
Primeless Modular Cryptography

(Extended Abstract)

Sonia Bogos, Ioana Boureanu, Serge Vaudenay

EPFL, Lausanne, Switzerland

Abstract. Most of the known public-key cryptosystems have an overall complexity which is dominated by the key-
production algorithm, which requires the generation of prime numbers. This is most inconvenient in settings where the
key-generation is not an one-off process, e.g., secure delegation of computation or EKE password-based key exchange
protocols. To this end, we extend the Goldwasser-Micali (GM) cryptosystem to a provably secure system, denoted SIS,
where the generation of primes is bypassed. Using number-theoretic and linear optimisation techniques, we align the
security guarantees (i.e., resistance to factoring of moduli, etc.) of SIS to those of other well-known cryptosystems
based on modular arithmetics. We explicitly compare and contrast the asymptotic complexity of well-known public-key
cryptosystems based on modular arithmetics (e.g., GM and/or RSA) with that of SIS’s. The latter shows that once
we are ready to accept an increase in the size of the moduli, SIS’s offers significant speed-ups to applications like the
aforementioned secure delegation of computation or protocols where a fresh key needs to be generated with every new
session. We also developed an efficient extension of SIS to handle more than one bit at a time, using linear codes, which
will be omitted herein due to space constraints.

1 Introduction

Several, widely used public-key cryptosystems have a setup phase where prime numbers are generated and/or
primality tests are run. The computational complexity yielded by the generation of a prime number of length L
is generally in O(L4) and –if optimised– O∼(L3). Such generations occur, for instance, in the case of RSA [12]
and/or in the Goldwasser-Micali (GM) probabilistic cryptosystem [3], as each of them defines its operation over
Z∗n, for n being a product of two, distinct large prime numbers of size L=s3 generated therein. Moreover, there
exist settings in which the key-generation in asymmetric cryptosystems is not an one-off process. A first case of
the sort is the more and more popular of secure delegation protocols [10], where some client outsources a task
to a remote worker; the security of this is based on homomorphic public-key encryption schemes and the keys
need to be re-issued freshly at each run of such a protocol. Hence, the asymptotic complexity of prime-generation
for the homomorphic encryptions used therein [10] (e.g., GM, RSA, Paillier’s encryption, encryption based on
bilinear maps, etc.) becomes an alarming bottleneck of the delegated computation.

In this paper, we endeavor in extending the Goldwasser-Micali (GM) scheme [3] into a public-key scheme
that bypasses prime-generation procedures. We show reduction in complexity from the usual O(s12) in the above
cases to O(s7(log s)2), at the cost of generating larger, composite numbers (where s is the security parameter).
This comes to the special benefit of applications like the aforementioned (e.g., secure delegation of computation,
EKE password-based key exchange protocols, etc.), where the key-generation giving the bottlenecks are in fact
repeated at each run1.

2 Preliminaries

2.1 Foundations

Let G be an Abelian group. A character χ is a group homomorphism from (G,+) to C∗. The set of characters
over G has a group structure with component-wise multiplication over C∗. For all a ∈ G, χ(a) is a λ(G)-th root
of the unity, where λ(G) is the exponent of the group G. A character χ of order 2 is such that χ(a) ∈ {−1, 1}, for
all a ∈ G. Let ε be the trivial character, i.e., ε(a) = 1. The set of characters χ for which χ2=ε consists of ε and
characters of order 2. Let p ∈ Z be an odd prime. The only character in Z∗p of order 2 is the Legendre symbol
χ(a) = (ap), for any a ∈ Z∗p. For n=pq with p and q being two different odd primes, there are 3 characters of
order 2: the Legendre symbol (·p), the Legendre symbol (·q), and the Jacobi symbol (·n). The latter is easy to
compute, but the former are allegedly hard to compute when the primes p and q are unknown. We call these
former characters hard characters of order 2. We recall that QRn is a usual notation for the subgroup of Z∗n of all
quadratic residues. We refer to the problem of deciding whether an element of Z∗n is quadratic residue or not as
the QR problem.

This work uses characters of order 2, in order to design public-key encryption schemes that elude the generation
of prime numbers, thus reducing the general asymptotic complexity of the usual schemes of the kind.
1 We compare with (homomorphic) schemes used in these settings and do not compare with, e.g., the McEliece cryptosystem [9].

2.2 Computational Problems

In this paper, we consider the following combinatorial problem:

CHI Problem (Character Interpolation Problem):
Parameters: a modulus n, x1, . . . , xt in Z∗n, t elements y1, . . . , yt ∈ {−1,+1}, all defining a unique character χ

on Z∗n such that χ(xi) = yi for i = 1, . . . , t and t ≥ 1.
Input: x ∈ Z∗n.
Problem: Find y = χ(x).

CHI is a specialisation of the GHI problem [11]. When one can compute discrete logarithms in Z∗n or factor
n, one can easily solve the CHI problem by solving a linear system. Thus, for the CHI problem to be hard, we
need that n is hard-to-factor. The hardness of the CHI and the QR problems are formally defined as expected,
i.e., in negligible advantages of ppt. adversaries trying to defeat the assumptions. Then, we have the following
(amplification) result:

Theorem 1. If the QR problem is hard relative to GenGM , then CHI problem is hard relative to GenCHI .

We assume that the best algorithm to solve CHI problem with χ(·) =
(·
α

)
over Z∗n, for a factor α

of n, consists of finding α. Our main cryptosystem then relies on this problem.

3 SIS: A Primeless Public-Key Cryptosystem

SIS Modulus generation:

Input: Security parameter s.
1: compute k and ` (depending on s, using in (9) and (8) in page 4)
2: pick α =

∏i=k
i=1 αi, where αi are random odd integers of size `;

3: pick β =
∏i=k
i=1 βi, where βi are random odd integers of size `;

4: compute n = α · β
Output: Public key: (n, α).

SIS Key generation:

Input: Security parameter s.
1: compute t (depending on s, as per (2) in page 3)
2: (n, α)← GenModulus(s)
3: x1, x2, . . . , xt ∈U Z∗n
4: yi = (xi

α
) for all 1 ≤ i ≤ t

5: if yi=1 for all 1 ≤ i ≤ t, then go-to step 4
Output: Public key: (n, x1, x2, . . . xt, y1, y2, . . . yt); Private key: α.

SIS Encryption:

Input: a bit b.
Public key: (n, x1, x2, . . . xt, y1, y2, . . . yt).

1: find yi=−1, i ∈ {1, . . . , t}
2: b1, b2, . . . , bi−1, bi+1, . . . , bt ∈U {0, 1}
3: P ←

∏
j 6=i y

bj
j

4: if P=(−1)b then bi ← 0 else bi ← 1.
5: z′ ← xb11 · · ·x

bt
t (mod n)

6: r ∈U Z∗n
7: z ← r2 · z′ (mod n)
Output: the encryption z, z ∈ Z∗n.

SIS Decryption:

Input: the encryption z, z ∈ Z∗n.
Secret key: α.

1: Compute the Jacobi symbol (z
α

).
2: if (z

α
) = 1 then b = 0 else b = 1 .

Output: a bit b.

The cryptosystem is presented in the above figure. The security implied by procedures 1-4 and the size of
their parameters are discussed in Section 4.2. Also, the system is correct, i.e.,:

Lemma 2. (zα) = (−1)b, where the values z, α, the bit b are honestly computed/selected as in the SIS cryptosystem.

4 Description & Choice of the Parameters

4.1 The Local Parameter t

Let s ∈ Z be the security parameter and L be the bitlength of n. The value L is given in terms of s is expressed
at the end of this section. We pick the value t such that we obtain the uniqueness of the homomorphism in the
GHI corresponding problem. Namely, we pick t to be greater than the value r specified by Lemma 4.3 in [11],
specialised here for d=2. When {x1, . . . xt} is such that no different characters collide on this set, we say that
Z2-generates Z∗n. Using Theorem 4.29 in [11], we give the following corollary:

Lemma 3. The probability that {x1, . . . , xt} in the SIS scheme Z2-generate Z∗n is Pgen ≥ 1− 2k2−t, where k2 is
the rank of the group A2 and A2 is the maximal 2-subgroup of Z∗n.

In order to enforce that 1− Pgen is smaller than 2−s, we get a sufficient bound for t: t ≥ k2 + s. Further, the
rank k2 of the 2-subgroup of Z∗n is closely related to ω(n), i.e., the number of distinct prime factors of n [4]. Since
n to be generated in the SIS scheme is odd, we can conclude the number t of elements used from Z∗n to generate
z′ is such that t ≥ ω(n) + s. This is a sufficient condition for Pgen ≥ 1− 2−s.

Theorem 4. For t ≥ ω(n) + s, x1, . . . , xt Z2-generate Z∗n with a probability greater than or equal to 1− 2−s.

By using he Ramanujam-Hardy theorem [4], the Erdös-Kac theorem [2] and the approximation of the standard
normal cumulative distribution, we obtain that (2) t = d2k. ln ln 2` +

√
2s. ln 2. ln ln 2` + se. Hence, t can be taken

of the order of k ln `+ s.

4.2 Asymptotic Approximations & Numerical Optimisation of k, `, t

It can be seen that in order for the CHI problem to be hard and, separately for key recovery attacks to be
impossible, the factorization of the modulus n, generated as in our cryptosystem, needs to be hard. More precisely,
the factors α and β of n should be hard to find.

In [7], Knuth et al. look at on the probability that, for a random number n, the rth largest of its prime factors, nr,

is smaller than nx where 0 < x < 1: Fr(x) = limN→+∞
Pr(x,N)

N , where Pr(x,N) is the following function Pr(x,N) =
#{1 ≤ n ≤ N |nr ≤ Nx}. We use this to express our security desiderata (the hardness on n’s factorization); Let

some constant x, y, z ∈ (0, 1) and consider the following. Let CGNFS(|n|, c, ε)=c× (e

(
3
√

64
9
+ε
)
(lnn)

1
3 (ln lnn)

2
3

and

CECM (|p|, c′, ε′)=c′ × e
√
2+ε′

√
ln p ln ln p express the complexity of factorizing n using the GNFS (general number

field sieve) and ECM (elliptic curve method) methods respectively, where p is the smallest prime factor of n,
c, c′ ∈ R is such that CGNFS(1248)=280 [1]. Now, we impose our conditions to align the security of SIS to the
security levels of factorising moduli in general, in public-key cryptography:

(3) min
[
F1(x)−k,minx≤u≤y

CECM (u·`)
F1(u)k

, CECM (y · `)
]
≥ 2s; (4) Pr

[
#{i : αi is 2y·`-smooth} > zk

]
≤ 2−s; (5)

F1(y) ≤ z; (6) exp(−2k(F1(y) − z)2) ≤ 2−s; (7) CGNFS((1 − z)ky`) ≥ 2s. Let s be the security parameter.
Equation (3) stipulates that, for all fractions u between a fraction x (of our numbers αi) and a fraction y, either
the complexity to find factors of size u` in α generated as above is too high or the probability that all αi are
2u`-smooth is too low. Then, to select our bitlength L = 2k` aligned to that of moduli used inside schemes like
that of Goldwasser-Micali [3] or inside RSA [12] and to equate their security guarantees, we consider that the
following needs to hold: CGNFS(L) ≥ 2s. From this, we approximate that L = O∼(s3). If instead we consider
that ECM [8] is used to factorize moduli, then we approximate that ` is of the order of s2. We should also ensure
that the number of hard-to-find factors in α is high and larger than 2y.`, i.e., for their product to resist factoring
with GNFS. Hence, our requirement (4), where z is a constant, αi are as in the GenModulus algorithm. So, we
have (1− z)k prime factors of size larger than y`. (We also use this information to construct a cryptosystem that
encrypts more than 1 bit.)

From the de Brujin function ψ [5], we can approximate that the number of 2y`-smooth factors smaller than
zk, as needed above. We now use the Hoeffding inequality [6] upon requirement (4), for the case where (5) is the
case. Then, the probability in (4) is lower than exp(−2k(F1(y)− z)2). Overall we require that this probability is
smaller than 2−s, i.e., (6).

We need to find the bounds of L (or `) imposed by our criterion (4) above. We consider that x and y are
constant. By the constraints on k following from above (i.e., exp(−2k(F1(y)− z)2) ≤ 2−s and F1(x)−k ≤ 2−s),
then z can be chosen constant. Indeed, for (4) to hold, we enforce at the lower bound that CGNFS((1− z)ky`)
is at least equal to 2s, i.e., (7). Taking x=y, z being fixed, we let k ∈ O(s) satisfying (6) and (3). Then,
` ∈ O(s2) satisfies (3) and (7). Since we already showed that t ∈ O(k ln `+ s), we have the following overall result:
t ` k k`

O(s log s) O(s2) O(s) O(s3)
Now, we mention some of the series of values obtained using all the formulae in the previous section and/or

others derived from it, e.g., (8) ` =
C−1
ECM (2s)

x , (9) k = s ln 2
(z−F1(x))2

, implemented in PARI/GP, using an approximation

of the DeBrujin/Dickman’s functions as per [7]. Thus, for s=80, we obtained x = y=0.470, z=0.961, k=57, `=841,
k`=47 937, t=464. For s = 192, k`=503 712.

5 Complexity & Security of the Scheme

Complexity. We evaluated the complexity of our schemes, compared it with that of other public-key cryptosystems
based on primality-testing, e.g., GM and RSA. We report a small part of these evaluations, which show that SIS
exhibits improved asymptotic complexities for all procedures, apart from encryption:

key-generation encryption decryption
schoolbook multiplication GM O(s12) O(s6) O(s6 log s)

SIS O(s7(log s)2) O(s7 log s) O(s6 log s)
FFT-based multiplication GM O(s9 log s) O(s3(log s)) O(s3(log s)2)

SIS O(s4(log s)3) O(s4(log s)2) O(s3(log s)2)

Security.

Theorem 5. Assuming that the CHI problem is hard relative to Gen, the SIS scheme is IND-CPA secure.

Since the SIS-scheme is homomorphic, it is clearly not IND-CCA secure.

6 Conclusions

Relying on hard characters of order 2, we have extended the GM cryptosystem in a way that bypasses completely
the use/generation of prime numbers. In doing so, the resulting scheme yields an asymptotic complexity in the
security parameter smaller than the one of standard public-key cryptosystems. This would yield a considerable
speed-up to secure delegation protocols [10] that use homomorphic encryption schemes, GM included, in a way
where the key-generation is repeated at every run of the protocol. In the extended paper, we show how encrypt
more than 1 in an efficient way, using linear codes. It is also possible to improve the efficiency of our cryptosystem
by using characters of higher order.

References

1. Institute of Electrical and Electronics Engineers. ECRYPT II Yearly Report on Algorithms and Keysizes. ECRYPT, 2011.
http://www.ecrypt.eu.org/documents/D.SPA.17.pdf.

2. P. Erdös and M. Kac. The gaussian law of errors in the theory of additive number theoretic functions. American Journal of
Mathematics, 62(1):738–742, 1940.

3. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.
4. G. Hardy and S. Ramanujan. The normal number of prime factors of a number n. Quart. J. Math.
5. A. Hildebrand and G. Tenenbaum. Integers without large prime factors. Prépublications de l’Institut Elie Cartan. Dép. de Math.,

Univ. de Nancy I, 1991.
6. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association,

58:13–30, 1963.
7. D. E. Knuth and L. T. Pardo. Analysis of a simple factorization algorithm. Theoretical Computer Science, 3(3):321348, 1976.
8. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math. (2), 126(3):649–673, 1987.
9. Robert J. Mceliece. A public-key cryptosystem based on algebraic coding theory. Technical report, Jet Propulsion Lab Deep

Space Network Progress report, 1978.
10. P. Mohassel. Efficient and secure delegation of linear algebra. Cryptology ePrint Archive, Report 2011/605, 2011. http:

//eprint.iacr.org/.
11. J. Monnerat and S. Vaudenay. Short Undeniable Signatures Based on Group Homomorphisms. Journal of Cryptology, 24(3):545–587,

2011.
12. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Commun.

ACM, 21:120–126, February 1978.

http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

	Primeless Modular Cryptography

