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Abstract

Consensus is a fundamental and difficult problem in
fault tolerant distributed computing, and numerous consen-
sus algorithms have been published. The paper proposes
a generic consensus algorithm that highlights, through
well chosen parameters, the core mechanisms of a num-
ber of well-known consensus algorithms including Paxos,
OneThirdRule, PBFT, FaB Paxos. Interestingly, the generic
algorithm allowed us to identify a new Byzantine consen-
sus algorithm that requires n > 4b, inbetween the require-
ment n > 5b of FaB Paxos and n > 3b of PBFT (b is the
maximum number of Byzantine processes). The paper con-
tributes to identify key similarities rather than non funda-
mental differences between consensus algorithms.

1 Introduction

Consensus is a fundamental and difficult problem in fault
tolerant distributed computing. This explains the numerous
consensus algorithms that have been published, with dif-
ferent features and for different fault models. Understand-
ing these numerous algorithms could be made easier by
identifying the core mechanisms on which these algorithms
rely. This is the purpose of the paper. Identifying these
mechanisms allowed us also to derive a generic consensus
algorithm, which highlights, through well chosen parame-
ters, the core mechanisms of a number of well-known con-
sensus algorithms including Paxos [11], OneThirdRule [5],
PBFT [3] and FaB Paxos [17].

Our generic consensus algorithm assumes a partially
synchronous system model [6], the system model assumed
by the two most popular consensus algorithms, Paxos [11]
(for benign faults) and PBFT [3] (for Byzantine faults).
However, in order to improve the clarity of the algorithms
and simplify the proofs, as in [6], we consider an abstrac-

tion on top of the system model, namely the round model.
Expressing a consensus algorithm in the round model or di-
rectly in the partially synchronous system, does not change
its core mechanisms. The generic algorithm consists of
successive phases, where each phase is composed of three
rounds: a selection round, a validation round and a deci-
sion round. The validation round may be skipped by some
algorithms, which introduces a first dichotomy among con-
sensus algorithms: those that require the validation round,
and the others for which the validation round is not neces-
sary. We further subdivide the former algorithms in two,
based on the state variables required. This lead us to iden-
tify three classes of consensus algorithms: OneThirdRule
and FaB Paxos belong to class 1, Paxos to class 2 and PBFT
to class 3. Interestingly, this classification allowed us to
discover a new Byzantine consensus algorithm that requires
n > 4b (inbetween the requirement n > 5b of FaB Paxos
and n > 3b of PBFT).1

Our generic algorithm is based on four parameters: FLV
function, Validator function, threshold parameter TD , and
FLAG (FLAG = ∗ or FLAG = φ). The functions FLV
and Validator are characterized by abstract properties; TD

is defined with respect to n (number of processes), f (max-
imum number of benign faults) and b (maximum number of
Byzantine processes). We prove correctness of the generic
consensus algorithm by referring only to the abstract prop-
erties of our parameters. The correctness proof of any spe-
cific instantiated consensus algorithm consists simply in
proving that the instantiations satisfy the abstract properties
of FLV and Validator .

The paper is not the first one to propose a generic con-
sensus algorithm, but it goes significantly beyond previous
approaches. Mostéfaoui et al. [19] propose a consensus
framework restricted to benign faults, which allows unifica-
tion of leader oracle, random oracle and failure detector ora-
cle. Guerraoui and Raynal [9] propose a generic consensus

1b is the maximum number of Byzantine processes.



algorithm, where generality is encapsulated in a function
called Lambda. The Lambda function encapsulates our
selection and our validation rounds. This does not allow the
paper to identify the differences between two of our three
classes of consensus algorithms. Moreover, as for [19],
the paper is restricted to benign faults. Later, Guerrraoui
and Raynal [10] proposed a generic version of Paxos in
which communication (using shared memory, storage area
networks, message passing channels or active disks) is en-
capsulated in the Omega abstraction. The paper is also re-
stricted to benign faults. Apart from this work, several other
authors proposed abstractions related to Paxos-like proto-
cols, e.g., [14, 15, 12]. More generally, Song et al. [21] pro-
posed building blocks that allow the construction of con-
sensus algorithms. The paper considers both benign and
Byzantine faults. However, it ignores some seminal consen-
sus algorithms such as PBFT and FaB Paxos, and therefore
has a somehow limited scope.

The rest of the paper is organized as follows. Section 2
defines the consensus problem. Section 3 introduces the
system model. We derive our generic consensus algorithm
and prove its correctness in Section 4. Section 5 establishes
minimality results related to TD . In Section 6 we present
three instantiations of the FLV function that lead to the
three families of consensus algorithms. Section 7 gives ex-
amples of instantiations and Section 8 concludes the paper.

2 Consensus problem

The consensus problem is defined over a set of processes
Π, where each process p ∈ Π starts with a given initial
value, and later decides on a common value. We differ-
entiate honest processes that execute algorithms faithfully,
from Byzantine processes [13], that exhibit arbitrary behav-
ior. Honest processes can be correct or faulty. An honest
process is faulty if it eventually crashes, and is correct oth-
erwise. Among the n processes in our system, we assume
at most b Byzantine processes and at most f faulty (honest)
processes. The set of honest processes is denoted byH and
the set of correct processes by C.

The consensus problem is formally specified by the fol-
lowing properties:

• Agreement: No two honest processes decide differently;
• Termination: All correct processes eventually decide;
• Validity: If all processes are honest and if an honest pro-
cess decides v, then v is the initial value of some process;
• Unanimity [21]: If all honest processes have the same ini-
tial value v and an honest process decides, then it decides v.
Unanimity (which extends validity) is optional, and only
makes sense with Byzantine processes

It is useful to classify properties of a system into two cat-
egories: safety properties and liveness properties. Roughly
speaking, a safety property stipulates that ”nothing bad”

will ever happen; a liveness property stipulates that ”some-
thing good” will eventually happen. More precisely, a
safety property is a property whose violation can be ob-
served by looking only at the prefix of an execution (i.e.,
by looking only at an execution up to a certain time). This
is not the case for a liveness property. Agreement, validity
and unanimity are safety properties, while termination is a
liveness property.

3 System model

When solving consensus, one important parameter is the
degree of synchrony of the system. The two main models
considered in distributed computing are: the synchronous
system model and the asynchronous system model. In a
synchronous system model there is (1) a known bound ∆
on the transmission delay of messages, and (2) a known
bound Φ on the relative speed of processes. On the other
hand, in an asynchronous system there is no bound on the
transmission delay of messages and no bound on the rela-
tive speed of processes. This typically models a system with
unpredictable load on the network and on the CPU.

Unfortunately, consensus is impossible to solve with a
deterministic algorithm2 in an asynchronous system even
if only single process may crash [7]. Although it is pos-
sible to solve consensus in the synchronous system model
with Byzantine processes, it is not considered as a good
idea from a practical point of view. The reason is that the
synchronous system model requires to be pessimistic when
defining the bounds on message transmission delays (and
process relative speeds). Pessimistic bounds have negative
impact on the performance of consensus algorithms.

Therefore, Lynch, Dwork and Stockmayer proposed the
partially synchronous system model [6] that lies between a
synchronous system and an asynchronous system. Roughly
speaking, a partially synchronous system is initially asyn-
chronous and eventually becomes synchronous. The par-
tially synchronous system model distinguishes partial syn-
chrony for processes and partial synchrony for communica-
tion. It is possible to solve consensus in the partially syn-
chronous system model in the presence of Byzantine faulty
processes, and contrary to the synchronous system model,
the partially synchronous system model does not require be-
ing too pessimistic when defining the bounds on message
transmission delays and process relative speeds 3. Unless
stated otherwise, in the rest of the paper we consider the
partially synchronous system model. More precisely, we
consider a variant of a partially synchronous system model

2A deterministic algorithm is an algorithm that does not use random-
ization (random number generation).

3In one variant of the partially synchronous system model, upper
bounds on message delays and process relative speeds exist, but depend
on the run.



where we assume that the system alternates between good
periods (during which the system is synchronous) and bad
periods (during which the system is asynchronous).

3.1 Basic Round Model

As in [6], we consider an abstraction on top of the system
model, namely a basic round model. Using this abstraction
rather than the raw system model improves the clarity of
the algorithms and simplifies the proofs. In the basic round
model, distributed algorithms are expressed as a sequence
of rounds. Each round r consists of a sending step, a receive
step, and a state transition step:

1. In the sending step of round r, each process p sends
a message to each process according to a “sending”
function Srp .4

2. In the receive step of round r, each process q receives
subset of all messages sent (it can be the empty set) in
round r; messages received by process p in round r are
denoted by ~µrp (~µrp[q] is the message received from q).
The receive step is implicit, i.e., it does not appear in
the algorithm.

3. In the state transition step of round r (that takes place
at the end of round r), each process p computes a new
state according to a “transition” function T rp that takes
as input the vector of messages it received at round r
and its current state.

Note that this implies that a message sent in round r can
only be received in round r (rounds are closed).

In every round of the basic round model, if an honest
process sends v, then every honest process receives v or
nothing. This can formally be expressed by the following
predicate (⊥ represents no message reception, int stands
for integrity):

Pint(r) ≡ ∀p, q ∈ H : (~µrp[q] = Srq (srq) ) ∨ (~µrp[q] = ⊥)

The state of process p in round r is denoted by srp; the
message sent by an honest5 process is denoted by Srp(srp).
We will refer to some field fld of a messagem usingm.fld
notation.

3.2 Characterizing a good period

During a bad period, except Pint, no guarantees on the
messages a process receives can be provided: it can even
happen that no messages at all are received. During a good
period it is possible to ensure, for all rounds r in the good

4Without loss of generality, the same message is sent to all.
5Note that referring to the state of a Byzantine process does not make

sense.

period, that all messages sent in round r by a correct process
are received in round r by all correct processes. This is
formally expressed by the following predicate:

Pgood(r) ≡ ∀p, q ∈ C : ~µrp[q] = Srq (srq)

The reader can find in [6] the implementation of rounds
that satisfy Pgood during a good period in the presence of
Byzantine processes.

During good periods of our partially synchronous sys-
tem, we can ensure instead of Pgood , the stronger predicate
Pcons (cons stands for consistency). The predicate Pcons
additionally ensures that each correct process receives the
same set of messages:

Pcons(r) ≡ Pgood(r) ∧ ∀p, q ∈ C : ~µrp = ~µrq

In the benign fault model (i.e., b = 0), this predicate
can be implemented using the implementation of Pgood de-
scribed in [6] if we assume that no crash occurs in good
periods. In the Byzantine fault model (i.e., b 6= 0), sev-
eral implementations of Pcons have been proposed [18],
for Byzantine faults and authenticated Byzantine faults.
The two (coordinator-based) implementations have differ-
ent costs: the latter requires two micro-rounds, the former
three micro-rounds. Interestingly, there is also a decentral-
ized (i.e., coordinator-free) implementation of Pcons for the
Byzantine fault model that requires b+ 1 micro-rounds [1].

A phase is a sequence of rounds. We define a good phase
of k rounds as a phase such that Pcons holds in the first
round, and Pgood holds in the remaining k − 1 rounds.

4 Deriving a generic consensus algorithm

The goal of this section is understanding what are
the core mechanisms (sometimes also called ”building
blocks” [21]) present in existing consensus algorithms.
Identifying these mechanisms and properties they provide
will allow us to derive a generic consensus algorithm.

4.1 Very simple consensus algorithm

We start our quest for a generic consensus algorithm with
a very simple consensus algorithm (code shown as Algo-
rithm 1). Algorithm 1 consists of a single round in which
each process collects initial values from all processes, then
applies a deterministic function to choose some value v
(line 5) and then decides on v. The notation #(v) is used to
denote the number of messages received with value v, i.e.,
#(v) ≡

∣∣{q ∈ Π : ~µrp[q] = v
}∣∣.

Theorem 1. Algorithm 1 solves consensus if n > 2b + f ,
and if in addition Pcons(1) holds.



Algorithm 1 Very simple consensus algorithm
1: Round r = 1:
2: Sr

p :
3: send 〈initp〉 to all

4: T r
p :

5: v ← min
{
v :6 ∃v′ ∈ V s.t. #(v′) > #(v)

}
6: DECIDE v

Proof. Termination and Validity trivially holds. Agreement
holds from Pcons(1) and the fact that all processes choose
the decision values using the deterministic min function at
line 5. We now prove that Unanimity also holds.

We assume that initial value of all honest processes is v.
The proof is by contradiction. We assume by contradiction
that there is an honest process p that decides v′ 6= v. There-
fore, v′ is the smallest most frequent value received by p in
round 1 at line 5. By Pcons(1), process p receives at least
n − b − f messages equal to v in round 1. Furthermore,
since there are at most b Byzantine processes, p received at
most b messages equal to v′. Since n > 2b + f , p received
more than b messages equal to v, and at most b messages
equal to v′. Therefore, the value selected at line 5 is v and
p decided v. A contradiction.

4.2 Generic Algorithm: Draft 1

Algorithm 1 is not correct in the partially synchronous
system model because Pcons() cannot be ensured from the
beginning. To remedy this, a consensus protocol has to
invoke multiple instances of a sub-protocol. Such sub-
protocols have been called rounds, phases, views or bal-
lots. In this paper, we use the term phase, where a phase
itself consists of rounds. Using this terminology, we can
say that Algorithm 1 consists of a single phase with a single
round. In the partially synchronous system model, algo-
rithms consist of a sequence of phases, where each phase
contains some fixed number of rounds.

Having multiple phases requires additional mechanisms
compared to Algorithm 1:

(i) A mechanism to detect that a decision is possible in
a given phase. Clearly, this mechanism must ensure
that two honest processes that decides in a given phase,
decide the same value.

(ii) A mechanism to ensure consistency among decisions
made by honest processes in different phases.

(iii) A mechanism to ensure that all correct processes even-
tually decide.

Concerning (i), we introduce the notion of decision quo-
rum captured by parameter TD . The parameter TD defines
the number of identical votes required to decide. More pre-
cisely, once a process p observes that TD processes (deci-

sion quorum) have voted for value v, then it can decide on
v. There are some obvious restrictions on the value of TD :

• To ensure unanimity, TD > b, i.e., a decision quorum
must contain at least one honest process.

• To ensure termination, the votes of faulty (honest) and
Byzantine processes must not be required to decide.
Hence, TD ≤ n− b− f .

Concerning (ii), we introduce the notion of locked value6

and the function FLV (~µrp) (stands for ”F ind the Locked
V alue”) used to retrieve locked value (if there is some) in a
set of messages received.7 A value v is locked in round r if:

1. An honest process has decided v in round r′ < r, or

2. All honest processes have the same initial value v.

Item 2 is meaningful only if unanimity has to be ensured,
or if all processes are honest. In all other cases, item 2 can
be ignored. From this definition it follows that, if v is locked
in the context of a consensus algorithm then the configura-
tion is v-valent. However, the opposite is not true (e.g., if
a configuration is v-valent in round r, and the first honest
process p decides v in round r′ ≥ r, then v is not locked in
round r, but only in round r′ + 1 > r).

The basic idea for ensuring agreement among different
phases is the following. If some value v is locked in round r,
then any honest process p that updates its variable votep8 in
round r, can only, thanks to the function FLV (~µrp), update
it to v. In addition to normal values, the function FLV may
return the following special values:

• ? if no value is locked, i.e., any value can be assigned
to votep

• null if no enough information is provided to FLV
through ~µrp

The FLV (~µrp) function is defined by the following three
properties:

• FLV -validity: If all processes are honest and
FLV (~µrp) returns v such that v 6= ? and v 6= null,
then ∃ process q such that v = ~µrp[q].vote.

• FLV -agreement: If value v is locked in round r, only
v or null can be returned.

• FLV -liveness: If ∀q ∈ C : ~µrp[q] 6= ⊥, then null
cannot be returned.

6The definition of locked value in some other works differs from our
definition.

7FLV is not really a function. It is rather a problem defined by prop-
erties. However, calling it a function is more intuitive.

8Variable votep is p’s estimate of the decision value.



FLV -validity and FLV -agreement are for safety, while
FLV -liveness is for liveness. Note that, as FLV is used
to find the locked value, its instantiations depend on the TD

parameter (since TD defines when a value becomes locked).
We discuss the relations between TD and FLV instantia-
tions in Section 5.

Starting from Algorithm 1 and using parameters TD and
FLV (~µrp), we obtain a first draft of our generic consensus
algorithm, see Algorithm 2. Algorithm 2 consists of a se-
quence of phases that can be seen as successive trials to
decide on a value. Each phase φ consists of two rounds, re-
spectively called selection round (r = 2φ− 1) and decision
round (r = 2φ).

Algorithm 2 Generic Algorithm – Draft 1 (boxes represent
parameters)
1: Initialization:
2: votep := initp /* value considered for consensus */

3: Selection Round r = 2φ− 1:
4: Sr

p :
5: send 〈votep〉 to all
6: T r

p :

7: selectp ← FLV (~µ
r
p)

8: if selectp = ? then
9: selectp ← choose deterministically a value among the votes received
10: if selectp 6= null then
11: votep ← selectp

12: Decision Round r = 2φ:
13: Sr

p :
14: send 〈votep〉 to all

15: T r
p :

16: if received at least TD messages with the same vote 〈v〉 then
17: DECIDE v

The selection round (r = 2φ−1) selects a value that will
be considered for the decision. Each process p first sends its
state (votep) to all processes. Based on the set of messages
received, each honest process selects a value. If any value
can be selected (i.e., FLV (~µrp) returns ?), the selected value
is deterministically chosen among ~µrp. If FLV (~µrp) returns
neither ? nor null, then the returned value is selected. If
FLV (~µrp) returns null, then votep is not updated.

The decision round (r = 2φ) determines the conditions
that must hold for a process to decide. Each process starts
by sending its vote to all processes. A process then decides
if it receives a threshold number TD of identical votes. To
ensure agreement we require TD > n+b

2 , so that two honest
processes that decide in the same phase decide the same
value.

In order to guarantee that all correct processes eventu-
ally decide we rely on the notion of good phase (Sect. 3.2).
A good phase ensures that all correct processes receive the
same set of messages in the selection round, and therefore
select the same value.9 Since all correct processes update

9FLV -liveness ensures that the selected value cannot be null.

vote to the same value, they all decide in the decision round
of the good phase.

4.3 Generic Algorithm: Draft 2

With Draft 2 we manage to reduce TD . Remember that
TD ≤ n − b − f , i.e., n ≥ TD + b + f , which means that
a smaller TD leads to a smaller n.

In the decision round of Draft 1 (Algorithm 2), the votes
sent by honest processes can be different. Therefore, to pre-
vent two honest processes from deciding different values
in the same phase, we must have TD > n+b

2 . This con-
dition can be relaxed if honest processes would vote for at
most one value in a phase—the validated vote. In this case,
TD > b is enough, since it ensures that the decision quorum
contains at least one honest process.

To ensure that honest processes vote for at most one
value in a phase, we need to add one more round to Al-
gorithm 2 — the validation round — and to introduce the
timestamp variable tsp. For every process p, the timestamp
tsp represents the most recent phase in which the vote of
process p (votep) has been validated in the validation round.
The second draft of our generic algorithm is presented as
Algorithm 3.

The validation round is executed as follows. Each pro-
cess p first sends the value selected in the selection round
(selectp), if non-null. Based on the set of messages re-
ceived, each process tries to determine a validated value v.
If it observes that a majority of honest processes (i.e., more
than n+b

2 ) have selected the same value v, then votep is set
to v and tsp is updated to the current phase number φ. This
mechanism ensures that all honest processes that validate
some value v in phase φ, consider the same value.

Introducing the validation round and the timestamp vari-
able requires changes in the decision and the selection
rounds. In the decision round we need to distinguish two
cases: (i) honest processes vote for at most one value
(thanks to the validation round), and (ii) honest processes
can vote for different values (no validation round). We in-
troduce the parameter FLAG to distinguish between these
two cases. In case (i) FLAG is an integer (the current phase
number); in case (ii) FLAG is the special wildcard value ∗.
In line 29, if FLAG = ∗ then all votes are taken into ac-
count, and the validation round is not needed. Otherwise,
FLAG = φ (current phase number), and only the votes
with tsp = φ are taken into account.

The votep and tsp variables are not only used within one
phase, but also between phases, in order to ensure that if
one honest process decides v in phase φ, honest processes
select v in the selection round of phase φ + 1. In the con-
text of Byzantine faults, we need a mechanism to prove
that some value v may have been validated in some previ-
ous phase (to filter out invalid votes sent by Byzantine pro-



Algorithm 3 Generic Algorithm – Draft 2 (boxes represent
parameters)
1: Initialization:
2: votep := initp ∈ V /* value considered for consensus */
3: tsp := 0 /* last phase in which votep has been validated */
4: historyp := {(initp, 0)} /* updates to the variable votep */

5: Selection Round r = 3φ− 2:
6: Sr

p :
7: send 〈votep, tsp, historyp〉 to all
8: T r

p :

9: selectp ← FLV (~µ
r
p)

10: if selectp = ? then
11: selectp ← choose deterministically a value among the votes received

12: if selectp 6= null then
13: votep ← selectp
14: historyp ← historyp ∪ {(votep, φ)}

15: Validation Round r = 3φ− 1: /* executed only if FLAG = φ */
16: Sr

p :

17: if selectp 6= null then
18: send 〈votep〉 to all
19: T r

p :

20: if there is a value v such that |
{
q ∈ Π:~µr

p[q] = 〈v〉
}
| > n+b

2 then
21: votep ← v
22: tsp ← φ
23: else
24: votep ← v such that (v, tsp) ∈ historyp /* revert the value of

votep to ensure consistency with tsp */

25: Decision Round r = 3φ:
26: Sr

p :
27: send 〈votep, tsp〉 to all

28: T r
p :

29: if received at least TD messages with the same value 〈v, FLAG 〉
then

30: DECIDE v

cesses). The mechanism is based on an additional variable
historyp, which is a list of pairs (v, φ): each pair denotes
that vote has been set to v in the selection round of phase
φ, i.e., that value v may have been validated in phase φ.10

Variable history is sent together with vote and ts in the
selection round, where it is used by the FLV function: a
pair (vote, ts) is considered valid if at least b+ 1 processes
sent it in their history variable.11 In the context of (only)
benign faults, variable history can be ignored.

4.4 Generic Algorithm: final version

In Algorithm 3 in every round all processes send mes-
sages to all processes. This can be avoided by introducing
the notion of validator. Validators are processes that have
a special role in the validation round. The intuition is the
following: instead of all processes being involved in the se-
lection of a validated vote, this task is devoted to a subset

10The size of variable historyp is unbounded. Bounding the size of the
variable historyp requires an additional round of communication [2].

11Another solution is to rely on authentication, i.e., to consider authen-
ticated Byzantine fault model.

of processes called validators. The question is how to se-
lect the validators. We express this through the function
Validator(p, φ)12 that returns a set of processes S ⊆ Π
representing the validators for process p in phase φ. Note
that in the benign fault model, Validator(p, φ) can be one
single process, namely the leader process or the process se-
lected by the rotating coordinator paradigm.

Validator(p, φ) is defined by the following three prop-
erties:

• Validator -validity:
If |Validator(p, φ)| > 0 then |Validator(p, φ)| > b.

• Validator -agreement:
∀p, q ∈ H and ∀φ, if |Validator(p, φ)| > 0
and |Validator(q, φ)| > 0, then Validator(p, φ) =
Validator(q, φ).

• Validator -liveness:
There exists a good phase φ0 such that:
∀p ∈ C : |Validator(p, φ0) ∩ C| > |Validator(p,φ0)|+b

2 .

Introducing Validator(p, φ) leads to Algorithm 4. In
the validation round, only validators send messages. Line
20 matches line 20 of Algorithm 3. Specifically, expression
|validatorsp|+b

2 of Algorithm 4 (majority of honest processes
among validators) matches expression n+b

2 of Algorithm 4
(majority of honest processes among all processes). If p ob-
serves that a majority of honest validators have selected the
same value v, then v is a validated value, and p sets votep to
v, and updates its timestamp tsp to φ. Otherwise, the vote
is reverted to the value corresponding to tsp (line 24).13

4.5 Correctness of the Generic Algorithm

We now prove that the generic algorithm (Algorithm 4)
solves consensus. Our proof is based on two lemmas.

Lemma 1. If Validator -validity holds, then the follow-
ing property holds on every honest process h and in every
phase φ: if process h set voteh to v and tsh to φ at lines 21-
22, then at least one honest process has sent 〈v〉 at line 18.

Proof. Assume that a process h set voteh to v and tsh to φ
at lines 21-22. Therefore, Validator(h, φ) is non empty
at line 20 in phase φ. By Validator -validity, we have
|Validator(h, φ)| > b and |Validator(h,φ)|+b

2 > b. There-
fore, condition at line 20 can only be true for v if an honest
process has sent 〈v〉 at line 18.

12As for FLV , Validator is not really a function. It is rather a problem
defined by properties. However, calling it a function is somehow more
intuitive.

13Line 24 is not mandatory, but it allows us to simplify the instantiation
of function FLV (~µrp).



Algorithm 4 Generic Algorithm (boxes represent parameters)
1: Initialization:
2: votep := initp /* value considered for consensus */
3: tsp := 0 /* last phase in which votep has been validated */
4: historyp := {(initp, 0)} /* updates to the variable votep */

5: Selection Round r = 3φ− 2: /* round in which Pcons must eventually hold */
6: Sr

p :
7: send 〈votep, tsp, historyp〉 to all
8: T r

p :

9: selectp ← FLV (~µ
r
p)

10: if selectp = ? then
11: selectp ← choose deterministically a value among the votes received

12: if selectp 6= null then
13: votep ← selectp
14: historyp ← historyp ∪ {(votep, φ)}

15: Validation Round r = 3φ− 1: /* executed only if FLAG = φ; round in which Pgood must eventually hold */
16: Sr

p :

17: if p ∈ Validator(p, φ) and selectp 6= null then

18: send 〈selectp〉 to all
19: T r

p :

20: if there is a value v such that |
{
q ∈ Validator(p, φ) :~µr

p[q] = 〈v〉
}
| >

| Validator(p, φ) |+b

2 then
21: votep ← v
22: tsp ← φ
23: else
24: votep ← v such that (v, tsp) ∈ historyp /* revert the value of votep to ensure consistency with tsp */

25: Decision Round r = 3φ: /* round in which Pgood must eventually hold */
26: Sr

p :
27: send 〈votep, tsp〉 to all

28: T r
p :

29: if received at least TD messages with the same value 〈v, FLAG 〉 then
30: DECIDE v

Lemma 2. In every phase φ, if (i) Validator -validity and
Validator -agreement hold, (ii) an honest process p updates
votep to v and tsp to φ, and (iii) another honest process q
updates voteq to v′ and tsq to φ (lines 21-22), then v = v′.

Proof. Assume for a contradiction that in some phase φ0

two honest processes p and q have respectively votep = v
and tsp = φ0, and voteq = v′ and tsq = φ0. This
means that in round 3φ0 − 1 at least x − b honest pro-
cesses (x > |Validator(p,φ0)|+b

2 ) send message 〈v,−〉 and
at least y − b honest processes (y > |Validator(q,φ0)|+b

2 )
send message 〈v′,−〉. By Validator -agreement we have
that Validator(p, φ0) = Validator(q, φ0). Therefore,
x − b + y − b > |Validator(p, φ0)| − b. By Validator -
validity, it follows that at least one honest process h sent
〈v,−〉 to one process and 〈v′,−〉 to another process. A con-
tradiction with the fact that h is an honest process.

Theorem 2. If (i) function FLV (~µrp) satisfies FLV -validity
and FLV -agreement, (ii) function Validator(p, φ) satis-
fies Validator -validity and Validator -agreement, (iii-a)
FLAG = φ and TD > b or (iii-b) FLAG = ∗ and

TD > n+b
2 , then Algorithm 4 ensures validity, unanimity

and agreement.
Termination holds if (iv) TD ≤ n − b − f , (v) function

FLV (~µrp) satisfies FLV -liveness, and (vi) there is a good
phase φ0 in which Validator -liveness holds.

Proof:
(a) Agreement: Assume for a contradiction that process

p decides v in round r = 3φ, and process p′ decides v′ 6= v
in round r′ = 3φ′. We consider the following two cases for
line 29: FLAG = ∗ and FLAG = φ.

FLAG = ∗: This means that at least TD processes (at
least TD− b honest) sent 〈v, 〉 in round r = 3φ, and at least
TD processes (at least TD − b honest) sent 〈v′, 〉 in round
r′ = 3φ′ (*). We have two cases to consider: φ = φ′ and
φ > φ′.
• φ = φ′: By (*), TD − b honest processes sent 〈v, 〉 and
TD − b honest processes sent 〈v′, 〉 in round r = 3φ. From
(iii-b), (TD−b)+(TD−b) > n−b. It follows that one hon-
est process h sent 〈v, 〉 to one process and 〈v′, 〉 to another
process. A contradiction with the fact that h is an honest
process.
• φ′ > φ: Let φ′ be the smallest phase > φ in which



some honest process decides v′ 6= v. By definition of a
locked value, v is locked in all phases > φ. Together with
the FLV -agreement property, no honest process updates its
vote with a value v̂ 6= v in the selection round of a phase
> φ. Since there is no validation round (i.e., FLAG = ∗),
no honest process updates its vote with a value v̂ 6= v af-
ter phase φ. Together with (*), TD − b honest processes
sent 〈v, 〉, and TD − b honest processes sent 〈v′, 〉 in round
r′ = 3φ′. From (iii-b), (TD − b) + (TD − b) > n − b. It
follows that one honest process h sent 〈v, 〉 to one process
and 〈v′, 〉 to another process. A contradiction with the fact
that h is an honest process.

FLAG = φ: This means that at least TD processes (at
least TD−b honest) sent 〈v, φ〉 in round r = 3φ, and at least
TD processes (at least TD − b honest) sent 〈v′, φ′〉 in round
r′ = 3φ′ (**). We have two cases to consider: φ = φ′ and
φ > φ′.
• φ = φ′: By (**), TD − b honest processes sent 〈v, φ〉 and
TD − b honest processes sent 〈v′, φ〉. From (iii-a), there is
an honest process h that validates v (set voteh to v and tsh
to φ) and an honest process h′ that validates v′ (set voteh′
to v′ and tsh′ to φ) at lines 21-22 of round r̂ = 3φ − 1. A
contradiction with Lemma 2 and (ii).
• φ′ > φ: Let φ′ be the smallest phase > φ in which some
honest process decides v′ 6= v. By definition of a locked
value, v is locked in all phases > φ. By (**), TD − b hon-
est processes sent 〈v′, φ〉. From (iii-a), there is an honest
process h that validates v′ (set voteh′ to v′ and tsh′ to φ) at
lines 21-22 of round r̂′ = 3φ′ − 1. By (ii) and Lemma 1,
there is an honest process h′ that sent 〈v′,−〉 at line 18.
Therefore, the function FLV (~µrp) returns v′ or ? at line 9
on process h′. A contradiction with the FLV -agreement
property and the fact that v is locked.

(b) Validity: Follows from the FLV -validity property
and the assumption that all processes are honest.

(c) Unanimity: Unanimity follows from Lemma 1 to-
gether with (ii), the FLV -agreement property, (iii-a) and
(iii-b).

(d) Termination: Let φ0 be the good phase in which
Validator -liveness holds. By Pcons(3φ0 − 2), all correct
processes receive the same set of messages in round 3φ0−2
and therefore select the same value. By FLV -liveness and
Pcons(3φ0 − 2), the value selected cannot be null. Thus,
at the end of round r = 3φ0 − 2, all correct processes have
the same value for selectp, and votep (***). Let denote this
value with v. We have two cases to consider: FLAG = ∗
and FLAG = φ.

FLAG = ∗: The validation 3φ0 − 1 round is skipped.
Together with (***), all correct processes send the same
message 〈v,−〉 at line 27. By Pgood(3φ0) and (iv), all cor-
rect processes receives at least TD messages 〈v,−〉 in round

r = 3φ0, and therefore decide.

FLAG = φ: Let us call validator any process that
is in a set Validator(p, φ0) where p is a correct process.
By Validator -liveness and Validator -agreement, all cor-
rect processes p consider the same set Validator(p, φ0) at
line 20. By Validator -liveness, the set Validator(p, φ0)

contains more than |Validator(p,φ0)|+b
2 correct processes

(****). Since FLAG = φ, the validation round 3φ0 − 1
is executed. Together with (****), Pgood(3φ0 − 1) and
lines 20-22, all correct processes update votep to v and tsp
to φ0. By Pgood(3φ0) and (iv), all correct processes re-
ceives at least TD messages 〈v, φ0〉 in round r = 3φ0, and
therefore decide. �

4.6 Optimizations

We point out here several simple optimizations of Algo-
rithm 4, to which we will refer later when discussing instan-
tiations of our generic algorithm.

(i) If FLAG = φ, processes in the selection round
can send their message only to the processes in the
Validator set (instead to all processes).

(ii) The selection round can be suppressed in the first
phase. As a consequence, if FLAG = ∗ then a de-
cision is possible in one round if all correct processes
have the same initial value and Pgood holds in the
first round. If FLAG = φ, suppressing the selection
round in the first phase requires to initialize the vari-
able selectedp to initp.14

(iii) If Unanimity is not considered, then the selection
round of the first phase can be simplified by hav-
ing a predetermined process (an initial coordinator)
that sends its initial value to all processes. Processes
set selectedp to the received value without executing
the FLV (~µrp) function. If the initial coordinator is a
correct process, then all correct processes might set
selectedp to the same value, and a decision in possible
in the first phase.

(iv) The functionality of the decision round of phase φ and
of the selection round of phase φ + 1 can be provided
in one single round.

5 Minimality results related to TD

This section states two minimality results related to TD .
Theorem 3 establishes the necessity of TD > n+3b+f

2 when

14Note that it is safe to select initp at the first round for the following
reason. If no value is initially locked, then any value may be selected by
honest process. If some value v is initially locked, then by definition all
honest processes have initp = v, and all honest processes select v.



FLAG = ∗. Theorem 4 establishes the necessity of TD >
2b+ f when FLAG = φ.

To simplify the proofs, we consider here the binary con-
sensus problem. Furthermore, we introduce several new no-
tations; a message 〈v, 0, {(v, 0)}〉 sent when the local vote
0 has never been updated, neither validated, is denoted by
mv; a message 〈v, 0, {(v, 0), (v′, 1)}〉 sent when the local
vote has been updated only once, but has never been vali-
dated, is denoted by mv,v′ . Finally, the sign ∗ means 0 or
1. Therefore, m∗ denotes any message sent when the local
vote has never been updated, neither validated.

Theorem 3. If FLAG = ∗, then there is no function imple-
menting FLV (~µrp) with TD ≤ n+3b+f

2 .

Proof. The proof is by contradiction and is based on the
construction of three different runs. Assume that there is a
function implementing FLV (~µrp) with TD ≤ n+3b+f

2 and
FLAG = ∗.

Let run R be such that (1) a set Π0 of TD − 2b − f
correct processes and f faulty (but honest) processes have
initial value 0, and (2) a set Π1 of n− TD + b correct pro-
cesses have initial value 1. Imagine that in the first three
rounds all messages are lost. Then, assume that in selection
round r = 4, a correct process p ∈ Π1 receives all mes-
sages sent by correct processes, while all other messages
are lost. By the FLV -liveness property, the value returned
on p by FLV (~µrp) is not null. Therefore, if FLV (~µrp) con-
siders TD −2b−f messages m0 and n−TD + b messages
m1, it cannot return null (*).

Let us now consider run R′ in which (1) a set Π0 of
TD − b− f correct processes and the f faulty (but honest)
processes have initial value 0, and (2) a set Π1 of n − TD

correct processes have initial value 1. Assume that in the
first two rounds, all messages are lost. Imagine that in de-
cision round r = 3, a correct process q ∈ Π0 receives TD

messages m0 from all correct processes in the Π0, all f
faulty processes and all Byzantine processes, while all other
messages are lost. Therefore, process q decides 0 in round
r = 3, and 0 is locked in r > 3 (**). Then, consider that
in selection round r = 4, a correct process p ∈ Π1 re-
ceives (1) TD − 2b − f messages m0 from processes in
Π0 (excluding q), and (2) n − TD + b messages m1 from
all processes in Π1 and all b Byzantine processes. Thus, by
property (*), FLV (~µrp) cannot return null on p. By (**) and
the FLV -agreement property, it can only return 0. There-
fore, if FLV (~µrp) considers TD − 2b− f messages m0 and
n− TD + b messages m1, it returns 0 (***).

Let us now consider run R′′ in which (1) a set Π0 of
TD − 3b − f correct processes have initial value 0, and
(2) a set Π1 of n − TD + 2b correct processes and the f
faulty (but honest) processes have initial value 1. Assume
that in the first two rounds, all messages are lost. Imagine
that in decision round r = 3, a correct process q′ ∈ Π1

receives a message m1 from all processes in the set Π1, all
f faulty processes and all Byzantine processes, while all
other messages are lost. Because TD < n+3b+f

2 , we have
that |Π1| + b = n − TD + 3b + f ≥ TD . Therefore, pro-
cess q′ decides 1 in round r = 3, and 1 is locked in r > 3
(****). Then, consider that in selection round r = 4, a cor-
rect process p ∈ Π1 receives (1) TD − 2b− f messages m0

from processes in Π0 and all b Byzantine processes, and
(2) n − TD + b messages m1 from processes in Π1 (ex-
cluding q′). Thus, by property (***), FLV (~µrp) must return
0 on p. A contradiction with the FLV -agreement property
and (****).

Theorem 4. If FLAG = φ, then there is no function im-
plementing FLV (~µrp) with TD ≤ 2b+ f .

Proof. The proof is by contradiction and is based on the
construction of three runs. Consider any deterministic func-
tion for line 11 of Algorithm 4 and an instantiation of
Validator function that always return the whole set of pro-
cesses Π. Let us denote by X the threshold such that
n−2f−b

2 < X < n−b
2 . Assume that there is a function

implementing FLV (~µrp) with TD ≤ 2b+ f .
Consider a run R where at the end of the first selec-

tion round r = 1, (1) X correct processes select 0, and (2)
n − b − f −X correct processes select 1. Imagine that all
messages are lost in the second and third round. Then, as-
sume that all messages from correct processes are received
by a process p in round r = 4 (selection round of phase
φ = 2). By the FLV -liveness property, the value returned
on p by FLV (~µrp) is not null. Therefore, if FLV (~µrp) con-
siders X messages m∗,0 and n− b−f −X messages m∗,1,
it cannot return null (*).

Consider a run R′ that is initially the same as run R.
Furthermore, assume that at the end of the first selection
round r = 1, (1) X correct processes and all faulty (but
honest) processes select 0, and (2) n − b − f − X correct
processes select 1. In validation round r = 2, only b correct
processes (that selected 0) and f faulty processes receive
X+f+bmessages equal to 0 (fromX correct and f faulty
(but honest) processes that selected 0 and b from Byzantine
processes). All other messages are lost.

Since n−2f−b
2 < X , we have X + f + b > n+b

2 , i.e., b
correct processes and the f faulty processes validate value
0. Other honest processes does not validate any value since
they haven’t received any message. In decision round r =
3, consider that a correct process q receives a validated vote
0 from the b correct processes, the f faulty processes and
the b Byzantine processes. Therefore, process q decides 0,
which means that 0 is locked in r > 3 (**). In selection
round r = 4, assume that a correct process p receives (1)
X − b messages m∗,0 from the correct processes that select
0 in round r = 1 but do not validate 0 in round r = 2,
(2) b messages m∗,0 from the Byzantine processes, and (3)



n − b − f − X messages m∗,1 from the correct processes
that select 0 in round r = 1. By (*), (**) and the FLV -
agreement property, the function FLV (~µrp) returns 0. Thus,
if FLV (~µrp) considers X messages m∗,0 and n− b−f −X
messages m∗,1, it must return 0 (***).

Consider a runR′′ that is initially the same as runR and
run R′. Furthermore, we assume that at the end of the first
selection round r = 1, (1) X correct processes select 0, and
(2) n−b−f−X correct processes and all faulty (but honest)
processes select 1. In validation round r = 2, only b correct
processes (that selected 0) and f faulty processes receive
n−X message equal to 1 (n− b− f −X messages from
correct processes that selected 1, f from faulty (but honest)
that selected 1 and b messages from Byzantine processes).
All other messages are lost.

Since X < n−b
2 , we have n − X > n+b

2 , and b correct
processes and the f faulty processes validate the vote 1. In
decision round r = 3, consider that a correct process q re-
ceives a validated vote 1 from the b correct processes, the f
faulty processes and the b Byzantine processes. Therefore,
process q decides 1, which means that 1 is locked in r > 3
(****). In selection round r = 4, assume that a correct pro-
cess p receives (1) X − b messages m∗,0 from the correct
processes that select 0 in round r = 1 (2) n − b − f − X
messages m∗,1 from the correct processes that select 1 in
round r = 1 but do not validate 1 in round r = 2, and (3)
b messages m∗,0 from the Byzantine processes. Thus, by
property (***), FLV (~µrp) must return 0 on p. A contradic-
tion with the FLV -agreement property and (****).

6 Instantiations of Parameters and Classifi-
cation of Algorithms

We present now instantiations of FLV and Validator .
The FLV function is used to find the locked value, there-
fore depends on the decision mechanism, i.e., on TD and
FLAG . We identify three instantiations of the FLV func-
tion. The first one is for the case FLAG = ∗ and TD >
n+3b+f

2 , and uses only variable votep; the second one is for
the case FLAG = φ and TD > 3b + f , and uses vari-
ables votep and tsp; the last one is for the case FLAG = φ
and TD > 2b + f , and uses all three variables votep, tsp
and historyp. This leads to three classes of consensus algo-
rithms, as shown in Table 1. Algorithms that belong to the
same class have the same values for the parameters FLAG
and TD . Therefore algorithms from the same class have the
same constraint on n (follows from n ≥ TD + b + f ) and
have the same number of rounds (depending on the value of
FLAG). Note that the first round of each phase is simulated
using several micro-rounds, in order for Pcons to eventually
hold (Sect. 3.2). The other rounds of each phase are ordi-
nary rounds in which Pgood eventually holds.

One can observe the following tradeoff among these

three classes. When FLAG = ∗ and TD > n+3b+f
2

(class 1), only two rounds per phase are needed and the pro-
cess state is the smallest, but class 1 requires the largest
n (n > 5b + 3f ). The “Examples” column of Table 1
lists well-known algorithms that correspond to a given class.
These examples are discussed in Section 7.

We can make the following comments. First, to the
best of our knowledge, no existing algorithm corresponds
to class 2, case f = 0 (Byzantine faults). We call this new
algorithm MQB (Masking Quorum Byzantine consensus al-
gorithm).15 Second, Table 1 shows that despite its name,
the FaB Paxos algorithm does not belong to the same class
as the Paxos algorithm.

We now present the three instantiations of the FLV func-
tion that lead to the three classes of consensus algorithms.
Instantiations of the Validator function are discussed later.

6.1 Instantiations of FLV (~µrp)

We give here the instantiations of FLV for the three
classes of algorithm.

6.1.1 FLV (~µrp) for class 1

We start with the FLV function for class 1 (FLAG = ∗ and
TD > n+3b+f

2 ), see Algorithm 5.

Algorithm 5 FLV (~µrp) for class 1

1: correctV otesp←
{
v :
∣∣∣{(v,−,−) ∈ ~µr

p

}∣∣∣ > n−TD +b
}

2: if |correctV otesp| = 1 then
3: return v s.t. v ∈ correctV otesp
4: else if |~µr

p| > 2(n− TD + b) then
5: return ?
6: else
7: return null

Line 1 is for FLV -agreement, as we now explain with
a simple example. Let v1 be locked in round r because
some honest process p has decided v1 in round r − 1. By
Algorithm 4, p has received in the decision round r − 1 at
least TD votes v1. At least TD − b votes v1 are from honest
processes, i.e., a process can receive at most n− (TD − b)
votes equal to v2 6= v1 (*). Therefore, the condition of line 1
can only hold for v1, i.e., among the values different from ?
and null, FLV can only return v1. For FLV -agreement to
hold, Algorithm 5 must also prevent ? to be returned when
v1 is locked. The condition of line 4 ensures this. Here is
why. Assume that the condition of line 4 holds. This means
that ~µrp contains more than 2(n− TD + b) messages. With
(*), ~µrp contains more than n − TD + b messages equal to
v1. By line 1, we have v1 ∈ correctV otesp, and as shown

15The quorums used in this algorithm satisfy the property of masking
quorums [16]. Note that with respect to the definitions in [16], algorithms
of class 1 use opaque quorums, and algorithms of class 3 use dissemination
quorums.



Table 1. The three classes of consensus algorithms.

FLAG TD n Variables Rounds Examples
per phase

1 ∗ > n+3b+f
2 > 5b+ 3f (votep) 2 OneThirdRule [5] (b = 0)

(Pcons;Pgood ) FaB Paxos [17] (f = 0)
3 Paxos [11] (b = 0), CT [4] (b = 0)

2 φ > 3b+ f > 4b+ 2f (votep, tsp) (Pcons;Pgood ;Pgood ) MR [20] (b = 0), b-DLS [6] (b = 0)
MQB (f = 0) (new alg)

3 φ > 2b+ f > 3b+ 2f (votep, tsp, historyp) 3 PBFT [3] (f = 0)
(Pcons;Pgood ;Pgood ) B-DLS [6] (f = 0)

above, only v1 can be in correctV otesp. Therefore, the
condition of line 2 holds: Algorithm 5 cannot return ? when
v1 is locked.

Property FLV -liveness is ensured by lines 4 and 5. This
is because when TD > n+3b+f

2 , we have n − b − f >
2(n − TD + b). Therefore, receiving a message from all
correct processes (i.e., |~µrp| ≥ n − b − f ) implies that the
condition of line 4 holds, i.e., null is not returned. Property
FLV -validity is trivially ensured by lines 1-3.

Theorem 5. If FLAG = ∗, then Algorithm 5 ensures FLV -
validity and FLV -agreement. FLV -liveness holds if TD >
n+3b+f

2 .

Proof.
FLV -validity: FLV -validity follows from lines 1-3.

FLV -agreement: Let r = 3φ − 2 be the smallest selec-
tion round in which value v is locked. By definition of a
locked value, we have two cases to consider (1) all honest
processes have votep = v and unanimity must be ensured
(and r = 1), or (2) v has been decided in round r′ = 3φ− 3
by some honest process p. We now show that for both cases
at least TD − b honest processes sent 〈v,−,−〉 in round r
(*).

Case 1: Trivially follows from initialization and TD ≤
n− b− f .

Case 2: By Algorithm 4, the process p received at least
TD messages 〈v,−〉 in round r′. Therefore, at least TD − b
honest processes send 〈v,−〉 in round r′, i.e., at least
TD − b honest processes have their vote set to v, and send
〈v,−,−〉 in round r.

We now show that when property (*) holds, Algorithm 5
ensures FLV -agreement. Assume for the contradiction that
a non null value v′ 6= v is returned. Two cases must be
considered.
v′ is returned at line 3: Because correctV otesp is not

empty, the set ~µrp contains more than n−TD + b messages
〈v′,−,−〉. A contradiction with (*).

? is returned at line 5: This means that ~µrp contains more
than 2(n − TD + b) messages. By (*), ~µrp contains at
most n − TD + b messages 〈v′ 6= v,−,−〉, and therefore,
more than n − TD + b messages 〈v,−,−〉. By line 1, the
set correctV otesp is not empty. By lines 2-3, value v is
returned. A contradiction.

This shows that Algorithm 5 ensures FLV -agreement
in round r. Therefore, no honest process p updates its
variable votep and selectp to a value v′ 6= v in selection
round r. Because FLAG = −, the validation round is
skipped. Therefore, property (*) holds in selection round
r′′ = 3φ + 1. With similar arguments as above, we
can show that Algorithm 5 ensures FLV -agreement in
round r′′. By a simple induction on φ, we can show that
Algorithm 5 ensures FLV -agreement in all rounds.

FLV -liveness: Property FLV -liveness is ensured by
lines 4-5. This is because when TD > n+3b+f

2 , we have
n− b− f > 2(n−TD + b). Therefore, receiving messages
from all correct processes (i.e., |~µrp| ≥ n − b − f ) implies
that the condition of line 4 holds.

6.1.2 FLV (~µrp) for class 2

For class 2 we can have TD ≤ n+3b+f
2 , which means that

the locked value cannot be detected only based on votes:
the timestamp tsp is needed. The FLV function for class 2
(FLAG = φ and TD > 3b+ f ) is shown in Algorithm 6.

Lines 1 (where {# . . .#} denotes a multiset) and 2 are
for FLV -agreement, as we now explain with a simple ex-
ample. Let v1 be locked in round r, phase φ1 + 1, because
some honest process p has decided v1 in round r− 1, phase
φ1. By Algorithm 4, p has received in the decision round
r − 1 at least TD messages 〈v1, φ1〉. At least TD − b mes-
sages are from honest processes that have votep = v1 and
tsp = φ1, i.e., at most n − b − (TD − b) = n − TD hon-
est processes have votep = v2 6= v1 (*). Because only
one value can be validated by honest processes in phase φ1



Algorithm 6 FLV (~µrp) for class 2
1: possibleV otesp ← {# (vote, ts,−) ∈ ~µr

p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}|

> n− TD + b#}
2: correctV otesp ← {(vote,−,−) ∈ possibleV otesp :
|{#(vote′,−,−) ∈ possibleV otesp : vote = vote′#}| > b}

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−) ∈ correctV otesp
5: else if |~µr

p| > n− TD + 2b then
6: return ?
7: else
8: return null

(Lemma 2), all honest processes with votep = v2 6= v1

have tsp < φ1. It follows that for every honest process
p, we have votep = v1 or tsp < φ1 (**). Together with
(*), no message 〈v2 6= v1,−,−〉 sent by an honest pro-
cess can satisfy the condition of line 1. In other words,
the set possibleV otesp may contain at most b messages
〈v2 6= v1,−,−〉, namely the messages sent by Byzan-
tine processes. Line 2 prevents such messages to be in
correctV otesp. This shows that among the values differ-
ent from ? and null, only v1 can be returned.

For FLV -agreement to hold, Algorithm 6 must also pre-
vent ? to be returned when v1 is locked. The condition of
line 5 ensures this. Here is why. Assume that the condi-
tion of line 5 holds. This means that ~µrp contains more than
n − TD + 2b messages. From (*), a process can receive at
most n−TD + b messages with vote = v2 6= v1. It follows
that the set ~µrp contains at least b + 1 messages 〈v1, φ1,−〉
from honest processes. With (**) and the fact that ~µrp con-
tains more than n − TD + b messages from honest pro-
cesses, the b+ 1 messages 〈v1, φ1,−〉 satisfy the condition
of line 1. By line 2, 〈v1, φ1,−〉 is in correctV otesp. More-
over, as discussed above, only v1 can be in correctV otesp.
Therefore, the condition of line 3 holds: Algorithm 6 cannot
return ? when v1 is locked.

Property FLV -liveness is ensured by lines 5, 6. This
is because when TD > 3b + f , we have n − b − f >
n−TD+2b. Therefore, receiving a message from all correct
processes (i.e., |~µrp| ≥ n− b− f ) ensures that the condition
of line 5 holds, i.e., null cannot be returned. Property FLV -
validity is trivially ensured by lines 1-4.

Theorem 6. If FLAG = φ, Validator(p, φ)-validity and
Validator(p, φ)-agreement hold, then Algorithm 6 ensures
FLV -validity and FLV -agreement. FLV -liveness holds if
in addition TD > 3b+ f .

Proof.
FLV -validity: FLV -validity follows from lines 1-4.

FLV -agreement: Let r = 3φ − 2 be the smallest se-
lection round in which value v is locked. By definition
of a locked value, we have two cases to consider (1) all
honest processes have votep = v and unanimity must be

ensured (and r = 1), or (2) v has been decided in round
r′ = 3φ − 3 by some honest process p. We now show that
for both cases in round r at least TD − b honest processes
sent 〈v, φ̂ ≥ φ − 1,−〉 (*), and for all honest processes q,
we have (voteq = v ∨ tsq < φ− 1) (**).

Case 1: Trivially follows from initialization and TD ≤
n− b− f .

Case 2: By Algorithm 4, the process p received at least
TD messages 〈v, φ − 1〉 in round r′. Therefore, at least
TD − b honest processes send 〈v, φ − 1〉 in round r′, i.e.,
at least TD − b honest processes have their vote set to
v, and send 〈v, φ − 1,−〉 in round r (which shows (*)).
This means that an honest process p updates votep to v
and tsp to φ in the validation round of phase φ − 1. By
Validator(p, φ)-validity, Validator(p, φ)-agreement and
Lemma 2, no honest process update its vote to a value
v′ 6= v in this validation round (which shows (**)).

We now show that when properties (*) and (**) hold,
Algorithm 6 ensures FLV -agreement. Assume for the con-
tradiction that a non null value v′ 6= v is returned. Two
cases must be considered.

v′ is returned at line 4: Because correctV otesp is not
empty, the multi-set possibleV otesp contains more than b
messages 〈v′,−,−〉. It follows that an honest process sent
a message 〈v′, φ′,−〉. By (**), φ′ < φ− 1. By line 1, more
than n − TD honest processes sent a message 〈v′′, φ′′,−〉
with v′′ = v′ or φ′′ < φ′ < φ−1. A contradiction with (*).

? is returned at line 6: This means that ~µrp contains more
than n−TD +2bmessages (and more than n−TD +bmes-
sages from honest processes (***)). By (*), ~µrp contains at
most n−TD +bmessages different from 〈v, φ̂ ≥ φ−1,−〉,
and therefore, more than b messages 〈v, φ̂ ≥ φ − 1,−〉.
By line 1, (**) and (***), the multi-set possibleV otesp
contains more than bmessages 〈v,−,−〉. Therefore, the set
correctV otesp contains a message 〈v,−,−〉. By lines 3-4,
value v is returned. A contradiction.

This shows that Algorithm 6 ensures FLV -agreement
in round r. Therefore, no honest process p updates its
variable votep and selectp to a value v′ 6= v in selection
round r. By Validator(p, φ)-validity and Lemma 1, no
honest process p updates its vote to a value v′ 6= v in
the validation round r + 1. Therefore, properties (*) and
(**) hold in selection round r′′ = 3φ + 1. With similar
arguments as above, we can show that Algorithm 6 ensures
FLV -agreement in round r′′. By a simple induction on φ,
we can show that Algorithm 6 ensures FLV -agreement in
all rounds.

FLV -liveness: Property FLV -liveness follows from
lines 5 and 6. This is because when TD > 3b+ f , we have



n− b− f > n− TD + 2b. Therefore, receiving messages
from all correct processes (i.e., ~µrp ≥ n−b−f ) ensures that
the condition of line 5 holds.

6.1.3 FLV (~µrp) for class 3

For class 3 we can have TD ≤ 3b+f , which means that the
locked value cannot be detected based on votes and times-
tamps: the history log is needed. The FLV function for
class 3 (FLAG = φ and TD > 2b + f ) is shown in Algo-
rithm 7.

Algorithm 7 FLV (~µrp) for class 3
1: possibleV otesp ← { (vote, ts,−) ∈ ~µr

p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}|

> n− TD + b }
2: correctV otesp ← {v : (v, ts,−) ∈ possibleV otesp ∧

|{(vote′, ts′, history′) ∈ ~µr
p : (v, ts) ∈ history′}| > b }

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−) ∈ correctV otesp
5: else if |correctV otesp| > 1 then
6: return ?

7: else if |
{

(vote, ts,−) ∈ ~µr
p : ts = 0

}
| > n− TD + b then

8: if there is a value v such that ~µr
p contains a majority of messages (v,−,−)

then /* only for unanimity */
9: return v
10: else
11: return ?
12: else
13: return null

Similarly to Algorithm 6, lines 1 and 2 are for FLV -
agreement, as we now explain with a simple example. Let
v1 be locked in round r, phase φ1 + 1, because some honest
process p has decided v1 in round r − 1, phase φ1.

For the same reason as for Algorithm 6, at least TD − b
honest processes have votep = v1 and tsp = φ1 (*), i.e.,
at most n − TD honest processes have votep = v2 6= v1.
Furthermore, as for class 2, for every honest process p, we
have votep = v1 or tsp < φ1 (**). Together with (*),
no message 〈v2 6= v1,−,−〉 sent by an honest process can
satisfy the condition of line 1. Said differently, apart from
messages 〈v1,−,−〉, only messages 〈v2 6= v1, φ2,−〉 sent
by Byzantine processes can be in the set possibleV otesp.
Because honest processes can only update history at line 14
of Algorithm 4, no honest process has a pair (−, φ2 > φ1)
in its history in the sending step of round r. It follows that
only messages 〈v1,−,−〉 can be in correctV otesp at line 2.
Therefore, when a value v1 is locked, lines 1 and 2 prevent
any value v 6= v1 or v= ? to be returned at lines 4 and 6. By
(*) together with φ1 > 0, condition of line 7 never holds in
our example.

To understand the role of lines 8-11, we have to con-
sider another example. Let all honest processes have ini-
tially votep = v1. With the same arguments as above, it
follows that no value different from v1 or null can be re-
turned at lines 4 and 6. However, the condition of line 7
might hold. In this case, ~µrp contains more than n − TD

messages 〈v1, 0,−,−〉 from honest processes, and at most
b messages 〈v2 6= v1, 0,−〉 from Byzantine processes. Be-
cause TD ≤ n − b − f , we have n − TD ≥ b, and v1

is returned at line 9. In other words, line 9 ensures FLV -
agreement when unanimity is considered.

Let us now discuss FLV -liveness. For this property to
hold, we need a stronger variant of Validator -validity:16

• Validator -strongV alidity:
If |Validator(p, φ)| > 0 then |Validator(p, φ)| > 3b.

With Validator -strongV alidity we can have a stronger
variant of Lemma 1 (the proof follows directly from the
proof of Lemma 1):

Lemma 3. If Validator -strongV alidity holds, then the
following property holds on every honest process h and in
every phase φ: if process h set voteh to v and tsh to φ at
lines 21-22 of Algorithm 4, then at least b+1 honest process
has sent 〈v〉 at line 18.

Let ~µrp contain the messages from all the n− b− f cor-
rect processes. There are two cases to consider: (1) correct
processes sent only 〈−, 0,−〉, (2) at least one correct pro-
cess sent 〈−, ts > 0,−〉. Note that TD > 2b + f ensures
n− b− f > n− TD + b (*). In case (1), by (*) the condi-
tion of line 7 holds, and null cannot be returned at line 13
of Algorithm 7. In case (2), let ν denote the subset of mes-
sages in ~µrp that are from correct processes, and let tsν be
the highest timestamp in ν. By Lemma 2 there is a unique
value vν such that 〈vν , tsν ,−〉 ∈ ν. Together with (*), this
ensures that the set possibleV otesp is not empty, and con-
tains 〈vν , tsν ,−〉. By Lemma 3, any correct process that
validates vν in the validation round 3 tsν − 1 received vν
from at least b+1 correct processes. Therefore, at least b+1
correct processes have selected vν in round 3 tsν − 2, and
these processes have (vν , tsν) is their history. This implies
that the set correctV otesp is non empty, and a non-null
value is returned at line 4 or 6.

Theorem 7. If FLAG = φ, Validator(p, φ)-validity and
Validator(p, φ)-agreement hold, then Algorithm 7 ensures
FLV -validity and FLV -agreement. FLV -liveness holds
if in addition TD > 2b + f and Validator -strongValidity
holds.

Proof.
FLV -validity: FLV -validity follows from the lines 1-4

and 8-9.

FLV -agreement: Let r = 3φ − 2 be the smallest selec-
tion round in which value v is locked. By definition of a

16This stronger variant was not introduced in Section 4.4, since the proof
of the generic Algorithm 4 does not require the stronger variant. In the
proof of Algorithm 4, the stronger variant is hidden in the FLV -liveness
property.



locked value, we have two cases to consider (1) all honest
processes have votep = v and unanimity must be ensured
(and r = 1), or (2) v has been decided in round r′ = 3φ− 3
(and thus, φ − 1 ≥ 1) by some honest process p. We now
show that for both cases in round r at least TD − b honest
processes sent 〈v, φ̂ ≥ φ − 1,−〉 (*), for all honest pro-
cesses q, we have (voteq = v ∨ tsq < φ − 1) (**), and
for any element (vote, ts) in the set historyq of any honest
process q, we have (ts≤ φ − 1) (***). In addition, if less
than TD − b honest processes have tsp > 0, then all honest
processes have votep = v (****).

Case 1: Trivially follows from initialization and TD ≤
n− b− f .

Case 2: By Algorithm 4, the process p received at least
TD messages 〈v, φ − 1〉 in round r′. Therefore, at least
TD − b processes send 〈v, φ − 1〉 in round r′, i.e., at least
TD − b honest processes have their vote set to v, and send
〈v, φ − 1,−〉 in round r (which shows (*)). This means
that an honest process p updates votep to v and tsp to φ in
the validation round of phase φ − 1. By Validator(p, φ)-
validity, Validator(p, φ)-agreement and Lemma 2, no hon-
est process update its vote to a value v′ 6= v in this valida-
tion round (which shows (**)).

Property (***) trivially follows from the fact that for
each honest process the last update of history occured in
round 3(φ− 1)− 2. Property (****) trivially follows from
φ̂ ≥ φ− 1 ≥ 1 and (*), which implies that the precondition
of (****) cannot be true.

We now show that when properties (*), (**), (***) and
(****) hold, Algorithm 7 ensures FLV -agreement. Assume
for the contradiction that a non null value v′ 6= v is returned.
Four cases must be considered.
v′ is returned at line 4: Because correctV otesp is

not empty, the set ~µrp contains a message 〈v′, φ′,−〉 in
possibleV otesp such that an honest process h has (v′, φ′)
in historyh (see line 2). By (***), φ′ ≤ φ − 1. By
line 1, more than n − TD honest processes sent a message
〈v′′, φ′′,−〉 with v′′ = v′ or φ′′ < φ′ ≤ φ− 1. A contradic-
tion with (*).

? is returned at line 6: Same arguments as the case v′ is
returned at line 4.
v′ is returned at line 9: By line 7, the set ~µrp contains

more than n− TD + b messages 〈−, 0,−〉. Therefore, less
than TD − b honest processes has tsp > 0. By (****),
all honest processes has votep = v. Therefore ~µrp contains
more than n − TD messages 〈v, 0,−〉 and at most b mes-
sages 〈v′, 0,−〉. Because TD ≤ n−b−f , there is a majority
of messages 〈v, 0,−〉 in ~µrp. A contradiction with line 8 and
the fact that v′ is returned at line 9.

? is returned at line 11: Same arguments as the case v′ is
returned at line 9.

This shows that Algorithm 7 ensures FLV -agreement in
round r. Therefore, no honest process p updates its variable
votep and selectp to a value v′ 6= v in selection round r.
Furthermore, no honest process p adds a tuple (v′ 6= v, φ)
in selection round r. By Validator(p, φ)-validity and
Lemma 1, no honest process p updates its vote to a
value v′ 6= v in the validation round r + 1. Therefore,
properties (*), (**), (***) and (****) hold in selection
round r′′ = 3φ + 1. With similar arguments as above,
we can show that Algorithm 7 ensures FLV -agreement in
round r′′. By a simple induction on φ, we can show that
Algorithm 7 ensures FLV -agreement in all rounds.

FLV -liveness: Let ~µrp contain the messages from all
the n − b − f correct processes. There are two cases to
consider: (1) correct processes sent only 〈−, 0,−〉, (2) at
least one correct process sent 〈−, ts > 0,−〉. Note that
TD > 2b+ f ensures n− b− f > n−TD + b (*). In case
(1), by (*) the condition of line 7 holds, and null cannot
be returned at line 13. In case (2), let S denote the sub-
set of messages in ~µrp that are from correct processes, and
let tsS be the highest timestamp in S. By Validator(p, φ)-
validity, Validator(p, φ)-agreement and Lemma 2, there is
a unique value vS such that 〈vS , tsS ,−〉 ∈ S. Together
with (*), this ensures that the set possibleV otesp is not
empty, and contains 〈vS , tsS ,−〉. Validator -strongValidity
ensures that |validatorsp| > 0 implies |validatorsp| > 3b.
As a result, any correct process that validates vS in the val-
idation round 3 tsS − 1 received 〈vS ,−〉 from more than
(3b)+b

2 = 2b processes. Therefore, at least b + 1 correct
processes have selected vS in round 3 tsS − 2, and these
processes have (vS , tsS) in their history. This implies that
the set correctV otesp is non empty, and a non-null value
is returned at line 4 or 6.

6.2 Instantiations of Validator(p, φ)

A trivial instantiation of the Validator function con-
sists in always returning the whole set of processes Π.
This trivially satisfies Validator -validity, Validator -
strongValidity, Validator -agreement and Validator -
liveness. To our knowledge, this instantiation is used in
all algorithms for Byzantine faults. However, another
possible instantiation can be considered in the Byzantine
fault model: it consists in returning the same set S of
b + 1 processes at every process, e.g., S defined by a
deterministic function of the phase φ.17

In the benign fault model, it is sufficient that the
Validator function always returns a single process rather
than a set of processes. One such instantiation is the well
known rotating coordinator function used in [4]. Another
example involves message exchange (these messages can

17Note that this instantiation does not satisfy Validator -strongValidity.



be piggybacked on existing messages). In each phase ev-
ery process chooses a potential validator q and informs q
by sending him a message. If some process q receives
messages from a majority, then q becomes the validator,
and q informs all processes that the output of Validator
function is q. If a process does not receive such a mes-
sage within some timeout, the Validator function returns
∅. It can easily be shown that this instantiation satisfies
Validator -validity, Validator -agreement and Validator -
liveness.18 We call this instantiation majority voting val-
idator selection; it is used for example in the prepare phase
of Paxos [11].

7 Instantiation examples

In this section we show several well-known consen-
sus algorithms derived from Algorithm 4. Note that even
though the instantiated algorithms are expressed in the
round model, which is not the case of many well-known
consensus algorithms, the core mechanisms are the same.19

7.1 Class 1 algorithms

OneThirdRule [5] The OneThirdRule algorithm as-
sumes benign faults only (b = 0) and requires n > 3f to
tolerate f benign faults.

The instantiated version of the OneThirdRule algorithm
(that we call Inst-OneThirdRule), is obtained from Al-
gorithm 4 with the following parametrization: TD =
d 2n+1

3 e,
20 FLAG = ∗ and Algorithm 5 with TD = d 2n+1

3 e
as the FLV instantiation.

Algorithm 8 OneThirdRule algorithm (n > 3f ) [5]
1: Initialization:
2: votep := initp

3: Round r :
4: Sr

p :
5: send 〈votep〉 to all
6: T r

p :
7: if received more than 2n/3 messages then
8: xp := the smallest most often received value
9: if more than 2n/3 values received are equal to v then
10: DECIDE v

We now compare Inst-OneThirdRule with the original
algorithm (Algorithm 8). In Algorithm 8, the functionality
of the selection round and of the decision round are merged

18For Validator -liveness to hold, it is necessary to have a phase in
which all correct processes choose the same validator.

19We ignore differences in the way algorithms implement phase change
(timeout based mechanisms, failure detector based approaches, sending
NACK messages, etc), message acceptance policies, retransmission rules,
etc.

20TD is chosen such that the same number of messages allow the con-
dition at line 29 of Algorithm 4 and the condition at line 4 of Algorithm 5
to hold.

into one single round (see optimization (iv), Sect. 4.6). With
TD = d 2n+1

3 e, it is easy to see that the condition for de-
ciding is the same in the two algorithms (compare line 29
of Algorithm 4 and line 9 of Algorithm 8). However, the
selection condition of the two algorithms have (minor) dif-
ferences. Specifically, it is easy to see that whenever some
value is selected by Algorithm 8 (lines 7 and 8), then some
value (not necessarily the same) is also selected by Algo-
rithm 5. The opposite is not true. If the number of mes-
sages received is not larger than 2n/3, Algorithm 8 will not
select any value, while Algorithm 5 may still select a value
by line 3.

FaB Paxos [17] The FaB Paxos algorithm is designed for
the Byzantine fault model (f = 0) and requires n > 5b
to tolerate b Byzantine faults. The algorithm is expressed
in the context of ”proposers”, ”acceptors” and ”learners”.
For simplicity, in our framework, consensus algorithms are
expressed without considering these roles.

The following parametrization leads to Inst-FaB Paxos:
TD = d(n + 3b + 1)/2e, FLAG = ∗ and Algorithm 9 as
an instantiation of FLV function (Algorithm 5 with TD =
d(n+ 3b+ 1)/2e).

We now compare Inst-FaB Paxos with FaB Paxos. With
TD = d(n+ 3b+ 1)/2e, the deciding condition is the same
in both algorithms. However, the selection condition of the
two algorithms have (minor) differences. With FaB Paxos,
the selection rule is applied when n − b messages are re-
ceived. In that case, a value v is selected if it appears at
least d(n− b+ 1)/2e times in the set of received messages;
otherwise any value can be selected.21 Therefore, if a num-
ber of received messages is smaller than n − b, FaB Paxos
will not select any value, while Algorithm 9 may still select
a value by line 3.

Another difference is that FaB Paxos does not ensure the
Unanimity property, which allows a simpler selection round
in the first phase (see Optimization (iii), Sect. 4.6).

In [8], Friedman et al. propose an algorithm that is sim-
ilar to FaB Paxos. The algorithm is designed for Byzan-
tine faults (f = 0) and requires n > 6b. The algorithm
implements the selection round slightly differently than in
Algorithm 4. Namely, the selection round is implemented
with two micro-rounds, where the logic that provides con-
sistency (Pcons) is mixed with the functionality of the se-
lection round.22 The mechanism requires n > 6b. Our

21Note that the condition at line 1 of Algorithm 9 for selecting a value v
requires smaller number of messages to be received than in FaB Paxos.
For example, when n = 7 and b = 1, FaB Paxos requires at least 4
messages equal to v to be received (at least d(n− b+1)/2e(= 4)), while
Algorithm 9 requires 3 messages (more than n−b−1

2
(= 2)).

22Remember that the selection round of Algorithm 4 is simulated using
several micro-rounds, in order for Pcons to eventually hold. However, the
functionality of the selection round is executed at the end of the Pcons

simulation.



intuition is that this mechanism cannot be extended to algo-
rithms that use (votep, tsp) or (votep, tsp, historyp).

Algorithm 9 FLV for class 1 with TD = d(n+ 3b+ 1)/2e
1: correctV otesp ←

{
v : |

{
(v,−,−) ∈ ~µr

p

}
| > n−b−1

2

}
2: if |correctV otesp| = 1 then
3: return v s.t. v ∈ correctV otesp
4: else if |~µr

p| > n− b− 1 then
5: return ?
6: else
7: return null

7.2 Class 2 algorithms

Algorithm 10 FLV for class 2 with b = 0, TD = dn+1
2 e

1: possibleV otesp ← { (vote, ts,−) ∈ ~µr
p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}| > n

2

2: if |possibleV otes| = 1 then
3: return v s.t. (v,−,−) ∈ possibleV otes
4: else if |~µr

p| > n
2 then

5: return ?
6: else
7: return⊥

Paxos [11] Paxos assumes benign faults only (b = 0) and
requires n > 2f .

We get Inst-Paxos from Algorithm 4 with the fol-
lowing parametrization:TD = dn+1

2 e,
23 FLAG = φ,

Validator(p, φ) implemented by majority voting valida-
tor selection (with messages piggybacked on the selection
and validation round messages), and Algorithm 10 as the
FLV instantiation. In addition, we apply Optimization (i),
Sect. 4.6.

With only benign faults, the instantiation of the func-
tion FLV can be simplified. We now explain how to
get Algorithm 10 from Algorithm 6. When b = 0, the
set correctV otesp is the same as the set possibleV otesp,
which means that the set correctV otesp is not needed.24

We now compare Inst-Paxos with Paxos. The decision
rule is the same in both algorithms. The selection conditions
are not necessarily the same. Paxos selects the vote with the
highest timestamp, or any value if there are no votes with
ts > 0. On the other hand, Inst-Paxos selects the value with
the highest timestamp that is locked (returned by FLV (~µrp)
function, see Algorithm 10). Otherwise, if the FLV (~µrp)
function returns ?, Inst-Paxos selects any value chosen by
some deterministic function (see line 11 of Algorithm 4). If
the deterministic function at line 11 returns the value with
the highest timestamp, then the selection condition of Inst-
Paxos and Paxos are the same.

23Same argument as in footnote 20: same value for TD in the decision
round and in the FLV function.

24We can also use a set instead of a multiset for possibleV otes.

CT [4] Like Paxos, CT — the Chandra-Toueg consensus
algorithm using the ♦S failure detector — assumes benign
faults only (b = 0) and requires n > 2f . Paxos and CT
use the same selection and decision conditions, and from
this point of view rely on the same core mechanisms. The
difference is in the Validator(p, φ) implementation: CT is
based on a rotating coordinator.

MR [20] The Mostéfaoui-Raynal algorithm (MR) is de-
signed for benign faults and requires n > 2f . It assumes
“reliable channels”,25 which allows for some optimizations.

Let us consider an instantiation of Algorithm 4, with
Prel in every round (see Footnote 25), and the following
parametrization: TD = dn+1

2 e, Validator(p, φ) imple-
menting the rotating coordinator function and Algorithm 11
as the FLV instantiation. We call this algorithm Inst-MR.

We now compare Inst-MR with MR. The validation and
the decision condition are the same in both algorithms.26

Furthermore, the validation round for phase φ + 1 is ex-
ecuted in parallel with decision (and selection) round of
phase φ. The selection condition of MR algorithm ex-
pressed as a FLV (~µrp) function (Algorithm 11) is a variant
of Algorithm 6. We now explain how to get Algorithm 11
from Algorithm 6. Because n− f > n−TD and Prel hold
in every round, we have that |~µrp| ≥ n− f in all rounds and
lines 5,7 and 8 of Algorithm 6 can be suppressed. Since the
algorithm considers only benign faults and assumes reliable
channels, line 1 of Algorithm 11 is equivalent to lines 1-3
of Algorithm 6.

Algorithm 11 Instantiation of FLV function based on MR
algorithm [20]
1: if received message 〈v, φ− 1〉 then
2: return v
3: else
4: return ?

Note that in the original MR algorithm, a variable tsp is
not explicitly used. Basically, MR needs to distinguish only
two cases, tsp = φ and tsp < φ. Instead of (votep, tsp),
the first case can be represented by votep, while the second
case can be represented by votep = ⊥, where⊥ is a special
value different from all “normal” values of votep.

DLS algorithms [6] There are three consensus algorithms
in [6]: one for benign faults (requires n > 2f ) one for au-
thenticated Byzantine faults (n > 3b) and one for Byzan-
tine faults (also n > 3b). Let us denote these three algo-

25 The reliable channel assumption can be expressed in the round model
by the following predicate: Prel(r) ≡ ∀p ∈ C : |{m ∈ ~µrp : m 6=
⊥}| ≥ n− f.

26In MR algorithm the functionalities of the selection and decision
rounds are provided in the same round (see Optimization (iv)).



rithms by b-DLS (benign), a-DLS (authenticated) and B-
DLS (Byzantine) and let us concentrate only on the former
and the latter. The algorithm B-DLS belongs to class 3, and
b-DLS to class 2. As both algorithms are based on the same
mechanisms, we discuss only b-DLS in more details since
it is simpler.

Let us consider an instantiation of Algorithm 4, with
TD = f+1, FLAG = φ and Validator(p, φ) implementa-
tion based on the rotating coordinator paradigm and Algo-
rithm 12 as the instantiation of the FLV function. We call
this algorithm Inst-b-DLS.

We now compare Inst-b-DLS with b-DLS. The valida-
tion and the decision condition are the same in both al-
gorithms. Although the selection conditions are the same,
there is a small difference in how the selection logic is ex-
ecuted. Namely, b-DLS algorithm relies on a mechanism
called locking (which is different from the notion of lock-
ing used in this paper): Whenever votep = v with v dif-
ferent from a special value A, then p has locked value v;
If votep = A (special value) then p has not locked any
value. Furthermore, b-DLS relies on lock-release mecha-
nism that takes place in the additional round (called lock-
release round), which is executed immediately before the
selection round of the next phase, in which processes ex-
change messages (vote and ts) to possibly unlock locked
values, i.e., reset votep toA. When Pgood holds in the lock-
release round, then at most one value is locked.

By contrast, in Inst-b-DLS the lock-release mechanism
takes place inside the FLV function, i.e., there is no need
for the additional round. Lines 1-4 of Algorithm 12 corre-
spond to the lock-release mechanism and they ensure that
there is at most one value locked in the set Vp once Pgood

holds.

Algorithm 12 Instantiation of FLV function based on [6]
1: Vp ← ~µr

p

2: for i = 1 to n do
3: if ∃(vote, ts) ∈ ~µr

p s.t. ts > Vp[i].ts then
4: Vp[i]← (A,−)
5: possibleV otesp ← { (vote,−) ∈ Vp :
|{(vote′,−) ∈ V r

p : vote = vote′ ∨ vote′ = A}| ≥ n− f
6: if |possibleV otesp| = 1 and A 6∈ possibleV otesp then
7: return v s.t. (v,−) ∈ possibleV otesp
8: else if |possibleV otesp| > 0 then
9: return ?
10: else
11: return null

MQB MQB is a new Byzantine consensus algorithm that re-
quires n > 4b. It is obtained by instantiation of Algorithm 4
with FLAG = φ and Validator(p, φ) returning always Π;
this corresponds to Algorithm 3. We consider the FLV in-

stantiation given by Algorithm 6 and TD = dn+2b+1
2 e.27

Compared to PBFT, MQB has the advantage not to need
the (unbounded) variable historyp, at the cost of requiring
n > 4b instead of n > 3b (for PBFT).

7.3 Class 3 algorithms

PBFT [3] PBFT is an algorithm that solves a sequence
of instances of consensus (in the context of state machine
replication). We consider here the instantiation of a single
instance of consensus that represents the “core” of the PBFT
algorithm. PBFT is designed for Byzantine faults (f = 0)
and requires n > 3b.

We get Inst-PBFT from Algorithm 4 with the follow-
ing parametrization: TD = 2b + 1, FLAG = φ,
Validator(p, φ) = Π and Algorithm 13 as the FLV in-
stantiation. We also set n = 3b+ 1, as in PBFT.

Furthermore, since PBFT does not consider the Unanim-
ity property, we do not consider it with Inst-PBFT. This al-
lows us to get the FLV Algorithm 13 from Algorithm 7. In-
deed, in this case, lines 8-9 of Algorithm 7 can be removed,
and the conditions of line 5 and line 7 of Algorithm 7 can
be merged into line 5 of Algorithm 13.

Algorithm 13 FLV for class 3 with TD = 2b + 1 and
n = 3b+ 1
1: possibleV otesp ← { (vote, ts,−) ∈ ~µr

p :

|{(vote′, ts′,−) ∈ ~µr
p : vote = vote′ ∨ ts > ts′}| > 2b

2: correctV otesp ← {v : (v, ts,−) ∈ possibleV otesp ∧
|{(vote′, ts′, history′) ∈ ~µr

p : (v, ts) ∈ history′}| > b }

3: if |correctV otesp| = 1 then
4: return v s.t. (v,−,−) ∈ correctV otesp
5: else if |correctV otesp| > 1 or
|
{

(vote, ts,−) ∈ ~µr
p : ts = 0

}
| > 2b then

6: return ?
7: else
8: return null

We now compare Inst-PBFT with PBFT. The validation
and decision rounds are the same in both algorithms. There
is a small difference in the selection condition of the se-
lection round: whenever Inst-PBFT selects any value using
some deterministic function (see line 11 of Algorithm 4),
PBFT selects a special ”null” value. Therefore, in PFBT
the decision can be on a special ”null” value, while in Inst-
PBFT the decision is always on a ”real” value.

Since the Unanimity property is not considered, we can
apply optimization (iii) (Sect. 4.6) to the selection round
of Inst-PBFT. With this modification, the first phase of
Inst-PBFT corresponds to the ”common case” and all later
phases correspond to the ”view change protocol” of PBFT.

27Same argument as in footnote 20: same value for TD in the decision
round and in the FLV function.



8 Conclusion

The paper has presented a generic consensus that high-
lights the core mechanisms of various consensus algorithms
for benign and Byzantine faults. The generic algorithm has
four parameters: TD , FLAG , Validator and FLV . Instan-
tiation of these parameters led us to distinguish three classes
of consensus algorithms into which well-known algorithms
fit. It allowed us also to identify the new MQB algorithm.
We believe that our classification should contribute to a bet-
ter understanding of the jungle of consensus algorithms.
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