj ))− L(qck , ωi − z0(ω̂i)qck))
ajk(ωi) = qj · ∇ωL(qcj , ωi − z0(ω̂i)qcj )− qk · ∇ωL(qck , ωi − z0(ω̂i)qck))
for n = 1, ..., N do

∇JD = 2 ∗
NI∑
ωi

Nc∑
cj=1

Nc∑
ck �=cj

(ajk(ωi)(z
n
i − z0) + yjk(ωi))

zn+1 = ProxγJS (z
n − γJS)

end for
end for

Algorithm 4.1: Light Field Depth Estimation (LFDE)

We remark that the Light Field Depth Estimation (LFDE) algorithm is completely gen-
eral, because it directly uses the definition of the plenoptic function. It does not depend on
a particular discretization scheme because it is based on a generic graph structure. The only
assumption we make is that the scalar product qc · ∇ωL(qc, ω̂i) can be computed. This im-
plies the knowledge of qc, which can be computed in an a priori calibration phase. If a metric
calibration is not needed, qc can be calculated up to a multiplicative scale factor without
compromising the quality of the depth estimation. The gradient terms ∇ωL(qc, ω̂i) can be
easily calculated if ω̂i are defined on a spherical grid, otherwise one can directly calculate
the scalar product by setting a least-square problem, i.e., the directional gradient can be
calculated in a neighborhood of ω̂i as:

qc · ∇ωL(qc, ω̂i) =
∑

ω̂j∼ω̂i

(ω̂j − ω̂i)(L(qc, ω̂j)− L(qc, ω̂i)) · qc

‖ω̂j − ω̂i‖2 (4.13)

Finally, the LFDE algorithm only requires local simple arithmetic computations that can
be easily implemented in hardware. It is straightforward to see that the terms yjk(ω̂i) and
ajk(ω̂i) can be computed by an exchange of local information between the plenoptic graph
nodes (ωi,qcj ) and (ωi,qck).

4.2 Performance Assessment

To evaluate the performance of the proposed LFDE algorithm, we simulate the spherical light
field camera presented in Section 2.3, with unitary radius R = 1, in a 3D space scene that
presents a broad depth range varying from 4 to 100 units. We show in Figure 4.1 a geometrical
representation of the Blender model and one example of a rendered view. In Figure 4.2 we
show the ground truth for the space scene . We render the omnidirectional image and the
depth map in the origin of the coordinate system, onto an equiangular grid of 480x240 for ease
of visualization. To quantify the quality of the estimation we use three criteria: 1) the PSNR
between the estimated depth map and the ground truth (although the PSNR is not the perfect
metric to quantify the quality of a depth map, it gives an indication on how well the algorithm
can find the structure of the scene); 2) the PSNR between the omnidirectional image rendered
with the estimated depth and the omnidirectional image ground truth; 3) visual inspection.
We also choose a simple Winner-Take-All (WTA) version of the Algorithm 4.1 as a baseline
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a) 3D View b) Top View c) Example of planar image

Figure 4.1: The Blender model that generates the space scene

Figure 4.2: The ground truth for the space scene . Omnidirectional image on the left, depth
map on the right.

comparison. The baseline scheme is implemented as follows. We impose that for a given
ωi, z(ω) remains constant in a neighborhood of ωi such that we can write the optimization
problem as:

z(ωi)
∗ = argmin

z

∑
ω∼ωi

JD(z(ωi)), (4.14)

where the functional JD(z) is described in Eq. (4.9). It is straightforward to solve the mini-
mization above since it is a simple quadratic function of ωi. In other words the WTA perform
a local optimization and can be thought of as the non-regularized version of the light field
depth estimation algorithm.

WTA (PSNR=28.6 dB LFDE (PSNR=35.4 dB

Figure 4.3: Estimated Depth map for space scene , for WTA and LFDE algorithms.

We know study the performance of the depth estimation algorithm. In Figure 4.3 we
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compare both algorithms WTA and LFDE on the space scene . The LFDE produces smoother
depth maps with higher PSNR. The depth maps found with WTA are, as expected, very
clumsy in untextured areas. In Figure 4.4, we compare the algorithms in terms of rendering
performance. In the comparison we include the image rendered when the system is focused at
the hyperfocal distance. We can see that both algorithms perform well in terms of reduction
of the residual error with respect to the ground truth. We also observe that the PSNR values
are almost identical. In fact this is just due to the absence of background in this particular
scene.

Then we run the comparison on the room scene , which is very textured. We show in
Figure 4.5 the results on a portion of the full directional space. Since the depth range in
this scene is quite small (from 10 to 14 units) compared to the resolution of the imagers, the
estimated depth map is less precise compared to the other scene. We observe though that
the WTA algorithm produces an incomplete depth map and induces a lot of artifacts during
the rendering, while LFDE performs well on both fronts.

Hyperfocal distance (PSNR=28.5 dB)

WTA (PSNR=35.4 dB)

LFDE (PSNR=35.38 dB)

Figure 4.4: Comparison of rendered images using the estimated depth maps. On the right
column we show the image residual of the render images with respect to the ground truth.
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Ground truth depth

WTA (PSNR=20.9 dB)

LFDE (PSNR=23 dB)

Ground truth image

WTA (PSNR=35.8 dB)

LFDE (PSNR=38.54 dB)

Figure 4.5: Performance of the depth map estimation for the room scene . This scene has a
complex texture, so the WTA algorithm performs poorly. On the left we show the depth map
while on the right we show the image rendered using the estimated depth map.
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4.3 Automatic Calibration

In Section 4.1 we implicitly assume that the system is perfectly calibrated. In this last section
we show how to use the same framework described in Section 4.1 in order to optimize some
of the calibration parameters of the model.

Let us consider two neighbor cameras cj and ck. From Eq. (4.7) we know that for a given
direction ωi:

L(qcj , ω̂i − z(ωi)qcj ) = L(qck , ω̂i − z(ωi)qck)

If we want to model an imperfect knowledge of the cameras orientations we can simply write:

L(qcj ,Rj(ω̂i − z(ωi)qcj )) = L(qck ,Rk(ω̂i − z(ωi)qck)), (4.15)

where Rj and Rk are the rotation matrices that correct the imperfect camera orientations. If
the rotation angles are small, a more convenient expression for the matrix rotation is obtained
using the exponential map from so(3)→ SO(3):

R = I + [r̂]x sin(α) + [r̂]2x(1− cos(α) � I + [r̂]x sin(α) (4.16)

where [r̂]x sin(α) is the antisymmetric matrix equivalent to the cross product, i.e., [r̂]x sin(α)q =
sin(α)r̂ × q. We also write r = r̂ sin(α). This approximation is justified by the use of small
FOV sensors. Let us assume for now that the depth map z is known, so that we can drop
it from the equations. To find an estimate of r = [r1r2 · · · rcamNum] we consider the same
energy functional defined in Eq. (4.3):

JD(r) =

NI∑
ωi

Nc∑
cj=1

Nc∑
ck �=cj

(L(qcj , ωi − [ωi]xrj)− L(qck , ωi − [ωi]xrk))
2, (4.17)

where we made use of the cross product property [r]xω = −[ω]xr. The functional in Eq. (4.17)
can be efficiently minimized using a Levenberg-Marquardt scheme [57]. The proposed ap-
proach has interesting connections with the classical bundle adjustment [82] methods used
to refine the camera pose from a set of 3D correspondences. A similar idea has also been
proposed by Tron [83] in the context of distributed camera pose estimation. Lovegrove pro-
pose to align a set of rotated images using a whole image alignment in [53]. Their model
is much simpler then ours, since it supposes that there is no parallax among pictures. The
main difference with previous works is that our algorithm directly works with the plenoptic
function, rather than with a set of extracted features. This has two main advantages: i) it
does not require the computation nor the matching of features, ii) it is optimized to produce
visually pleasant results, since it minimizes the reprojected intensity error.

We illustrate the benefits of the above model with experiments on the syntethic room
scene . We only consider the 20 cameras around the equator, which are the ones with enough
texture information. We apply a random rotation on the camera pose, with angles chosen
from a Gaussian distribution with standard deviation of 0.02. We choose a rendering angular
resolution of 0.006. The automatic rotation estimation is able to reduce the average angular
error, defined as the angle difference with respect to the ground truth camera orientation,
from 0.016 to 0.008, reaching the limits of the rendering output resolution. The results are
shown in Figure 4.7. The reduction of the angular error is also confirmed by visual inspection
of the rendered images as shown in Figure 4.6.
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Before optimization (PSNR=27.03 dB)

After Optimization (PSNR=31.17 dB)

Zoom on a detail

Figure 4.6: Reconstruction before and after the automatic pose optimization tested on the
room scene . In the bottom row we show a detail of the reconstruction. We observe that after
optimization (right image) many artifacts disappear.
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Figure 4.7: Angular error in rad with respect to the ground truth. After the optimization
the average error is reduced of a factor 3. The average error after the optimization is below
the angular resolution, i.e., 0.01rad.



Chapter 5

Omnidirectional Dense
Structure-From-Motion

Recently, omnidirectional imagers such as catadioptric cameras, have sparked tremendous
interest in image processing and computer vision. These sensors are particularly attractive
due to their (nearly) full field of view. The visual information coming from a sequence of
omnidirectional images can be used to perform a 3D reconstruction of a scene. This type
of problem is usually referred to as Structure from Motion (SFM) [30] in the literature. Let
us imagine a monocular observer that moves in a rigid unknown world; the SFM problem
consists in estimating the 3D rigid self-motion parameters, i.e., rotation and direction of
translation, and the structure of the scene, e.g., represented as a depth map with respect
to the observer position. Structure from motion has attracted considerable attention in the
research community over the years with applications such as autonomous navigation, mixed
reality, or 3D video.

As show in Chapter 3 we can reconstruct an accurate omnidirectional image with sin-
gle focal point. In this chapter we then introduce a novel structure from motion framework
for omnidirectional image sequences. We consider that the images can be mapped on the
2-sphere, which permits to unify various models of single effective viewpoint cameras. Then
we propose a correspondence-free SFM algorithm that uses only differential motion between
two consecutive frames of an image sequence through brightness derivatives. Since the esti-
mation of a dense depth map is typically an ill-posed problem, we propose a novel variational
framework that solves the SFM problem on the 2-sphere when the camera motion is unknown.
Variational techniques are among the most successful approaches to solve under-determined
inverse problems and efficient implementations have been proposed recently so that their use
becomes appealing [87]. It is possible to extend very efficient variational approaches to SFM
problems, while naturally handling the geometry of omnidirectional images. We embed a
discrete image in a weighted graph whose connections are given by the topology of the man-
ifold and the geodesic distances between pixels. We then cast the depth estimation problem
as a TV-L1 optimization problem, and we solve the resulting variational problem with fast
graph-based optimization techniques similar to [67, 34, 90]. To the best of our knowledge,
this is the first time that graph-based variational techniques are applied to obtain a dense
depth map from omnidirectional image pairs.

Then we address the problem of ego-motion estimation from the depth information. The

43
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camera motion can be reliably estimated from an omnidirectional image pair if an approxi-
mate depth map is known. We propose to compute the parameters of the 3D camera motion
with the help of a low-complexity least square estimation algorithm that determines the most
likely motion between omnidirectional images using the depth information. Our formulation
permits to avoid the explicit computation of the optical flow field and the use of feature match-
ing algorithms. Finally, we combine both estimation procedures to solve the SFM problem in
the generic situation where the camera motion is not known a priori. This is made possible
by the use of a spherical camera model which makes easy to derive a linear set of motion
equations that explicitly include camera rotation. The complete ego-motion parameters can
then be efficiently estimated jointly with depth. The proposed iterative algorithm alterna-
tively estimates depth and camera ego-motion in a multi-resolution framework, providing an
efficient solution to the SFM problem in omnidirectional image sequences. While ideas of
alternating minimization steps have also been proposed in [38, 5]. In these works, however,
the authors use planar sensors and assume to have an initial rough estimate of the depth map.
In addition, they use a simple locally constant depth model. In our experiments we show that
this model is an oversimplification of the real world, which does not apply to scenes with a
complex structure. Experimental results with synthetic spherical images and natural images
from a catadioptric sensor confirm the validity of our approach for 3D reconstruction.

The rest of the chapter is structured as follows. We first provide a brief overview of the
related work in Section 5.1. Then, we describe in Section 5.2 the framework used for motion
and depth estimation.The variational depth estimation problem is presented in Section 5.3,
and the ego-motion estimation is discussed in Section 5.4. Section 5.5 presents the joint depth
and ego-motion estimation algorithm, while Section 5.6 presents experiments of on synthetic
and natural omnidirectional image sequences.

5.1 Related work

The depth and ego-motion estimation problems have been quite widely studied in the last
couple of decades and we describe here the most relevant papers that present correspondence-
free techniques. Correspondence-free algorithms get rid of feature computation and matching
steps that might prove to be complex and sensitive to transformations between images. Most
of the literature in correspondence-free depth estimation is dedicated to stereo depth estima-
tion [71]. In the stereo depth estimation problem cameras are usually separated by a large
distance in order to efficiently capture the geometry of the scene. Usually the images are
registered beforehand, such that images planes are aligned. A the disparity map is found
between the two image views, and the disparity is eventually translated into a depth map.
In our problem, we rather assume that the displacement between two consecutive frames in
the sequence is small as it generally happens in image sequences. This permits to compute
the differential motion between images and to build low-complexity depth estimation through
image brightness derivatives. Then, most of the research about correspondence-free depth es-
timation has concentrated on perspective images; the depth estimation has also been studied
in the case of omnidirectional images in [6], which stays as one of the rare works that carefully
considers the specific geometry of the images in the depth estimation.

On the other hand, ego-motion estimation approaches usually proceed by first estimating
the image displacement field, the so-called optical flow. The optical flow field can be related
to the global motion parameters by a mapping that depends on the specific imaging surface of



5.2. Framework Description 45

the camera. The mapping typically defines the space of solutions for the motion parameters,
and specific techniques can eventually be used to obtain an estimate of the ego-motion [16, 40,
46, 80]. Most techniques reveal sensitivity to noisy estimation of the optical flow. The optical
flow estimation is a highly ill-posed inverse problem that needs some sort of regularization
in order to obtain displacement fields that are physically meaningful; a common approach is
to impose a smoothness constraint on the field [41, 9]. In order to avoid the computation
of the optical flow, one can use the so-called ”direct approach” where image derivatives are
directly related to the motion parameters. Without any assumption on the scene, the search
space of the ego-motion parameters is limited by the depth positivity constraint. For example,
the works in [42, 75] estimate the motion parameters that result into the smallest amount of
negative values in the depth map. Some algorithms originally proposed for planar cameras
have later been adapted to cope with the geometrical distortion introduced by omnidirectional
imaging systems. For example, an omnidirectional ego-motion algorithm has been presented
by Gluckman in [35], where the optical flow field is estimated in the catadioptric image
plane and then back-projected onto a spherical surface. Not many, though, have been trying
to take advantage from the wider field of view of the omnidirectional devices: in spherical
images the focus of expansion and the focus of contraction are both present, which imply
that translation motion cannot be confused with rotational one. Makadia et al. [56] use this
intuition to propose an elegant algorithm which makes use of filtering operator on the sphere.
The solution is proven to be robust to noise and outlier, but the computational complexity
remains high and the use of spherical harmonics makes the implementation of the algorithm
dependent on a specific discretization of the sphere. In our work, we rather use a gradient-
descent like approach on the manifold space of the motion parameters, which permits to avoid
the computation of the optical flow, while keeping the computational complexity low and ease
of implementation.

5.2 Framework Description

In this section, we introduce the framework and the notation. We derive the equations that
relate global motion parameters and depth map to the brightness derivatives on the sphere.
Finally, we show how we embed our spherical framework on a weighted graph structure and
define differential operators in this representation.

Figure 5.1: Left: the original catadioptric image. Right: projection on the sphere
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We choose to work on the 2-sphere S2, which is a natural spatial domain to perform
processing of omnidirectional images as shown in [26] and references therein. For example,
catadioptric camera systems with a single effective viewpoint permit a one-to-one mapping
of the catadioptric plane onto a sphere via inverse stereographic projection [8]. The centre
of that sphere is co-located with the focal point of the parabolic mirror and each direction
represents a light ray incident to that point. We assume then that a pre-processing step
transforms the original omnidirectional images into spherical ones as depicted in Fig. 5.1.

The starting point of our analysis is the brightness consistency equation, which assumes
that pixel intensity values do not change during motion between successive frames. Let us
denote I(t,y) an image sequence, where t is time and y = (y1, y2, y3) describes a spatial
position in 3-dimensional space. If we consider only two consecutive frames in the image
sequence, we can drop the time variable t an use I0 and I1 to refer to the first and the second
frame respectively. The brightness consistency assumption then reads: I0(y)− I1(y+u) = 0
where u is the motion field between the frames. We can linearize the brightness consistency
constraint around y + u0 as:

I1(y + u0) + (∇I1(y + u0))
T (u− u0)− I0(y) = 0, (5.1)

with an obvious abuse of notation for the equality. This equation relates the motion field u
to the (spatial and temporal) image derivatives. It is probably worth stressing that, for this
simple linear model to hold, we assume that the displacement u− u0 between the two scene
views I0 and I1 is sufficiently small.

Figure 5.2: The representation and coordinate on the 2-sphere S2.

When data live on S2 we can express the gradient operator ∇ from Eq. (5.1) in spherical
coordinates as :

∇I(φ, θ) =
1

sin θ
∂φI(φ, θ)φ̂+ ∂θI(φ, θ)θ̂, (5.2)

where θ ∈ [0, π] is the colatitude angle, φ ∈ [0, 2π[ is the azimuthal angle and φ̂, θ̂ are the
unit vectors on the tangent plane corresponding to infinitesimal displacements in φ and θ
respectively (see Fig. 5.2). Note also that by construction the optical flow field u is defined
on the tangent bundle TS =

⋃
ω∈S2 TωS

2, i.e. u : S2 ⊂ R3 → TS.
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5.2.1 Global motion and optical flow

Under the assumption that the motion is slow between frames, we have derived above a linear
relationship between the motion field u on the spherical retina and the brightness derivatives.
If the camera undergoes rigid translation t and rotation around the axis Ω, then we can derive
a geometrical constraint between u and the parameters of the 3D motion of the camera. Let

Figure 5.3: The sphere and the motion parameters

us consider a point p in the scene, with respect to a coordinate system fixed at the center of
the camera. We can express p as: p = D(x)x where x is the unit vector giving the direction
to p and d(x) is the distance of the scene point from the center of the camera. During camera
motion, as illustrated in Fig. 5.3, the scene point moves with respect to the camera by the
quantity :

δp = −t−Ω× x. (5.3)

We can now build the geometric relationship that relates the motion field u to the global
motion parameters t and Ω. It reads

u(x) = − t

d(x)
−Ω× x = −z(x)t−Ω× x, (5.4)

where the function z(x) is defined as the multiplicative inverse of the distance function d(x).
In the following we will refer to z as the depth map. In Eq. (5.4) we find all the unknowns
of our SFM problem: the depth map z(x) describing the structure of the scene and the 3D
motion parameters t and Ω. Due to the multiplication between z(x) and t, both quantities
can only be estimated up to a scale factor. So in the following we will consider that t has
unitary norm.

We can finally combine Eq. (5.1) and Eq. (5.4) in a single equation:

I1(y + u0) + (∇I1(y + u0))
T (−z(x)t−Ω× x− u0)− I0(y) = 0. (5.5)

Eq. (5.5) relates image derivatives directly to 3D motion parameters. The equation is not
linear in the unknowns and it defines an under-constrained system (i.e., more unknown than
equations). We will use this equation as constraint in the optimization problem proposed in
the next section.
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5.2.2 Discrete differential operators on the 2-Sphere

We have developed our previous equations in the continuous spatial domain, but we our
images are discrete in practice. Although the 2-sphere is a simple manifold with constant
curvature and a simple topology, a special attention has to be paid to the definition of the
differential operators that are used in the variational framework.

We assume that the omnidirectional images recorded by the sensor are interpolated onto
a spherical equiangular grid : {θm = mπ/M,φn = n2π/N}, with M · N the total number
of samples. This operation can be performed, for example, by mapping the omnidirectional
image on the sphere and then using bilinear interpolation to extract the values at the given
positions (θm, φn). In spherical coordinates, a simple discretization of the gradient obtained
from finite differences reads:

∇θf(θi,j , φi,j) =
f(θi+1,j , φi,j)− f(θi, φj)

Δθ
,

∇φf(θi,j , φi,j) =
1

sin θi,j

(
f(θi,j , φi,j+1)− f(θi,j , φi,j)

Δφ

)
.

The discrete divergence, by analogy with the continuous settings, is defined by div = −∇∗
where ∇∗ is the adjoint of ∇. It is then easy to verify that the divergence is given by:

divp(θi,j , φi,j) =
pφ(θi,j , φi,j)− pφ(θi,j , φi,j−1)

sin θi,jΔφ
+

sin θi,jp
θ(θi,j , φi,j)− sin θi,jp

θ(θi−1,j , φi,j)

sin θi,jΔθ
.

(5.6)

Both Eq. (5.6) and Eq. (5.6) contain a (sin θ)−1 term that induces very high values around the
poles (i.e., for θ � 0 and θ � π) and can cause numerical instability. We therefore propose to
define discrete differential operators on weighted graphs (i.e., discrete manifold) as a general
way to deal with geometry in a coordinate-free fashion.

Figure 5.4: Embedding of discrete sphere on a graph structure. The pixels u and v in the
spherical image represent vertices of the graph, and the edge weight w(u, v) typically captures
the geodesic distance between the vertices

We represent our discretized (spherical) imaging surface as a weighted graph, where the
vertices represent image pixels and edges define connections between pixels (i.e., the topology
of the surface) as represented in Figure 5.4. We refer to Section 3.1 and Section 3.2 for a
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deeper definition of graphs and differential operators on graphs. We rewrite for commodity
the definition of gradient and divergence on graphs:

(∇wf)(u, v) =
√

w(u, v)f(u)−
√

w(u, v)f(v) (5.7)

and

(divwF )(u) =
∑
u∼v

√
w(u, v) (F (v, u)− F (u, v)) , (5.8)

Even though both discretization methods are applicable to spherical images, the main advan-
tages of the graph-based representation rely on the definition of differential operators directly
in the discrete domain. They reveal a much more stable behavior than their counterparts
from Eq. (5.6) and Eq. (5.6). On top of that, the framework provides flexibility in the choice
of the discrete grid points, whose density can vary locally on the sphere.

5.3 Variational Depth Estimation

Equipped with the above formalism, we now propose a new variational framework to estimate
a depth map from two consecutive frames of an omnidirectional image sequence. We assume
at this point that the parameters t,Ω that describe the 3D motion of the camera are known.
In addition, we might have an estimate of the optical flow field u0.

Let us consider again Eq. (5.5) that relates image derivatives to motion parameters. Since
the image gradient ∇I1 is usually sparse, Eq. (5.5) does not provide enough information to
recover a dense depth map. Hence, we formulate the depth estimation problem as a regularized
inverse problem using the L1 norm to penalize deviation from the brightness constraint and
the TV-norm to obtain a regular depth map possibly with sharp transitions.

We build the following error functional:

J(z) =

∫
Ω
ψ(∇z) dΩ+ λ

∫
Ω
|ρ(I0, I1, z)| dΩ, (5.9)

and we look for the depth map z that minimizes it. In Eq. (5.9) the function ρ is the data
fidelity term that describes the residual image error:

ρ(I0, I1, z) = I1(y + u0) + (∇I1(y + u0))
T (−z(x)t−Ω× x− u0)− I0(y), (5.10)

where we use our assumption that t,Ω and u0 are known. The regularization function ψ is
given by:

ψ(∇z) = |∇z(x)|. (5.11)

With such a choice of the functional J we define a TV-L1 inverse problem. Several advantages
come from this choice. First the TV-L1 model is very efficient in removing noise and robust
against illumination changes: it inherits these properties from the Rudin-Osher-Fatemi (ROF)
model [70] and the L1 norm fidelity term ensures robustness to outliers and also non-erosion of
edges [63]. Furthermore the TV regularization is a very efficient prior to preserve sharp edges.
The total variation model then suits the geometrical features of a real scene structure where
the depth map is typically piecewise linear with sharp transitions on objects boundaries.

The functional in Eq. (5.9) is written in terms of continuous variables, while in practice
we work with discrete images. Inspired by the continuous formulation, we now propose to
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solve a similar, though purely discrete, problem. As in Chapter 3, we define the local isotropic
variation of z at vertex (pixel) v by :

‖∇w
v z‖ =

√∑
u∼v

[(
∇wz

)
(u, v)

]2
. (5.12)

The discrete optimization problem can then be written as :

J(z) =
∑
v

‖∇w
v z‖+ λ

∑
v

|ρ(I0, I1, z)|. (5.13)

The definition of ρ is the same as in Eq. (5.10), where we substitute the naive finite difference
approximation of the gradient given in Eq. (5.6). Note that the discrete problem now uses
two different discretizations for differential operators on S2. The reason for this choice will
be made clear below.

We now discuss the solution of the depth estimation problem in Eq. (5.13). Even though
the resulting functional J is convex, it poses severe computational difficulties. Following [7],
we propose a convex relaxation into a sum of two simpler sub-problems:

J(z) =
∑
v

‖∇w
v z‖+

1

2θ

∑
u

(v(u)− z(u))2 + λ
∑
u

|ρ(I0, I1, v)|, (5.14)

where v is an auxiliary variable that should be as close as possible to z. If θ is small then
v converges to z and the functional defined in Eq. (5.14) converges to the one defined in
Eq. (5.13) as shown in [7]. The minimization must now be performed with respect to both
the variables v, z. Since the functional is convex the solution can be then obtained by an
iterative two-step procedure:

1. For z fixed, solve:

min
v

{
1

2θ

∑
u

(v(u)− z(u))2 + λ|ρ(v(u))|
}
. (5.15)

2. For v fixed, solve:

min
z

{∑
u

‖∇w
u z‖+

1

2θ

∑
u

(v(u)− z(u))2

}
. (5.16)

The minimization in the first step is straightforward : the problem is completely decoupled
in all coordinates and the solution can be found in a point-wise manner using this thresholding
scheme:

v = z +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
θλ∇IT1 t if ρ(z) < −θλ(∇IT1 t)

2

−θλ∇IT1 t if ρ(z) > θλ(∇IT1 t)
2

− ρ(z)

∇IT1 t
if |ρ(z)| � θλ(∇IT1 t)

2.

(5.17)

The previous result can be easily obtained by writing the Euler-Lagrange condition for
Eq. (5.15)

1

θ
(z− v) + λ∇IT1 t

ρ(v)

|ρ(v)| = 0, (5.18)

and then analyzing the three different cases: ρ(z) > 0, ρ(v) < 0 and ρ(v) = 0. Using the
relationship ρ(v) = ρ(z) +∇IT1 t(v − z) we have:
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• ρ > 0:
(z− v) = θλ∇IT1 t⇒ ρ(z) > ∇IT1 t(z− v) = θλ(∇IT1 )

2

• ρ < 0:
(z− v) = −θλ∇IT1 t⇒ ρ(z) < −∇IT1 t(z− v) = θλ(∇IT1 )

2

• ρ = 0:
ρ(z) = −∇IT1 t(v − z)

Notice that this computation relies on evaluating the scalar product ∇IT1 t, which can not be
evaluated if we use a graph-based gradient, since the vector t is unconstrained (in particular it
does not correspond necessarily to an edge of the graph). However, this part of the algorithm
is not iterative and the gradient can be pre-computed, therefore avoiding severe numerical
instabilities as we move closer to the poles.

The minimization in Eq. (5.16) corresponds to the total variation image denoising model,
the same described in Eq. (3.30). The solution of the Eq. (5.16) when the differential operators
are defined on the graph is already given in Section 3.3.2. If the differential operators are the
one defined in Eq. (5.6) and Eq. (5.6) Chambolle’s iterations read explicitely

z = v − θdivp,

pn+1 =
pn + τ∇(divpn − v/θ)

1 + τ |∇(divpn − v/θ)| . (5.19)

where p represent a vector field on the sphere, i.e., p ∈ TS, where TS the tangent bundle
already introduced in Section 5.2.

Finally, it should be noted that the algorithm is formally the same whatever discretization
is chosen, i.e., the discrete operator can be given either by Eq. (5.8) or Eq. (5.6) . Experi-
mental results however show that the graph-based operators unsurprisingly lead to the best
performance.

5.4 Least Square Ego-Motion Estimation

We discuss in this section a direct approach to the estimation of the ego-motion parameters
t,Ω from the depth map z. We propose a formulation based on least mean squares algorithm.

When we have an estimate of z(x) in Eq. (5.5), we have a set of linear constraints in the
motion parameters t,Ω that can be written as :

z(∇I1)
T t+ (x× (∇I1))

TΩ = I0 − I1. (5.20)

For each direction in space x we can rewrite Eq. (5.20) in a matrix form:

A(x)b = C(x), (5.21)

where A(x) = [(z(x)∇I1(x))
T (x×∇I1(x))

T ], and C(x) = I0(x)− I1(x) are known matrices,
while b = [t;Ω] is the variable containing the unknown motion parameters.

We formulate the ego-motion estimation problem as follows:

b∗ = argmin
b

∑
x

(A(x)b− C(x))2. (5.22)
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The solution to this linear least square problem is simply:

b =

∑
x

ATC

∑
x

AAT
. (5.23)

There are several aspects that are important for the existence and the unicity of the solu-
tion of the ego-motion estimation problem. First, the images must present enough structure.
In other words, the image gradient ∇I1 should carry enough information on the structure
on the scene. In particular, since the gradient only gives information on motion that is per-
pendicular to image edges, the gradient itself will not help recovering motion parameters if
the projection of the motion parameters on the spherical retina is everywhere parallel to the
gradient direction. This situation is however highly unlikely for a real scene and a wide field
of view camera.

Then, there is a possibility of confusion for certain combinations of the motion parameters.
In Eq. (5.20) we compute the scalar product between the image gradient and the vector
z(x)t+Ω×x, i.e., the spherical projection of 3D motion. For a small field of view, x does not
change much and the two terms z(x)t and Ω× x could be parallel, meaning that we cannot
recover them univocally. This happens for example with a rotation around vertical axis and
a displacement in the perpendicular direction to both viewing direction and rotation axis.
Such a confusion however disappear on a spherical retina [60].

5.5 Joint Ego-Motion and Depth Map Estimation

We have described in the previous sections the separate estimation of a dense depth map
and the 3D motion parameters. The purpose of this section is to combine both estimation
algorithms in a dyadic multi-resolution framework.

We embed the minimization process into a coarse-to-fine approach in order to avoid local
minima during the optimization and to speed up the convergence of the algorithm. We
employ a spherical gaussian pyramid decomposition as described in [81], with a scale factor
of 2 between adjacent levels in order to perform the multi-resolution decomposition.

Then, we solve the depth and ego-motion estimation problems by alternating minimization
steps. For each resolution level l, we compute a solution to Eq. ((5.5)) by performing two
minimization steps:

1. We use the depth map estimate at the previous level z̄l+1(x) to initialize the depth map
zl0(x) at the current level l. Using the least square minimization from Eq.(5.23) we can
refine the estimation of the motion parameters tl,Ωl at level l.

2. Using the estimated motion parameters tl,Ωl we can find an estimate of the depth map
at current level zl(x) by solving Eq. 5.13 using the variational framework described in
Section 5.3.

Since we perform a coarse-to-fine approach we only need to initialize the algorithm at
the coarsest level. Let us assume that we use L levels. At the coarsest level L we make the
hypothesis that a constant-depth model of the scene is sufficient to explain the apparent pixel
motion between the low resolution images IL0 and IL1 , so we set zL0 = K, where K is a positive



5.6. Experimental results 53

constant different from zero which ideally should be set according to the farthest point in the
scene. In practice the choice of K does not effect the performance of the algorithm as long as
it is small enough. At the coarsest level, the approximation that we introduce by flattening
the depth map z is well posed since all image edges are smoothed out at low resolution. An
alternative for the initialization is to use an initial rough estimate of the depth map, given
from external measurement. At each level l we can also obtain an estimate of the optical flow
ul
0 as ul

0 = −zl0(x)tl+1 −Ωl+1 × x, and use it to warp image I l1, i.e., to estimate I l1(x+ ul
0).

The joint depth and ego-motion estimation algorithm is summarized in Algorithm 5.1. We

1. At the coarsest level L initialize: zL0 = K with K > 0

2. For each level l ∈ [L,L− 1, . . . , 2, 1]:

(a) Initialize z with the solution at previous level

zl0 = upsample(zl+1).

(b) Estimate optical flow ul
0 as:

ul
0 = −zl0(x)tl+1 −Ωl+1 × x

and use it to calculate I l1(x+ ul
0).

(c) Estimate tl and Ωl using Eq.(5.23):

b =

∑
x

ATC

∑
x

AAT
.

(d) Estimate zl using the depth estimation algorithm described in Section 5.3 with the
current estimates tl and Ωl.

Algorithm 5.1: Computation of z, t,Ω

conclude with some considerations regarding the complexity of the algorithm. We firstly
observe that the complexity is dominated be the depth map estimation, while it does not
depend on the choice of the differential operators, as long as the number of connections in the
graph is sparse. Furthermore, since each operation in Eq. (5.17) and (5.19) can be performed
pixel-wise, the algorithm can be efficiently implemented on graphics processing units in a
similar way as described in [87]. The ego-motion estimation algorithm has low complexity
since every iteration in Eq. (5.23) runs in linear time O(n), where n is the total number of
pixels, and quickly converges to the solution

5.6 Experimental results

We analyze in this section the performance of the proposed algorithms for two sets of om-
nidirectional images, namely a synthetic and a natural sequence. For both sets the images
are defined on an equiangular grid, so they are easily representable on a plane, as shown for
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example in Fig. 5.5. In this image plane, the vertical and horizontal coordinates correspond
respectively to the θ and φ angles. The images are represented such that the top of the image
corresponds to the north pole and the bottom to the south pole.

5.6.1 Synthetic omnidirectional images

For the syntethic set we use the room scene shown in Figure 5.5 Since we only use 2 frames
in our optimization scheme, in our experiments with the synthetic images the first frame I0
is always the same one shown in Figure 5.5 together with the associated depth map, that
we use as ground truth for the numerical evaluation of the performance of our algorithm.
We generate the other frames by translating and rotating the spherical camera. The camera
translation has always the same module of 0.1 units, while the dimension of the room is 24
units by 23 units. We first study the influence of the discretization scheme in the variational

Figure 5.5: The synthetic spherical image. Middle: geographical projection. Right: depth
map ground truth

depth estimation algorithm. As discussed in Section 5.3 the TV denoising part of the depth
estimation algorithm is extremely sensitive to the choice of the discrete differential operators.
We show in Fig. 5.6 that the use of the differential operators from Eq. (5.6) and (5.6) lead to
noisy results around the poles. We call the resulting algorithm as TVL1-naive. We compare
the results of this implementation to those obtained by choosing the graph-based definition
of the differential operators from Eq. (5.7) and (5.8). The proposed algorithm, that we
call TVL1-GrH, clearly leads to improved performance, especially around the poles where
it is much more robust than TVL1-naive. In Fig. 5.6 we can observe a black area in the
middle of both estimated depth maps, which is not present in the ground truth image. This
structure is simply due to an occlusion generated by the reflection of the window, where
the brightness consistency does not hold. Then, we compare in Fig. 5.7 the results of the
variational depth map estimation algorithm for four different camera motions, namely a pure
translation or different combinations of rotation and translation. We compare our results to
a local-constant-depth model algorithm (i.e., LK ) similar to the one described in [54] and
[38]. This approach assumes that the depth is constant for a given image patch and tries to
find a least square depth estimate using the brightness consistency equation. We can observe
that the TV-L1 model is much more efficient in preserving edges, so that it becomes possible
to distinguish the objects in the 3D scene. The LK algorithm has a tendency to smooth the
depth information so that objects are hardly visible.
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Figure 5.6: Depth map estimation with different discrete differential operators. Left: ground
truth. Center: TVL1-naive. Right: TVL1-GrH

These results are confirmed in Table 5.1 in terms of mean square error of the depth map
reconstruction for several synthetic sequences. It can be seen that the local-costant-depth
algorithm LK is outperformed by the variational depth estimation algorithm with graph-
based operators (TVL1-GrH ) It is also interesting to observe the influence of the choice of
the discrete differential operators. As it has been observed earlier, the discretization from
Eq. (5.6) and (5.6) (TVL1-naive) clearly leads to the worst results, while the graph-based
operators perform best.

Table 5.1: Mean Square Error (MSE) between the estimated depth map and the ground truth
Seq1 Seq2 Seq3 Seq4 Seq5

LK 0.00117 0.00268 0.00158 0.00611 0.00216
TVL1-naive 0.00447 0.10319 0.10234 0.10824 0.10369
TVL1-GrH 0.00103 0.00169 0.00167 0.00395 0.0017

Finally, we analyze in Table 5.2 the performance of the ego-motion estimation algorithm
proposed in Section 5.4. We use the same synthetic sequences as before, and the depth esti-
mation results are used in the least mean square optimization problem for motion parameter
estimation. We compare the ego-motion estimation to the true motion parameters, given in
terms of translation (t) and rotation (Ω) parameters. We can see that the ego-motion esti-
mation is quite efficient for all the sequences even if the estimation algorithm is quite simple.
The relative error is usually smaller than one percent.

Table 5.2: Results for the least square motion parameters estimation
Seq1 Seq2 Seq3 Seq4 Seq5

true-t [-0.1;0;0] [-0.1;0;0] [-0.1;0;0] [0;-0.1;0] [-0.07;-0.07;0]
t [-0.099;0.001;-0.004] [-0.099;0;-0.004] [-0.099;0.002;-0.005] [0.;-0.099;-0.006] [-0.069;-0.07;-0.009]
true-Ω [0;0;0] [0;0;0.0175] [0.0175;0;0] [0;0;0.0175] [0.0175;0;0]
Ω [0;-0.001;0] [0;-0.002;0.016] [0.0177;-0.0025;0] [0;0;0.0182] [0.0181;0;0]

5.6.2 Natural omnidirectional images

These images have been captured by a catadrioptric system positioned in the middle of
a room. We then move the camera on the ground plane and rotate it along the vertical
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Figure 5.7: LK (top) vs TVL1-naive (middle) for four different camera motions. On the
bottom we show also t in red and Ω in blue; the estimated motion vectors are represented with
a dashed line

axis. The resulting images are shown in Fig. 5.8, where we also illustrate the result of the
projection of the captured images on the sphere. We have also measured the depth map in
this environment with help of a laser scanner, and we use these measures for visual evaluation
of the depth map estimation algorithm.

We first analyze the performance of our depth estimation algorithm for natural spherical
images, and we compare the estimated depth map to the depth information measured by the
laser scanner. We show in Fig. 5.9 that the estimated depth map is quite accurate when
compared to the LK algorithm, since the proposed algorithm is able to detect and delin-
eate clearly the objects in the scene. It confirms the efficiency of the variational framework
proposed in this paper.

Finally, we show that our depth estimation provides accurate information about the scene
content by using this information for image reconstruction. We use one of the images of
the natural image sequence as a reference image, and we predict the next image using the
depth information. We compute the difference between the second image and respectively the
reference image, and the approximation of the second image by motion compensation. We
can observe in Fig. 5.10 that the estimated depth map leads to efficient image reconstruction,
as the motion compensated image provides a much better approximation of the second image
than the reference image. The depth information permits to reduce drastically the energy
of the prediction error, especially around the main edges in the sequence. It outlines the
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potential of our depth estimation algorithm for efficient image or 3D reconstruction.

Figure 5.8: Natural omnidirectional images from a room. Top: Catadioptric image sequence.
Bottom: Projection of the catadioptric images on a spherical surface
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Figure 5.9: Visual comparison of the estimated depth map on natural images. (Top): LK.
(Middle): the proposed TVL1-GrH. Bottom: depth map from a laser scanner.

Figure 5.10: Analysis of the estimated depth map. Top - left: First image of the catadrioptic
sequence. Top - right: Image difference I0−I1 . Bottom - left: Estimated depth map. Bottom
- right: Image difference after motion compensation.



Chapter 6

Application: The Panoptic Camera

The very efficient visual system of flying insects has provided early inspiration for the pre-
sented hardware vision system. The common fly has two faceted eyes which provide an
omnidirectional, and which ease some computer vision tasks like ego-motion and depth es-
timation. Each one of the fly faceted eye is an omnidirectional vision system composed of
several thousands of rudimentary image sensors called ommatidias [88].

Mimicking the faceted eye’s concept, in this last Chapter of the dissertation we present a
physical implementation of the Spherical Light Field Camera Model presented in Section 2.3.
We the omnidirectional camera by layering miniature CMOS image sensors over the surface
of an hemispherical structure. We name it Panoptic, after the hundred-eyes giant populating
many stories in the greek mythology 1. The camera has two distinguishable features. First
it is an omnidirectional camera, i.e., it is able to record light information from any direction
around its center. Second, each CMOS camera has a distinct focal plane; hence the whole
system implements a 4D light field sampler.

Early attempts in fabricating omnidirectional vision (with a single focal point) are based
on regular sensors capturing the image formed on a parabolic mirror [33]. Conversely, non-
omnidirectional cameras still recording plenoptic (multi focal) information have been devel-
oped for almost 10 years using a lenticular array placed above a sensor plane [2]. An alternate
solution has been proposed in [23], where a number of commercial cameras are placed in or-
bital plane, enabling the post processing reconstruction of a panoramic image used as an
omnidirectional vision turret for robotic applications. The FlyCam [32] is one of the first
attempt to construct a panorama imaging device from off-the-shelf hardware components.
Recently, two attempts in miniaturizing the omnidirectional vision system have been made,
specially using microfabrication technologies into mimicking the insect compound eye [48],
[45].

Solutions which have been proposed so far to realize omnidirectional vision suffer from
various flaws which harm their practicality and effectiveness. Most of the proposed systems
involve bulky or heterogeneous hardware, in the form of computers and/or laser-based distance
measurement systems prohibiting actual portability, three-dimensional mirrors which are very
delicate to manipulate, may cause local image distortion due to a complex and difficult to
guarantee fabrication process as well as misalignment with the imager. Alternatively, the

1The Panoptic camera is a joint work with the Microelectronic System Laboratory at EPFL, headed by
prof. Y. Leblebici. The project has been supported by the Swiss NSF under grant number 200021-125651.
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attempts to realize micrometer size omnidirectional vision mainly focus on the vision system,
where the data communication and image processing is not considered.

Building on the theory developed in the previous Chapters we describe here a solution
solving these issues is proposed by applying a system-level consideration of omnidirectional
vision acquisition and subsequent image processing.

The major design effort that is applied in the development of the Panoptic camera relates
to its inspiration from biology, and is derived into the following four working hypotheses,
namely, i) integration of the vision acquisition and processing; the unique data acquisition
system consists of identical image sensors, all of which are integrated into a compact system
whose major mechanical limits is dictated by the size of the sensors and processing electronics
and their interconnectivity; moreover, targeted applications only need data capture from the
aforementioned image sensors, i.e., excluding the usage of any additional sensor such as
distance sensor, etc. ii) scalability of the system; various incarnations of the camera are
envisioned, and the design must be scalable by construction; iii) individual cameras with low
(or limited) resolution; a Panoptic camera consisting of a large number of image sensors, each
with low resolution is the favored design, in contrast with a solution consisting of few high-
resolution image sensors; iv) real-time operation is a necessity in the image capture stage as
well as in an embedded early image processing stage.

6.1 The Panoptic Camera Configuration

The physical realization of the omnidirectional image sensor consists in the layering of CMOS
imagers on the surface of a hemisphere such that each each imager has its optical axis aligned
with the surface normal. While we consider only an hemisphere for practical reasons, all the
considerations about the design may apply to the full sphere.

6.1.1 Hemispheric Arrangement

The locations of CMOS imagers on the surface of a hemisphere respect the sampling scheme
proposed in Chapter 2. Since we deal with real sensors, in the coverage method we have
to account for the physical dimension of the camera package. Since the proposed sampling
generates positions which are approximately equally distributed on the spherical surface, the
general coverage method for one hemisphere is to assign each camera a circular face with
constant area.

In order to define the spherical coordinate of each sensor location, the hemispherical
surface of a unit sphere is divided into Nflo + 1 latitude floors. All circular faces located
on a floor have the same latitude angle. The top most floor located on the North pole
of the hemisphere only contains one circular face. The latitude angle θn of the nth floor
(0 ≤ n ≤ Nflo) is obtained from:

θn = 2nγ0, γ0 =
π

2(2Nflo+1) , (6.1)

where γ0 is the radius of the circular face on the unit sphere such that θNflo
= π

2 −γ0. Scaling
this sphere allows to match γ0 with the true (half) width of each CMOS imager.

The centers (θn, φn,j) of the circular faces located on each latitude floor are evenly posi-
tioned according to

φn,j = jΔφn, Δφn = 2π
Nn

, (6.2)
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with 0 ≤ j < Nn and Nn determined such that Δφn is greater than the longitudinal angle
occupied by one face. According to the sine formula for spherical trigonometry , this last
angle is given by 2 arcsin

( sin γ0
sin θn

)
, and for n > 0,

Nn =
⌊
π / arcsin

( sin γ0
sin θn

) ⌋
. (6.3)

Hence, the total number of centers which equals the total number of cameras in the Panoptic
device, is given by Ncam =

∑Nflo
n=0Nn. For instance, for Nflo = 0, 1, 2 and 3, Ncam = 1, 6, 15

and 29, respectively.
In the following, the face centers are labeled with a single index 0 ≤ i < Ncam, so that

each center is associated to the spherical coordinates qi = (θi, φi), with i = 0 assigned to the
North pole, and the mapping i = i(n, j) = nNn−1 + j for 0 < n ≤ Nflo and 0 ≤ j < Nn.

In the following, the face centers are labeled with a single index 0 ≤ i < Ncam, so that
each center is associated to the spherical coordinates qi = (θi, φi), with i = 0 assigned to the
North pole, and the mapping i = i(n, j) = nNn−1 + j for 0 < n ≤ Nflo and 0 ≤ j < Nn.

As an example, Figure 6.1 depicts the hemispherical structure with seven floors (Nflo = 6).
The 7-floor hemispherical structure contains Ncam = 104 circular faces.

In parallel with the spherical coordinates of the camera centers, their corresponding ex-
pression in the 3-D coordinate system (�x, �y, �z) centered on the hemisphere center is utilized,
where �z is identified with the vertical direction of the device, that is, �z points toward the
hemisphere North pole.

In this case, the 3-D coordinate �qi (distinguished by a vectorial notation) of the ith camera
center qi = (θi, φi) is given by

�ci = R (sin θi cosφi �x+ sin θi sinφi �y + cos θi �z),

where R stands for the radius of the Panoptic hemisphere.

6.1.2 Camera Orientations

Camera positions on the Panoptic device are identified with their respective camera focal
points, that is, the ith camera is centered on qi = (θi, φi).

In addition to its location, each camera ci is also characterized by three vectors: the
“target” direction �ti pointing in the camera line of sight (focus direction), the “up” direction
�ui providing the vertical direction in the pixel representation of the camera, and a vector �vi
orthogonal to the two first, that is, the horizontal direction in the pixel domain. The vectors
�ui and �vi vector form an orthogonal referential for the pixel coordinates of each camera.

Given the positioning scheme defined in Section 6.1.1, each camera ci (for 1 ≤ i < Ncam)
is oriented so that, first, the target direction is normal to the sphere surface, that is, �ti = �qi,
and second, the vectors �u and �v are aligned, respectively with the tangential vectors �eφ,i =
(�z ∧ �ci)/ sin θi and �eθ,i = �qi ∧ �eφ to the sphere at qi (with ∧ the common vectorial product
between two vectors). For the North pole camera q0, {�t0, �u0, �v0} = {�z, �x, �y} is selected.

Explicitly, considering the aforementioned placement of the cameras on the hemisphere
structure of the Panoptic device, the three unit vectors of the ith camera are obtained from⎛

⎝�ti
�ui
�vi

⎞
⎠ =

(
sin θi cosφi sin θi sinφi cos θi
− cos θi sinφi − cos θi cosφi sin θi
− sinφi cosφi 0

)⎛
⎝�x
�y
�z

⎞
⎠ . (6.4)
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Figure 6.1: Hemispherical structure with seven floors

6.1.3 Intrinsic Camera Parameters

Additional important parameters characterize the intrinsic camera properties, in addition
to the location and to the orientations of each camera in the Panoptic device. Since the
Panoptic device is made of a collection of identical imagers, these parameters are assumed to
be identical for each camera.

The main intrinsic parameters are the focal length, denoted by fL > 0, the field-of-view
(FOV) α > 0, defined as the angle formed with the optical axis of the camera, and the
resolution of the camera, that is, the size nh × nv of the pixel grid.

According to a pinhole camera model [39], the focal length controls the mapping between
light ray direction and pixel coordinates, while the FOV determines the limit angle around
its optical axis beyond which the camera is unable to record light.

6.2 Omnidirectional Vision Construction

In the following we detail the algorithmic steps that we used for the implementation of the
light field interpolation described in Chapter 2 in the proposed hardware architecture.

In the reconstruction process, the elementary operation is to find the value of the light
field L(x, ω) for a fixed position x = x̄ and for every ω in the discretized sphere Sd. The
discretization of the sphere should follow the proposed scheme in Section 2.2, but another
discretization might be chosen, e.g., the equirectangular grid described in Section ?? to ease
the display of the omnidirectional reconstruction. The direction of each light ray to inter-
polate is identified by the unit vector ω = (θω, φω) in spherical coordinates. For the sake
of simplicity, it is assumed that x̄ is localized in the hemisphere center, i.e., x̄ = 0, but the
same developments can be generalized to any other observation point. In the following this
shorthand is used L(x̄, ω) = L(ω).

The construction of the virtual omnidirectional view L(ω) ∈ R is performed in two algo-
rithmic steps.
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First Algorithmic Step Given the direction ω ∈ Sd, we have to determine the cameras
having ω in their FOV. This is done by finding all the camera index 0 ≤ i < Ncam such that:

ωti = ω̂ · �ti > cos α
2 , (6.5)

where α is the camera FOV. The angle between ω̂ and �ti is controlled to be smaller than α
2 .

After finding the contributing cameras, the next step consists in projecting the direction ω̂
on the camera plane to extract the pixel coordinates.

Using the pinhole camera model [39], the contributing two dimensional position (xui , xvi)
on the ith camera image plane (which is identified by coordinate unit vectors �ui and �vi) is
expressed as:

(xui , xvi) = − (ω̂ · �ui, ω̂ · �vi) fL
ωti

, (6.6)

where fL represents the camera focal length in (6.6).
The position (xui , xvi) on the image frame of each contributing camera is likely not to

coincide with an exact pixel location of a camera image frame. The light intensity of the
contributing position can be estimated by the light intensity of the nearest actual pixel location
to the contributing position. An alternate method consists of interpolating the value using,
e.g., bilinear interpolation.

As a final result, the first algorithmic step estimates the values L(qi, ω) for each contribut-
ing camera i satisfying (6.5).

Second Algorithmic Step After finding the intensity L(qi, ω) of all the contributing
cameras i in direction ω, the second algorithmic step to compute L(ω) is the one described
in Eq. (2.22):

L(ω) =

∑
i

g(‖qi −Rω̂‖)L(qi, ω)

∑
i

g(‖qi −Rω̂‖)
. (6.7)

6.3 Physical Realization

A custom Panoptic camera prototype was built using a classical digital machining of an
aluminum structure, and polyvinyl chloride (PVC) camera holders [4]. The location of the
cameras is based on the circular positions of the hemisphere structure shown in Figure 6.1.
The fabricated Panoptic camera is shown in Figure 6.2. The diameter of the hemisphere is
2R = 129mm. The fabricated hemisphere structure is placed over a circular printed circuit
board which provides access to embedded imagers through flexible wire connections.

The camera module utilized in the built Panoptic prototype is PixelPlus PO4010N single
chip CIF 368×304 pixels (with an effective resolution of 352×288) camera. The nominal diag-
onal, vertical and horizontal angle-of-view are equal to 72.3, 66 and 68 degrees, respectively.
Hence, α = 66π/180 is assumed. The effective focal length is fL = 1.27mm.

Other custom prototypes were built in addition to the one in Figure 6.2. The prototype in
Figure 6.3(a), that we call the Panoptic Ring camera obeys to a simplified model, consisting of
20 camera modules, arranged around the equator. Most of the experiments in Section 6.6 are
performed with this prototype, since at the moment of the writing the prototype in Figure 6.2
has only 30 populated camera positions over the 104 available, which make it not adequate
to perform certain task, such as depth map estimation or synthetic aperture photography.
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(a) (b)

Figure 6.2: (a) Side view, (b) and internal view of the fabricated Panoptic camera with
individual imagers

(a) (b)

Figure 6.3: Two additional prototypes (a) The Panoptic Ring camera, (b) The small Panop-
tic camera

In Figure 6.3(b), we show a a third prototype composed by 15 imagers connected to a
single FPGA. It has a radius of 3cm (the same dimension ping-pong ball), and it has been
used to show the first example of real-time reconstruction of an omnidirectional HD image at
25 frames per seconds on the FPGA [3].

6.4 FPGA Development Platform

This section describes some of the hardware implementation details: while we do that for
completeness, the content is quite technical and might be skipped without getting off the
track. We refer to [3, 4] for a more detailed description. The Panoptic system is designed
with the aim of having its own custom ASIC imagers with integrated intra and inter imager
signal processing features and integrated signal processing ASIC cores dedicated for omnidi-
rectional imaging and its applications. An hardware emulation platform has been designed
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Figure 6.4: (a) Architecture of the full hardware system and, (b) architecture of a concen-
trator FPGA

and developed based on Field Programmable Gate Array (FPGA) for the practice of imple-
menting, containing the Panoptic device and its applications in a real-time environment, and
qualifying it for an ASIC solution.

A FPGA based system which supports a Panoptic camera with up to 100 imagers gener-
ating 16 bit common intermediate format (i.e., CIF 352×288 pixels) images at 25 frame per
second rate is devised. This system receives an aggregate bit rate of 3.8 Gb/s.

Prior to the development of the system, a careful feasibility study has been carried out,
focusing on the system level required hardware specifications in terms of image acquisition
rate, data transmission bandwidths, image processing rate, memory bandwidth and capacity,
required level of architectural parallelism, FPGA pin count, connectivity, which conducted to
the development of a layered system architecture, shown in Fig. 6.4(a).

The system consists of four layers, i) layer A: 100 imagers with programmable resolution,
up to CIF, ii) layer B: five concentrator FPGAs, handling local image processing over 20
imagers in parallel, each, iii) layer C: one central FPGA which processes the final omnidi-
rectional image construction, based on data transmitted in parallel from the concentrators,
iv) layer D: a PC is in charge of the applicative layer consisting of displaying the operation
results transmitted from the central FPGA. The PC is not a mandatory block in the system
which is autonomous; it is only used to display results in the prototype implementation. In
the final application embedding the Panoptic camera, real time display capability or data
communication capabilities shall be provided.

6.4.1 Concentrator FPGA

An FPGA board has been designed utilizing Xilinx Virtex5 XC5VLX50-1FF1153C as the
concentrator FPGA module. Each concentrator FPGA board supports up to 20 imagers with
16 input/output lines, each. The concentrator FPGA board contains two zero bus turn around
(ZBT) SRAMs with minimum capacity to hold twenty 16-bit color images with CIF frame
size, and an operating bandwidth of 166 MHz. High-speed LVDS connections are provided
for the concentrator FPGA board as a mean for data and control signal communication with
the central FPGA module.



66 Chapter 6. Application: The Panoptic Camera

The architecture of the concentrator FPGA system is depicted in Fig. 6.4(b). The con-
centrator FPGA consists of five blocks. The arrow lines depicted in Fig. 6.4(b) demonstrate
the image data flow inside the concentrator FPGA. Image data originating from the cameras
enters the concentrator FPGA via the camera channel input block. The data transmit mul-
tiplexer block multiplexes the 20 input camera channels and passes the timed multiplexed
data to the memory controller block. The memory controller block stores the incoming image
frame data from the 20 cameras inside one of the SRAMs; at the same time it also retrieves
the previously stored images from the other SRAM and hands it over to the image process-
ing and application unit block. The SRAMs swap their role (i.e., one being written and
one being read) each time a new image frame data is fully received. The image processing
and application unit block is in charge of anticipated signal processing. In addition, some
basic functionalities such as real-time single-channel image capture, simultaneous capture of
twenty images, single-channel video display, etc are also considered for this block. The image
processing and application unit block hands over its processed image data to the data link
and control unit block. The data link and control unit block is in charge of transmitting the
processed image data to the central FPGA module and servicing the control data requests
received from the central FPGA module. To support the programmability feature of the
cameras, a camera control block is also considered. The central FPGA can access this block
through the data link and control unit block.

The concentrator FPGA functionality is categorized into two major tasks, regarding the
captured image data. One is related to the multiplexing of the camera input channels and
the other to the image processing application. Each of these operations imposes a minimum
performance limit to the concentrator FPGA. The maximum of the two is considered as the
minimum performance limit of the concentrator FPGA.

The concentrator FPGA must multiplex the incoming image data from 20 cameras. The
cameras output their image data on a per-line basis, assuming the synchronization of all the
20 cameras connected to the concentrator FPGA. The concentrator FPGA first captures the
incoming line from all the 20 cameras. While receiving the next line from the cameras, the
concentrator FPGA also transmits the multiplexed version of the received previous line to one
of the SRAMs. Thus the amount of time taken by the concentrator FPGA to transmit the
multiplexed version of the received image data lines must be equal or less than the amount of
time it takes for a single camera (assuming all the cameras to be the same) to transmit one
line of image data. In mathematical form, this is expressed as:

Ncam × nh

Ffpga
≤ Cw

Fcam
. (6.8)

In (6.8), Iw represents the frame width of the image, Ffpga the concentrator FPGA clock
frequency, Ncam the number of cameras interfaced to the concentrator FPGA, Cw the cameras
frame width and Fcam the rate at which the cameras transmit their pixel data to the outside
world. The first minimum required performance of the concentrator FPGA is obtained by
solving the inequality:

Ncam × nh

Cw
× Fcam ≤ Ffpga. (6.9)

Another performance criterion reflects the amount of time a concentrator FPGA spends
to conduct an image processing application. Irrespective of the type of the application, the
real-time feature of the system requires that the image processing time be less than or equal
to the amount of time a single camera spends to generate one full frame. The amount of time



6.5. Calibration 67

F
1

F
2

F
p

Figure 6.5: Extrinsic parameter calibration principles

needed for a typical camera to generate one full frame is obtained from the frame rate. Hence
the second performance requirement is obtained from

Tpc ≤ 1

fps
, (6.10)

where fps is the camera frame per second rate, and Tpc is the image processing application
process time. The value of Tpc is dependent on the concentrator FPGA operating clock
frequency Ffpga and the architecture designed to conduct the image processing.

6.4.2 Central FPGA

The main task devoted to the central FPGA consists of receiving data processed by the
concentrator FPGAs, apply the final image processing stage, and transfer the final results to
a PC through a USB link for displaying. The central FPGA board has been developed based
on the concentrator board architecture, thus forming a modular system. The performance
requirement of the central FPGA module depends on the rate of the processed data which
it receives from the concentrator FPGAs and the maximum local processing time (which is
essentially expressed as (6.10)) needed to conduct the final image processing stage.

6.5 Calibration

The reconstruction method described in Section 6.2, and the subsequent hardware realizations
described in the next sections assume a perfect knowledge of intrinsic camera parameters such
a FOV, lens distortion, focal length, intensity dynamics, as well as extrinsic camera parameters
including camera localizations and orientations on the surface of the hemisphere.

The fabricated Panoptic cameras shown in Figure 6.2 intrinsically minimizes errors of
extrinsic parameters as a benefit of the digital machining of a rigid aluminum structure. The
use of identical CMOS cameras in all Panoptic facets target the same goal. Nevertheless, a
good estimation of the discrepancy between the theoretical and the actual camera intrinsic
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and extrinsic configuration is mandatory. Similar consideration are valid for the Panoptic
camera in Figure 6.3(a). Although the positions on the plastic ring is known approximately,
a good calibration is needed to avoid artifacts in the output images. In the following we
will describe a calibrations method, which is an adaptation of state-of-the-art algorithms in
computer vision.

6.5.1 Intrinsic Calibration

Intrinsic camera parameters characterize the mapping between a 3-D point in the scene and
the observed 2-D position on the camera plane and are split into two classes. The first class is
dedicated to the linear homography, that is, the 3×4 camera matrix mapping of 3-D points in
(homogeneous) coordinates into 2-D (homogeneous) pixel coordinates [39]. The second class
models the non-linear mapping effects such as the lens distortion. The reader is referred to
[39] for more details of the theoretical estimation of these parameters.

For practical purposes, these parameters are extracted using the “Camera Calibration
Toolbox for Matlab” from [13]. For each camera intrinsic calibration, this toolbox uses the
vision of one flat checkerboard pattern of known size presented under different orientations.

6.5.2 Extrinsic Calibration

The toolbox [13] is also used to accurately determine the true extrinsic parameters of each
camera ci on the surface of the Panoptic sphere, which corresponds to the estimation of the
camera center qi and of the three vectors (�ti, �ui, �vi), i.e., the optical axis direction �ti and an
orthonormal base on the image plane (�ui, �vi) as described in Section 6.1.2.

The position of one camera relatively to one other can be determined, provided that both
observe the same checkerboard pattern and that their intrinsic parameters have previously
been calibrated. The intrinsic calibration of the camera matrix provides knowledge of the
mapping between the coordinate system of one camera, i.e., the one determined by the
camera focal point (origin) q and the vectors set {�t, �u,�v}, and a coordinate system defined on
the checkerboard plane. As depicted in Figure 6.5, it is for instance possible to jump from the
coordinate system of one camera F1 to that of the checkerboard plane Fp, and similarly from
F2 to Fp. Therefore, using the inverse mapping from Fp to F2, every point or vector expressed
in the coordinate system of F1 can be described in F2. A fortiori, this representation in F2 is
therefore also available for the vectors {�q1,�t1, �u1, �v1}.

The full extrinsic calibration of the Panoptic device consists of, i) arbitrarily considering
one camera coordinate system as the fundamental system (e.g., the North pole camera q0),
and ii) estimating the change of coordinate system between neighboring cameras thanks to
the simultaneous observation of checkerboard planes between pair of neighboring cameras.

In the end of the process, working by overlapping camera neighborhood, the coordinates
of the four vectors {�qi,�ti, �ui, �vi} for each camera ci are expressed in the common North pole
frame {�q0,�t0, �u0, �v0}.

6.6 Experimental Results

In this section we show few examples of the results obtained used the proposed signal pro-
cessing framework applied to the images coming from the Panoptic camera an the Panoptic
Ring camera. We briefly recall the experimental setup:
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1. Panoptic camera: 30 CMOS imagers around an hemisphere with an equivalent angular
resolution of Δθx = 0.78rad. Each imager has a resolution of 352x288 for an equivalent
angular resolution Δθω = 0.0026rad. The radius of the hemisphere is R = 6.5cm. The
hyperfocal distance of the system is dh = RΔθx

4Δθω
= 9.6m

2. Panoptic Ring camera: 20 CMOS imagers around the equator with an spatial angular
resolution of Δφx = 0.314rad. Each imager has a resolution of 352x288 for an equivalent
angular resolution Δθω = 0.0026rad. The radius of the hemisphere is R = 7cm. The
hyperfocal distance of the system is dh = RΔθx

4Δθω
= 4m

The hyperfocal distance is an indicator of the operating range of the system. We use the
same imagers for both prototypes, with identical angular resolution Δθω. Also the radius of
both systems are quite similar, they have a difference of 0.5 cm. The Panoptic Ring camera
has a small hyperfocal distance which indicates that it operates for shorter distances. This
is why we only use the Panoptic Ring during our tests on the Light Field Depth Estimation
algorithm.

During the experiments we render the images using an equirectangular grid.

Figure 6.6: Example of images acquired from the Panoptic CMOS imagers.

6.6.1 Omnidirectional Imaging

The first application we demonstrate is the reconstruction of one omnidirectional image with
single viewpoint. We choose the center the hemisphere x = 0 as focal of the systems. The
systems are both focused at the hyperfocal distance. The omnidirectional images are rendered
with the same angular resolution Δθω of the CMOS imagers. We use a narrow aperture, i.e.,
we use a narrow kernel for the interpolation.

In Figure 6.7 we show an omnidirectional reconstruction using the Panoptic camera. The
images coming from the CMOS imagers are shown in Figure 6.6. The omnidirectional image
is interpolated on the upper hemisphere, i.e., θx ∈]0, π/2]. The Panoptic Camera is calibrated
using the procedure described in Section 6.5. In Figure 6.9 we show another scenario and we
illustrate the benefits of using the automatic calibration algorithm described in Section 4.3
to refine the calibration parameters. Since we optimize the pairwise light intensities, the
automatic algorithm refines the parameters in order to have a visually pleasant result as
evident from the zoom on a detail.

In Figure 6.8 we show some frames from a video sequence acquired with the Panoptic
Ring camera. The panorama has a vertical FOV around the equator of about 0.3 rad, i.e.,
θx ∈ [π/2− 0.3, π/2 + 0.3].
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Figure 6.7: Omnidirectional reconstruction (hemispherical) of the Rolex Learning Center

6.6.2 Automatic Camera Calibration and Depth Estimation

We test the algorithms described in Chapter 4 on the ring camera. This is a fundamental
test to validate the camera model used in the thesis. We show that automatic calibration
algorithm and the Light Field Depth Estimation algorithm work without previous calibration
of the system. The Panoptic Ring camera calibration parameters are set to their nominal
values: for the external calibration we use the nominal camera positions and orientation found
during the manual placing of the cameras on ring. For the internal calibration of the cameras
we use the nominal values coming from the constructor. In Figure 6.10 we show the results
of the automatic calibration procedure. During the optimization we used a multiresolution
scheme, iterating the optimization at increasing rendering resolutions Δθω/(2

s), s = 2, 1, 0, to
avoid the minimization to be stuck on local minima. The system is focused at the hyperfocal
distance. In the reconstructions after the optimization there are no visual artifacts.

The optimized calibration parameters are then used to calculate a dense depth map of
the scene. The results are given in Figure 6.12. The Light Field Depth Estimation (LFDE)
algorithm offers a much cleaner depth map when compared to a simple WTA approach, which
justify the use of the total-variation regularization. In the same figure we show the rendered
images using the estimated depth maps: the depth map estimated with WTA produces
geometric artifacts.

Finally in Figure 6.12 we used the estimated depth map to project the rendered image
in the 3D space. We generated the mesh in a very naive way and we do not do any kind of
post-processing, so the projection look a bit clumsy, but it gives a clear indication that the
estimated depth map can give useful information on the structure of the scene.

6.6.3 Manifold Reconstruction: 3D-Stereo Panorama

The last experiment we propose is the generation of a manifold mosaic [66], i.e., the generation
of an image without a unique focal point. We choose to render a panoramic 3D-stereo image
as described in [65]. The results are shown in Figure 6.13 as an Anaglyph 3D.
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Figure 6.8: Example of panorama image sequences taken with the Panoptic Ring camera.
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Original calibration

Refined Calibration

Figure 6.9: Refinement of the Panoptic camera calibration using the automatic calibration
algorithm. Bottom: zoom on a detail. On the right the result after the calibration refinement.

Before optimization

After optimization

Figure 6.10: Effect of using the automatic calibration algorithm on the Panoptic Ring cam-
era.



6.6. Experimental Results 73

WTA

LFDE

WTA vs LFDE

Figure 6.11: Dense depth estimation using the Panoptic Ring camera. The WTA estimation
is noisy on untextured area and causes geometric artifacts in the rendered image.

Figure 6.12: 3D representation of the panoramic image using the estimated depth map.

Figure 6.13: Stereo panorama using the Panoptic Ring camera.



74 Chapter 6. Application: The Panoptic Camera



Chapter 7

Conclusions

In this thesis we design a new imaging device, which is able to capture the omnidirectional
light field. We propose a model called Spherical Light Field Camera, which captures the full
structure of light rays intersecting a sphere of finite volume in the 3D space. The camera
model comprises several perspective imagers layered around a sphere and oriented along the
surface normal. The vision system of some flying insects is a valuable source of inspiration
for the design of such a camera. The visual system of the common fly is composed indeed of
thousands of sensors, called ommatidia, placed on a spherical surface. We show that there is
a mathematical foundation for such a choice. Such a configuration minimizes the number of
parameters required to describe the omnidirectional light field.

The first achievement of the thesis consists in the analysis of the number of samples
necessary to acquire the omnidirectional light field. This solves a very practical problem: how
many cameras should we position around the sphere? What resolution should the imagers
have? In the real world these questions determine the feasibility of a physical system for
omnidirectional imaging.

The light field captured by the cameras can be readily used to reconstruct an omnidirec-
tional image of the scene. We can further see the full system as a digital spherical photographic
lens. Classic concepts in photography like depth-of-field or focus, can thus be transposed to
the formation of omnidirectional photos.

The second achievement of the thesis is the formalization of the concept of omnidirectional
light field photography. We propose a new set of graph-based tools, based on emerging
techniques in signal processing that make use of graph structures. We then embed the light
field into a graph: the light rays are the nodes of the graph, the correlation among light
rays are represented through the nodes of the graph and the process of image formation is
a diffusion process where neighboring nodes only exchange information. One of the most
important contributions here is the demonstration that classical linear filtering techniques
used in light field photography can be implemented through graph-based techniques. This
result is important for two main reasons:

1. It makes the difficult problem of filtering on manifold, e.g., the sphere, very simple and
easy to implement in custom hardware.

2. It opens a full set of new features like the implementation of non-linear photographic
lenses.

75
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The effectiveness of the proposed techniques are confirmed by experimental results. We
propose an example of a non-linear lens, based on the minimization of the total-variation of
the system, which shows an increased robustness to noise.

Our camera model has several applications, like in autonomous navigation, where an om-
nidirectional vision is of primary importance for motion stabilization and obstacle avoidance.
In such applications, it is also of fundamental importance to extract additional information
about the structure of the scene.

The third achievement of the thesis is a new framework for the extraction of dense depth
maps directly from plenoptic derivatives. The proposed algorithm uses all the available infor-
mation at the same time and works directly with light intensity measurement. It is shown to
work with synthetic and real images. We also show that the estimated depth map does not
contain geometrical artifacts in the reconstruction of images or the generation of synthetic
views. While most existing techniques could not be directly applied to our camera model, it
turns out that the proposed framework can be used in all existing multi-camera systems. On
top of that, our variational solution is designed to have low memory requirements, which is
one of the fundamental limits of current computer vision techniques. The same framework
can be easily extended to the estimation of camera motion and to the geometric calibration
of multi-camera systems, which are very important practical problems in camera networks.

Finally, we do not only propose a new camera model, we also design a real camera proto-
type called the Panoptic Camera. We implement it using miniature CMOS imagers layered
around a spherical support. The cameras are connected through a network of FPGAs. The
FPGAs collect the video streams from the cameras and process them in real time. The
physical realization of the system is made possible by the distributed nature of the proposed
algorithms; the tremendous throughput coming from the imagers could not be handled using
a centralized architecture.

Given the complexity of the problem addressed in this thesis, many theoretical and prac-
tical aspects are still open. From the theoretical point of view, better bounds on the number
of cameras needed for a correct acquisition could be found. In this thesis we used the assump-
tion that the perspective imagers have a narrow field of view, since this is what is available
with the current technology. The possibility of using larger FOV imagers would necessitate
a smaller number of sensors, which in turn would ease the task of the miniaturization of the
complete system.

Also we did not explicitly include a model of color formation inside the real imaging sensor.
We implicitly assumed that we are given different color channels and that we could process
them separately. This is in fact an oversimplification if we want to produce high quality
images with a real system. Another related aspect is the dynamic range of the acquired
photos. Most sensors quantize the acquired light using 8 bits. A very interesting problem
that needs to be addressed is the following: what is the optimal exposure pattern for the
imagers to retain a dynamic light range that is as large as possible?

Another practical open problem is the fully automatic calibration of the system. Although
our calibration algorithm shows promising results, we think that the performance could be
largely improved.

Undoubtedly there is still some work to be done before pushing a Spherical Light Field
Camera out of a research laboratory. But I look forward to the moment where I will proudly
hold my personal Panoptic in my hands.
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