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Abstract

In the context of CO2 emissions reduction from power plants, CO2 removal

from flue gas by chemical absorption with monoethanolamine is analyzed

in detail. By applying process integration and multi-objective optimization

techniques the influence of the operating conditions on the thermo-economic

performance and on the optimal thermal integration within a power plant

is studied. With the aim of performing optimization of complex integrated

energy systems, simpler parameterized models of the CO2 capture process

are developed. These models predict the optimized thermo-economic perfor-

mances with regard to the capture rate, flue gas flowrate and CO2 concentra-

tion. When applied to overall process optimization, the optimization time is

considerably reduced without penalizing the overall power plant model qual-

ity. This approach is promising for the preliminary design and evaluation of

process options including a CO2 capture unit.

Keywords: CO2 capture, Chemical absorption, Blackbox model,

Multi-objective optimization, Process design

∗Phone: +41 21 693 3528 Fax: +41 21 693 3502
Email addresses: laurence.tock@epfl.ch (Laurence Tock),

francois.marechal@epfl.ch (François Maréchal)
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Nomenclature

Abbreviations

CC Carbon Capture

CCS Carbon Capture and Storage

FGR Flue Gas Recirculation

GT Gas Turbine

LHV Lower Heating Value

MEA Monoethanolamine

NG Natural Gas

NGCC Natural Gas Combined Cycle

Greek letters

Δho Lower heating value, kJ/kg

εtot Energy efficiency, %

ηCO2 CO2 capture rate, % or -

ξCO2 CO2 concentration, -

Roman letters

COE Electricity production cost, $/GJe

d Diameter, m

Ė Mechanical/electrical power, kW

I Capital investment cost, $

ṁ Mass flow, kg/s

ṅ Molar flow, kmol/s

N Number of stages, -

P Pressure, bar
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h Height, m

Q̇ Heat, kW

T Temperature, K

Subscripts

cc plant with carbon capture

ref reference plant without carbon capture

Superscripts

+ Material/energy stream entering the system

− Material/energy stream leaving the system

1. Introduction

For reducing CO2 emissions from power plants, CO2 capture and stor-

age (CCS) is considered as a promising option. The most common tech-

nology to capture CO2 is chemical absorption with amines, especially mo-

noethanolamine (MEA). This process requires however a significant amount

of energy for solvent regeneration which penalizes the efficiency of the electric-

ity production. The impact of CO2 capture on the process performance can

be assessed by thermo-economic analysis, including heat and power integra-

tion of the capture process and the related investment estimation. Changing

the design conditions of the ab- and desorption columns together with the

flow of amines reveals to be sensitive to convergence and heavy in compu-

tation time, especially when the optimization is to be done together with

the variation of the CO2 concentration and with the purpose of finding the

best economical design from the CO2 capture point of view. Recent studies

have investigated the potential of replacing complex unit models of highly
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non-linear processes by compact yet accurate surrogate models reproducing

the results of the rigorous model in a fraction of the simulation time without

losing accuracy [1–4]. In [4] it is shown how reduced order models based

flowsheet optimization can increase the efficiency of energy processes.

This paper presents an approach to develop a blackbox model of the CO2

capture unit predicting the investment, as well as the heat demands and their

temperature levels required for the combined heat and power integration

model, by using correlations and neural networks that are drawn from the

optimization results of the complex first-principle CO2 capture unit model.

The advantage of this approach with regard to the optimization problem

formulation is that the optimized CO2 capture subproblem can be introduced

in a larger process to perform optimizations of the global problem, and with

regard to energy integration, that information about the heat demand and

the temperature levels are conserved. This approach is applied to study

a natural gas combined cycle process (NGCC) with flue gas recirculation

(FGR) and CO2 capture (CC).

2. Methodology

The approach to develop a simpler parameterized model of the CO2 cap-

ture unit (i.e. subproblem) to be used in the overall process design optimiza-

tion (i.e. global problem) is implemented using process design techniques

combining process modeling with established flowsheeting tools, and process

integration in a multi-objective optimization framework as illustrated in Fig-

ure 1. The thermo-economic modeling methodology follows the principles

explained in [5, 6]. The main feature of this approach allowing to assemble
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different process models in a superstructure, is the dissociation of the tech-

nology models from the analysis models. The models are organized as an

input-output entity and structured data is transferred between the different

models. In the energy integration model, the heat recovery in the system

and the combined heat and power production is optimized as described in

[7]. The economic model includes the equipment sizing and the capital cost

estimation based on the correlations given in [8, 9]. To evaluate the environ-

mental impacts, the local CO2 emissions are considered, knowing that the

whole life cycle impacts could be assessed following approach described in

[10].

The flowsheet of the CO2 capture by chemical absorption with monoethanolamine

(MEA) is illustrated in Figure 2 and described in more detail in [11]. The

amine solvent neutralizes the acidic compounds in the absorber. After being

heated up, the saturated solution passes in the stripper where the chemical

bounds are broken, the acid gas is released and the solvent is recovered for

reuse in the absorber. A considerable amount of energy is consumed for the

regeneration of the solvent, the compression of the flue gas and the pumping

of the amine. The developed first-principle CO2 capture model is based on the

Aspen-Plus rate-based model adapted from the default model available from

AspenTech [12]. CO2 compression to 110 bar is not included in the capture

unit itself, but accounted in a separate model. A CO2 purity of over 98%wt

is targeted from a typical post-combustion flue gas consisting mainly of N2,

CO2, excess O2 and water. The CO2 capture unit performance is expressed

by the investment cost I, the CO2 capture rate (ηCO2 =
ṅCO2captured

ṅCO2,inFG
) and the

energy demand (i.e. reboiler duty Q̇LP , electricity Ẇ ) and is essentially in-
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fluenced by the design decision variables given in Table 1. The selected input

variables for the simpler parameterized blackbox model reflecting the process

behavior are the flue gas mass flow (ṁFG) and the CO2 concentration in the

flue gas (ξCO2) as illustrated in Figure 3. The absorber inlet temperature

and pressure are kept constant by a blower and heat exchanger. The only

decision variable is hence the CO2 capture rate (ηCO2). Consequently, the

number of decision variables of the overall process is smaller than the one for

the sub-problem since some parameters are internal to the blackbox system.

The output parameters of the blackbox model are the investment, mechanical

and thermal energy demand and the associated temperature levels.

2.1. Sub-problem optimization

The CO2 capture sub-problem is first optimized for different flue gas

compositions (ξCO2: 0.065, 0.074, 0.081 and 0.09wt-) and flows (ṁFG: 655,

955, 1455, 1955, 2455 and 2955 kg/h). The multi-objective optimization

problem is solved by applying an evolutionary algorithm [13] computing a

set of optimal solutions in the form of a Pareto front. The objectives are to

maximize the CO2 capture rate ηCO2 and to minimize the capital investment

I with regard to the decision variables in Table 1. It is assumed that the

objectives are not influenced by the pressure drop and the heat load. It

has been demonstrated by sensitivity analysis that minimum pressure drops

and heat loads are correlated with the maximum CO2 capture rate which

justifies this assumption. The Pareto optimal frontiers computed for the

different process configurations are illustrated in Figure 4. The influence of

the flowrate on the equipment size and consequently on the investment is

strongly reflected. Moreover, the investment is slightly affected by the CO2
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capture rate. Based on these optimization results of the first-principle MEA

unit model, the goal is to develop a simplified parameterized blackbox model

(Figure 3) predicting the process performance accurately.

2.2. Surrogate model development

By fitting the generated Pareto fronts (Figure 4), regression correlations

and neural networks are defined to predict the thermo-economic perfor-

mances of the CO2 capture unit with regard to the input variables ηCO2

(x1), ṁFG (x2) and ξCO2 (x3). Statistical tests are carried out to validate the

proposed correlations. The F statistic is applied to test the model validity

against the assumption that at least one coefficient of the correlation is sig-

nificant. In addition, the validity of each coefficient is verified by the t-test

following a Student’s t distribution, if the null hypothesis is supported. The

approach is illustrated here for setting up the investment cost correlations.

The development of the correlations for the mechanical power, the heat load

and the temperature levels follows the same approach.

2.2.1. CO2 capture investment cost correlation

The goal is to develop a correlation of the investment I with regard to

the input variables: I=f(ηCO2,ṁFG,ξCO2)=f(x1,x2,x3). It is to note that

the developed correlations for the investment cost do not follow the conven-

tional cost estimation approach since they deal with the optimized investment

computed from simulation with regard to certain decision variables. Three

different approaches for fitting are compared.

Polynomial fit. In a first attempt, multi-dimensional polynomial correlations

are set up. Therefore, correlations are drawn for each data series with fixed
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ξCO2 (I=fξCO2
(ηCO2,ṁFG)) based on Eq.1 yielding coefficients of determina-

tion R2 values around 0.98. According to the statistical tests, additional

terms do not improve the goodness of fit. To include the variation with regard

to ξCO2 a linear variation of the coefficients pi in Eq.1 ( pi = κi,1 + κi,2ξCO2)

is first assumed. The statistical tests results reported in Table 2 show that

some terms are not significant which leads to the final expression given by

Eq.2.

fx3(x1, x2) = p00 + p10x1 + p01x2 + p20x
2
1 + p11x1x2 (1)

f(x1, x2, x3) = k0 + k1x1 + k2x2 + k3x1x2 + k4x1x3 + k5x2x3 + k6x1x2x3 + k7x
2
1x3 (2)

Sortcut fit. In a second attempt, a correlation based on a shortcut model

including the known physical relations in the absorption and desorption

columns is set up. The number of stages is related to the absorbed fraction

through the Kremser equation (Eq.3) assuming stage equilibrium instead of

rate-based model, which allows together with the flue gas mass flowrate ṁFG

to estimate the diameter d and height h through column design heuristics

and consequently the investment costs I (Eqs 4-6). The constant parame-

ters in these functions are defined by solving a minimization problem in the

least-square sense. A hybrid method combining mathematical programming

and evolutionary algorithm for finding a good initial point has been used for

this purpose.

N = a1log

(
a2

1− ηCO2

+ a3

)
+ a4 (3)
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d = f(ṁFG, ξCO2) (4)

h = f(N, d) (5)

I = f(h, d) (6)

Neural network. As a last approach, the neural network (NN) fitting tool

from matlab using the Levenberg-Marquardt backpropagation algorithm for

network training has been applied on the optimization results dataset (i.e.

training 55% of data, validation 25%, testing 20%). The two-layer feed-

forward network with sigmoid hidden neurons and linear output neurons

illustrated in Figure 5 reveals to be well suited to fit such multi-dimensional

mapping problems.

Fit results. The goodness of fit of these approaches is compared in Figure 6

for the capital investment. The different fits give a good estimation of the

investment costs since the results are closely distributed around the bisectrix

of the optimization results.

3. Application: NGCC with CO2 capture

To illustrate the approach, the integration of post-combustion CO2 cap-

ture in power plants is studied. Therefore, the developed parametrized

CO2 capture blackbox models are integrated with a natural gas power plant

(NGCC) model to optimize the process design with CO2 capture (Figure

1). The investigated process consists of a natural gas reheat gas turbine

combined cycle with flue gas recirculation (FGR) and CO2 capture. To ad-

dress the flame stability concerns at high FGR, pure hydrogen or syngas can
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be injected. The H2 production is modeled by a high temperature oxygen

separation membrane autothermal reforming reactor.

3.1. Performance indicators

The performance of the overall process comprising the integration of the

parameterized CO2 capture models, is compared based on thermo-economic

considerations assessing also the energy and economic costs of capturing CO2

and the impact of CO2 recirculation. The energy efficiency εtot is defined by

the ratio between the net electricity output and the resources energy input

according to Eq.7. The electricity production costs include the annual capital

investment and the operation and maintenance costs calculated with the

assumptions given in Table 3. The CO2 mitigation potential is assessed by

the overall CO2 capture rate ηCO2 and the CO2 avoidance cost. The overall

CO2 capture rate is lower than the internal CO2 capture rate of the chemical

absorption since some CO2 is emitted during the H2 production. The CO2

avoidance costs expressed by Eq. 8 are defined by the difference of the CO2

emissions and the difference of the total costs with regard to the reference

power plant without CO2 capture (noCC).

εtot =
ΔE−

Δh0
NG,in · ṁNG,in

(7)

$/tCO2,avoided =
COECC − COEnoCC

CO2,emitnoCC
− CO2,emitCC

[$/GJe]

[tCO2/GJe]
(8)

3.2. Base case comparison

The performance of the post-combustion CO2 capture in the NGCC power

plant is first assessed with the first-principle MEA model and then compared
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with the results obtained with the different blackbox models. For these base

case configurations around 50% of FGR and around 85% CO2 capture are

considered. Sensitivity analyses have revealed that FGR does not consider-

ably impact the process efficiency but improves the economics of CO2 capture

by increasing the CO2 concentration in the flue gas and reducing therefore

the CO2 capture costs. The performance results are summarized in Table 4

and compared to the corresponding conventional NGCC plant without CO2

capture. It is shown that CO2 capture decreases the efficiency by over 8%

points and increases the production costs by up to one third. These results

are in the same range as the one given in [14] reporting for a conventional

NGCC an efficiency of 56.6%, CO2 emissions of 102.8kgCO2/GJe and COE of

21.3$/GJe and for a NGCC with post-combustion CO2 capture an efficiency

of 48.4%, CO2 emissions of 15.3kgCO2/GJe and COE of 28.3$/GJe.

The results obtained with the blackbox models are comparable to the one

obtained with the first principle model. The shortcut fit yields the best esti-

mation of the production costs. The deviation of around 2.7% is negligeable

compared to the error range of the equipment costs estimations. With the

neural network model, the assessed efficiency is about 3.5% lower than the

efficiency computed by the first principle model. While, for the other param-

eterized models the deviation is less than 2.5%. This variation is due to the

differences in the heat load estimations illustrated by the composite curves

comparison in Figure 7. The neural network model slightly overestimates

the reboiler heat duty which results in a lower efficiency. These simplified

parametrized blackbox models allow to evaluate the penalty of CO2 capture

on the power plant performance quite accurately. The major advantage of
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using these simplified models is the significant reduction of the computation

time as shown in Table 5. Once the blackbox models are set up, the com-

putation time is reduced by over 45% for one computation. Consequently,

these simplified models allow to make a preliminary analysis of CO2 capture

process options.

3.3. Global problem optimization

To study the influence of CO2 capture and flue gas recirculation on the

power plant performance in more detail, a multi-objective optimization of

the global problem is performed. The objectives are the minimization of the

electricity production costs (COE) and the maximization of the overall CO2

capture rate (ηCO2). The decision variables for the power plant are the flue

gas recirculation and in case where syngas has to be injected the hydrogen

production temperature and the steam to carbon ratio. Since the flue gas

flowrate and the CO2 concentration are defined by the power plant model,

the number of decision variables for the parameterized CO2 capture model is

reduced to one, the CO2 capture rate, compared to 15 for first principle MEA

model (Table 1). By using the blackbox models calibrated on the subproblem

optimization results for the optimization of the global system, the hypothesis

is made that for a given CO2 capture rate the optimal solution corresponds

to the minimal investment. The generated Pareto fronts in Figure 8 reveal

the trade-off between the CO2 capture rate and the electricity production

costs. This trade-off is explained by the reduced electricity output due to

the energy demand for solvent regeneration and CO2 compression yielding a

lower efficiency, and the increased capital investment costs for the capture

equipment.
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Compared to the optimization problem results including the first-principle

MEA unit model (MEA model), the accuracy is nearly maintained for the

problems including the different balckbox models up to 87% of CO2 capture

as illustrated by Figure 8. The comparison of the results in Table 6 for

compromise Pareto solutions yielding a CO2 capture rate of 87%, shows that

the generated process configurations are similar. In fact, the optimized values

of the FGR differ by less than 2%. For a chosen process configuration, the

detailed CO2 capture unit design can be recomputed subsequently based on

the first principle CO2 capture model. The values of the required input

parameters defined in Table 1 can be approximated from the data series

used for the blackbox models calibration (section 2.1) based on a griddata

approach. The overall performance, design and operating conditions assessed

in this way for the compromise configurations obtained through optimization

of the power plant with the parameterized CO2 capture models are very close

to the one resulting from the optimization with the first principle CO2 capture

model. This high concordance is shown by the composite curves in Figure 9.

This reveals that the sub-problem optimum is included in the global problem

optimum for solutions having a CO2 capture rate below 87%.

At high CO2 capture rates, there is however a divergence in the solu-

tions. The optimization of the power plant performance with the parame-

terized CO2 capture models leads to process designs with low FGR (<12%),

while the optimization with the first-principle CO2 capture model favors FGR

above 50% at high CO2 capture rates. This difference in the design of the

power plant leads to a different design of the CO2 capture unit due to the

changes in the CO2 concentration and the flue gas flow rate. Consequently,
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the assessed efficiencies and costs diverge. When recomputing the solution

generated by the parameterized blackbox model with the first principle MEA

model, a process design with a lower CO2 capture rate (83% instead of 90%),

higher efficiency and lower productions costs is obtained. This indicates

that the hypothesis that the sub-problem optimum is included in the global

problem optimum is not valid for high CO2 capture rates. In fact, there is a

compromise between the investment and the energy demands, which both af-

fect the production costs. Consequently, it is possible to find for a given CO2

capture rate a solution with a higher capital investissment yielding a higher

efficiency and lower COE. By recalcuating the optimal solution found with

the first-principle model with the parameterized model, the solution yields a

higher specific production cost per ton of CO2 captured than the optimal so-

lution found with the parameterized model. This explains why this solution

has not been retained during the optimization with the parameterized model.

In fact the parameterized model can not find this solution. In order to reflect

this bahaviour in the parameterized blackbox models, a solution would be to

calibrate these models on the minimzation of the production costs accounting

the heat demand at its exergy value, or on the minimization of the exergy

losses instead of the investment. Once the Pareto sets are generated with

the modified objective function, the blackbox models of the CO2 capture unit

can be set up following the approach described previousely. The hypothesis

of the optimality of the subproblem in the global problem has hence to be

valid in order to take advantage from the reduction of the number of decision

variables of the parameterized model in the global problem optimization.

Using the simple blackbox models in the global problem optimization,
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has the advantage of reducing the computation time considerably. If the

same number of evaluations is considered for each optimization problem the

computation time is reduced over 45% (Table 5). However, because of the

changes in the number of decision variables, the number of evaluations for

reaching a same level of convergence is different. It is noted that for the

optimization of the power plant with the first principle MEA model the

convergence of the Pareto front is not considerably improved between 400

and 2000 evaluations. While for the optimization of the power plant with

the parameterized CO2 capture model convergence is nearly reached around

180 evaluations for a same initial population. By taking into account the

reduction of the number of evaluations in the optimization, the use of the

parameterized model leads to an additional computation time decrease which

favors the use of this kind of simplified models in optimization problems

formulations. Consequently, such a quick first optimization is appropriate for

the preliminary design and evaluation of process options with CO2 capture.

4. Conclusion

A strategy applying multi-objective optimization for developing energy

and cost correlations of CO2 capture process units is presented. The advan-

tage of this approach is that the simple parameterized models are developed

based on optimization results by applying polynomial fitting and neural net-

works. Consequently, the number of decision variables of the global problem

are reduced compared to the sub-problem optimization. Using the param-

eterized blackbox models of the chemical absorption unit in the global op-

timization of a power plant with CO2 capture reduces the complexity and
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computation time without loosing much accuracy for capture rates up to

87%. The inclusion of predictions of each heat load and the corresponding

temperature level is advantageous with regard to the overall process inte-

gration. It is shown that the accuracy of the parameterized models highly

depends on the model callibration. In fact, the hypothesis that the optimal

solution of the global problem corresponds to the minimum investment for a

given CO2 capture rate reveals to be not valid at high capture rates because

there is a compromise between capital investment and energy efficiency. A

solution would be to calibrate the parameterized CO2 capture models on the

minimization of the production costs accounting the heat demand at its ex-

ergy value instead of on the investment. The proposed approach to develop

simplified models based on optimization results is promising for the prelim-

inary design and evaluation of process options with CO2 capture, especially

with regard to the computation time reduction and the reduction of the num-

ber of decision variables. However, in order to predict the process behaviour

accurately in the whole space of the decision variables, the calibration data

set has to be chosen in such a way that the hypothesis of the sub-problem

optimality is satisfied.
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Table 1: Decision variables and feasible range for optimization.
Operating parameter Range Operating parameter Range

Lean solvent CO2 loading [kmol/kmol] [0.18-0.25] Split fraction [-] [0-0.7]
Rich solvent CO2 loading [kmol/kmol] [0.4-0.5] Nb stages absorber [10-17]
Rich solvent pre-heat T [oC] [95-105] Nb stages HP stripper [8-15]
Rich solvent re-heat T [oC] [115-125] Nb stages LP stripper [6-10]
LP stripper pressure [bar] [1.7-2.1] Absorber diameter [m] [6-12]
HP / LP pressure ratio [-] [1-1.5] HP stripper diameter [m] [3-6]
MEA % in solvent [-] [0.3-0.35] LP stripper diameter [m] [2-5]
Absorber steam out [kgH2O/tFG] [306-309.5]

Table 2: Regression results for the investment cost correlation leading to Eq.2.
(t0.95[1538]=1.96, F0.95[7;1538]=3.23)

cst x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3 x2
1 x2

1x3 R2 F-value
Coefficient 33.663 -117.33 -1.93E-5 0 1.2E-4 -366.04 4.7E-4 -4.5E-4 0 796.38 0.977 9565
t-value - -12.18 -3.38 1.64 14.4 -2.87 7.53 -4.7 0.45 6.2

Table 3: Economic assumptions.

Parameter Value

Marshall and Swift index 1473
Expected lifetime 25 years
Interest rate 6%
Yearly operation 7500h/year
Maintenance 5% Invest.
Natural gas price 9.7 $/GJNG

Table 4: Performance results for different base case scenarios.
Scenario ηCO2 εtot CO2 emit COE Avoid. cost

[%] [%] [kg/GJe] [$/GJe] [$/tCO2,avoided]
NGCC 0 58.75 105.08 18.32 -
MEA model 85.11 50.3 12.92 22.92 49.89
Polyfit 85.06 49.13 15.72 23.72 60.46
Shortcut fit 85.06 49.13 15.72 23.56 58.62
NN 85.06 48.50 15.92 24.01 63.62
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Table 5: Computation time comparison for multi-objective optimization with 400 evalua-
tions and initial population of 30.

Scenario time 1 run time moo
[h:mm:ss] [h:mm:ss]

MEA model 0:01:57 10:08:33
BB f2 0:01:05 4:54:32
BB fK 0:01:03 4:56:17
BB NN 0:01:04 4:59:11

Table 6: Performance results for compromise solutions.

Scenario ηCO2 εtot CO2 emit COE Avoid. cost FGR
[%] [%] [kg/GJe] [$/GJe] [$/tCO2,avoided] [-]

NGCC 0 58.75 105.08 18.32 - 0
MEA model 86.94 50.28 16.16 22.80 50.35 0.539
Polyfit 87.02 50.29 12.93 23.20 52.93 0.528
Shortcut fit 87.16 50.6 13.23 22.90 49.90 0.543
NN 87.45 49.90 13.44 23.30 54.40 0.522
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Figure 1: Illustration of the process optimization strategy.

Figure 2: Flowsheet of the CO2 capture unit implemented in Aspen Plus.
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Figure 3: Blackbox model of the CO2 capture process.

0.8
1

0.5 1 1..5 2 2..5 3
x 106

0

50

100

150

200

250  

Flue gas flowrate [kg/h] 

 

In
ve

st
m

en
t [

M
$]

6.5%wt CO2
7.4%wt CO2
8.1%wt CO2
9%wt CO2

CO2 
capture 
rate [-]

0.6

Figure 4: Pareto frontiers showing the trade-offs between investment and CO2 capture
rate for different ṁFG and ξCO2.

Hidden Layer Output Layer

w

b
+

w

b
+ sI

Output

inCO ,2
ξ

2COη

  ,inFGm&

Input

Figure 5: Schematic illustration of neural network.

24



0

50

100

150

200

250

0 50 100 150 200 250

In
ve

st
m

en
t [

M
$]

 (fi
t r

es
ul

ts
)

Investment [M$] (Op�m data)

x=y

NN R2=0.9833

Polyfit R2=0.9775

Shortcut fit R2=0.9667

Figure 6: Fitted investment (Polynomial fit - polyfit Eq.2, fit based on shortcut model -
shortcut fit, neural network - NN) versus optimization result.

25



0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Heat load [kW/kW NG]

Te
m

pe
ra

tu
re

 [K
]

 

 
MEA model
Polyfit
Shortcut fit
NN

Gas cooling

Steam
superheating

MEA HT
MEA LT

Cooling water

Utilization
level

Steam
condensation

HP
production level

IP

Figure 7: Comparison of composite curves with steam network integration for base case
scenarios.
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